Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.48
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.48 2010/11/20 03:00:42 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.48 2010/11/20 03:00:42 uebayasi Exp $");
     35 
     36 #include "opt_xip.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mount.h>
     43 #include <sys/namei.h>
     44 #include <sys/vnode.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/kmem.h>
     47 #include <sys/poll.h>
     48 #include <sys/mman.h>
     49 #include <sys/file.h>
     50 #include <sys/kauth.h>
     51 #include <sys/fstrans.h>
     52 #include <sys/buf.h>
     53 #include <sys/once.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 #ifdef XIP
     63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
     64     int *, int, vm_prot_t, int, int, const int);
     65 static int genfs_do_getpages_xip_io_done(struct vnode *, voff_t, struct vm_page **,
     66     int *, int, vm_prot_t, int, int, const int);
     67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
     68     struct vm_page **);
     69 #endif
     70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     71     off_t, enum uio_rw);
     72 static void genfs_dio_iodone(struct buf *);
     73 
     74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     75     void (*)(struct buf *));
     76 static void genfs_rel_pages(struct vm_page **, int);
     77 static void genfs_markdirty(struct vnode *);
     78 
     79 int genfs_maxdio = MAXPHYS;
     80 
     81 static void
     82 genfs_rel_pages(struct vm_page **pgs, int npages)
     83 {
     84 	int i;
     85 
     86 	for (i = 0; i < npages; i++) {
     87 		struct vm_page *pg = pgs[i];
     88 
     89 		if (pg == NULL || pg == PGO_DONTCARE)
     90 			continue;
     91 		if (pg->flags & PG_FAKE) {
     92 			pg->flags |= PG_RELEASED;
     93 		}
     94 	}
     95 	mutex_enter(&uvm_pageqlock);
     96 	uvm_page_unbusy(pgs, npages);
     97 	mutex_exit(&uvm_pageqlock);
     98 }
     99 
    100 static void
    101 genfs_markdirty(struct vnode *vp)
    102 {
    103 	struct genfs_node * const gp = VTOG(vp);
    104 
    105 	KASSERT(mutex_owned(&vp->v_interlock));
    106 	gp->g_dirtygen++;
    107 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    108 		vn_syncer_add_to_worklist(vp, filedelay);
    109 	}
    110 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    111 		vp->v_iflag |= VI_WRMAPDIRTY;
    112 	}
    113 }
    114 
    115 /*
    116  * generic VM getpages routine.
    117  * Return PG_BUSY pages for the given range,
    118  * reading from backing store if necessary.
    119  */
    120 
    121 int
    122 genfs_getpages(void *v)
    123 {
    124 	struct vop_getpages_args /* {
    125 		struct vnode *a_vp;
    126 		voff_t a_offset;
    127 		struct vm_page **a_m;
    128 		int *a_count;
    129 		int a_centeridx;
    130 		vm_prot_t a_access_type;
    131 		int a_advice;
    132 		int a_flags;
    133 	} */ * const ap = v;
    134 
    135 	off_t diskeof, memeof;
    136 	int i, error, npages;
    137 	const int flags = ap->a_flags;
    138 	struct vnode * const vp = ap->a_vp;
    139 	struct uvm_object * const uobj = &vp->v_uobj;
    140 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    141 	const bool async = (flags & PGO_SYNCIO) == 0;
    142 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    143 	bool has_trans = false;
    144 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    145 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    146 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    147 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    148 
    149 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    150 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    151 
    152 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    153 	    vp->v_type == VLNK || vp->v_type == VBLK);
    154 
    155 startover:
    156 	error = 0;
    157 	const voff_t origvsize = vp->v_size;
    158 	const off_t origoffset = ap->a_offset;
    159 	const int orignpages = *ap->a_count;
    160 
    161 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    162 	if (flags & PGO_PASTEOF) {
    163 		off_t newsize;
    164 #if defined(DIAGNOSTIC)
    165 		off_t writeeof;
    166 #endif /* defined(DIAGNOSTIC) */
    167 
    168 		newsize = MAX(origvsize,
    169 		    origoffset + (orignpages << PAGE_SHIFT));
    170 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    171 #if defined(DIAGNOSTIC)
    172 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    173 		if (newsize > round_page(writeeof)) {
    174 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    175 			    __func__, newsize, round_page(writeeof));
    176 		}
    177 #endif /* defined(DIAGNOSTIC) */
    178 	} else {
    179 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    180 	}
    181 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    182 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    183 	KASSERT(orignpages > 0);
    184 
    185 	/*
    186 	 * Bounds-check the request.
    187 	 */
    188 
    189 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    190 		if ((flags & PGO_LOCKED) == 0) {
    191 			mutex_exit(&uobj->vmobjlock);
    192 		}
    193 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    194 		    origoffset, *ap->a_count, memeof,0);
    195 		error = EINVAL;
    196 		goto out_err;
    197 	}
    198 
    199 	/* uobj is locked */
    200 
    201 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    202 	    (vp->v_type != VBLK ||
    203 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    204 		int updflags = 0;
    205 
    206 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    207 			updflags = GOP_UPDATE_ACCESSED;
    208 		}
    209 		if (memwrite) {
    210 			updflags |= GOP_UPDATE_MODIFIED;
    211 		}
    212 		if (updflags != 0) {
    213 			GOP_MARKUPDATE(vp, updflags);
    214 		}
    215 	}
    216 
    217 	/*
    218 	 * For PGO_LOCKED requests, just return whatever's in memory.
    219 	 */
    220 
    221 	if (flags & PGO_LOCKED) {
    222 #if 0
    223 		genfs_getpages_mem();
    224 	} else {
    225 		genfs_getpages_io();
    226 	}
    227 }
    228 
    229 int
    230 genfs_getpages_mem()
    231 {
    232 #endif
    233 		int nfound;
    234 		struct vm_page *pg;
    235 
    236 #ifdef XIP
    237 		if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
    238 			*ap->a_count = 0;
    239 			return 0;
    240 		}
    241 #endif
    242 
    243 		KASSERT(!glocked);
    244 		npages = *ap->a_count;
    245 #if defined(DEBUG)
    246 		for (i = 0; i < npages; i++) {
    247 			pg = ap->a_m[i];
    248 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    249 		}
    250 #endif /* defined(DEBUG) */
    251 		nfound = uvn_findpages(uobj, origoffset, &npages,
    252 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    253 		KASSERT(npages == *ap->a_count);
    254 		if (nfound == 0) {
    255 			error = EBUSY;
    256 			goto out_err;
    257 		}
    258 		if (!genfs_node_rdtrylock(vp)) {
    259 			genfs_rel_pages(ap->a_m, npages);
    260 
    261 			/*
    262 			 * restore the array.
