genfs_io.c revision 1.36.2.46 1 /* $NetBSD: genfs_io.c,v 1.36.2.46 2010/11/19 08:39:25 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.46 2010/11/19 08:39:25 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef XIP
63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
64 int *, int, vm_prot_t, int, int, const int);
65 static int genfs_do_getpages_xip_io_done(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int, const int);
67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
68 struct vm_page **);
69 #endif
70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
71 off_t, enum uio_rw);
72 static void genfs_dio_iodone(struct buf *);
73
74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
75 void (*)(struct buf *));
76 static void genfs_rel_pages(struct vm_page **, int);
77 static void genfs_markdirty(struct vnode *);
78
79 int genfs_maxdio = MAXPHYS;
80
81 static void
82 genfs_rel_pages(struct vm_page **pgs, int npages)
83 {
84 int i;
85
86 for (i = 0; i < npages; i++) {
87 struct vm_page *pg = pgs[i];
88
89 if (pg == NULL || pg == PGO_DONTCARE)
90 continue;
91 if (pg->flags & PG_FAKE) {
92 pg->flags |= PG_RELEASED;
93 }
94 }
95 mutex_enter(&uvm_pageqlock);
96 uvm_page_unbusy(pgs, npages);
97 mutex_exit(&uvm_pageqlock);
98 }
99
100 static void
101 genfs_markdirty(struct vnode *vp)
102 {
103 struct genfs_node * const gp = VTOG(vp);
104
105 KASSERT(mutex_owned(&vp->v_interlock));
106 gp->g_dirtygen++;
107 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
108 vn_syncer_add_to_worklist(vp, filedelay);
109 }
110 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
111 vp->v_iflag |= VI_WRMAPDIRTY;
112 }
113 }
114
115 /*
116 * generic VM getpages routine.
117 * Return PG_BUSY pages for the given range,
118 * reading from backing store if necessary.
119 */
120
121 int
122 genfs_getpages(void *v)
123 {
124 struct vop_getpages_args /* {
125 struct vnode *a_vp;
126 voff_t a_offset;
127 struct vm_page **a_m;
128 int *a_count;
129 int a_centeridx;
130 vm_prot_t a_access_type;
131 int a_advice;
132 int a_flags;
133 } */ * const ap = v;
134
135 off_t diskeof, memeof;
136 int i, error, npages;
137 const int flags = ap->a_flags;
138 struct vnode * const vp = ap->a_vp;
139 struct uvm_object * const uobj = &vp->v_uobj;
140 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
141 const bool async = (flags & PGO_SYNCIO) == 0;
142 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
143 bool has_trans = false;
144 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
145 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
146 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
147 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
148
149 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
150 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
151
152 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
153 vp->v_type == VLNK || vp->v_type == VBLK);
154
155 startover:
156 error = 0;
157 const voff_t origvsize = vp->v_size;
158 const off_t origoffset = ap->a_offset;
159 const int orignpages = *ap->a_count;
160
161 GOP_SIZE(vp, origvsize, &diskeof, 0);
162 if (flags & PGO_PASTEOF) {
163 off_t newsize;
164 #if defined(DIAGNOSTIC)
165 off_t writeeof;
166 #endif /* defined(DIAGNOSTIC) */
167
168 newsize = MAX(origvsize,
169 origoffset + (orignpages << PAGE_SHIFT));
170 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
171 #if defined(DIAGNOSTIC)
172 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
173 if (newsize > round_page(writeeof)) {
174 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
175 __func__, newsize, round_page(writeeof));
176 }
177 #endif /* defined(DIAGNOSTIC) */
178 } else {
179 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
180 }
181 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
182 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
183 KASSERT(orignpages > 0);
184
185 /*
186 * Bounds-check the request.
187 */
188
189 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
190 if ((flags & PGO_LOCKED) == 0) {
191 mutex_exit(&uobj->vmobjlock);
192 }
193 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
194 origoffset, *ap->a_count, memeof,0);
195 error = EINVAL;
196 goto out_err;
197 }
198
199 /* uobj is locked */
200
201 if ((flags & PGO_NOTIMESTAMP) == 0 &&
202 (vp->v_type != VBLK ||
203 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
204 int updflags = 0;
205
206 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
207 updflags = GOP_UPDATE_ACCESSED;
208 }
209 if (memwrite) {
210 updflags |= GOP_UPDATE_MODIFIED;
211 }
212 if (updflags != 0) {
213 GOP_MARKUPDATE(vp, updflags);
214 }
215 }
216
217 /*
218 * For PGO_LOCKED requests, just return whatever's in memory.
219 */
220
221 if (flags & PGO_LOCKED) {
222 #if 0
223 genfs_getpages_mem();
224 } else {
225 genfs_getpages_io();
226 }
227 }
228
229 int
230 genfs_getpages_mem()
231 {
232 #endif
233 int nfound;
234 struct vm_page *pg;
235
236 #ifdef XIP
237 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
238 *ap->a_count = 0;
239 return 0;
240 }
241 #endif
242
243 KASSERT(!glocked);
244 npages = *ap->a_count;
245 #if defined(DEBUG)
246 for (i = 0; i < npages; i++) {
247 pg = ap->a_m[i];
248 KASSERT(pg == NULL || pg == PGO_DONTCARE);
249 }
250 #endif /* defined(DEBUG) */
251 nfound = uvn_findpages(uobj, origoffset, &npages,
252 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
253 KASSERT(npages == *ap->a_count);
254 if (nfound == 0) {
255 error = EBUSY;
256 goto out_err;
257 }
258 if (!genfs_node_rdtrylock(vp)) {
259 genfs_rel_pages(ap->a_m, npages);
260
261 /*
262 * restore the array.
263 */
264
265 for (i = 0; i < npages; i++) {
266 pg = ap->a_m[i];
267
268 if (pg != NULL && pg != PGO_DONTCARE) {
269 ap->a_m[i] = NULL;
270 }
271 KASSERT(pg == NULL || pg == PGO_DONTCARE);
272 }
273 } else {
274 genfs_node_unlock(vp);
275 }
276 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
277 if (error == 0 && memwrite) {
278 genfs_markdirty(vp);
279 }
280 goto out_err;
281 }
282 mutex_exit(&uobj->vmobjlock);
283 #if 0
284 }
285
286 int
287 genfs_getpages_io()
288 {
289 #endif
290 /*
291 * find the requested pages and make some simple checks.
292 * leave space in the page array for a whole block.
293 */
294
295 #define vp2fs_bshift(vp) \
296 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
297 #define vp2dev_bshift(vp) \
298 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
299
300 const int fs_bshift = vp2fs_bshift(vp);
301 const int dev_bshift = vp2dev_bshift(vp);
302 const int fs_bsize = 1 << fs_bshift;
303 #define blk_mask (fs_bsize - 1)
304 #define trunc_blk(x) ((x) & ~blk_mask)
305 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
306
307 const int orignmempages = MIN(orignpages,
308 round_page(memeof - origoffset) >> PAGE_SHIFT);
309 npages = orignmempages;
310 const off_t startoffset = trunc_blk(origoffset);
311 const off_t endoffset = MIN(
312 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
313 round_page(memeof));
314 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
315
316 const int pgs_size = sizeof(struct vm_page *) *
317 ((endoffset - startoffset) >> PAGE_SHIFT);
318 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
319
320 if (pgs_size > sizeof(pgs_onstack)) {
321 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
322 if (pgs == NULL) {
323 pgs = pgs_onstack;
324 error = ENOMEM;
325 goto out_err;
326 }
327 } else {
328 pgs = pgs_onstack;
329 (void)memset(pgs, 0, pgs_size);
330 }
331
332 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
333 ridx, npages, startoffset, endoffset);
334 #if 0
335 }
336
337 int
338 genfs_getpages_io_relock()
339 {
340 #endif
341 if (!has_trans) {
342 fstrans_start(vp->v_mount, FSTRANS_SHARED);
343 has_trans = true;
344 }
345
346 /*
347 * hold g_glock to prevent a race with truncate.
