genfs_io.c revision 1.36.2.47 1 /* $NetBSD: genfs_io.c,v 1.36.2.47 2010/11/19 15:25:37 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.47 2010/11/19 15:25:37 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef XIP
63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
64 int *, int, vm_prot_t, int, int, const int);
65 static int genfs_do_getpages_xip_io_done(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int, const int);
67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
68 struct vm_page **);
69 #endif
70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
71 off_t, enum uio_rw);
72 static void genfs_dio_iodone(struct buf *);
73
74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
75 void (*)(struct buf *));
76 static void genfs_rel_pages(struct vm_page **, int);
77 static void genfs_markdirty(struct vnode *);
78
79 int genfs_maxdio = MAXPHYS;
80
81 static void
82 genfs_rel_pages(struct vm_page **pgs, int npages)
83 {
84 int i;
85
86 for (i = 0; i < npages; i++) {
87 struct vm_page *pg = pgs[i];
88
89 if (pg == NULL || pg == PGO_DONTCARE)
90 continue;
91 if (pg->flags & PG_FAKE) {
92 pg->flags |= PG_RELEASED;
93 }
94 }
95 mutex_enter(&uvm_pageqlock);
96 uvm_page_unbusy(pgs, npages);
97 mutex_exit(&uvm_pageqlock);
98 }
99
100 static void
101 genfs_markdirty(struct vnode *vp)
102 {
103 struct genfs_node * const gp = VTOG(vp);
104
105 KASSERT(mutex_owned(&vp->v_interlock));
106 gp->g_dirtygen++;
107 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
108 vn_syncer_add_to_worklist(vp, filedelay);
109 }
110 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
111 vp->v_iflag |= VI_WRMAPDIRTY;
112 }
113 }
114
115 /*
116 * generic VM getpages routine.
117 * Return PG_BUSY pages for the given range,
118 * reading from backing store if necessary.
119 */
120
121 int
122 genfs_getpages(void *v)
123 {
124 struct vop_getpages_args /* {
125 struct vnode *a_vp;
126 voff_t a_offset;
127 struct vm_page **a_m;
128 int *a_count;
129 int a_centeridx;
130 vm_prot_t a_access_type;
131 int a_advice;
132 int a_flags;
133 } */ * const ap = v;
134
135 off_t diskeof, memeof;
136 int i, error, npages;
137 const int flags = ap->a_flags;
138 struct vnode * const vp = ap->a_vp;
139 struct uvm_object * const uobj = &vp->v_uobj;
140 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
141 const bool async = (flags & PGO_SYNCIO) == 0;
142 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
143 bool has_trans = false;
144 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
145 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
146 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
147 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
148
149 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
150 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
151
152 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
153 vp->v_type == VLNK || vp->v_type == VBLK);
154
155 startover:
156 error = 0;
157 const voff_t origvsize = vp->v_size;
158 const off_t origoffset = ap->a_offset;
159 const int orignpages = *ap->a_count;
160
161 GOP_SIZE(vp, origvsize, &diskeof, 0);
162 if (flags & PGO_PASTEOF) {
163 off_t newsize;
164 #if defined(DIAGNOSTIC)
165 off_t writeeof;
166 #endif /* defined(DIAGNOSTIC) */
167
168 newsize = MAX(origvsize,
169 origoffset + (orignpages << PAGE_SHIFT));
170 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
171 #if defined(DIAGNOSTIC)
172 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
173 if (newsize > round_page(writeeof)) {
174 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
175 __func__, newsize, round_page(writeeof));
176 }
177 #endif /* defined(DIAGNOSTIC) */
178 } else {
179 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
180 }
181 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
182 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
183 KASSERT(orignpages > 0);
184
185 /*
186 * Bounds-check the request.
187 */
188
189 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
190 if ((flags & PGO_LOCKED) == 0) {
191 mutex_exit(&uobj->vmobjlock);
192 }
193 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
194 origoffset, *ap->a_count, memeof,0);
195 error = EINVAL;
196 goto out_err;
197 }
198
199 /* uobj is locked */
200
201 if ((flags & PGO_NOTIMESTAMP) == 0 &&
202 (vp->v_type != VBLK ||
203 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
204 int updflags = 0;
205
206 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
207 updflags = GOP_UPDATE_ACCESSED;
208 }
209 if (memwrite) {
210 updflags |= GOP_UPDATE_MODIFIED;
211 }
212 if (updflags != 0) {
213 GOP_MARKUPDATE(vp, updflags);
214 }
215 }
216
217 /*
218 * For PGO_LOCKED requests, just return whatever's in memory.
219 */
220
221 if (flags & PGO_LOCKED) {
222 #if 0
223 genfs_getpages_mem();
224 } else {
225 genfs_getpages_io();
226 }
227 }
228
229 int
230 genfs_getpages_mem()
231 {
232 #endif
233 int nfound;
234 struct vm_page *pg;
235
236 #ifdef XIP
237 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
238 *ap->a_count = 0;
239 return 0;
240 }
241 #endif
242
243 KASSERT(!glocked);
244 npages = *ap->a_count;
245 #if defined(DEBUG)
246 for (i = 0; i < npages; i++) {
247 pg = ap->a_m[i];
248 KASSERT(pg == NULL || pg == PGO_DONTCARE);
249 }
250 #endif /* defined(DEBUG) */
251 nfound = uvn_findpages(uobj, origoffset, &npages,
252 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
253 KASSERT(npages == *ap->a_count);
254 if (nfound == 0) {
255 error = EBUSY;
256 goto out_err;
257 }
258 if (!genfs_node_rdtrylock(vp)) {
259 genfs_rel_pages(ap->a_m, npages);
260
261 /*
262 * restore the array.
263 */
264
265 for (i = 0; i < npages; i++) {
266 pg = ap->a_m[i];
267
268 if (pg != NULL && pg != PGO_DONTCARE) {
269 ap->a_m[i] = NULL;
270 }
271 KASSERT(pg == NULL || pg == PGO_DONTCARE);
272 }
273 } else {
274 genfs_node_unlock(vp);
275 }
276 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
277 if (error == 0 && memwrite) {
278 genfs_markdirty(vp);
279 }
280 goto out_err;
281 }
282 mutex_exit(&uobj->vmobjlock);
283 #if 0
284 }
285
286 int
287 genfs_getpages_io()
288 {
289 #endif
290 /*
291 * find the requested pages and make some simple checks.
292 * leave space in the page array for a whole block.
293 */
294
295 #define vp2fs_bshift(vp) \
296 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
297 #define vp2dev_bshift(vp) \
298 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
299
300 const int fs_bshift = vp2fs_bshift(vp);
301 const int dev_bshift = vp2dev_bshift(vp);
302 const int fs_bsize = 1 << fs_bshift;
303 #define blk_mask (fs_bsize - 1)
304 #define trunc_blk(x) ((x) & ~blk_mask)
305 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
306
307 const int orignmempages = MIN(orignpages,
308 round_page(memeof - origoffset) >> PAGE_SHIFT);
309 npages = orignmempages;
310 const off_t startoffset = trunc_blk(origoffset);
311 const off_t endoffset = MIN(
312 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
313 round_page(memeof));
314 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
315
316 const int pgs_size = sizeof(struct vm_page *) *
317 ((endoffset - startoffset) >> PAGE_SHIFT);
318 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
319
320 if (pgs_size > sizeof(pgs_onstack)) {
321 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
322 if (pgs == NULL) {
323 pgs = pgs_onstack;
324 error = ENOMEM;
325 goto out_err;
326 }
327 } else {
328 pgs = pgs_onstack;
329 (void)memset(pgs, 0, pgs_size);
330 }
331
332 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
333 ridx, npages, startoffset, endoffset);
334 #if 0
335 }
336
337 int
338 genfs_getpages_io_relock()
339 {
340 #endif
341 if (!has_trans) {
342 fstrans_start(vp->v_mount, FSTRANS_SHARED);
343 has_trans = true;
344 }
345
346 /*
347 * hold g_glock to prevent a race with truncate.