    263 			 */
    264 
    265 			for (i = 0; i < npages; i++) {
    266 				pg = ap->a_m[i];
    267 
    268 				if (pg != NULL && pg != PGO_DONTCARE) {
    269 					ap->a_m[i] = NULL;
    270 				}
    271 				KASSERT(pg == NULL || pg == PGO_DONTCARE);
    272 			}
    273 		} else {
    274 			genfs_node_unlock(vp);
    275 		}
    276 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    277 		if (error == 0 && memwrite) {
    278 			genfs_markdirty(vp);
    279 		}
    280 		goto out_err;
    281 	}
    282 	mutex_exit(&uobj->vmobjlock);
    283 #if 0
    284 }
    285 
    286 int
    287 genfs_getpages_io()
    288 {
    289 #endif
    290 	/*
    291 	 * find the requested pages and make some simple checks.
    292 	 * leave space in the page array for a whole block.
    293 	 */
    294 
    295 #define	vp2fs_bshift(vp) \
    296 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
    297 #define	vp2dev_bshift(vp) \
    298 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
    299 
    300 	const int fs_bshift = vp2fs_bshift(vp);
    301 	const int dev_bshift = vp2dev_bshift(vp);
    302 	const int fs_bsize = 1 << fs_bshift;
    303 #define	blk_mask	(fs_bsize - 1)
    304 #define	trunc_blk(x)	((x) & ~blk_mask)
    305 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    306 
    307 	const int orignmempages = MIN(orignpages,
    308 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    309 	npages = orignmempages;
    310 	const off_t startoffset = trunc_blk(origoffset);
    311 	const off_t endoffset = MIN(
    312 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    313 	    round_page(memeof));
    314 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    315 
    316 	const int pgs_size = sizeof(struct vm_page *) *
    317 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    318 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    319 
    320 	if (pgs_size > sizeof(pgs_onstack)) {
    321 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    322 		if (pgs == NULL) {
    323 			pgs = pgs_onstack;
    324 			error = ENOMEM;
    325 			goto out_err;
    326 		}
    327 	} else {
    328 		pgs = pgs_onstack;
    329 		(void)memset(pgs, 0, pgs_size);
    330 	}
    331 
    332 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    333 	    ridx, npages, startoffset, endoffset);
    334 #if 0
    335 }
    336 
    337 int
    338 genfs_getpages_io_relock()
    339 {
    340 #endif
    341 	if (!has_trans) {
    342 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    343 		has_trans = true;
    344 	}
    345 
    346 	/*
    347 	 * hold g_glock to prevent a race with truncate.
    348 	 *
    349 	 * check if our idea of v_size is still valid.
    350 	 */
    351 
    352 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    353 	if (!glocked) {
    354 		if (blockalloc) {
    355 			genfs_node_wrlock(vp);
    356 		} else {
    357 			genfs_node_rdlock(vp);
    358 		}
    359 	}
    360 	mutex_enter(&uobj->vmobjlock);
    361 	if (vp->v_size < origvsize) {
    362 		if (!glocked) {
    363 			genfs_node_unlock(vp);
    364 		}
    365 		if (pgs != pgs_onstack)
    366 			kmem_free(pgs, pgs_size);
    367 		goto startover;
    368 	}
    369 #if 0
    370 }
    371 
    372 int
    373 genfs_getpages_io_findpages()
    374 {
    375 #endif
    376 #ifdef XIP
    377 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    378 		goto genfs_getpages_io_read_allocpages_done;
    379 #endif
    380 
    381 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    382 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    383 		if (!glocked) {
    384 			genfs_node_unlock(vp);
    385 		}
    386 		KASSERT(async != 0);
    387 		genfs_rel_pages(&pgs[ridx], orignmempages);
    388 		mutex_exit(&uobj->vmobjlock);
    389 		error = EBUSY;
    390 		goto out_err_free;
    391 	}
    392 
    393 	/*
    394 	 * if the pages are already resident, just return them.
    395 	 */
    396 
    397 	for (i = 0; i < npages; i++) {
    398 		struct vm_page *pg = pgs[ridx + i];
    399 
    400 		if ((pg->flags & PG_FAKE) ||
    401 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    402 			break;
    403 		}
    404 	}
    405 	if (i == npages) {
    406 		if (!glocked) {
    407 			genfs_node_unlock(vp);
    408 		}
    409 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    410 		npages += ridx;
    411 		goto out;
    412 	}
    413 
    414 	/*
    415 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    416 	 */
    417 
    418 	if (overwrite) {
    419 #if 0
    420 		genfs_getpages_io_overwrite();
    421 	} else {
    422 		genfs_getpages_io_read();
    423 	}
    424 }
    425 
    426 int
    427 genfs_getpages_io_overwrite()
    428 {
    429 	{
    430 #endif
    431 		if (!glocked) {
    432 			genfs_node_unlock(vp);
    433 		}
    434 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    435 
    436 		for (i = 0; i < npages; i++) {
    437 			struct vm_page *pg = pgs[ridx + i];
    438 
    439 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    440 		}
    441 		npages += ridx;
    442 		goto out;
    443 	}
    444 #if 0
    445 }
    446 
    447 int
    448 genfs_getpages_io_read()
    449 {
    450 #endif
    451 	/*
    452 	 * the page wasn't resident and we're not overwriting,
    453 	 * so we're going to have to do some i/o.
    454 	 * find any additional pages needed to cover the expanded range.
    455 	 */
    456 #if 0
    457 }
    458 
    459 int
    460 genfs_getpages_io_read_allocpages()
    461 {
    462 #endif
    463 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    464 	if (startoffset != origoffset || npages != orignmempages) {
    465 		int npgs;
    466 
    467 		/*
    468 		 * we need to avoid deadlocks caused by locking
    469 		 * additional pages at lower offsets than pages we
    470 		 * already have locked.  unlock them all and start over.
    471 		 */
    472 
    473 		genfs_rel_pages(&pgs[ridx], orignmempages);
    474 		memset(pgs, 0, pgs_size);
    475 
    476 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    477 		    startoffset, endoffset, 0,0);
    478 		npgs = npages;
    479 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    480 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    481 			if (!glocked) {
    482 				genfs_node_unlock(vp);
    483 			}
    484 			KASSERT(async != 0);
    485 			genfs_rel_pages(pgs, npages);
    486 			mutex_exit(&uobj->vmobjlock);
    487 			error = EBUSY;
    488 			goto out_err_free;
    489 		}
    490 	}
    491 #ifdef XIP
    492 genfs_getpages_io_read_allocpages_done:
    493 #endif
    494 #if 0
    495 }
    496 
    497 int
    498 genfs_getpages_io_read_bio()
    499 {
    500 #endif
    501 	mutex_exit(&uobj->vmobjlock);
    502 
    503     {
    504 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    505 	vaddr_t kva = 0;
    506 	struct buf *bp = NULL, *mbp = NULL;
    507 	bool sawhole = false;
    508 
    509 	/*
    510 	 * read the desired page(s).