348 *
349 * check if our idea of v_size is still valid.
350 */
351
352 KASSERT(!glocked || genfs_node_wrlocked(vp));
353 if (!glocked) {
354 if (blockalloc) {
355 genfs_node_wrlock(vp);
356 } else {
357 genfs_node_rdlock(vp);
358 }
359 }
360 mutex_enter(&uobj->vmobjlock);
361 if (vp->v_size < origvsize) {
362 if (!glocked) {
363 genfs_node_unlock(vp);
364 }
365 if (pgs != pgs_onstack)
366 kmem_free(pgs, pgs_size);
367 goto startover;
368 }
369 #if 0
370 }
371
372 int
373 genfs_getpages_io_findpages()
374 {
375 #endif
376 #ifdef XIP
377 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
378 goto genfs_getpages_allocpages_done;
379 #endif
380
381 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
382 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
383 if (!glocked) {
384 genfs_node_unlock(vp);
385 }
386 KASSERT(async != 0);
387 genfs_rel_pages(&pgs[ridx], orignmempages);
388 mutex_exit(&uobj->vmobjlock);
389 error = EBUSY;
390 goto out_err_free;
391 }
392
393 /*
394 * if the pages are already resident, just return them.
395 */
396
397 for (i = 0; i < npages; i++) {
398 struct vm_page *pg = pgs[ridx + i];
399
400 if ((pg->flags & PG_FAKE) ||
401 (blockalloc && (pg->flags & PG_RDONLY))) {
402 break;
403 }
404 }
405 if (i == npages) {
406 if (!glocked) {
407 genfs_node_unlock(vp);
408 }
409 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
410 npages += ridx;
411 goto out;
412 }
413
414 /*
415 * if PGO_OVERWRITE is set, don't bother reading the pages.
416 */
417
418 if (overwrite) {
419 #if 0
420 genfs_getpages_io_overwrite();
421 } else {
422 genfs_getpages_io_read();
423 }
424 }
425
426 int
427 genfs_getpages_io_overwrite()
428 {
429 {
430 #endif
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
435
436 for (i = 0; i < npages; i++) {
437 struct vm_page *pg = pgs[ridx + i];
438
439 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
440 }
441 npages += ridx;
442 goto out;
443 }
444 #if 0
445 }
446
447 int
448 genfs_getpages_io_read()
449 {
450 #endif
451 /*
452 * the page wasn't resident and we're not overwriting,
453 * so we're going to have to do some i/o.
454 * find any additional pages needed to cover the expanded range.
455 */
456 #if 0
457 }
458
459 int
460 genfs_getpages_io_read_allocpages()
461 {
462 #endif
463 npages = (endoffset - startoffset) >> PAGE_SHIFT;
464 if (startoffset != origoffset || npages != orignmempages) {
465 int npgs;
466
467 /*
468 * we need to avoid deadlocks caused by locking
469 * additional pages at lower offsets than pages we
470 * already have locked. unlock them all and start over.
471 */
472
473 genfs_rel_pages(&pgs[ridx], orignmempages);
474 memset(pgs, 0, pgs_size);
475
476 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
477 startoffset, endoffset, 0,0);
478 npgs = npages;
479 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
480 async ? UFP_NOWAIT : UFP_ALL) != npages) {
481 if (!glocked) {
482 genfs_node_unlock(vp);
483 }
484 KASSERT(async != 0);
485 genfs_rel_pages(pgs, npages);
486 mutex_exit(&uobj->vmobjlock);
487 error = EBUSY;
488 goto out_err_free;
489 }
490 }
491 #ifdef XIP
492 genfs_getpages_io_read_allocpages_done:
493 #endif
494 #if 0
495 }
496
497 int
498 genfs_getpages_io_read_bio()
499 {
500 #endif
501 mutex_exit(&uobj->vmobjlock);
502
503 {
504 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
505 vaddr_t kva = 0;
506 struct buf *bp = NULL, *mbp = NULL;
507 bool sawhole = false;
508
509 /*
510 * read the desired page(s).
511 */
512
513 totalbytes = npages << PAGE_SHIFT;
514 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
515 tailbytes = totalbytes - bytes;
516 skipbytes = 0;
517
518 #if 1
519 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
520 goto genfs_getpages_bio_prepare_done;
521 #endif
522 #if 0
523 }
524
525 int
526 genfs_getpages_io_read_bio_prepare()
527 {
528 #endif
529 kva = uvm_pagermapin(pgs, npages,
530 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
531
532 mbp = getiobuf(vp, true);
533 mbp->b_bufsize = totalbytes;
534 mbp->b_data = (void *)kva;
535 mbp->b_resid = mbp->b_bcount = bytes;
536 mbp->b_cflags = BC_BUSY;
537 if (async) {
538 mbp->b_flags = B_READ | B_ASYNC;
539 mbp->b_iodone = uvm_aio_biodone;
540 } else {
541 mbp->b_flags = B_READ;
542 mbp->b_iodone = NULL;
543 }
544 if (async)
545 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
546 else
547 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
548 #if 0
549 }
550
551 #endif
552 #if 1
553 genfs_getpages_bio_prepare_done:
554 #endif
555
556 /*
557 * if EOF is in the middle of the range, zero the part past EOF.
558 * skip over pages which are not PG_FAKE since in that case they have
559 * valid data that we need to preserve.
560 */
561
562 tailstart = bytes;
563 while (tailbytes > 0) {
564 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
565
566 KASSERT(len <= tailbytes);
567 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
568 memset((void *)(kva + tailstart), 0, len);
569 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
570 kva, tailstart, len, 0);
571 }
572 tailstart += len;
573 tailbytes -= len;
574 }
575
576 #if 1
577 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
578 error = genfs_do_getpages_xip_io(
579 ap->a_vp,
580 ap->a_offset,
581 ap->a_m,
582 ap->a_count,
583 ap->a_centeridx,
584 ap->a_access_type,
585 ap->a_advice,
586 ap->a_flags,
587 orignmempages);
588 goto loopdone;
589 }
590 #endif
591 #if 0
592 }
593
594 int
595 genfs_getpages_io_read_bio_loop()
596 {
597 #endif
598 /*
599 * now loop over the pages, reading as needed.
600 */
601
602 bp = NULL;
603 off_t offset;
604 for (offset = startoffset;
605 bytes > 0;
606 offset += iobytes, bytes -= iobytes) {
607 int run;
608 daddr_t lbn, blkno;
609 int pidx;
610 struct vnode *devvp;
611
612 /*
613 * skip pages which don't need to be read.
614 */
615
616 pidx = (offset - startoffset) >> PAGE_SHIFT;
617 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
618 size_t b;
619
620 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
621 if ((pgs[pidx]->flags & PG_RDONLY)) {
622 sawhole = true;
623 }
624 b = MIN(PAGE_SIZE, bytes);
625 offset += b;
626 bytes -= b;
627 skipbytes += b;
628 pidx++;
629 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
630 offset, 0,0,0);
631 if (bytes == 0) {
632 goto loopdone;
633 }
634 }
635
636 /*
637 * bmap the file to find out the blkno to read from and
638 * how much we can read in one i/o. if bmap returns an error,
639 * skip the rest of the top-level i/o.
640 */
641
642 lbn = offset >> fs_bshift;
643 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
644 if (error) {
645 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
646 lbn,error,0,0);
647 skipbytes += bytes;
648 bytes = 0;
649 goto loopdone;
650 }
651
652 /*
653 * see how many pages can be read with this i/o.
654 * reduce the i/o size if necessary to avoid
655 * overwriting pages with valid data.