348 *
349 * check if our idea of v_size is still valid.
350 */
351
352 KASSERT(!glocked || genfs_node_wrlocked(vp));
353 if (!glocked) {
354 if (blockalloc) {
355 genfs_node_wrlock(vp);
356 } else {
357 genfs_node_rdlock(vp);
358 }
359 }
360 mutex_enter(&uobj->vmobjlock);
361 if (vp->v_size < origvsize) {
362 if (!glocked) {
363 genfs_node_unlock(vp);
364 }
365 if (pgs != pgs_onstack)
366 kmem_free(pgs, pgs_size);
367 goto startover;
368 }
369 #if 0
370 }
371
372 int
373 genfs_getpages_io_findpages()
374 {
375 #endif
376 #ifdef XIP
377 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
378 goto genfs_getpages_io_read_allocpages_done;
379 #endif
380
381 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
382 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
383 if (!glocked) {
384 genfs_node_unlock(vp);
385 }
386 KASSERT(async != 0);
387 genfs_rel_pages(&pgs[ridx], orignmempages);
388 mutex_exit(&uobj->vmobjlock);
389 error = EBUSY;
390 goto out_err_free;
391 }
392
393 /*
394 * if the pages are already resident, just return them.
395 */
396
397 for (i = 0; i < npages; i++) {
398 struct vm_page *pg = pgs[ridx + i];
399
400 if ((pg->flags & PG_FAKE) ||
401 (blockalloc && (pg->flags & PG_RDONLY))) {
402 break;
403 }
404 }
405 if (i == npages) {
406 if (!glocked) {
407 genfs_node_unlock(vp);
408 }
409 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
410 npages += ridx;
411 goto out;
412 }
413
414 /*
415 * if PGO_OVERWRITE is set, don't bother reading the pages.
416 */
417
418 if (overwrite) {
419 #if 0
420 genfs_getpages_io_overwrite();
421 } else {
422 genfs_getpages_io_read();
423 }
424 }
425
426 int
427 genfs_getpages_io_overwrite()
428 {
429 {
430 #endif
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
435
436 for (i = 0; i < npages; i++) {
437 struct vm_page *pg = pgs[ridx + i];
438
439 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
440 }
441 npages += ridx;
442 goto out;
443 }
444 #if 0
445 }
446
447 int
448 genfs_getpages_io_read()
449 {
450 #endif
451 /*
452 * the page wasn't resident and we're not overwriting,
453 * so we're going to have to do some i/o.
454 * find any additional pages needed to cover the expanded range.
455 */
456 #if 0
457 }
458
459 int
460 genfs_getpages_io_read_allocpages()
461 {
462 #endif
463 npages = (endoffset - startoffset) >> PAGE_SHIFT;
464 if (startoffset != origoffset || npages != orignmempages) {
465 int npgs;
466
467 /*
468 * we need to avoid deadlocks caused by locking
469 * additional pages at lower offsets than pages we
470 * already have locked. unlock them all and start over.
471 */
472
473 genfs_rel_pages(&pgs[ridx], orignmempages);
474 memset(pgs, 0, pgs_size);
475
476 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
477 startoffset, endoffset, 0,0);
478 npgs = npages;
479 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
480 async ? UFP_NOWAIT : UFP_ALL) != npages) {
481 if (!glocked) {
482 genfs_node_unlock(vp);
483 }
484 KASSERT(async != 0);
485 genfs_rel_pages(pgs, npages);
486 mutex_exit(&uobj->vmobjlock);
487 error = EBUSY;
488 goto out_err_free;
489 }
490 }
491 #ifdef XIP
492 genfs_getpages_io_read_allocpages_done:
493 #endif
494 #if 0
495 }
496
497 int
498 genfs_getpages_io_read_bio()
499 {
500 #endif
501 mutex_exit(&uobj->vmobjlock);
502
503 {
504 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
505 vaddr_t kva = 0;
506 struct buf *bp = NULL, *mbp = NULL;
507 bool sawhole = false;
508
509 /*
510 * read the desired page(s).
511 */
512
513 totalbytes = npages << PAGE_SHIFT;
514 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
515 tailbytes = totalbytes - bytes;
516 skipbytes = 0;
517
518 #if 1
519 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
520 goto genfs_getpages_bio_prepare_done;
521 #endif
522 #if 0
523 }
524
525 int
526 genfs_getpages_io_read_bio_prepare()
527 {
528 #endif
529 kva = uvm_pagermapin(pgs, npages,
530 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
531
532 mbp = getiobuf(vp, true);
533 mbp->b_bufsize = totalbytes;
534 mbp->b_data = (void *)kva;
535 mbp->b_resid = mbp->b_bcount = bytes;
536 mbp->b_cflags = BC_BUSY;
537 if (async) {
538 mbp->b_flags = B_READ | B_ASYNC;
539 mbp->b_iodone = uvm_aio_biodone;
540 } else {
541 mbp->b_flags = B_READ;
542 mbp->b_iodone = NULL;
543 }
544 if (async)
545 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
546 else
547 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
548 #if 0
549 }
550
551 #endif
552 #if 1
553 genfs_getpages_bio_prepare_done:
554 #endif
555
556 /*
557 * if EOF is in the middle of the range, zero the part past EOF.
558 * skip over pages which are not PG_FAKE since in that case they have
559 * valid data that we need to preserve.
560 */
561
562 tailstart = bytes;
563 while (tailbytes > 0) {
564 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
565
566 KASSERT(len <= tailbytes);
567 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
568 memset((void *)(kva + tailstart), 0, len);
569 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
570 kva, tailstart, len, 0);
571 }
572 tailstart += len;
573 tailbytes -= len;
574 }
575
576 #if 1
577 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
578 error = genfs_do_getpages_xip_io(
579 ap->a_vp,
580 ap->a_offset,
581 pgs,
582 ap->a_count,
583 ap->a_centeridx,
584 ap->a_access_type,
585 ap->a_advice,
586 ap->a_flags,
587 orignmempages);
588 goto loopdone;
589 }
590 #endif
591 #if 0
592 }
593
594 int
595 genfs_getpages_io_read_bio_loop()
596 {
597 #endif
598 /*
599 * now loop over the pages, reading as needed.
600 */
601
602 bp = NULL;
603 off_t offset;
604 for (offset = startoffset;
605 bytes > 0;
606 offset += iobytes, bytes -= iobytes) {
607 int run;
608 daddr_t lbn, blkno;
609 int pidx;
610 struct vnode *devvp;
611
612 /*
613 * skip pages which don't need to be read.
614 */
615
616 pidx = (offset - startoffset) >> PAGE_SHIFT;
617 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
618 size_t b;
619
620 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
621 if ((pgs[pidx]->flags & PG_RDONLY)) {
622 sawhole = true;
623 }
624 b = MIN(PAGE_SIZE, bytes);
625 offset += b;
626 bytes -= b;
627 skipbytes += b;
628 pidx++;
629 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
630 offset, 0,0,0);
631 if (bytes == 0) {
632 goto loopdone;
633 }
634 }
635
636 /*
637 * bmap the file to find out the blkno to read from and
638 * how much we can read in one i/o. if bmap returns an error,
639 * skip the rest of the top-level i/o.
640 */
641
642 lbn = offset >> fs_bshift;
643 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
644 if (error) {
645 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
646 lbn,error,0,0);
647 skipbytes += bytes;
648 bytes = 0;
649 goto loopdone;
650 }
651
652 /*
653 * see how many pages can be read with this i/o.
654 * reduce the i/o size if necessary to avoid
655 * overwriting pages with valid data.