    511 	 */
    512 
    513 	totalbytes = npages << PAGE_SHIFT;
    514 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    515 	tailbytes = totalbytes - bytes;
    516 	skipbytes = 0;
    517 
    518 #if 1
    519 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    520 		goto genfs_getpages_bio_prepare_done;
    521 #endif
    522 #if 0
    523 }
    524 
    525 int
    526 genfs_getpages_io_read_bio_prepare()
    527 {
    528 #endif
    529 	kva = uvm_pagermapin(pgs, npages,
    530 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    531 
    532 	mbp = getiobuf(vp, true);
    533 	mbp->b_bufsize = totalbytes;
    534 	mbp->b_data = (void *)kva;
    535 	mbp->b_resid = mbp->b_bcount = bytes;
    536 	mbp->b_cflags = BC_BUSY;
    537 	if (async) {
    538 		mbp->b_flags = B_READ | B_ASYNC;
    539 		mbp->b_iodone = uvm_aio_biodone;
    540 	} else {
    541 		mbp->b_flags = B_READ;
    542 		mbp->b_iodone = NULL;
    543 	}
    544 	if (async)
    545 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    546 	else
    547 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    548 #if 0
    549 }
    550 
    551 #endif
    552 #if 1
    553 genfs_getpages_bio_prepare_done:
    554 #endif
    555 
    556 	/*
    557 	 * if EOF is in the middle of the range, zero the part past EOF.
    558 	 * skip over pages which are not PG_FAKE since in that case they have
    559 	 * valid data that we need to preserve.
    560 	 */
    561 
    562 	tailstart = bytes;
    563 	while (tailbytes > 0) {
    564 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    565 
    566 		KASSERT(len <= tailbytes);
    567 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    568 			memset((void *)(kva + tailstart), 0, len);
    569 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    570 			    kva, tailstart, len, 0);
    571 		}
    572 		tailstart += len;
    573 		tailbytes -= len;
    574 	}
    575 
    576 #if 1
    577 	if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
    578 		error = genfs_do_getpages_xip_io(
    579 			ap->a_vp,
    580 			ap->a_offset,
    581 			pgs,
    582 			ap->a_count,
    583 			ap->a_centeridx,
    584 			ap->a_access_type,
    585 			ap->a_advice,
    586 			ap->a_flags,
    587 			orignmempages);
    588 if (0)
    589 		goto loopdone;
    590 	}
    591 #endif
    592 #if 0
    593 }
    594 
    595 int
    596 genfs_getpages_io_read_bio_loop()
    597 {
    598 #endif
    599 	/*
    600 	 * now loop over the pages, reading as needed.
    601 	 */
    602 
    603 	bp = NULL;
    604 	off_t offset;
    605 	for (offset = startoffset;
    606 	    bytes > 0;
    607 	    offset += iobytes, bytes -= iobytes) {
    608 		int run;
    609 		daddr_t lbn, blkno;
    610 		int pidx;
    611 		struct vnode *devvp;
    612 
    613 		/*
    614 		 * skip pages which don't need to be read.
    615 		 */
    616 
    617 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    618 #ifdef XIP
    619 	    if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
    620 #endif
    621 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    622 			size_t b;
    623 
    624 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    625 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    626 				sawhole = true;
    627 			}
    628 			b = MIN(PAGE_SIZE, bytes);
    629 			offset += b;
    630 			bytes -= b;
    631 			skipbytes += b;
    632 			pidx++;
    633 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    634 			    offset, 0,0,0);
    635 			if (bytes == 0) {
    636 				goto loopdone;
    637 			}
    638 		}
    639 #ifdef XIP
    640 	    }
    641 #endif
    642 
    643 		/*
    644 		 * bmap the file to find out the blkno to read from and
    645 		 * how much we can read in one i/o.  if bmap returns an error,
    646 		 * skip the rest of the top-level i/o.
    647 		 */
    648 
    649 		lbn = offset >> fs_bshift;
    650 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    651 		if (error) {
    652 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    653 			    lbn,error,0,0);
    654 			skipbytes += bytes;
    655 			bytes = 0;
    656 			goto loopdone;
    657 		}
    658 
    659 		/*
    660 		 * see how many pages can be read with this i/o.
    661 		 * reduce the i/o size if necessary to avoid
    662 		 * overwriting pages with valid data.
    663 		 */
    664 
    665 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    666 		    bytes);
    667 		if (offset + iobytes > round_page(offset)) {
    668 			int pcount;
    669 
    670 			pcount = 1;
    671 #ifdef XIP
    672 		    if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
    673 #endif
    674 			while (pidx + pcount < npages &&
    675 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    676 				pcount++;
    677 			}
    678 #ifdef XIP
    679 		    }
    680 #endif
    681 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    682 			    (offset - trunc_page(offset)));
    683 		}
    684 
    685 		/*
    686 		 * if this block isn't allocated, zero it instead of
    687 		 * reading it.  unless we are going to allocate blocks,
    688 		 * mark the pages we zeroed PG_RDONLY.
    689 		 */
    690 
    691 		if (blkno == (daddr_t)-1) {
    692 #ifdef XIP
    693 		    if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
    694 #endif
    695 			int holepages = (round_page(offset + iobytes) -
    696 			    trunc_page(offset)) >> PAGE_SHIFT;
    697 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    698 
    699 			KASSERT((ap->a_vp->v_vflag & VV_XIP) == 0);
    700 
    701 			sawhole = true;
    702 			memset((char *)kva + (offset - startoffset), 0,
    703 			    iobytes);
    704 			skipbytes += iobytes;
    705 
    706 			for (i = 0; i < holepages; i++) {
    707 				if (memwrite) {
    708 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    709 				}
    710 				if (!blockalloc) {
    711 					pgs[pidx + i]->flags |= PG_RDONLY;
    712 				}
    713 			}
    714 #ifdef XIP
    715 		    } else {
    716 			panic("XIP hole page is not supported yet");
    717 		    }
    718 #endif
    719 			continue;
    720 		}
    721 
    722 #ifdef XIP
    723 	    if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
    724 #endif
    725 		/*
    726 		 * allocate a sub-buf for this piece of the i/o
    727 		 * (or just use mbp if there's only 1 piece),
    728 		 * and start it going.
    729 		 */
    730 
    731 		KASSERT((ap->a_vp->v_vflag & VV_XIP) == 0);
    732 
    733 		if (offset == startoffset && iobytes == bytes) {
    734 			bp = mbp;
    735 		} else {
    736 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    737 			    vp, bp, vp->v_numoutput, 0);
    738 			bp = getiobuf(vp, true);
    739 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    740 		}
    741 		bp->b_lblkno = 0;
    742 
    743 		/* adjust physical blkno for partial blocks */
    744 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    745 		    dev_bshift);
    746 
    747 		UVMHIST_LOG(ubchist,
    748 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    749 		    bp, offset, bp->b_bcount, bp->b_blkno);
    750 
    751 		VOP_STRATEGY(devvp, bp);
    752 #ifdef XIP
    753 	    } else {
    754 		/*
    755 		 * XIP page metadata assignment
    756 		 * - Unallocated block is redirected to the dedicated zero'ed
    757 		 *   page.