656 */
657
658 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
659 bytes);
660 if (offset + iobytes > round_page(offset)) {
661 int pcount;
662
663 pcount = 1;
664 while (pidx + pcount < npages &&
665 pgs[pidx + pcount]->flags & PG_FAKE) {
666 pcount++;
667 }
668 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
669 (offset - trunc_page(offset)));
670 }
671
672 /*
673 * if this block isn't allocated, zero it instead of
674 * reading it. unless we are going to allocate blocks,
675 * mark the pages we zeroed PG_RDONLY.
676 */
677
678 if (blkno == (daddr_t)-1) {
679 int holepages = (round_page(offset + iobytes) -
680 trunc_page(offset)) >> PAGE_SHIFT;
681 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
682
683 sawhole = true;
684 memset((char *)kva + (offset - startoffset), 0,
685 iobytes);
686 skipbytes += iobytes;
687
688 for (i = 0; i < holepages; i++) {
689 if (memwrite) {
690 pgs[pidx + i]->flags &= ~PG_CLEAN;
691 }
692 if (!blockalloc) {
693 pgs[pidx + i]->flags |= PG_RDONLY;
694 }
695 }
696 continue;
697 }
698
699 /*
700 * allocate a sub-buf for this piece of the i/o
701 * (or just use mbp if there's only 1 piece),
702 * and start it going.
703 */
704
705 if (offset == startoffset && iobytes == bytes) {
706 bp = mbp;
707 } else {
708 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
709 vp, bp, vp->v_numoutput, 0);
710 bp = getiobuf(vp, true);
711 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
712 }
713 bp->b_lblkno = 0;
714
715 /* adjust physical blkno for partial blocks */
716 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
717 dev_bshift);
718
719 UVMHIST_LOG(ubchist,
720 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
721 bp, offset, bp->b_bcount, bp->b_blkno);
722
723 VOP_STRATEGY(devvp, bp);
724 }
725
726 loopdone:
727 #if 1
728 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
729 goto genfs_getpages_biodone_done;
730 #endif
731 #if 0
732
733 int
734 genfs_getpages_biodone()
735 {
736 #endif
737 nestiobuf_done(mbp, skipbytes, error);
738 if (async) {
739 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
740 if (!glocked) {
741 genfs_node_unlock(vp);
742 }
743 error = 0;
744 goto out_err_free;
745 }
746 if (bp != NULL) {
747 error = biowait(mbp);
748 }
749
750 /* Remove the mapping (make KVA available as soon as possible) */
751 uvm_pagermapout(kva, npages);
752
753 /*
754 * if this we encountered a hole then we have to do a little more work.
755 * for read faults, we marked the page PG_RDONLY so that future
756 * write accesses to the page will fault again.
757 * for write faults, we must make sure that the backing store for
758 * the page is completely allocated while the pages are locked.
759 */
760
761 if (!error && sawhole && blockalloc) {
762 /*
763 * XXX: This assumes that we come here only via
764 * the mmio path
765 */
766 if (vp->v_mount->mnt_wapbl) {
767 error = WAPBL_BEGIN(vp->v_mount);
768 }
769
770 if (!error) {
771 error = GOP_ALLOC(vp, startoffset,
772 npages << PAGE_SHIFT, 0, cred);
773 if (vp->v_mount->mnt_wapbl) {
774 WAPBL_END(vp->v_mount);
775 }
776 }
777
778 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
779 startoffset, npages << PAGE_SHIFT, error,0);
780 if (!error) {
781 for (i = 0; i < npages; i++) {
782 struct vm_page *pg = pgs[i];
783
784 if (pg == NULL) {
785 continue;
786 }
787 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
788 UVMHIST_LOG(ubchist, "mark dirty pg %p",
789 pg,0,0,0);
790 }
791 }
792 }
793
794 putiobuf(mbp);
795 #if 0
796 }
797
798 #endif
799 #if 1
800 genfs_getpages_biodone_done:
801 {}
802 #endif
803 }
804
805 if (!glocked) {
806 genfs_node_unlock(vp);
807 }
808
809 #if 1
810 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
811 error = genfs_do_getpages_xip_io_done(
812 ap->a_vp,
813 ap->a_offset,
814 ap->a_m,
815 ap->a_count,
816 ap->a_centeridx,
817 ap->a_access_type,
818 ap->a_advice,
819 ap->a_flags,
820 orignmempages);
821 goto genfs_getpages_generic_io_done_done;
822 }
823 #endif
824 #if 0
825 else {
826 error = genfs_getpages_generic_io_done();
827 }
828 }
829
830 int
831 genfs_getpages_generic_io_done()
832 {
833 #endif
834
835 mutex_enter(&uobj->vmobjlock);
836
837 /*
838 * we're almost done! release the pages...
839 * for errors, we free the pages.
840 * otherwise we activate them and mark them as valid and clean.
841 * also, unbusy pages that were not actually requested.
842 */
843
844 if (error) {
845 for (i = 0; i < npages; i++) {
846 struct vm_page *pg = pgs[i];
847
848 if (pg == NULL) {
849 continue;
850 }
851 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
852 pg, pg->flags, 0,0);
853 if (pg->flags & PG_FAKE) {
854 pg->flags |= PG_RELEASED;
855 }
856 }
857 mutex_enter(&uvm_pageqlock);
858 uvm_page_unbusy(pgs, npages);
859 mutex_exit(&uvm_pageqlock);
860 mutex_exit(&uobj->vmobjlock);
861 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
862 goto out_err_free;
863 }
864
865 out:
866 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
867 error = 0;
868 mutex_enter(&uvm_pageqlock);
869 for (i = 0; i < npages; i++) {
870 struct vm_page *pg = pgs[i];
871 if (pg == NULL) {
872 continue;
873 }
874 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
875 pg, pg->flags, 0,0);
876 if (pg->flags & PG_FAKE && !overwrite) {
877 pg->flags &= ~(PG_FAKE);
878 pmap_clear_modify(pgs[i]);
879 }
880 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
881 if (i < ridx || i >= ridx + orignmempages || async) {
882 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
883 pg, pg->offset,0,0);
884 if (pg->flags & PG_WANTED) {
885 wakeup(pg);
886 }
887 if (pg->flags & PG_FAKE) {
888 KASSERT(overwrite);
889 uvm_pagezero(pg);
890 }
891 if (pg->flags & PG_RELEASED) {
892 uvm_pagefree(pg);
893 continue;
894 }
895 uvm_pageenqueue(pg);
896 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
897 UVM_PAGE_OWN(pg, NULL);
898 }
899 }
900 mutex_exit(&uvm_pageqlock);
901
902 if (memwrite) {
903 genfs_markdirty(vp);
904 }
905 mutex_exit(&uobj->vmobjlock);
906 if (ap->a_m != NULL) {
907 memcpy(ap->a_m, &pgs[ridx],
908 orignmempages * sizeof(struct vm_page *));
909 }
910 #if 0
911 }
912
913 #endif
914 #if 1
915 genfs_getpages_generic_io_done_done:
916 {}
917 #endif
918
919 out_err_free:
920 if (pgs != NULL && pgs != pgs_onstack)
921 kmem_free(pgs, pgs_size);
922 out_err:
923 if (has_trans)
924 fstrans_done(vp->v_mount);
925 return error;
926 }
927
928 #ifdef XIP
929 /*
930 * genfs_do_getpages_xip_io
931 * Return "direct pages" of XIP vnode. The block addresses of XIP
932 * vnode pages are returned back to the VM fault handler as the
933 * actually mapped physical addresses.