656 */
657
658 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
659 bytes);
660 if (offset + iobytes > round_page(offset)) {
661 int pcount;
662
663 pcount = 1;
664 while (pidx + pcount < npages &&
665 pgs[pidx + pcount]->flags & PG_FAKE) {
666 pcount++;
667 }
668 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
669 (offset - trunc_page(offset)));
670 }
671
672 /*
673 * if this block isn't allocated, zero it instead of
674 * reading it. unless we are going to allocate blocks,
675 * mark the pages we zeroed PG_RDONLY.
676 */
677
678 if (blkno == (daddr_t)-1) {
679 int holepages = (round_page(offset + iobytes) -
680 trunc_page(offset)) >> PAGE_SHIFT;
681 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
682
683 sawhole = true;
684 memset((char *)kva + (offset - startoffset), 0,
685 iobytes);
686 skipbytes += iobytes;
687
688 for (i = 0; i < holepages; i++) {
689 if (memwrite) {
690 pgs[pidx + i]->flags &= ~PG_CLEAN;
691 }
692 if (!blockalloc) {
693 pgs[pidx + i]->flags |= PG_RDONLY;
694 }
695 }
696 continue;
697 }
698
699 /*
700 * allocate a sub-buf for this piece of the i/o
701 * (or just use mbp if there's only 1 piece),
702 * and start it going.
703 */
704
705 if (offset == startoffset && iobytes == bytes) {
706 bp = mbp;
707 } else {
708 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
709 vp, bp, vp->v_numoutput, 0);
710 bp = getiobuf(vp, true);
711 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
712 }
713 bp->b_lblkno = 0;
714
715 /* adjust physical blkno for partial blocks */
716 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
717 dev_bshift);
718
719 UVMHIST_LOG(ubchist,
720 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
721 bp, offset, bp->b_bcount, bp->b_blkno);
722
723 VOP_STRATEGY(devvp, bp);
724 }
725
726 loopdone:
727 #if 1
728 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
729 goto genfs_getpages_biodone_done;
730 #endif
731 #if 0
732
733 int
734 genfs_getpages_biodone()
735 {
736 #endif
737 nestiobuf_done(mbp, skipbytes, error);
738 if (async) {
739 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
740 if (!glocked) {
741 genfs_node_unlock(vp);
742 }
743 error = 0;
744 goto out_err_free;
745 }
746 if (bp != NULL) {
747 error = biowait(mbp);
748 }
749
750 /* Remove the mapping (make KVA available as soon as possible) */
751 uvm_pagermapout(kva, npages);
752
753 /*
754 * if this we encountered a hole then we have to do a little more work.
755 * for read faults, we marked the page PG_RDONLY so that future
756 * write accesses to the page will fault again.
757 * for write faults, we must make sure that the backing store for
758 * the page is completely allocated while the pages are locked.
759 */
760
761 if (!error && sawhole && blockalloc) {
762 /*
763 * XXX: This assumes that we come here only via
764 * the mmio path
765 */
766 if (vp->v_mount->mnt_wapbl) {
767 error = WAPBL_BEGIN(vp->v_mount);
768 }
769
770 if (!error) {
771 error = GOP_ALLOC(vp, startoffset,
772 npages << PAGE_SHIFT, 0, cred);
773 if (vp->v_mount->mnt_wapbl) {
774 WAPBL_END(vp->v_mount);
775 }
776 }
777
778 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
779 startoffset, npages << PAGE_SHIFT, error,0);
780 if (!error) {
781 for (i = 0; i < npages; i++) {
782 struct vm_page *pg = pgs[i];
783
784 if (pg == NULL) {
785 continue;
786 }
787 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
788 UVMHIST_LOG(ubchist, "mark dirty pg %p",
789 pg,0,0,0);
790 }
791 }
792 }
793
794 putiobuf(mbp);
795 #if 0
796 }
797
798 #endif
799 #if 1
800 genfs_getpages_biodone_done:
801 {}
802 #endif
803 }
804
805 if (!glocked) {
806 genfs_node_unlock(vp);
807 }
808
809 #if 1
810 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
811 error = genfs_do_getpages_xip_io_done(
812 ap->a_vp,
813 ap->a_offset,
814 pgs,
815 ap->a_count,
816 ap->a_centeridx,
817 ap->a_access_type,
818 ap->a_advice,
819 ap->a_flags,
820 orignmempages);
821 goto genfs_getpages_generic_io_done_done;
822 }
823 #endif
824 #if 0
825 else {
826 error = genfs_getpages_generic_io_done();
827 }
828 }
829
830 int
831 genfs_getpages_generic_io_done()
832 {
833 #endif
834
835 mutex_enter(&uobj->vmobjlock);
836
837 /*
838 * we're almost done! release the pages...
839 * for errors, we free the pages.
840 * otherwise we activate them and mark them as valid and clean.
841 * also, unbusy pages that were not actually requested.
842 */
843
844 if (error) {
845 for (i = 0; i < npages; i++) {
846 struct vm_page *pg = pgs[i];
847
848 if (pg == NULL) {
849 continue;
850 }
851 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
852 pg, pg->flags, 0,0);
853 if (pg->flags & PG_FAKE) {
854 pg->flags |= PG_RELEASED;
855 }
856 }
857 mutex_enter(&uvm_pageqlock);
858 uvm_page_unbusy(pgs, npages);
859 mutex_exit(&uvm_pageqlock);
860 mutex_exit(&uobj->vmobjlock);
861 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
862 goto out_err_free;
863 }
864
865 out:
866 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
867 error = 0;
868 mutex_enter(&uvm_pageqlock);
869 for (i = 0; i < npages; i++) {
870 struct vm_page *pg = pgs[i];
871 if (pg == NULL) {
872 continue;
873 }
874 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
875 pg, pg->flags, 0,0);
876 if (pg->flags & PG_FAKE && !overwrite) {
877 pg->flags &= ~(PG_FAKE);
878 pmap_clear_modify(pgs[i]);
879 }
880 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
881 if (i < ridx || i >= ridx + orignmempages || async) {
882 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
883 pg, pg->offset,0,0);
884 if (pg->flags & PG_WANTED) {
885 wakeup(pg);
886 }
887 if (pg->flags & PG_FAKE) {
888 KASSERT(overwrite);
889 uvm_pagezero(pg);
890 }
891 if (pg->flags & PG_RELEASED) {
892 uvm_pagefree(pg);
893 continue;
894 }
895 uvm_pageenqueue(pg);
896 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
897 UVM_PAGE_OWN(pg, NULL);
898 }
899 }
900 mutex_exit(&uvm_pageqlock);
901
902 if (memwrite) {
903 genfs_markdirty(vp);
904 }
905 mutex_exit(&uobj->vmobjlock);
906 #if 1
907 genfs_getpages_generic_io_done_done:
908 {}
909 #endif
910 if (ap->a_m != NULL) {
911 memcpy(ap->a_m, &pgs[ridx],
912 orignmempages * sizeof(struct vm_page *));
913 }
914 #if 0
915 }
916
917 #endif
918
919 out_err_free:
920 if (pgs != NULL && pgs != pgs_onstack)
921 kmem_free(pgs, pgs_size);
922 out_err:
923 if (has_trans)
924 fstrans_done(vp->v_mount);
925 return error;
926 }
927
928 #ifdef XIP
929 /*
930 * genfs_do_getpages_xip_io
931 * Return "direct pages" of XIP vnode. The block addresses of XIP
932 * vnode pages are returned back to the VM fault handler as the
933 * actually mapped physical addresses.