    758 		 */
    759 		const int npgs = MIN(
    760 			iobytes >> PAGE_SHIFT,
    761 			((1 + run) << fs_bshift) >> PAGE_SHIFT);
    762 		const daddr_t blk_off = blkno << dev_bshift;
    763 		const daddr_t fs_off = ap->a_offset - (lbn << fs_bshift);
    764 
    765 		UVMHIST_LOG(ubchist,
    766 			"xip npgs=%d _blk_off=0x%lx _fs_off=0x%lx",
    767 			npgs, (long)blk_off, (long)fs_off, 0);
    768 
    769 		for (i = 0; i < npgs; i++) {
    770 			const daddr_t pg_off = pidx << PAGE_SHIFT;
    771 			struct vm_page *pg;
    772 
    773 			pg = uvn_findpage_xip(devvp, &vp->v_uobj,
    774 			    blk_off + fs_off + pg_off);
    775 			KASSERT(pg != NULL);
    776 			UVMHIST_LOG(ubchist,
    777 				"xip pgs %d => phys_addr=0x%lx (%p)",
    778 				pidx + i,
    779 				(long)pg->phys_addr,
    780 				pg,
    781 				0);
    782 			pgs[pidx + i] = pg;
    783 		}
    784 	    }
    785 #endif
    786 	}
    787 
    788 loopdone:
    789 #if 1
    790 	if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
    791 		goto genfs_getpages_biodone_done;
    792 	}
    793 #endif
    794 #if 0
    795 
    796 int
    797 genfs_getpages_biodone()
    798 {
    799 #endif
    800 	nestiobuf_done(mbp, skipbytes, error);
    801 	if (async) {
    802 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    803 		if (!glocked) {
    804 			genfs_node_unlock(vp);
    805 		}
    806 		error = 0;
    807 		goto out_err_free;
    808 	}
    809 	if (bp != NULL) {
    810 		error = biowait(mbp);
    811 	}
    812 
    813 	/* Remove the mapping (make KVA available as soon as possible) */
    814 	uvm_pagermapout(kva, npages);
    815 
    816 	/*
    817 	 * if this we encountered a hole then we have to do a little more work.
    818 	 * for read faults, we marked the page PG_RDONLY so that future
    819 	 * write accesses to the page will fault again.
    820 	 * for write faults, we must make sure that the backing store for
    821 	 * the page is completely allocated while the pages are locked.
    822 	 */
    823 
    824 	if (!error && sawhole && blockalloc) {
    825 		/*
    826 		 * XXX: This assumes that we come here only via
    827 		 * the mmio path
    828 		 */
    829 		if (vp->v_mount->mnt_wapbl) {
    830 			error = WAPBL_BEGIN(vp->v_mount);
    831 		}
    832 
    833 		if (!error) {
    834 			error = GOP_ALLOC(vp, startoffset,
    835 			    npages << PAGE_SHIFT, 0, cred);
    836 			if (vp->v_mount->mnt_wapbl) {
    837 				WAPBL_END(vp->v_mount);
    838 			}
    839 		}
    840 
    841 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    842 		    startoffset, npages << PAGE_SHIFT, error,0);
    843 		if (!error) {
    844 			for (i = 0; i < npages; i++) {
    845 				struct vm_page *pg = pgs[i];
    846 
    847 				if (pg == NULL) {
    848 					continue;
    849 				}
    850 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    851 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    852 				    pg,0,0,0);
    853 			}
    854 		}
    855 	}
    856 
    857 	putiobuf(mbp);
    858 #if 0
    859 }
    860 
    861 #endif
    862 #if 1
    863 genfs_getpages_biodone_done:
    864 	{}
    865 #endif
    866     }
    867 
    868 	if (!glocked) {
    869 		genfs_node_unlock(vp);
    870 	}
    871 
    872 #if 1
    873 	if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
    874 		error = genfs_do_getpages_xip_io_done(
    875 			ap->a_vp,
    876 			ap->a_offset,
    877 			pgs,
    878 			ap->a_count,
    879 			ap->a_centeridx,
    880 			ap->a_access_type,
    881 			ap->a_advice,
    882 			ap->a_flags,
    883 			orignmempages);
    884 		goto genfs_getpages_generic_io_done_done;
    885 	}
    886 #endif
    887 #if 0
    888 	else {
    889 		error = genfs_getpages_generic_io_done();
    890 	}
    891 }
    892 
    893 int
    894 genfs_getpages_generic_io_done()
    895 {
    896 #endif
    897 
    898 	mutex_enter(&uobj->vmobjlock);
    899 
    900 	/*
    901 	 * we're almost done!  release the pages...
    902 	 * for errors, we free the pages.
    903 	 * otherwise we activate them and mark them as valid and clean.
    904 	 * also, unbusy pages that were not actually requested.
    905 	 */
    906 
    907 	if (error) {
    908 		for (i = 0; i < npages; i++) {
    909 			struct vm_page *pg = pgs[i];
    910 
    911 			if (pg == NULL) {
    912 				continue;
    913 			}
    914 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    915 			    pg, pg->flags, 0,0);
    916 			if (pg->flags & PG_FAKE) {
    917 				pg->flags |= PG_RELEASED;
    918 			}
    919 		}
    920 		mutex_enter(&uvm_pageqlock);
    921 		uvm_page_unbusy(pgs, npages);
    922 		mutex_exit(&uvm_pageqlock);
    923 		mutex_exit(&uobj->vmobjlock);
    924 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    925 		goto out_err_free;
    926 	}
    927 
    928 out:
    929 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    930 	error = 0;
    931 	mutex_enter(&uvm_pageqlock);
    932 	for (i = 0; i < npages; i++) {
    933 		struct vm_page *pg = pgs[i];
    934 		if (pg == NULL) {
    935 			continue;
    936 		}
    937 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    938 		    pg, pg->flags, 0,0);
    939 		if (pg->flags & PG_FAKE && !overwrite) {
    940 			pg->flags &= ~(PG_FAKE);
    941 			pmap_clear_modify(pgs[i]);
    942 		}
    943 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    944 		if (i < ridx || i >= ridx + orignmempages || async) {
    945 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    946 			    pg, pg->offset,0,0);
    947 			if (pg->flags & PG_WANTED) {
    948 				wakeup(pg);
    949 			}
    950 			if (pg->flags & PG_FAKE) {
    951 				KASSERT(overwrite);
    952 				uvm_pagezero(pg);
    953 			}
    954 			if (pg->flags & PG_RELEASED) {
    955 				uvm_pagefree(pg);
    956 				continue;
    957 			}
    958 			uvm_pageenqueue(pg);
    959 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    960 			UVM_PAGE_OWN(pg, NULL);
    961 		}
    962 	}
    963 	mutex_exit(&uvm_pageqlock);
    964 
    965 	if (memwrite) {
    966 		genfs_markdirty(vp);
    967 	}
    968 	mutex_exit(&uobj->vmobjlock);
    969 
    970 #if 1
    971 genfs_getpages_generic_io_done_done:
    972 	{}
    973 #endif
    974 	if (ap->a_m != NULL) {
    975 		memcpy(ap->a_m, &pgs[ridx],
    976 		    orignmempages * sizeof(struct vm_page *));
    977 	}
    978 #if 0
    979 }
    980 
    981 #endif
    982 
    983 out_err_free:
    984 	if (pgs != NULL && pgs != pgs_onstack)
    985 		kmem_free(pgs, pgs_size);
    986 out_err:
    987 	if (has_trans)
    988 		fstrans_done(vp->v_mount);
    989 	return error;
    990 }
    991 
    992 #ifdef XIP
    993 /*
    994  * genfs_do_getpages_xip_io
    995  *      Return "direct pages" of XIP vnode.  The block addresses of XIP
    996  *      vnode pages are returned back to the VM fault handler as the
    997  *	actually mapped physical addresses.