934 */
935 static int
936 genfs_do_getpages_xip_io(
937 struct vnode *vp,
938 voff_t origoffset,
939 struct vm_page **pps,
940 int *npagesp,
941 int centeridx,
942 vm_prot_t access_type,
943 int advice,
944 int flags,
945 const int orignmempages)
946 {
947 const int fs_bshift = vp2fs_bshift(vp);
948 const int dev_bshift = vp2dev_bshift(vp);
949 const int fs_bsize = 1 << fs_bshift;
950
951 int error;
952 off_t off;
953 int i;
954
955 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
956
957 KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
958
959 #ifdef UVMHIST
960 const off_t startoffset = trunc_blk(origoffset);
961 const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
962 #endif
963
964 UVMHIST_LOG(ubchist, "xip npages=%d startoffset=%lx endoffset=%lx",
965 orignmempages, (long)startoffset, (long)endoffset, 0);
966
967 off = origoffset;
968 for (i = 0; i < orignmempages; i++) {
969 daddr_t lbn, blkno;
970 int run;
971 struct vnode *devvp;
972
973 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
974
975 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
976 KASSERT(error == 0);
977 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
978 (long)lbn, (long)blkno, run, 0);
979
980 /*
981 * XIP page metadata assignment
982 * - Unallocated block is redirected to the dedicated zero'ed
983 * page.
984 */
985 if (blkno < 0) {
986 panic("XIP hole is not supported yet!");
987 } else {
988 daddr_t blk_off, fs_off;
989
990 blk_off = blkno << dev_bshift;
991 fs_off = off - (lbn << fs_bshift);
992
993 pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
994 blk_off + fs_off);
995 KASSERT(pps[i] != NULL);
996 }
997
998 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
999 i,
1000 (long)pps[i]->phys_addr,
1001 pps[i],
1002 0);
1003
1004 off += PAGE_SIZE;
1005 }
1006
1007 return 0;
1008 }
1009
1010 int
1011 genfs_do_getpages_xip_io_done(
1012 struct vnode *vp,
1013 voff_t origoffset,
1014 struct vm_page **pps,
1015 int *npagesp,
1016 int centeridx,
1017 vm_prot_t access_type,
1018 int advice,
1019 int flags,
1020 const int orignmempages)
1021 {
1022 struct uvm_object * const uobj = &vp->v_uobj;
1023 int i;
1024
1025 mutex_enter(&uobj->vmobjlock);
1026
1027 for (i = 0; i < orignmempages; i++) {
1028 struct vm_page *pg = pps[i];
1029
1030 KASSERT((pg->flags & PG_RDONLY) != 0);
1031 KASSERT((pg->flags & PG_BUSY) == 0);
1032 KASSERT((pg->flags & PG_CLEAN) != 0);
1033 KASSERT((pg->flags & PG_DEVICE) != 0);
1034 pg->flags |= PG_BUSY;
1035 pg->flags &= ~PG_FAKE;
1036 pg->uobject = &vp->v_uobj;
1037 }
1038
1039 mutex_exit(&uobj->vmobjlock);
1040
1041 *npagesp = orignmempages;
1042
1043 return 0;
1044 }
1045 #endif
1046
1047 /*
1048 * generic VM putpages routine.
1049 * Write the given range of pages to backing store.
1050 *
1051 * => "offhi == 0" means flush all pages at or after "offlo".
1052 * => object should be locked by caller. we return with the
1053 * object unlocked.
1054 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1055 * thus, a caller might want to unlock higher level resources
1056 * (e.g. vm_map) before calling flush.
1057 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
1058 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1059 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1060 * that new pages are inserted on the tail end of the list. thus,
1061 * we can make a complete pass through the object in one go by starting
1062 * at the head and working towards the tail (new pages are put in
1063 * front of us).
1064 * => NOTE: we are allowed to lock the page queues, so the caller
1065 * must not be holding the page queue lock.
1066 *
1067 * note on "cleaning" object and PG_BUSY pages:
1068 * this routine is holding the lock on the object. the only time
1069 * that it can run into a PG_BUSY page that it does not own is if
1070 * some other process has started I/O on the page (e.g. either
1071 * a pagein, or a pageout). if the PG_BUSY page is being paged
1072 * in, then it can not be dirty (!PG_CLEAN) because no one has
1073 * had a chance to modify it yet. if the PG_BUSY page is being
1074 * paged out then it means that someone else has already started
1075 * cleaning the page for us (how nice!). in this case, if we
1076 * have syncio specified, then after we make our pass through the
1077 * object we need to wait for the other PG_BUSY pages to clear
1078 * off (i.e. we need to do an iosync). also note that once a
1079 * page is PG_BUSY it must stay in its object until it is un-busyed.
1080 *
1081 * note on page traversal:
1082 * we can traverse the pages in an object either by going down the
1083 * linked list in "uobj->memq", or we can go over the address range
1084 * by page doing hash table lookups for each address. depending
1085 * on how many pages are in the object it may be cheaper to do one
1086 * or the other. we set "by_list" to true if we are using memq.
1087 * if the cost of a hash lookup was equal to the cost of the list
1088 * traversal we could compare the number of pages in the start->stop
1089 * range to the total number of pages in the object. however, it
1090 * seems that a hash table lookup is more expensive than the linked
1091 * list traversal, so we multiply the number of pages in the
1092 * range by an estimate of the relatively higher cost of the hash lookup.
1093 */
1094
1095 int
1096 genfs_putpages(void *v)
1097 {
1098 struct vop_putpages_args /* {
1099 struct vnode *a_vp;
1100 voff_t a_offlo;
1101 voff_t a_offhi;
1102 int a_flags;
1103 } */ * const ap = v;
1104
1105 #ifdef XIP
1106 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1107 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1108 ap->a_flags, NULL);
1109 else
1110 #endif
1111 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1112 ap->a_flags, NULL);
1113 }
1114
1115 int
1116 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1117 int origflags, struct vm_page **busypg)
1118 {
1119 struct uvm_object * const uobj = &vp->v_uobj;
1120 kmutex_t * const slock = &uobj->vmobjlock;
1121 off_t off;
1122 /* Even for strange MAXPHYS, the shift rounds down to a page */
1123 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1124 int i, error, npages, nback;
1125 int freeflag;
1126 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1127 bool wasclean, by_list, needs_clean, yld;
1128 bool async = (origflags & PGO_SYNCIO) == 0;
1129 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1130 struct lwp * const l = curlwp ? curlwp : &lwp0;
1131 struct genfs_node * const gp = VTOG(vp);
1132 int flags;
1133 int dirtygen;
1134 bool modified;
1135 bool need_wapbl;
1136 bool has_trans;
1137 bool cleanall;
1138 bool onworklst;
1139
1140 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1141
1142 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1143 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1144 KASSERT(startoff < endoff || endoff == 0);
1145
1146 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1147 vp, uobj->uo_npages, startoff, endoff - startoff);
1148
1149 has_trans = false;
1150 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1151 (origflags & PGO_JOURNALLOCKED) == 0);
1152
1153 retry:
1154 modified = false;
1155 flags = origflags;
1156 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1157 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1158 if (uobj->uo_npages == 0) {
1159 if (vp->v_iflag & VI_ONWORKLST) {
1160 vp->v_iflag &= ~VI_WRMAPDIRTY;
1161 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1162 vn_syncer_remove_from_worklist(vp);
1163 }
1164 if (has_trans) {
1165 if (need_wapbl)
1166 WAPBL_END(vp->v_mount);
1167 fstrans_done(vp->v_mount);
1168 }
1169 mutex_exit(slock);
1170 return (0);
1171 }
1172
1173 /*
1174 * the vnode has pages, set up to process the request.