934 */
935 static int
936 genfs_do_getpages_xip_io(
937 struct vnode *vp,
938 voff_t origoffset,
939 struct vm_page **pps,
940 int *npagesp,
941 int centeridx,
942 vm_prot_t access_type,
943 int advice,
944 int flags,
945 const int orignmempages)
946 {
947 const int fs_bshift = vp2fs_bshift(vp);
948 const int dev_bshift = vp2dev_bshift(vp);
949 const int fs_bsize = 1 << fs_bshift;
950
951 int error;
952 off_t off;
953 int i;
954
955 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
956
957 KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
958
959 #ifdef UVMHIST
960 const off_t startoffset = trunc_blk(origoffset);
961 const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
962 #endif
963
964 UVMHIST_LOG(ubchist, "xip npages=%d startoffset=%lx endoffset=%lx",
965 orignmempages, (long)startoffset, (long)endoffset, 0);
966
967 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
968
969 off = origoffset;
970 for (i = ridx; i < ridx + orignmempages; i++) {
971 daddr_t lbn, blkno;
972 int run;
973 struct vnode *devvp;
974
975 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
976
977 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
978 KASSERT(error == 0);
979 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
980 (long)lbn, (long)blkno, run, 0);
981
982 /*
983 * XIP page metadata assignment
984 * - Unallocated block is redirected to the dedicated zero'ed
985 * page.
986 */
987 if (blkno < 0) {
988 panic("XIP hole is not supported yet!");
989 } else {
990 daddr_t blk_off, fs_off;
991
992 blk_off = blkno << dev_bshift;
993 fs_off = off - (lbn << fs_bshift);
994
995 pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
996 blk_off + fs_off);
997 KASSERT(pps[i] != NULL);
998 }
999
1000 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
1001 i,
1002 (long)pps[i]->phys_addr,
1003 pps[i],
1004 0);
1005
1006 off += PAGE_SIZE;
1007 }
1008
1009 return 0;
1010 }
1011
1012 int
1013 genfs_do_getpages_xip_io_done(
1014 struct vnode *vp,
1015 voff_t origoffset,
1016 struct vm_page **pps,
1017 int *npagesp,
1018 int centeridx,
1019 vm_prot_t access_type,
1020 int advice,
1021 int flags,
1022 const int orignmempages)
1023 {
1024 struct uvm_object * const uobj = &vp->v_uobj;
1025 int i;
1026
1027 const int fs_bshift = vp2fs_bshift(vp);
1028 const int fs_bsize = 1 << fs_bshift;
1029
1030 const off_t startoffset = trunc_blk(origoffset);
1031 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
1032
1033 mutex_enter(&uobj->vmobjlock);
1034
1035 for (i = ridx; i < ridx + orignmempages; i++) {
1036 struct vm_page *pg = pps[i];
1037
1038 KASSERT((pg->flags & PG_RDONLY) != 0);
1039 KASSERT((pg->flags & PG_BUSY) == 0);
1040 KASSERT((pg->flags & PG_CLEAN) != 0);
1041 KASSERT((pg->flags & PG_DEVICE) != 0);
1042 pg->flags |= PG_BUSY;
1043 pg->flags &= ~PG_FAKE;
1044 pg->uobject = &vp->v_uobj;
1045 }
1046
1047 mutex_exit(&uobj->vmobjlock);
1048
1049 *npagesp = orignmempages;
1050
1051 return 0;
1052 }
1053 #endif
1054
1055 /*
1056 * generic VM putpages routine.
1057 * Write the given range of pages to backing store.
1058 *
1059 * => "offhi == 0" means flush all pages at or after "offlo".
1060 * => object should be locked by caller. we return with the
1061 * object unlocked.
1062 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1063 * thus, a caller might want to unlock higher level resources
1064 * (e.g. vm_map) before calling flush.
1065 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
1066 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1067 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1068 * that new pages are inserted on the tail end of the list. thus,
1069 * we can make a complete pass through the object in one go by starting
1070 * at the head and working towards the tail (new pages are put in
1071 * front of us).
1072 * => NOTE: we are allowed to lock the page queues, so the caller
1073 * must not be holding the page queue lock.
1074 *
1075 * note on "cleaning" object and PG_BUSY pages:
1076 * this routine is holding the lock on the object. the only time
1077 * that it can run into a PG_BUSY page that it does not own is if
1078 * some other process has started I/O on the page (e.g. either
1079 * a pagein, or a pageout). if the PG_BUSY page is being paged
1080 * in, then it can not be dirty (!PG_CLEAN) because no one has
1081 * had a chance to modify it yet. if the PG_BUSY page is being
1082 * paged out then it means that someone else has already started
1083 * cleaning the page for us (how nice!). in this case, if we
1084 * have syncio specified, then after we make our pass through the
1085 * object we need to wait for the other PG_BUSY pages to clear
1086 * off (i.e. we need to do an iosync). also note that once a
1087 * page is PG_BUSY it must stay in its object until it is un-busyed.
1088 *
1089 * note on page traversal:
1090 * we can traverse the pages in an object either by going down the
1091 * linked list in "uobj->memq", or we can go over the address range
1092 * by page doing hash table lookups for each address. depending
1093 * on how many pages are in the object it may be cheaper to do one
1094 * or the other. we set "by_list" to true if we are using memq.
1095 * if the cost of a hash lookup was equal to the cost of the list
1096 * traversal we could compare the number of pages in the start->stop
1097 * range to the total number of pages in the object. however, it
1098 * seems that a hash table lookup is more expensive than the linked
1099 * list traversal, so we multiply the number of pages in the
1100 * range by an estimate of the relatively higher cost of the hash lookup.
1101 */
1102
1103 int
1104 genfs_putpages(void *v)
1105 {
1106 struct vop_putpages_args /* {
1107 struct vnode *a_vp;
1108 voff_t a_offlo;
1109 voff_t a_offhi;
1110 int a_flags;
1111 } */ * const ap = v;
1112
1113 #ifdef XIP
1114 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1115 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1116 ap->a_flags, NULL);
1117 else
1118 #endif
1119 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1120 ap->a_flags, NULL);
1121 }
1122
1123 int
1124 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1125 int origflags, struct vm_page **busypg)
1126 {
1127 struct uvm_object * const uobj = &vp->v_uobj;
1128 kmutex_t * const slock = &uobj->vmobjlock;
1129 off_t off;
1130 /* Even for strange MAXPHYS, the shift rounds down to a page */
1131 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1132 int i, error, npages, nback;
1133 int freeflag;
1134 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1135 bool wasclean, by_list, needs_clean, yld;
1136 bool async = (origflags & PGO_SYNCIO) == 0;
1137 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1138 struct lwp * const l = curlwp ? curlwp : &lwp0;
1139 struct genfs_node * const gp = VTOG(vp);
1140 int flags;
1141 int dirtygen;
1142 bool modified;
1143 bool need_wapbl;
1144 bool has_trans;
1145 bool cleanall;
1146 bool onworklst;
1147
1148 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1149
1150 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1151 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1152 KASSERT(startoff < endoff || endoff == 0);
1153
1154 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1155 vp, uobj->uo_npages, startoff, endoff - startoff);
1156
1157 has_trans = false;
1158 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1159 (origflags & PGO_JOURNALLOCKED) == 0);
1160
1161 retry:
1162 modified = false;
1163 flags = origflags;
1164 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1165 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1166 if (uobj->uo_npages == 0) {
1167 if (vp->v_iflag & VI_ONWORKLST) {
1168 vp->v_iflag &= ~VI_WRMAPDIRTY;
1169 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1170 vn_syncer_remove_from_worklist(vp);
1171 }
1172 if (has_trans) {
1173 if (need_wapbl)
1174 WAPBL_END(vp->v_mount);
1175 fstrans_done(vp->v_mount);
1176 }
1177 mutex_exit(slock);
1178 return (0);
1179 }
1180
1181 /*
1182 * the vnode has pages, set up to process the request.