    998  */
    999 static int
   1000 genfs_do_getpages_xip_io(
   1001 	struct vnode *vp,
   1002 	voff_t origoffset,
   1003 	struct vm_page **pps,
   1004 	int *npagesp,
   1005 	int centeridx,
   1006 	vm_prot_t access_type,
   1007 	int advice,
   1008 	int flags,
   1009 	const int orignmempages)
   1010 {
   1011 	const int fs_bshift = vp2fs_bshift(vp);
   1012 	const int dev_bshift = vp2dev_bshift(vp);
   1013 	const int fs_bsize = 1 << fs_bshift;
   1014 
   1015 	int error;
   1016 	off_t off;
   1017 	int i;
   1018 
   1019 	UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
   1020 
   1021 	KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
   1022 
   1023 #ifdef UVMHIST
   1024 	const off_t startoffset = trunc_blk(origoffset);
   1025 	const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
   1026 #endif
   1027 
   1028 	UVMHIST_LOG(ubchist, "xip npages=%d startoffset=%lx endoffset=%lx",
   1029 	    orignmempages, (long)startoffset, (long)endoffset, 0);
   1030 
   1031 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
   1032 
   1033 	off = origoffset;
   1034 	for (i = ridx; i < ridx + orignmempages; i++) {
   1035 		daddr_t blkno;
   1036 		int run;
   1037 		struct vnode *devvp;
   1038 
   1039 		KASSERT((off - origoffset) >> PAGE_SHIFT == i - ridx);
   1040 
   1041 		const daddr_t lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
   1042 
   1043 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1044 		KASSERT(error == 0);
   1045 		UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
   1046 		    (long)lbn, (long)blkno, run, 0);
   1047 
   1048 		const daddr_t blk_off = blkno << dev_bshift;
   1049 		const daddr_t fs_off = origoffset - (lbn << fs_bshift);
   1050 
   1051 		/*
   1052 		 * XIP page metadata assignment
   1053 		 * - Unallocated block is redirected to the dedicated zero'ed
   1054 		 *   page.
   1055 		 */
   1056 		if (blkno < 0) {
   1057 			panic("XIP hole is not supported yet!");
   1058 		} else {
   1059 			KASSERT(off - origoffset == (i - ridx) << PAGE_SHIFT);
   1060 
   1061 			const daddr_t pg_off = (i - ridx) << PAGE_SHIFT;
   1062 
   1063 			pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
   1064 			    blk_off + fs_off + pg_off);
   1065 			KASSERT(pps[i] != NULL);
   1066 		}
   1067 
   1068 		UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
   1069 			i,
   1070 			(long)pps[i]->phys_addr,
   1071 			pps[i],
   1072 			0);
   1073 
   1074 		off += PAGE_SIZE;
   1075 	}
   1076 
   1077 	return 0;
   1078 }
   1079 
   1080 int
   1081 genfs_do_getpages_xip_io_done(
   1082 	struct vnode *vp,
   1083 	voff_t origoffset,
   1084 	struct vm_page **pps,
   1085 	int *npagesp,
   1086 	int centeridx,
   1087 	vm_prot_t access_type,
   1088 	int advice,
   1089 	int flags,
   1090 	const int orignmempages)
   1091 {
   1092 	struct uvm_object * const uobj = &vp->v_uobj;
   1093 	int i;
   1094 
   1095 	const int fs_bshift = vp2fs_bshift(vp);
   1096 	const int fs_bsize = 1 << fs_bshift;
   1097 
   1098 	const off_t startoffset = trunc_blk(origoffset);
   1099 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
   1100 
   1101 	mutex_enter(&uobj->vmobjlock);
   1102 
   1103 	for (i = ridx; i < ridx + orignmempages; i++) {
   1104 		struct vm_page *pg = pps[i];
   1105 
   1106 		KASSERT((pg->flags & PG_RDONLY) != 0);
   1107 		KASSERT((pg->flags & PG_BUSY) == 0);
   1108 		KASSERT((pg->flags & PG_CLEAN) != 0);
   1109 		KASSERT((pg->flags & PG_DEVICE) != 0);
   1110 		pg->flags |= PG_BUSY;
   1111 		pg->flags &= ~PG_FAKE;
   1112 		pg->uobject = &vp->v_uobj;
   1113 	}
   1114 
   1115 	mutex_exit(&uobj->vmobjlock);
   1116 
   1117 	*npagesp = orignmempages;
   1118 
   1119 	return 0;
   1120 }
   1121 #endif
   1122 
   1123 /*
   1124  * generic VM putpages routine.
   1125  * Write the given range of pages to backing store.
   1126  *
   1127  * => "offhi == 0" means flush all pages at or after "offlo".
   1128  * => object should be locked by caller.  we return with the
   1129  *      object unlocked.
   1130  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
   1131  *	thus, a caller might want to unlock higher level resources
   1132  *	(e.g. vm_map) before calling flush.
   1133  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
   1134  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
   1135  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
   1136  *	that new pages are inserted on the tail end of the list.   thus,
   1137  *	we can make a complete pass through the object in one go by starting
   1138  *	at the head and working towards the tail (new pages are put in
   1139  *	front of us).
   1140  * => NOTE: we are allowed to lock the page queues, so the caller
   1141  *	must not be holding the page queue lock.
   1142  *
   1143  * note on "cleaning" object and PG_BUSY pages:
   1144  *	this routine is holding the lock on the object.   the only time
   1145  *	that it can run into a PG_BUSY page that it does not own is if
   1146  *	some other process has started I/O on the page (e.g. either
   1147  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1148  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1149  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1150  *	paged out then it means that someone else has already started
   1151  *	cleaning the page for us (how nice!).    in this case, if we
   1152  *	have syncio specified, then after we make our pass through the
   1153  *	object we need to wait for the other PG_BUSY pages to clear
   1154  *	off (i.e. we need to do an iosync).   also note that once a
   1155  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1156  *
   1157  * note on page traversal:
   1158  *	we can traverse the pages in an object either by going down the
   1159  *	linked list in "uobj->memq", or we can go over the address range
   1160  *	by page doing hash table lookups for each address.    depending
   1161  *	on how many pages are in the object it may be cheaper to do one
   1162  *	or the other.   we set "by_list" to true if we are using memq.