1175 */
1176
1177 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1178 mutex_exit(slock);
1179 if (pagedaemon) {
1180 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1181 if (error)
1182 return error;
1183 } else
1184 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1185 if (need_wapbl) {
1186 error = WAPBL_BEGIN(vp->v_mount);
1187 if (error) {
1188 fstrans_done(vp->v_mount);
1189 return error;
1190 }
1191 }
1192 has_trans = true;
1193 mutex_enter(slock);
1194 goto retry;
1195 }
1196
1197 error = 0;
1198 wasclean = (vp->v_numoutput == 0);
1199 off = startoff;
1200 if (endoff == 0 || flags & PGO_ALLPAGES) {
1201 endoff = trunc_page(LLONG_MAX);
1202 }
1203 by_list = (uobj->uo_npages <=
1204 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1205
1206 #if !defined(DEBUG)
1207 /*
1208 * if this vnode is known not to have dirty pages,
1209 * don't bother to clean it out.
1210 */
1211
1212 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1213 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1214 goto skip_scan;
1215 }
1216 flags &= ~PGO_CLEANIT;
1217 }
1218 #endif /* !defined(DEBUG) */
1219
1220 /*
1221 * start the loop. when scanning by list, hold the last page
1222 * in the list before we start. pages allocated after we start
1223 * will be added to the end of the list, so we can stop at the
1224 * current last page.
1225 */
1226
1227 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1228 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1229 (vp->v_iflag & VI_ONWORKLST) != 0;
1230 dirtygen = gp->g_dirtygen;
1231 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1232 if (by_list) {
1233 curmp.flags = PG_MARKER;
1234 endmp.flags = PG_MARKER;
1235 pg = TAILQ_FIRST(&uobj->memq);
1236 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1237 } else {
1238 pg = uvm_pagelookup(uobj, off);
1239 }
1240 nextpg = NULL;
1241 while (by_list || off < endoff) {
1242
1243 /*
1244 * if the current page is not interesting, move on to the next.
1245 */
1246
1247 KASSERT(pg == NULL || pg->uobject == uobj ||
1248 (pg->flags & PG_MARKER) != 0);
1249 KASSERT(pg == NULL ||
1250 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1251 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1252 if (by_list) {
1253 if (pg == &endmp) {
1254 break;
1255 }
1256 if (pg->flags & PG_MARKER) {
1257 pg = TAILQ_NEXT(pg, listq.queue);
1258 continue;
1259 }
1260 if (pg->offset < startoff || pg->offset >= endoff ||
1261 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1262 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1263 wasclean = false;
1264 }
1265 pg = TAILQ_NEXT(pg, listq.queue);
1266 continue;
1267 }
1268 off = pg->offset;
1269 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1270 if (pg != NULL) {
1271 wasclean = false;
1272 }
1273 off += PAGE_SIZE;
1274 if (off < endoff) {
1275 pg = uvm_pagelookup(uobj, off);
1276 }
1277 continue;
1278 }
1279
1280 /*
1281 * if the current page needs to be cleaned and it's busy,
1282 * wait for it to become unbusy.
1283 */
1284
1285 yld = (l->l_cpu->ci_schedstate.spc_flags &
1286 SPCF_SHOULDYIELD) && !pagedaemon;
1287 if (pg->flags & PG_BUSY || yld) {
1288 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1289 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1290 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1291 error = EDEADLK;
1292 if (busypg != NULL)
1293 *busypg = pg;
1294 break;
1295 }
1296 if (pagedaemon) {
1297 /*
1298 * someone has taken the page while we
1299 * dropped the lock for fstrans_start.
1300 */
1301 break;
1302 }
1303 if (by_list) {
1304 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1305 UVMHIST_LOG(ubchist, "curmp next %p",
1306 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1307 }
1308 if (yld) {
1309 mutex_exit(slock);
1310 preempt();
1311 mutex_enter(slock);
1312 } else {
1313 pg->flags |= PG_WANTED;
1314 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1315 mutex_enter(slock);
1316 }
1317 if (by_list) {
1318 UVMHIST_LOG(ubchist, "after next %p",
1319 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1320 pg = TAILQ_NEXT(&curmp, listq.queue);
1321 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1322 } else {
1323 pg = uvm_pagelookup(uobj, off);
1324 }
1325 continue;
1326 }
1327
1328 /*
1329 * if we're freeing, remove all mappings of the page now.
1330 * if we're cleaning, check if the page is needs to be cleaned.
1331 */
1332
1333 if (flags & PGO_FREE) {
1334 pmap_page_protect(pg, VM_PROT_NONE);
1335 } else if (flags & PGO_CLEANIT) {
1336
1337 /*
1338 * if we still have some hope to pull this vnode off
1339 * from the syncer queue, write-protect the page.
1340 */
1341
1342 if (cleanall && wasclean &&
1343 gp->g_dirtygen == dirtygen) {
1344
1345 /*
1346 * uobj pages get wired only by uvm_fault
1347 * where uobj is locked.
1348 */
1349
1350 if (pg->wire_count == 0) {
1351 pmap_page_protect(pg,
1352 VM_PROT_READ|VM_PROT_EXECUTE);
1353 } else {
1354 cleanall = false;
1355 }
1356 }
1357 }
1358
1359 if (flags & PGO_CLEANIT) {
1360 needs_clean = pmap_clear_modify(pg) ||
1361 (pg->flags & PG_CLEAN) == 0;
1362 pg->flags |= PG_CLEAN;
1363 } else {
1364 needs_clean = false;
1365 }
1366
1367 /*
1368 * if we're cleaning, build a cluster.
1369 * the cluster will consist of pages which are currently dirty,
1370 * but they will be returned to us marked clean.
1371 * if not cleaning, just operate on the one page.
1372 */
1373
1374 if (needs_clean) {
1375 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1376 wasclean = false;
1377 memset(pgs, 0, sizeof(pgs));
1378 pg->flags |= PG_BUSY;
1379 UVM_PAGE_OWN(pg, "genfs_putpages");
1380
1381 /*
1382 * first look backward.
1383 */
1384
1385 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1386 nback = npages;
1387 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1388 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1389 if (nback) {
1390 memmove(&pgs[0], &pgs[npages - nback],
1391 nback * sizeof(pgs[0]));
1392 if (npages - nback < nback)
1393 memset(&pgs[nback], 0,
1394 (npages - nback) * sizeof(pgs[0]));
1395 else
1396 memset(&pgs[npages - nback], 0,
1397 nback * sizeof(pgs[0]));
1398 }
1399
1400 /*
1401 * then plug in our page of interest.
1402 */
1403
1404 pgs[nback] = pg;
1405
1406 /*
1407 * then look forward to fill in the remaining space in
1408 * the array of pages.
1409 */
1410
1411 npages = maxpages - nback - 1;
1412 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1413 &pgs[nback + 1],
1414 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1415 npages += nback + 1;
1416 } else {
1417 pgs[0] = pg;
1418 npages = 1;
1419 nback = 0;
1420 }
1421
1422 /*
1423 * apply FREE or DEACTIVATE options if requested.
1424 */
1425
1426 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1427 mutex_enter(&uvm_pageqlock);
1428 }
1429 for (i = 0; i < npages; i++) {
1430 tpg = pgs[i];
1431 KASSERT(tpg->uobject == uobj);
1432 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1433 pg = tpg;
1434 if (tpg->offset < startoff || tpg->offset >= endoff)
1435 continue;
1436 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1437 uvm_pagedeactivate(tpg);
1438 } else if (flags & PGO_FREE) {
1439 pmap_page_protect(tpg, VM_PROT_NONE);
1440 if (tpg->flags & PG_BUSY) {
1441 tpg->flags |= freeflag;
1442 if (pagedaemon) {
1443 uvm_pageout_start(1);
1444 uvm_pagedequeue(tpg);
1445 }
1446 } else {
1447
1448 /*
1449 * ``page is not busy''
1450 * implies that npages is 1
1451 * and needs_clean is false.