1183 */
1184
1185 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1186 mutex_exit(slock);
1187 if (pagedaemon) {
1188 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1189 if (error)
1190 return error;
1191 } else
1192 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1193 if (need_wapbl) {
1194 error = WAPBL_BEGIN(vp->v_mount);
1195 if (error) {
1196 fstrans_done(vp->v_mount);
1197 return error;
1198 }
1199 }
1200 has_trans = true;
1201 mutex_enter(slock);
1202 goto retry;
1203 }
1204
1205 error = 0;
1206 wasclean = (vp->v_numoutput == 0);
1207 off = startoff;
1208 if (endoff == 0 || flags & PGO_ALLPAGES) {
1209 endoff = trunc_page(LLONG_MAX);
1210 }
1211 by_list = (uobj->uo_npages <=
1212 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1213
1214 #if !defined(DEBUG)
1215 /*
1216 * if this vnode is known not to have dirty pages,
1217 * don't bother to clean it out.
1218 */
1219
1220 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1221 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1222 goto skip_scan;
1223 }
1224 flags &= ~PGO_CLEANIT;
1225 }
1226 #endif /* !defined(DEBUG) */
1227
1228 /*
1229 * start the loop. when scanning by list, hold the last page
1230 * in the list before we start. pages allocated after we start
1231 * will be added to the end of the list, so we can stop at the
1232 * current last page.
1233 */
1234
1235 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1236 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1237 (vp->v_iflag & VI_ONWORKLST) != 0;
1238 dirtygen = gp->g_dirtygen;
1239 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1240 if (by_list) {
1241 curmp.flags = PG_MARKER;
1242 endmp.flags = PG_MARKER;
1243 pg = TAILQ_FIRST(&uobj->memq);
1244 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1245 } else {
1246 pg = uvm_pagelookup(uobj, off);
1247 }
1248 nextpg = NULL;
1249 while (by_list || off < endoff) {
1250
1251 /*
1252 * if the current page is not interesting, move on to the next.
1253 */
1254
1255 KASSERT(pg == NULL || pg->uobject == uobj ||
1256 (pg->flags & PG_MARKER) != 0);
1257 KASSERT(pg == NULL ||
1258 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1259 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1260 if (by_list) {
1261 if (pg == &endmp) {
1262 break;
1263 }
1264 if (pg->flags & PG_MARKER) {
1265 pg = TAILQ_NEXT(pg, listq.queue);
1266 continue;
1267 }
1268 if (pg->offset < startoff || pg->offset >= endoff ||
1269 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1270 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1271 wasclean = false;
1272 }
1273 pg = TAILQ_NEXT(pg, listq.queue);
1274 continue;
1275 }
1276 off = pg->offset;
1277 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1278 if (pg != NULL) {
1279 wasclean = false;
1280 }
1281 off += PAGE_SIZE;
1282 if (off < endoff) {
1283 pg = uvm_pagelookup(uobj, off);
1284 }
1285 continue;
1286 }
1287
1288 /*
1289 * if the current page needs to be cleaned and it's busy,
1290 * wait for it to become unbusy.
1291 */
1292
1293 yld = (l->l_cpu->ci_schedstate.spc_flags &
1294 SPCF_SHOULDYIELD) && !pagedaemon;
1295 if (pg->flags & PG_BUSY || yld) {
1296 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1297 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1298 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1299 error = EDEADLK;
1300 if (busypg != NULL)
1301 *busypg = pg;
1302 break;
1303 }
1304 if (pagedaemon) {
1305 /*
1306 * someone has taken the page while we
1307 * dropped the lock for fstrans_start.
1308 */
1309 break;
1310 }
1311 if (by_list) {
1312 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1313 UVMHIST_LOG(ubchist, "curmp next %p",
1314 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1315 }
1316 if (yld) {
1317 mutex_exit(slock);
1318 preempt();
1319 mutex_enter(slock);
1320 } else {
1321 pg->flags |= PG_WANTED;
1322 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1323 mutex_enter(slock);
1324 }
1325 if (by_list) {
1326 UVMHIST_LOG(ubchist, "after next %p",
1327 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1328 pg = TAILQ_NEXT(&curmp, listq.queue);
1329 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1330 } else {
1331 pg = uvm_pagelookup(uobj, off);
1332 }
1333 continue;
1334 }
1335
1336 /*
1337 * if we're freeing, remove all mappings of the page now.
1338 * if we're cleaning, check if the page is needs to be cleaned.
1339 */
1340
1341 if (flags & PGO_FREE) {
1342 pmap_page_protect(pg, VM_PROT_NONE);
1343 } else if (flags & PGO_CLEANIT) {
1344
1345 /*
1346 * if we still have some hope to pull this vnode off
1347 * from the syncer queue, write-protect the page.
1348 */
1349
1350 if (cleanall && wasclean &&
1351 gp->g_dirtygen == dirtygen) {
1352
1353 /*
1354 * uobj pages get wired only by uvm_fault
1355 * where uobj is locked.
1356 */
1357
1358 if (pg->wire_count == 0) {
1359 pmap_page_protect(pg,
1360 VM_PROT_READ|VM_PROT_EXECUTE);
1361 } else {
1362 cleanall = false;
1363 }
1364 }
1365 }
1366
1367 if (flags & PGO_CLEANIT) {
1368 needs_clean = pmap_clear_modify(pg) ||
1369 (pg->flags & PG_CLEAN) == 0;
1370 pg->flags |= PG_CLEAN;
1371 } else {
1372 needs_clean = false;
1373 }
1374
1375 /*
1376 * if we're cleaning, build a cluster.
1377 * the cluster will consist of pages which are currently dirty,
1378 * but they will be returned to us marked clean.
1379 * if not cleaning, just operate on the one page.
1380 */
1381
1382 if (needs_clean) {
1383 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1384 wasclean = false;
1385 memset(pgs, 0, sizeof(pgs));
1386 pg->flags |= PG_BUSY;
1387 UVM_PAGE_OWN(pg, "genfs_putpages");
1388
1389 /*
1390 * first look backward.
1391 */
1392
1393 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1394 nback = npages;
1395 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1396 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1397 if (nback) {
1398 memmove(&pgs[0], &pgs[npages - nback],
1399 nback * sizeof(pgs[0]));
1400 if (npages - nback < nback)
1401 memset(&pgs[nback], 0,
1402 (npages - nback) * sizeof(pgs[0]));
1403 else
1404 memset(&pgs[npages - nback], 0,
1405 nback * sizeof(pgs[0]));
1406 }
1407
1408 /*
1409 * then plug in our page of interest.
1410 */
1411
1412 pgs[nback] = pg;
1413
1414 /*
1415 * then look forward to fill in the remaining space in
1416 * the array of pages.
1417 */
1418
1419 npages = maxpages - nback - 1;
1420 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1421 &pgs[nback + 1],
1422 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1423 npages += nback + 1;
1424 } else {
1425 pgs[0] = pg;
1426 npages = 1;
1427 nback = 0;
1428 }
1429
1430 /*
1431 * apply FREE or DEACTIVATE options if requested.
1432 */
1433
1434 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1435 mutex_enter(&uvm_pageqlock);
1436 }
1437 for (i = 0; i < npages; i++) {
1438 tpg = pgs[i];
1439 KASSERT(tpg->uobject == uobj);
1440 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1441 pg = tpg;
1442 if (tpg->offset < startoff || tpg->offset >= endoff)
1443 continue;
1444 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1445 uvm_pagedeactivate(tpg);
1446 } else if (flags & PGO_FREE) {
1447 pmap_page_protect(tpg, VM_PROT_NONE);
1448 if (tpg->flags & PG_BUSY) {
1449 tpg->flags |= freeflag;
1450 if (pagedaemon) {
1451 uvm_pageout_start(1);
1452 uvm_pagedequeue(tpg);
1453 }
1454 } else {
1455
1456 /*
1457 * ``page is not busy''
1458 * implies that npages is 1
1459 * and needs_clean is false.