   1163  *	if the cost of a hash lookup was equal to the cost of the list
   1164  *	traversal we could compare the number of pages in the start->stop
   1165  *	range to the total number of pages in the object.   however, it
   1166  *	seems that a hash table lookup is more expensive than the linked
   1167  *	list traversal, so we multiply the number of pages in the
   1168  *	range by an estimate of the relatively higher cost of the hash lookup.
   1169  */
   1170 
   1171 int
   1172 genfs_putpages(void *v)
   1173 {
   1174 	struct vop_putpages_args /* {
   1175 		struct vnode *a_vp;
   1176 		voff_t a_offlo;
   1177 		voff_t a_offhi;
   1178 		int a_flags;
   1179 	} */ * const ap = v;
   1180 
   1181 #ifdef XIP
   1182 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
   1183 		return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1184 		    ap->a_flags, NULL);
   1185 	else
   1186 #endif
   1187 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1188 	    ap->a_flags, NULL);
   1189 }
   1190 
   1191 int
   1192 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
   1193     int origflags, struct vm_page **busypg)
   1194 {
   1195 	struct uvm_object * const uobj = &vp->v_uobj;
   1196 	kmutex_t * const slock = &uobj->vmobjlock;
   1197 	off_t off;
   1198 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1199 #define maxpages (MAXPHYS >> PAGE_SHIFT)
   1200 	int i, error, npages, nback;
   1201 	int freeflag;
   1202 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1203 	bool wasclean, by_list, needs_clean, yld;
   1204 	bool async = (origflags & PGO_SYNCIO) == 0;
   1205 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
   1206 	struct lwp * const l = curlwp ? curlwp : &lwp0;
   1207 	struct genfs_node * const gp = VTOG(vp);
   1208 	int flags;
   1209 	int dirtygen;
   1210 	bool modified;
   1211 	bool need_wapbl;
   1212 	bool has_trans;
   1213 	bool cleanall;
   1214 	bool onworklst;
   1215 
   1216 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1217 
   1218 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1219 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1220 	KASSERT(startoff < endoff || endoff == 0);
   1221 
   1222 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1223 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1224 
   1225 	has_trans = false;
   1226 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
   1227 	    (origflags & PGO_JOURNALLOCKED) == 0);
   1228 
   1229 retry:
   1230 	modified = false;
   1231 	flags = origflags;
   1232 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
   1233 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
   1234 	if (uobj->uo_npages == 0) {
   1235 		if (vp->v_iflag & VI_ONWORKLST) {
   1236 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1237 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1238 				vn_syncer_remove_from_worklist(vp);
   1239 		}
   1240 		if (has_trans) {
   1241 			if (need_wapbl)
   1242 				WAPBL_END(vp->v_mount);
   1243 			fstrans_done(vp->v_mount);
   1244 		}
   1245 		mutex_exit(slock);
   1246 		return (0);
   1247 	}
   1248 
   1249 	/*
   1250 	 * the vnode has pages, set up to process the request.
   1251 	 */
   1252 
   1253 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
   1254 		mutex_exit(slock);
   1255 		if (pagedaemon) {
   1256 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1257 			if (error)
   1258 				return error;
   1259 		} else
   1260 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1261 		if (need_wapbl) {
   1262 			error = WAPBL_BEGIN(vp->v_mount);
   1263 			if (error) {
   1264 				fstrans_done(vp->v_mount);
   1265 				return error;
   1266 			}
   1267 		}
   1268 		has_trans = true;
   1269 		mutex_enter(slock);
   1270 		goto retry;
   1271 	}
   1272 
   1273 	error = 0;
   1274 	wasclean = (vp->v_numoutput == 0);
   1275 	off = startoff;
   1276 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1277 		endoff = trunc_page(LLONG_MAX);
   1278 	}
   1279 	by_list = (uobj->uo_npages <=
   1280 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
   1281 
   1282 #if !defined(DEBUG)
   1283 	/*
   1284 	 * if this vnode is known not to have dirty pages,
   1285 	 * don't bother to clean it out.
   1286 	 */
   1287 
   1288 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1289 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1290 			goto skip_scan;
   1291 		}
   1292 		flags &= ~PGO_CLEANIT;
   1293 	}
   1294 #endif /* !defined(DEBUG) */
   1295 
   1296 	/*
   1297 	 * start the loop.  when scanning by list, hold the last page
   1298 	 * in the list before we start.  pages allocated after we start
   1299 	 * will be added to the end of the list, so we can stop at the
   1300 	 * current last page.
   1301 	 */
   1302 
   1303 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1304 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1305 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1306 	dirtygen = gp->g_dirtygen;
   1307 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1308 	if (by_list) {
   1309 		curmp.flags = PG_MARKER;
   1310 		endmp.flags = PG_MARKER;
   1311 		pg = TAILQ_FIRST(&uobj->memq);
   1312 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1313 	} else {
   1314 		pg = uvm_pagelookup(uobj, off);
   1315 	}
   1316 	nextpg = NULL;
   1317 	while (by_list || off < endoff) {
   1318 
   1319 		/*
   1320 		 * if the current page is not interesting, move on to the next.
   1321 		 */
   1322 
   1323 		KASSERT(pg == NULL || pg->uobject == uobj ||
   1324 		    (pg->flags & PG_MARKER) != 0);
   1325 		KASSERT(pg == NULL ||
   1326 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1327 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
   1328 		if (by_list) {
   1329 			if (pg == &endmp) {
   1330 				break;
   1331 			}
   1332 			if (pg->flags & PG_MARKER) {
   1333 				pg = TAILQ_NEXT(pg, listq.queue);
   1334 				continue;
   1335 			}
   1336 			if (pg->offset < startoff || pg->offset >= endoff ||
   1337 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1338 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1339 					wasclean = false;
   1340 				}
   1341 				pg = TAILQ_NEXT(pg, listq.queue);
   1342 				continue;
   1343 			}
   1344 			off = pg->offset;
   1345 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1346 			if (pg != NULL) {
   1347 				wasclean = false;
   1348 			}
   1349 			off += PAGE_SIZE;
   1350 			if (off < endoff) {
   1351 				pg = uvm_pagelookup(uobj, off);
   1352 			}
   1353 			continue;
   1354 		}
   1355 
   1356 		/*
   1357 		 * if the current page needs to be cleaned and it's busy,
   1358 		 * wait for it to become unbusy.