1452 */
1453
1454 nextpg = TAILQ_NEXT(tpg, listq.queue);
1455 uvm_pagefree(tpg);
1456 if (pagedaemon)
1457 uvmexp.pdfreed++;
1458 }
1459 }
1460 }
1461 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1462 mutex_exit(&uvm_pageqlock);
1463 }
1464 if (needs_clean) {
1465 modified = true;
1466
1467 /*
1468 * start the i/o. if we're traversing by list,
1469 * keep our place in the list with a marker page.
1470 */
1471
1472 if (by_list) {
1473 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1474 listq.queue);
1475 }
1476 mutex_exit(slock);
1477 error = GOP_WRITE(vp, pgs, npages, flags);
1478 mutex_enter(slock);
1479 if (by_list) {
1480 pg = TAILQ_NEXT(&curmp, listq.queue);
1481 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1482 }
1483 if (error) {
1484 break;
1485 }
1486 if (by_list) {
1487 continue;
1488 }
1489 }
1490
1491 /*
1492 * find the next page and continue if there was no error.
1493 */
1494
1495 if (by_list) {
1496 if (nextpg) {
1497 pg = nextpg;
1498 nextpg = NULL;
1499 } else {
1500 pg = TAILQ_NEXT(pg, listq.queue);
1501 }
1502 } else {
1503 off += (npages - nback) << PAGE_SHIFT;
1504 if (off < endoff) {
1505 pg = uvm_pagelookup(uobj, off);
1506 }
1507 }
1508 }
1509 if (by_list) {
1510 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1511 }
1512
1513 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1514 (vp->v_type != VBLK ||
1515 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1516 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1517 }
1518
1519 /*
1520 * if we're cleaning and there was nothing to clean,
1521 * take us off the syncer list. if we started any i/o
1522 * and we're doing sync i/o, wait for all writes to finish.
1523 */
1524
1525 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1526 (vp->v_iflag & VI_ONWORKLST) != 0) {
1527 #if defined(DEBUG)
1528 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1529 if ((pg->flags & PG_MARKER) != 0) {
1530 continue;
1531 }
1532 if ((pg->flags & PG_CLEAN) == 0) {
1533 printf("%s: %p: !CLEAN\n", __func__, pg);
1534 }
1535 if (pmap_is_modified(pg)) {
1536 printf("%s: %p: modified\n", __func__, pg);
1537 }
1538 }
1539 #endif /* defined(DEBUG) */
1540 vp->v_iflag &= ~VI_WRMAPDIRTY;
1541 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1542 vn_syncer_remove_from_worklist(vp);
1543 }
1544
1545 #if !defined(DEBUG)
1546 skip_scan:
1547 #endif /* !defined(DEBUG) */
1548
1549 /* Wait for output to complete. */
1550 if (!wasclean && !async && vp->v_numoutput != 0) {
1551 while (vp->v_numoutput != 0)
1552 cv_wait(&vp->v_cv, slock);
1553 }
1554 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1555 mutex_exit(slock);
1556
1557 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1558 /*
1559 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1560 * retrying is not a big deal because, in many cases,
1561 * uobj->uo_npages is already 0 here.
1562 */
1563 mutex_enter(slock);
1564 goto retry;
1565 }
1566
1567 if (has_trans) {
1568 if (need_wapbl)
1569 WAPBL_END(vp->v_mount);
1570 fstrans_done(vp->v_mount);
1571 }
1572
1573 return (error);
1574 }
1575
1576 #ifdef XIP
1577 int
1578 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1579 int flags, struct vm_page **busypg)
1580 {
1581 struct uvm_object *uobj = &vp->v_uobj;
1582 #ifdef DIAGNOSTIC
1583 struct genfs_node * const gp = VTOG(vp);
1584 #endif
1585
1586 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1587
1588 KASSERT(mutex_owned(&uobj->vmobjlock));
1589 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1590 KASSERT(vp->v_numoutput == 0);
1591 KASSERT(gp->g_dirtygen == 0);
1592
1593 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1594 vp, uobj->uo_npages, startoff, endoff - startoff);
1595
1596 /*
1597 * XIP pages are read-only, and never become dirty. They're also never
1598 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1599 * pages, so we ignore them.
1600 */
1601 if ((flags & PGO_FREE) == 0)
1602 goto done;
1603
1604 /*
1605 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1606 * mappings of both XIP pages and XIP zero pages.
1607 *
1608 * Zero page is freed when one of its mapped offset is freed, even if
1609 * one file (vnode) has many holes and mapping its zero page to all
1610 * of those hole pages.
1611 *
1612 * We don't know which pages are currently mapped in the given vnode,
1613 * because XIP pages are not added to vnode. What we can do is to
1614 * locate pages by querying the filesystem as done in getpages. Call
1615 * genfs_do_getpages_xip_io().
1616 */
1617
1618 off_t off, eof;
1619
1620 off = trunc_page(startoff);
1621 if (endoff == 0 || (flags & PGO_ALLPAGES))
1622 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1623 else
1624 eof = endoff;
1625
1626 while (off < eof) {
1627 int npages, orignpages, error, i;
1628 struct vm_page *pgs[maxpages], *pg;
1629
1630 npages = round_page(eof - off) >> PAGE_SHIFT;
1631 if (npages > maxpages)
1632 npages = maxpages;
1633
1634 orignpages = npages;
1635 KASSERT(mutex_owned(&uobj->vmobjlock));
1636 mutex_exit(&uobj->vmobjlock);
1637 error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
1638 VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
1639 KASSERT(error == 0);
1640 KASSERT(npages == orignpages);
1641 mutex_enter(&uobj->vmobjlock);
1642 for (i = 0; i < npages; i++) {
1643 pg = pgs[i];
1644 if (pg == NULL || pg == PGO_DONTCARE)
1645 continue;
1646 /*
1647 * Freeing normal XIP pages; nothing to do.
1648 */
1649 pmap_page_protect(pg, VM_PROT_NONE);
1650 KASSERT((pg->flags & PG_RDONLY) != 0);
1651 KASSERT((pg->flags & PG_CLEAN) != 0);
1652 KASSERT((pg->flags & PG_FAKE) == 0);
1653 KASSERT((pg->flags & PG_DEVICE) != 0);
1654 pg->flags &= ~PG_BUSY;
1655 }
1656 off += npages << PAGE_SHIFT;
1657 }
1658
1659 KASSERT(uobj->uo_npages == 0);
1660
1661 done:
1662 KASSERT(mutex_owned(&uobj->vmobjlock));
1663 mutex_exit(&uobj->vmobjlock);
1664 return 0;
1665 }
1666 #endif
1667
1668 int
1669 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1670 {
1671 off_t off;
1672 vaddr_t kva;
1673 size_t len;
1674 int error;
1675 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1676
1677 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1678 vp, pgs, npages, flags);
1679
1680 off = pgs[0]->offset;
1681 kva = uvm_pagermapin(pgs, npages,
1682 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1683 len = npages << PAGE_SHIFT;
1684
1685 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1686 uvm_aio_biodone);
1687
1688 return error;
1689 }
1690
1691 int
1692 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1693 {
1694 off_t off;
1695 vaddr_t kva;
1696 size_t len;
1697 int error;
1698 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1699
1700 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1701 vp, pgs, npages, flags);
1702
1703 off = pgs[0]->offset;
1704 kva = uvm_pagermapin(pgs, npages,
1705 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1706 len = npages << PAGE_SHIFT;
1707
1708 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1709 uvm_aio_biodone);
1710
1711 return error;
1712 }
1713
1714 /*
1715 * Backend routine for doing I/O to vnode pages. Pages are already locked
1716 * and mapped into kernel memory. Here we just look up the underlying
1717 * device block addresses and call the strategy routine.