1460 */
1461
1462 nextpg = TAILQ_NEXT(tpg, listq.queue);
1463 uvm_pagefree(tpg);
1464 if (pagedaemon)
1465 uvmexp.pdfreed++;
1466 }
1467 }
1468 }
1469 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1470 mutex_exit(&uvm_pageqlock);
1471 }
1472 if (needs_clean) {
1473 modified = true;
1474
1475 /*
1476 * start the i/o. if we're traversing by list,
1477 * keep our place in the list with a marker page.
1478 */
1479
1480 if (by_list) {
1481 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1482 listq.queue);
1483 }
1484 mutex_exit(slock);
1485 error = GOP_WRITE(vp, pgs, npages, flags);
1486 mutex_enter(slock);
1487 if (by_list) {
1488 pg = TAILQ_NEXT(&curmp, listq.queue);
1489 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1490 }
1491 if (error) {
1492 break;
1493 }
1494 if (by_list) {
1495 continue;
1496 }
1497 }
1498
1499 /*
1500 * find the next page and continue if there was no error.
1501 */
1502
1503 if (by_list) {
1504 if (nextpg) {
1505 pg = nextpg;
1506 nextpg = NULL;
1507 } else {
1508 pg = TAILQ_NEXT(pg, listq.queue);
1509 }
1510 } else {
1511 off += (npages - nback) << PAGE_SHIFT;
1512 if (off < endoff) {
1513 pg = uvm_pagelookup(uobj, off);
1514 }
1515 }
1516 }
1517 if (by_list) {
1518 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1519 }
1520
1521 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1522 (vp->v_type != VBLK ||
1523 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1524 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1525 }
1526
1527 /*
1528 * if we're cleaning and there was nothing to clean,
1529 * take us off the syncer list. if we started any i/o
1530 * and we're doing sync i/o, wait for all writes to finish.
1531 */
1532
1533 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1534 (vp->v_iflag & VI_ONWORKLST) != 0) {
1535 #if defined(DEBUG)
1536 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1537 if ((pg->flags & PG_MARKER) != 0) {
1538 continue;
1539 }
1540 if ((pg->flags & PG_CLEAN) == 0) {
1541 printf("%s: %p: !CLEAN\n", __func__, pg);
1542 }
1543 if (pmap_is_modified(pg)) {
1544 printf("%s: %p: modified\n", __func__, pg);
1545 }
1546 }
1547 #endif /* defined(DEBUG) */
1548 vp->v_iflag &= ~VI_WRMAPDIRTY;
1549 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1550 vn_syncer_remove_from_worklist(vp);
1551 }
1552
1553 #if !defined(DEBUG)
1554 skip_scan:
1555 #endif /* !defined(DEBUG) */
1556
1557 /* Wait for output to complete. */
1558 if (!wasclean && !async && vp->v_numoutput != 0) {
1559 while (vp->v_numoutput != 0)
1560 cv_wait(&vp->v_cv, slock);
1561 }
1562 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1563 mutex_exit(slock);
1564
1565 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1566 /*
1567 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1568 * retrying is not a big deal because, in many cases,
1569 * uobj->uo_npages is already 0 here.
1570 */
1571 mutex_enter(slock);
1572 goto retry;
1573 }
1574
1575 if (has_trans) {
1576 if (need_wapbl)
1577 WAPBL_END(vp->v_mount);
1578 fstrans_done(vp->v_mount);
1579 }
1580
1581 return (error);
1582 }
1583
1584 #ifdef XIP
1585 int
1586 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1587 int flags, struct vm_page **busypg)
1588 {
1589 struct uvm_object *uobj = &vp->v_uobj;
1590 #ifdef DIAGNOSTIC
1591 struct genfs_node * const gp = VTOG(vp);
1592 #endif
1593
1594 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1595
1596 KASSERT(mutex_owned(&uobj->vmobjlock));
1597 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1598 KASSERT(vp->v_numoutput == 0);
1599 KASSERT(gp->g_dirtygen == 0);
1600
1601 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1602 vp, uobj->uo_npages, startoff, endoff - startoff);
1603
1604 /*
1605 * XIP pages are read-only, and never become dirty. They're also never
1606 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1607 * pages, so we ignore them.
1608 */
1609 if ((flags & PGO_FREE) == 0)
1610 goto done;
1611
1612 /*
1613 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1614 * mappings of both XIP pages and XIP zero pages.
1615 *
1616 * Zero page is freed when one of its mapped offset is freed, even if
1617 * one file (vnode) has many holes and mapping its zero page to all
1618 * of those hole pages.
1619 *
1620 * We don't know which pages are currently mapped in the given vnode,
1621 * because XIP pages are not added to vnode. What we can do is to
1622 * locate pages by querying the filesystem as done in getpages. Call
1623 * genfs_do_getpages_xip_io().
1624 */
1625
1626 off_t off, eof;
1627
1628 off = trunc_page(startoff);
1629 if (endoff == 0 || (flags & PGO_ALLPAGES))
1630 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1631 else
1632 eof = endoff;
1633
1634 while (off < eof) {
1635 int npages, orignpages, error, i;
1636 struct vm_page *pgs[maxpages], *pg;
1637
1638 npages = round_page(eof - off) >> PAGE_SHIFT;
1639 if (npages > maxpages)
1640 npages = maxpages;
1641
1642 orignpages = npages;
1643 KASSERT(mutex_owned(&uobj->vmobjlock));
1644 mutex_exit(&uobj->vmobjlock);
1645 error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
1646 VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
1647 KASSERT(error == 0);
1648 KASSERT(npages == orignpages);
1649 mutex_enter(&uobj->vmobjlock);
1650 for (i = 0; i < npages; i++) {
1651 pg = pgs[i];
1652 if (pg == NULL || pg == PGO_DONTCARE)
1653 continue;
1654 /*
1655 * Freeing normal XIP pages; nothing to do.
1656 */
1657 pmap_page_protect(pg, VM_PROT_NONE);
1658 KASSERT((pg->flags & PG_RDONLY) != 0);
1659 KASSERT((pg->flags & PG_CLEAN) != 0);
1660 KASSERT((pg->flags & PG_FAKE) == 0);
1661 KASSERT((pg->flags & PG_DEVICE) != 0);
1662 pg->flags &= ~PG_BUSY;
1663 }
1664 off += npages << PAGE_SHIFT;
1665 }
1666
1667 KASSERT(uobj->uo_npages == 0);
1668
1669 done:
1670 KASSERT(mutex_owned(&uobj->vmobjlock));
1671 mutex_exit(&uobj->vmobjlock);
1672 return 0;
1673 }
1674 #endif
1675
1676 int
1677 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1678 {
1679 off_t off;
1680 vaddr_t kva;
1681 size_t len;
1682 int error;
1683 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1684
1685 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1686 vp, pgs, npages, flags);
1687
1688 off = pgs[0]->offset;
1689 kva = uvm_pagermapin(pgs, npages,
1690 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1691 len = npages << PAGE_SHIFT;
1692
1693 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1694 uvm_aio_biodone);
1695
1696 return error;
1697 }
1698
1699 int
1700 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1701 {
1702 off_t off;
1703 vaddr_t kva;
1704 size_t len;
1705 int error;
1706 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1707
1708 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1709 vp, pgs, npages, flags);
1710
1711 off = pgs[0]->offset;
1712 kva = uvm_pagermapin(pgs, npages,
1713 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1714 len = npages << PAGE_SHIFT;
1715
1716 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1717 uvm_aio_biodone);
1718
1719 return error;
1720 }
1721
1722 /*
1723 * Backend routine for doing I/O to vnode pages. Pages are already locked
1724 * and mapped into kernel memory. Here we just look up the underlying
1725 * device block addresses and call the strategy routine.