   1359 		 */
   1360 
   1361 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1362 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1363 		if (pg->flags & PG_BUSY || yld) {
   1364 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1365 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1366 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1367 				error = EDEADLK;
   1368 				if (busypg != NULL)
   1369 					*busypg = pg;
   1370 				break;
   1371 			}
   1372 			if (pagedaemon) {
   1373 				/*
   1374 				 * someone has taken the page while we
   1375 				 * dropped the lock for fstrans_start.
   1376 				 */
   1377 				break;
   1378 			}
   1379 			if (by_list) {
   1380 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1381 				UVMHIST_LOG(ubchist, "curmp next %p",
   1382 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1383 			}
   1384 			if (yld) {
   1385 				mutex_exit(slock);
   1386 				preempt();
   1387 				mutex_enter(slock);
   1388 			} else {
   1389 				pg->flags |= PG_WANTED;
   1390 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1391 				mutex_enter(slock);
   1392 			}
   1393 			if (by_list) {
   1394 				UVMHIST_LOG(ubchist, "after next %p",
   1395 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1396 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1397 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1398 			} else {
   1399 				pg = uvm_pagelookup(uobj, off);
   1400 			}
   1401 			continue;
   1402 		}
   1403 
   1404 		/*
   1405 		 * if we're freeing, remove all mappings of the page now.
   1406 		 * if we're cleaning, check if the page is needs to be cleaned.
   1407 		 */
   1408 
   1409 		if (flags & PGO_FREE) {
   1410 			pmap_page_protect(pg, VM_PROT_NONE);
   1411 		} else if (flags & PGO_CLEANIT) {
   1412 
   1413 			/*
   1414 			 * if we still have some hope to pull this vnode off
   1415 			 * from the syncer queue, write-protect the page.
   1416 			 */
   1417 
   1418 			if (cleanall && wasclean &&
   1419 			    gp->g_dirtygen == dirtygen) {
   1420 
   1421 				/*
   1422 				 * uobj pages get wired only by uvm_fault
   1423 				 * where uobj is locked.
   1424 				 */
   1425 
   1426 				if (pg->wire_count == 0) {
   1427 					pmap_page_protect(pg,
   1428 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1429 				} else {
   1430 					cleanall = false;
   1431 				}
   1432 			}
   1433 		}
   1434 
   1435 		if (flags & PGO_CLEANIT) {
   1436 			needs_clean = pmap_clear_modify(pg) ||
   1437 			    (pg->flags & PG_CLEAN) == 0;
   1438 			pg->flags |= PG_CLEAN;
   1439 		} else {
   1440 			needs_clean = false;
   1441 		}
   1442 
   1443 		/*
   1444 		 * if we're cleaning, build a cluster.
   1445 		 * the cluster will consist of pages which are currently dirty,
   1446 		 * but they will be returned to us marked clean.
   1447 		 * if not cleaning, just operate on the one page.
   1448 		 */
   1449 
   1450 		if (needs_clean) {
   1451 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1452 			wasclean = false;
   1453 			memset(pgs, 0, sizeof(pgs));
   1454 			pg->flags |= PG_BUSY;
   1455 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1456 
   1457 			/*
   1458 			 * first look backward.
   1459 			 */
   1460 
   1461 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1462 			nback = npages;
   1463 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1464 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1465 			if (nback) {
   1466 				memmove(&pgs[0], &pgs[npages - nback],
   1467 				    nback * sizeof(pgs[0]));
   1468 				if (npages - nback < nback)
   1469 					memset(&pgs[nback], 0,
   1470 					    (npages - nback) * sizeof(pgs[0]));
   1471 				else
   1472 					memset(&pgs[npages - nback], 0,
   1473 					    nback * sizeof(pgs[0]));
   1474 			}
   1475 
   1476 			/*
   1477 			 * then plug in our page of interest.
   1478 			 */
   1479 
   1480 			pgs[nback] = pg;
   1481 
   1482 			/*
   1483 			 * then look forward to fill in the remaining space in
   1484 			 * the array of pages.
   1485 			 */
   1486 
   1487 			npages = maxpages - nback - 1;
   1488 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1489 			    &pgs[nback + 1],
   1490 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1491 			npages += nback + 1;
   1492 		} else {
   1493 			pgs[0] = pg;
   1494 			npages = 1;
   1495 			nback = 0;
   1496 		}
   1497 
   1498 		/*
   1499 		 * apply FREE or DEACTIVATE options if requested.
   1500 		 */
   1501 
   1502 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1503 			mutex_enter(&uvm_pageqlock);
   1504 		}
   1505 		for (i = 0; i < npages; i++) {
   1506 			tpg = pgs[i];
   1507 			KASSERT(tpg->uobject == uobj);
   1508 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1509 				pg = tpg;
   1510 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1511 				continue;
   1512 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1513 				uvm_pagedeactivate(tpg);
   1514 			} else if (flags & PGO_FREE) {
   1515 				pmap_page_protect(tpg, VM_PROT_NONE);
   1516 				if (tpg->flags & PG_BUSY) {
   1517 					tpg->flags |= freeflag;
   1518 					if (pagedaemon) {
   1519 						uvm_pageout_start(1);
   1520 						uvm_pagedequeue(tpg);
   1521 					}
   1522 				} else {
   1523 
   1524 					/*
   1525 					 * ``page is not busy''
   1526 					 * implies that npages is 1
   1527 					 * and needs_clean is false.
   1528 					 */
   1529 
   1530 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1531 					uvm_pagefree(tpg);
   1532 					if (pagedaemon)
   1533 						uvmexp.pdfreed++;
   1534 				}
   1535 			}
   1536 		}
   1537 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1538 			mutex_exit(&uvm_pageqlock);
   1539 		}
   1540 		if (needs_clean) {
   1541 			modified = true;
   1542 
   1543 			/*
   1544 			 * start the i/o.  if we're traversing by list,
   1545 			 * keep our place in the list with a marker page.
   1546 			 */
   1547 
   1548 			if (by_list) {
   1549 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1550 				    listq.queue);
   1551 			}
   1552 			mutex_exit(slock);
   1553 			error = GOP_WRITE(vp, pgs, npages, flags);
   1554 			mutex_enter(slock);
   1555 			if (by_list) {
   1556 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1557 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1558 			}
   1559 			if (error) {
   1560 				break;
   1561 			}
   1562 			if (by_list) {
   1563 				continue;
   1564 			}
   1565 		}
   1566 
   1567 		/*
   1568 		 * find the next page and continue if there was no error.
   1569 		 */
   1570 
   1571 		if (by_list) {
   1572 			if (nextpg) {
   1573 				pg = nextpg;
   1574 				nextpg = NULL;
   1575 			} else {
   1576 				pg = TAILQ_NEXT(pg, listq.queue);
   1577 			}
   1578 		} else {
   1579 			off += (npages - nback) << PAGE_SHIFT;
   1580 			if (off < endoff) {
   1581 				pg = uvm_pagelookup(uobj, off);
   1582 			}
   1583 		}
   1584 	}
   1585 	if (by_list) {
   1586 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1587 	}
   1588 
   1589 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1590 	    (vp->v_type != VBLK ||
   1591 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1592 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1593 	}
   1594 
   1595 	/*
   1596 	 * if we're cleaning and there was nothing to clean,
   1597 	 * take us off the syncer list.  if we started any i/o
   1598 	 * and we're doing sync i/o, wait for all writes to finish.