1718 */
1719
1720 static int
1721 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1722 enum uio_rw rw, void (*iodone)(struct buf *))
1723 {
1724 int s, error;
1725 int fs_bshift, dev_bshift;
1726 off_t eof, offset, startoffset;
1727 size_t bytes, iobytes, skipbytes;
1728 struct buf *mbp, *bp;
1729 const bool async = (flags & PGO_SYNCIO) == 0;
1730 const bool iowrite = rw == UIO_WRITE;
1731 const int brw = iowrite ? B_WRITE : B_READ;
1732 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1733
1734 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1735 vp, kva, len, flags);
1736
1737 KASSERT(vp->v_size <= vp->v_writesize);
1738 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1739 if (vp->v_type != VBLK) {
1740 fs_bshift = vp->v_mount->mnt_fs_bshift;
1741 dev_bshift = vp->v_mount->mnt_dev_bshift;
1742 } else {
1743 fs_bshift = DEV_BSHIFT;
1744 dev_bshift = DEV_BSHIFT;
1745 }
1746 error = 0;
1747 startoffset = off;
1748 bytes = MIN(len, eof - startoffset);
1749 skipbytes = 0;
1750 KASSERT(bytes != 0);
1751
1752 if (iowrite) {
1753 mutex_enter(&vp->v_interlock);
1754 vp->v_numoutput += 2;
1755 mutex_exit(&vp->v_interlock);
1756 }
1757 mbp = getiobuf(vp, true);
1758 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1759 vp, mbp, vp->v_numoutput, bytes);
1760 mbp->b_bufsize = len;
1761 mbp->b_data = (void *)kva;
1762 mbp->b_resid = mbp->b_bcount = bytes;
1763 mbp->b_cflags = BC_BUSY | BC_AGE;
1764 if (async) {
1765 mbp->b_flags = brw | B_ASYNC;
1766 mbp->b_iodone = iodone;
1767 } else {
1768 mbp->b_flags = brw;
1769 mbp->b_iodone = NULL;
1770 }
1771 if (curlwp == uvm.pagedaemon_lwp)
1772 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1773 else if (async)
1774 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1775 else
1776 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1777
1778 bp = NULL;
1779 for (offset = startoffset;
1780 bytes > 0;
1781 offset += iobytes, bytes -= iobytes) {
1782 int run;
1783 daddr_t lbn, blkno;
1784 struct vnode *devvp;
1785
1786 /*
1787 * bmap the file to find out the blkno to read from and
1788 * how much we can read in one i/o. if bmap returns an error,
1789 * skip the rest of the top-level i/o.
1790 */
1791
1792 lbn = offset >> fs_bshift;
1793 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1794 if (error) {
1795 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1796 lbn,error,0,0);
1797 skipbytes += bytes;
1798 bytes = 0;
1799 goto loopdone;
1800 }
1801
1802 /*
1803 * see how many pages can be read with this i/o.
1804 * reduce the i/o size if necessary to avoid
1805 * overwriting pages with valid data.
1806 */
1807
1808 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1809 bytes);
1810
1811 /*
1812 * if this block isn't allocated, zero it instead of
1813 * reading it. unless we are going to allocate blocks,
1814 * mark the pages we zeroed PG_RDONLY.
1815 */
1816
1817 if (blkno == (daddr_t)-1) {
1818 if (!iowrite) {
1819 memset((char *)kva + (offset - startoffset), 0,
1820 iobytes);
1821 }
1822 skipbytes += iobytes;
1823 continue;
1824 }
1825
1826 /*
1827 * allocate a sub-buf for this piece of the i/o
1828 * (or just use mbp if there's only 1 piece),
1829 * and start it going.
1830 */
1831
1832 if (offset == startoffset && iobytes == bytes) {
1833 bp = mbp;
1834 } else {
1835 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1836 vp, bp, vp->v_numoutput, 0);
1837 bp = getiobuf(vp, true);
1838 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1839 }
1840 bp->b_lblkno = 0;
1841
1842 /* adjust physical blkno for partial blocks */
1843 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1844 dev_bshift);
1845
1846 UVMHIST_LOG(ubchist,
1847 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1848 bp, offset, bp->b_bcount, bp->b_blkno);
1849
1850 VOP_STRATEGY(devvp, bp);
1851 }
1852
1853 loopdone:
1854 if (skipbytes) {
1855 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1856 }
1857 nestiobuf_done(mbp, skipbytes, error);
1858 if (async) {
1859 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1860 return (0);
1861 }
1862 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1863 error = biowait(mbp);
1864 s = splbio();
1865 (*iodone)(mbp);
1866 splx(s);
1867 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1868 return (error);
1869 }
1870
1871 int
1872 genfs_compat_getpages(void *v)
1873 {
1874 struct vop_getpages_args /* {
1875 struct vnode *a_vp;
1876 voff_t a_offset;
1877 struct vm_page **a_m;
1878 int *a_count;
1879 int a_centeridx;
1880 vm_prot_t a_access_type;
1881 int a_advice;
1882 int a_flags;
1883 } */ *ap = v;
1884
1885 off_t origoffset;
1886 struct vnode *vp = ap->a_vp;
1887 struct uvm_object *uobj = &vp->v_uobj;
1888 struct vm_page *pg, **pgs;
1889 vaddr_t kva;
1890 int i, error, orignpages, npages;
1891 struct iovec iov;
1892 struct uio uio;
1893 kauth_cred_t cred = curlwp->l_cred;
1894 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1895
1896 error = 0;
1897 origoffset = ap->a_offset;
1898 orignpages = *ap->a_count;
1899 pgs = ap->a_m;
1900
1901 if (ap->a_flags & PGO_LOCKED) {
1902 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1903 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1904
1905 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1906 if (error == 0 && memwrite) {
1907 genfs_markdirty(vp);
1908 }
1909 return error;
1910 }
1911 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1912 mutex_exit(&uobj->vmobjlock);
1913 return EINVAL;
1914 }
1915 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1916 mutex_exit(&uobj->vmobjlock);
1917 return 0;
1918 }
1919 npages = orignpages;
1920 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1921 mutex_exit(&uobj->vmobjlock);
1922 kva = uvm_pagermapin(pgs, npages,
1923 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1924 for (i = 0; i < npages; i++) {
1925 pg = pgs[i];
1926 if ((pg->flags & PG_FAKE) == 0) {
1927 continue;
1928 }
1929 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1930 iov.iov_len = PAGE_SIZE;
1931 uio.uio_iov = &iov;
1932 uio.uio_iovcnt = 1;
1933 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1934 uio.uio_rw = UIO_READ;
1935 uio.uio_resid = PAGE_SIZE;
1936 UIO_SETUP_SYSSPACE(&uio);
1937 /* XXX vn_lock */
1938 error = VOP_READ(vp, &uio, 0, cred);
1939 if (error) {
1940 break;
1941 }
1942 if (uio.uio_resid) {
1943 memset(iov.iov_base, 0, uio.uio_resid);
1944 }
1945 }
1946 uvm_pagermapout(kva, npages);
1947 mutex_enter(&uobj->vmobjlock);
1948 mutex_enter(&uvm_pageqlock);
1949 for (i = 0; i < npages; i++) {
1950 pg = pgs[i];
1951 if (error && (pg->flags & PG_FAKE) != 0) {
1952 pg->flags |= PG_RELEASED;
1953 } else {
1954 pmap_clear_modify(pg);
1955 uvm_pageactivate(pg);
1956 }
1957 }
1958 if (error) {
1959 uvm_page_unbusy(pgs, npages);
1960 }
1961 mutex_exit(&uvm_pageqlock);
1962 if (error == 0 && memwrite) {
1963 genfs_markdirty(vp);
1964 }
1965 mutex_exit(&uobj->vmobjlock);
1966 return error;
1967 }
1968
1969 int
1970 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1971 int flags)
1972 {
1973 off_t offset;
1974 struct iovec iov;
1975 struct uio uio;
1976 kauth_cred_t cred = curlwp->l_cred;
1977 struct buf *bp;
1978 vaddr_t kva;
1979 int error;
1980
1981 offset = pgs[0]->offset;
1982 kva = uvm_pagermapin(pgs, npages,
1983 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1984
1985 iov.iov_base = (void *)kva;
1986 iov.iov_len = npages << PAGE_SHIFT;
1987 uio.uio_iov = &iov;
1988 uio.uio_iovcnt = 1;
1989 uio.uio_offset = offset;
1990 uio.uio_rw = UIO_WRITE;
1991 uio.uio_resid = npages << PAGE_SHIFT;
1992 UIO_SETUP_SYSSPACE(&uio);
1993 /* XXX vn_lock */
1994 error = VOP_WRITE(vp, &uio, 0, cred);
1995
1996 mutex_enter(&vp->v_interlock);
1997 vp->v_numoutput++;
1998 mutex_exit(&vp->v_interlock);
1999
2000 bp = getiobuf(vp, true);
2001 bp->b_cflags = BC_BUSY | BC_AGE;
2002 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
2003 bp->b_data = (char *)kva;
2004 bp->b_bcount = npages << PAGE_SHIFT;
2005 bp->b_bufsize = npages << PAGE_SHIFT;
2006 bp->b_resid = 0;
2007 bp->b_error = error;
2008 uvm_aio_aiodone(bp);
2009 return (error);
2010 }
2011
2012 /*
2013 * Process a uio using direct I/O. If we reach a part of the request
2014 * which cannot be processed in this fashion for some reason, just return.