1726 */
1727
1728 static int
1729 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1730 enum uio_rw rw, void (*iodone)(struct buf *))
1731 {
1732 int s, error;
1733 int fs_bshift, dev_bshift;
1734 off_t eof, offset, startoffset;
1735 size_t bytes, iobytes, skipbytes;
1736 struct buf *mbp, *bp;
1737 const bool async = (flags & PGO_SYNCIO) == 0;
1738 const bool iowrite = rw == UIO_WRITE;
1739 const int brw = iowrite ? B_WRITE : B_READ;
1740 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1741
1742 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1743 vp, kva, len, flags);
1744
1745 KASSERT(vp->v_size <= vp->v_writesize);
1746 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1747 if (vp->v_type != VBLK) {
1748 fs_bshift = vp->v_mount->mnt_fs_bshift;
1749 dev_bshift = vp->v_mount->mnt_dev_bshift;
1750 } else {
1751 fs_bshift = DEV_BSHIFT;
1752 dev_bshift = DEV_BSHIFT;
1753 }
1754 error = 0;
1755 startoffset = off;
1756 bytes = MIN(len, eof - startoffset);
1757 skipbytes = 0;
1758 KASSERT(bytes != 0);
1759
1760 if (iowrite) {
1761 mutex_enter(&vp->v_interlock);
1762 vp->v_numoutput += 2;
1763 mutex_exit(&vp->v_interlock);
1764 }
1765 mbp = getiobuf(vp, true);
1766 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1767 vp, mbp, vp->v_numoutput, bytes);
1768 mbp->b_bufsize = len;
1769 mbp->b_data = (void *)kva;
1770 mbp->b_resid = mbp->b_bcount = bytes;
1771 mbp->b_cflags = BC_BUSY | BC_AGE;
1772 if (async) {
1773 mbp->b_flags = brw | B_ASYNC;
1774 mbp->b_iodone = iodone;
1775 } else {
1776 mbp->b_flags = brw;
1777 mbp->b_iodone = NULL;
1778 }
1779 if (curlwp == uvm.pagedaemon_lwp)
1780 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1781 else if (async)
1782 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1783 else
1784 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1785
1786 bp = NULL;
1787 for (offset = startoffset;
1788 bytes > 0;
1789 offset += iobytes, bytes -= iobytes) {
1790 int run;
1791 daddr_t lbn, blkno;
1792 struct vnode *devvp;
1793
1794 /*
1795 * bmap the file to find out the blkno to read from and
1796 * how much we can read in one i/o. if bmap returns an error,
1797 * skip the rest of the top-level i/o.
1798 */
1799
1800 lbn = offset >> fs_bshift;
1801 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1802 if (error) {
1803 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1804 lbn,error,0,0);
1805 skipbytes += bytes;
1806 bytes = 0;
1807 goto loopdone;
1808 }
1809
1810 /*
1811 * see how many pages can be read with this i/o.
1812 * reduce the i/o size if necessary to avoid
1813 * overwriting pages with valid data.
1814 */
1815
1816 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1817 bytes);
1818
1819 /*
1820 * if this block isn't allocated, zero it instead of
1821 * reading it. unless we are going to allocate blocks,
1822 * mark the pages we zeroed PG_RDONLY.
1823 */
1824
1825 if (blkno == (daddr_t)-1) {
1826 if (!iowrite) {
1827 memset((char *)kva + (offset - startoffset), 0,
1828 iobytes);
1829 }
1830 skipbytes += iobytes;
1831 continue;
1832 }
1833
1834 /*
1835 * allocate a sub-buf for this piece of the i/o
1836 * (or just use mbp if there's only 1 piece),
1837 * and start it going.
1838 */
1839
1840 if (offset == startoffset && iobytes == bytes) {
1841 bp = mbp;
1842 } else {
1843 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1844 vp, bp, vp->v_numoutput, 0);
1845 bp = getiobuf(vp, true);
1846 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1847 }
1848 bp->b_lblkno = 0;
1849
1850 /* adjust physical blkno for partial blocks */
1851 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1852 dev_bshift);
1853
1854 UVMHIST_LOG(ubchist,
1855 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1856 bp, offset, bp->b_bcount, bp->b_blkno);
1857
1858 VOP_STRATEGY(devvp, bp);
1859 }
1860
1861 loopdone:
1862 if (skipbytes) {
1863 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1864 }
1865 nestiobuf_done(mbp, skipbytes, error);
1866 if (async) {
1867 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1868 return (0);
1869 }
1870 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1871 error = biowait(mbp);
1872 s = splbio();
1873 (*iodone)(mbp);
1874 splx(s);
1875 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1876 return (error);
1877 }
1878
1879 int
1880 genfs_compat_getpages(void *v)
1881 {
1882 struct vop_getpages_args /* {
1883 struct vnode *a_vp;
1884 voff_t a_offset;
1885 struct vm_page **a_m;
1886 int *a_count;
1887 int a_centeridx;
1888 vm_prot_t a_access_type;
1889 int a_advice;
1890 int a_flags;
1891 } */ *ap = v;
1892
1893 off_t origoffset;
1894 struct vnode *vp = ap->a_vp;
1895 struct uvm_object *uobj = &vp->v_uobj;
1896 struct vm_page *pg, **pgs;
1897 vaddr_t kva;
1898 int i, error, orignpages, npages;
1899 struct iovec iov;
1900 struct uio uio;
1901 kauth_cred_t cred = curlwp->l_cred;
1902 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1903
1904 error = 0;
1905 origoffset = ap->a_offset;
1906 orignpages = *ap->a_count;
1907 pgs = ap->a_m;
1908
1909 if (ap->a_flags & PGO_LOCKED) {
1910 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1911 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1912
1913 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1914 if (error == 0 && memwrite) {
1915 genfs_markdirty(vp);
1916 }
1917 return error;
1918 }
1919 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1920 mutex_exit(&uobj->vmobjlock);
1921 return EINVAL;
1922 }
1923 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1924 mutex_exit(&uobj->vmobjlock);
1925 return 0;
1926 }
1927 npages = orignpages;
1928 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1929 mutex_exit(&uobj->vmobjlock);
1930 kva = uvm_pagermapin(pgs, npages,
1931 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1932 for (i = 0; i < npages; i++) {
1933 pg = pgs[i];
1934 if ((pg->flags & PG_FAKE) == 0) {
1935 continue;
1936 }
1937 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1938 iov.iov_len = PAGE_SIZE;
1939 uio.uio_iov = &iov;
1940 uio.uio_iovcnt = 1;
1941 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1942 uio.uio_rw = UIO_READ;
1943 uio.uio_resid = PAGE_SIZE;
1944 UIO_SETUP_SYSSPACE(&uio);
1945 /* XXX vn_lock */
1946 error = VOP_READ(vp, &uio, 0, cred);
1947 if (error) {
1948 break;
1949 }
1950 if (uio.uio_resid) {
1951 memset(iov.iov_base, 0, uio.uio_resid);
1952 }
1953 }
1954 uvm_pagermapout(kva, npages);
1955 mutex_enter(&uobj->vmobjlock);
1956 mutex_enter(&uvm_pageqlock);
1957 for (i = 0; i < npages; i++) {
1958 pg = pgs[i];
1959 if (error && (pg->flags & PG_FAKE) != 0) {
1960 pg->flags |= PG_RELEASED;
1961 } else {
1962 pmap_clear_modify(pg);
1963 uvm_pageactivate(pg);
1964 }
1965 }
1966 if (error) {
1967 uvm_page_unbusy(pgs, npages);
1968 }
1969 mutex_exit(&uvm_pageqlock);
1970 if (error == 0 && memwrite) {
1971 genfs_markdirty(vp);
1972 }
1973 mutex_exit(&uobj->vmobjlock);
1974 return error;
1975 }
1976
1977 int
1978 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1979 int flags)
1980 {
1981 off_t offset;
1982 struct iovec iov;
1983 struct uio uio;
1984 kauth_cred_t cred = curlwp->l_cred;
1985 struct buf *bp;
1986 vaddr_t kva;
1987 int error;
1988
1989 offset = pgs[0]->offset;
1990 kva = uvm_pagermapin(pgs, npages,
1991 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1992
1993 iov.iov_base = (void *)kva;
1994 iov.iov_len = npages << PAGE_SHIFT;
1995 uio.uio_iov = &iov;
1996 uio.uio_iovcnt = 1;
1997 uio.uio_offset = offset;
1998 uio.uio_rw = UIO_WRITE;
1999 uio.uio_resid = npages << PAGE_SHIFT;
2000 UIO_SETUP_SYSSPACE(&uio);
2001 /* XXX vn_lock */
2002 error = VOP_WRITE(vp, &uio, 0, cred);
2003
2004 mutex_enter(&vp->v_interlock);
2005 vp->v_numoutput++;
2006 mutex_exit(&vp->v_interlock);
2007
2008 bp = getiobuf(vp, true);
2009 bp->b_cflags = BC_BUSY | BC_AGE;
2010 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
2011 bp->b_data = (char *)kva;
2012 bp->b_bcount = npages << PAGE_SHIFT;
2013 bp->b_bufsize = npages << PAGE_SHIFT;
2014 bp->b_resid = 0;
2015 bp->b_error = error;
2016 uvm_aio_aiodone(bp);
2017 return (error);
2018 }
2019
2020 /*
2021 * Process a uio using direct I/O. If we reach a part of the request
2022 * which cannot be processed in this fashion for some reason, just return.
2023 * The caller must handle some additional part of the request using
2024 * buffered I/O before trying direct I/O again.
2025 */
2026
2027 void
2028 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
2029 {
2030 struct vmspace *vs;
2031 struct iovec *iov;
2032 vaddr_t va;
2033 size_t len;
2034 const int mask = DEV_BSIZE - 1;
2035 int error;
2036 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
2037 (ioflag & IO_JOURNALLOCKED) == 0);
2038
2039 /*
2040 * We only support direct I/O to user space for now.
2041 */
2042
2043 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
2044 return;
2045 }
2046
2047 /*
2048 * If the vnode is mapped, we would need to get the getpages lock
2049 * to stabilize the bmap, but then we would get into trouble whil e
2050 * locking the pages if the pages belong to this same vnode (or a
2051 * multi-vnode cascade to the same effect). Just fall back to
2052 * buffered I/O if the vnode is mapped to avoid this mess.
2053 */
2054
2055 if (vp->v_vflag & VV_MAPPED) {
2056 return;
2057 }
2058
2059 if (need_wapbl) {
2060 error = WAPBL_BEGIN(vp->v_mount);
2061 if (error)
2062 return;
2063 }
2064
2065 /*
2066 * Do as much of the uio as possible with direct I/O.
2067 */
2068
2069 vs = uio->uio_vmspace;
2070 while (uio->uio_resid) {
2071 iov = uio->uio_iov;
2072 if (iov->iov_len == 0) {
2073 uio->uio_iov++;
2074 uio->uio_iovcnt--;
2075 continue;
2076 }
2077 va = (vaddr_t)iov->iov_base;
2078 len = MIN(iov->iov_len, genfs_maxdio);
2079 len &= ~mask;
2080
2081 /*
2082 * If the next chunk is smaller than DEV_BSIZE or extends past
2083 * the current EOF, then fall back to buffered I/O.
2084 */
2085
2086 if (len == 0 || uio->uio_offset + len > vp->v_size) {
2087 break;
2088 }
2089
2090 /*
2091 * Check alignment. The file offset must be at least
2092 * sector-aligned. The exact constraint on memory alignment
2093 * is very hardware-dependent, but requiring sector-aligned
2094 * addresses there too is safe.
2095 */
2096
2097 if (uio->uio_offset & mask || va & mask) {
2098 break;
2099 }
2100 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2101 uio->uio_rw);
2102 if (error) {
2103 break;
2104 }
2105 iov->iov_base = (char *)iov->iov_base + len;
2106 iov->iov_len -= len;
2107 uio->uio_offset += len;
2108 uio->uio_resid -= len;
2109 }
2110
2111 if (need_wapbl)
2112 WAPBL_END(vp->v_mount);
2113 }
2114
2115 /*
2116 * Iodone routine for direct I/O. We don't do much here since the request is
2117 * always synchronous, so the caller will do most of the work after biowait().
2118 */
2119
2120 static void
2121 genfs_dio_iodone(struct buf *bp)
2122 {
2123
2124 KASSERT((bp->b_flags & B_ASYNC) == 0);
2125 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2126 mutex_enter(bp->b_objlock);
2127 vwakeup(bp);
2128 mutex_exit(bp->b_objlock);
2129 }
2130 putiobuf(bp);
2131 }
2132
2133 /*
2134 * Process one chunk of a direct I/O request.
2135 */
2136
2137 static int
2138 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2139 off_t off, enum uio_rw rw)
2140 {
2141 struct vm_map *map;
2142 struct pmap *upm, *kpm;
2143 size_t klen = round_page(uva + len) - trunc_page(uva);
2144 off_t spoff, epoff;
2145 vaddr_t kva, puva;
2146 paddr_t pa;
2147 vm_prot_t prot;
2148 int error, rv, poff, koff;
2149 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2150 (rw == UIO_WRITE ? PGO_FREE : 0);
2151
2152 /*
2153 * For writes, verify that this range of the file already has fully
2154 * allocated backing store. If there are any holes, just punt and
2155 * make the caller take the buffered write path.
2156 */
2157
2158 if (rw == UIO_WRITE) {
2159 daddr_t lbn, elbn, blkno;
2160 int bsize, bshift, run;
2161
2162 bshift = vp->v_mount->mnt_fs_bshift;
2163 bsize = 1 << bshift;
2164 lbn = off >> bshift;
2165 elbn = (off + len + bsize - 1) >> bshift;
2166 while (lbn < elbn) {
2167 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2168 if (error) {
2169 return error;
2170 }
2171 if (blkno == (daddr_t)-1) {
2172 return ENOSPC;
2173 }
2174 lbn += 1 + run;
2175 }
2176 }
2177
2178 /*
2179 * Flush any cached pages for parts of the file that we're about to
2180 * access. If we're writing, invalidate pages as well.
2181 */
2182
2183 spoff = trunc_page(off);
2184 epoff = round_page(off + len);
2185 mutex_enter(&vp->v_interlock);
2186 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2187 if (error) {
2188 return error;
2189 }
2190
2191 /*
2192 * Wire the user pages and remap them into kernel memory.
2193 */
2194
2195 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2196 error = uvm_vslock(vs, (void *)uva, len, prot);
2197 if (error) {
2198 return error;
2199 }
2200
2201 map = &vs->vm_map;
2202 upm = vm_map_pmap(map);
2203 kpm = vm_map_pmap(kernel_map);
2204 kva = uvm_km_alloc(kernel_map, klen, 0,
2205 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2206 puva = trunc_page(uva);
2207 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2208 rv = pmap_extract(upm, puva + poff, &pa);
2209 KASSERT(rv);
2210 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2211 }
2212 pmap_update(kpm);
2213
2214 /*
2215 * Do the I/O.
2216 */
2217
2218 koff = uva - trunc_page(uva);
2219 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2220 genfs_dio_iodone);
2221
2222 /*
2223 * Tear down the kernel mapping.
2224 */
2225
2226 pmap_remove(kpm, kva, kva + klen);
2227 pmap_update(kpm);
2228 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2229
2230 /*
2231 * Unwire the user pages.
2232 */
2233
2234 uvm_vsunlock(vs, (void *)uva, len);
2235 return error;
2236 }
2237
2238