2015 * The caller must handle some additional part of the request using
2016 * buffered I/O before trying direct I/O again.
2017 */
2018
2019 void
2020 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
2021 {
2022 struct vmspace *vs;
2023 struct iovec *iov;
2024 vaddr_t va;
2025 size_t len;
2026 const int mask = DEV_BSIZE - 1;
2027 int error;
2028 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
2029 (ioflag & IO_JOURNALLOCKED) == 0);
2030
2031 /*
2032 * We only support direct I/O to user space for now.
2033 */
2034
2035 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
2036 return;
2037 }
2038
2039 /*
2040 * If the vnode is mapped, we would need to get the getpages lock
2041 * to stabilize the bmap, but then we would get into trouble whil e
2042 * locking the pages if the pages belong to this same vnode (or a
2043 * multi-vnode cascade to the same effect). Just fall back to
2044 * buffered I/O if the vnode is mapped to avoid this mess.
2045 */
2046
2047 if (vp->v_vflag & VV_MAPPED) {
2048 return;
2049 }
2050
2051 if (need_wapbl) {
2052 error = WAPBL_BEGIN(vp->v_mount);
2053 if (error)
2054 return;
2055 }
2056
2057 /*
2058 * Do as much of the uio as possible with direct I/O.
2059 */
2060
2061 vs = uio->uio_vmspace;
2062 while (uio->uio_resid) {
2063 iov = uio->uio_iov;
2064 if (iov->iov_len == 0) {
2065 uio->uio_iov++;
2066 uio->uio_iovcnt--;
2067 continue;
2068 }
2069 va = (vaddr_t)iov->iov_base;
2070 len = MIN(iov->iov_len, genfs_maxdio);
2071 len &= ~mask;
2072
2073 /*
2074 * If the next chunk is smaller than DEV_BSIZE or extends past
2075 * the current EOF, then fall back to buffered I/O.
2076 */
2077
2078 if (len == 0 || uio->uio_offset + len > vp->v_size) {
2079 break;
2080 }
2081
2082 /*
2083 * Check alignment. The file offset must be at least
2084 * sector-aligned. The exact constraint on memory alignment
2085 * is very hardware-dependent, but requiring sector-aligned
2086 * addresses there too is safe.
2087 */
2088
2089 if (uio->uio_offset & mask || va & mask) {
2090 break;
2091 }
2092 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2093 uio->uio_rw);
2094 if (error) {
2095 break;
2096 }
2097 iov->iov_base = (char *)iov->iov_base + len;
2098 iov->iov_len -= len;
2099 uio->uio_offset += len;
2100 uio->uio_resid -= len;
2101 }
2102
2103 if (need_wapbl)
2104 WAPBL_END(vp->v_mount);
2105 }
2106
2107 /*
2108 * Iodone routine for direct I/O. We don't do much here since the request is
2109 * always synchronous, so the caller will do most of the work after biowait().
2110 */
2111
2112 static void
2113 genfs_dio_iodone(struct buf *bp)
2114 {
2115
2116 KASSERT((bp->b_flags & B_ASYNC) == 0);
2117 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2118 mutex_enter(bp->b_objlock);
2119 vwakeup(bp);
2120 mutex_exit(bp->b_objlock);
2121 }
2122 putiobuf(bp);
2123 }
2124
2125 /*
2126 * Process one chunk of a direct I/O request.
2127 */
2128
2129 static int
2130 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2131 off_t off, enum uio_rw rw)
2132 {
2133 struct vm_map *map;
2134 struct pmap *upm, *kpm;
2135 size_t klen = round_page(uva + len) - trunc_page(uva);
2136 off_t spoff, epoff;
2137 vaddr_t kva, puva;
2138 paddr_t pa;
2139 vm_prot_t prot;
2140 int error, rv, poff, koff;
2141 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2142 (rw == UIO_WRITE ? PGO_FREE : 0);
2143
2144 /*
2145 * For writes, verify that this range of the file already has fully
2146 * allocated backing store. If there are any holes, just punt and
2147 * make the caller take the buffered write path.
2148 */
2149
2150 if (rw == UIO_WRITE) {
2151 daddr_t lbn, elbn, blkno;
2152 int bsize, bshift, run;
2153
2154 bshift = vp->v_mount->mnt_fs_bshift;
2155 bsize = 1 << bshift;
2156 lbn = off >> bshift;
2157 elbn = (off + len + bsize - 1) >> bshift;
2158 while (lbn < elbn) {
2159 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2160 if (error) {
2161 return error;
2162 }
2163 if (blkno == (daddr_t)-1) {
2164 return ENOSPC;
2165 }
2166 lbn += 1 + run;
2167 }
2168 }
2169
2170 /*
2171 * Flush any cached pages for parts of the file that we're about to
2172 * access. If we're writing, invalidate pages as well.
2173 */
2174
2175 spoff = trunc_page(off);
2176 epoff = round_page(off + len);
2177 mutex_enter(&vp->v_interlock);
2178 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2179 if (error) {
2180 return error;
2181 }
2182
2183 /*
2184 * Wire the user pages and remap them into kernel memory.
2185 */
2186
2187 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2188 error = uvm_vslock(vs, (void *)uva, len, prot);
2189 if (error) {
2190 return error;
2191 }
2192
2193 map = &vs->vm_map;
2194 upm = vm_map_pmap(map);
2195 kpm = vm_map_pmap(kernel_map);
2196 kva = uvm_km_alloc(kernel_map, klen, 0,
2197 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2198 puva = trunc_page(uva);
2199 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2200 rv = pmap_extract(upm, puva + poff, &pa);
2201 KASSERT(rv);
2202 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2203 }
2204 pmap_update(kpm);
2205
2206 /*
2207 * Do the I/O.
2208 */
2209
2210 koff = uva - trunc_page(uva);
2211 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2212 genfs_dio_iodone);
2213
2214 /*
2215 * Tear down the kernel mapping.
2216 */
2217
2218 pmap_remove(kpm, kva, kva + klen);
2219 pmap_update(kpm);
2220 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2221
2222 /*
2223 * Unwire the user pages.
2224 */
2225
2226 uvm_vsunlock(vs, (void *)uva, len);
2227 return error;
2228 }
2229
2230