   1599 	 */
   1600 
   1601 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1602 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1603 #if defined(DEBUG)
   1604 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1605 			if ((pg->flags & PG_MARKER) != 0) {
   1606 				continue;
   1607 			}
   1608 			if ((pg->flags & PG_CLEAN) == 0) {
   1609 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1610 			}
   1611 			if (pmap_is_modified(pg)) {
   1612 				printf("%s: %p: modified\n", __func__, pg);
   1613 			}
   1614 		}
   1615 #endif /* defined(DEBUG) */
   1616 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1617 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1618 			vn_syncer_remove_from_worklist(vp);
   1619 	}
   1620 
   1621 #if !defined(DEBUG)
   1622 skip_scan:
   1623 #endif /* !defined(DEBUG) */
   1624 
   1625 	/* Wait for output to complete. */
   1626 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1627 		while (vp->v_numoutput != 0)
   1628 			cv_wait(&vp->v_cv, slock);
   1629 	}
   1630 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1631 	mutex_exit(slock);
   1632 
   1633 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1634 		/*
   1635 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1636 		 * retrying is not a big deal because, in many cases,
   1637 		 * uobj->uo_npages is already 0 here.
   1638 		 */
   1639 		mutex_enter(slock);
   1640 		goto retry;
   1641 	}
   1642 
   1643 	if (has_trans) {
   1644 		if (need_wapbl)
   1645 			WAPBL_END(vp->v_mount);
   1646 		fstrans_done(vp->v_mount);
   1647 	}
   1648 
   1649 	return (error);
   1650 }
   1651 
   1652 #ifdef XIP
   1653 int
   1654 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
   1655     int flags, struct vm_page **busypg)
   1656 {
   1657 	struct uvm_object *uobj = &vp->v_uobj;
   1658 #ifdef DIAGNOSTIC
   1659 	struct genfs_node * const gp = VTOG(vp);
   1660 #endif
   1661 
   1662 	UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
   1663 
   1664 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1665 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1666 	KASSERT(vp->v_numoutput == 0);
   1667 	KASSERT(gp->g_dirtygen == 0);
   1668 
   1669 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1670 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1671 
   1672 	/*
   1673 	 * XIP pages are read-only, and never become dirty.  They're also never
   1674 	 * queued.  PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
   1675 	 * pages, so we ignore them.
   1676 	 */
   1677 	if ((flags & PGO_FREE) == 0)
   1678 		goto done;
   1679 
   1680 	/*
   1681 	 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
   1682 	 * mappings of both XIP pages and XIP zero pages.
   1683 	 *
   1684 	 * Zero page is freed when one of its mapped offset is freed, even if
   1685 	 * one file (vnode) has many holes and mapping its zero page to all
   1686 	 * of those hole pages.
   1687 	 *
   1688 	 * We don't know which pages are currently mapped in the given vnode,
   1689 	 * because XIP pages are not added to vnode.  What we can do is to
   1690 	 * locate pages by querying the filesystem as done in getpages.  Call
   1691 	 * genfs_do_getpages_xip_io().
   1692 	 */
   1693 
   1694 	off_t off, eof;
   1695 
   1696 	off = trunc_page(startoff);
   1697 	if (endoff == 0 || (flags & PGO_ALLPAGES))
   1698 		GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
   1699 	else
   1700 		eof = endoff;
   1701 
   1702 	while (off < eof) {
   1703 		int npages, orignpages, error, i;
   1704 		struct vm_page *pgs[maxpages], *pg;
   1705 
   1706 		npages = round_page(eof - off) >> PAGE_SHIFT;
   1707 		if (npages > maxpages)
   1708 			npages = maxpages;
   1709 
   1710 		orignpages = npages;
   1711 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1712 		mutex_exit(&uobj->vmobjlock);
   1713 		error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
   1714 		    VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
   1715 		KASSERT(error == 0);
   1716 		KASSERT(npages == orignpages);
   1717 		mutex_enter(&uobj->vmobjlock);
   1718 		for (i = 0; i < npages; i++) {
   1719 			pg = pgs[i];
   1720 			if (pg == NULL || pg == PGO_DONTCARE)
   1721 				continue;
   1722 			/*
   1723 			 * Freeing normal XIP pages; nothing to do.
   1724 			 */
   1725 			pmap_page_protect(pg, VM_PROT_NONE);
   1726 			KASSERT((pg->flags & PG_RDONLY) != 0);
   1727 			KASSERT((pg->flags & PG_CLEAN) != 0);
   1728 			KASSERT((pg->flags & PG_FAKE) == 0);
   1729 			KASSERT((pg->flags & PG_DEVICE) != 0);
   1730 			pg->flags &= ~PG_BUSY;
   1731 		}
   1732 		off += npages << PAGE_SHIFT;
   1733 	}
   1734 
   1735 	KASSERT(uobj->uo_npages == 0);
   1736 
   1737 done:
   1738 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1739 	mutex_exit(&uobj->vmobjlock);
   1740 	return 0;
   1741 }
   1742 #endif
   1743 
   1744 int
   1745 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1746 {
   1747 	off_t off;
   1748 	vaddr_t kva;
   1749 	size_t len;
   1750 	int error;
   1751 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1752 
   1753 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1754 	    vp, pgs, npages, flags);
   1755 
   1756 	off = pgs[0]->offset;
   1757 	kva = uvm_pagermapin(pgs, npages,
   1758 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1759 	len = npages << PAGE_SHIFT;
   1760 
   1761 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1762 			    uvm_aio_biodone);
   1763 
   1764 	return error;
   1765 }
   1766 
   1767 int
   1768 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1769 {
   1770 	off_t off;
   1771 	vaddr_t kva;
   1772 	size_t len;
   1773 	int error;
   1774 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1775 
   1776 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1777 	    vp, pgs, npages, flags);
   1778 
   1779 	off = pgs[0]->offset;
   1780 	kva = uvm_pagermapin(pgs, npages,
   1781 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1782 	len = npages << PAGE_SHIFT;
   1783 
   1784 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1785 			    uvm_aio_biodone);
   1786 
   1787 	return error;
   1788 }
   1789 
   1790 /*
   1791  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1792  * and mapped into kernel memory.  Here we just look up the underlying
   1793  * device block addresses and call the strategy routine.
   1794  */
   1795 
   1796 static int
   1797 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1798     enum uio_rw rw, void (*iodone)(struct buf *))
   1799 {
   1800 	int s, error;
   1801 	int fs_bshift, dev_bshift;
   1802 	off_t eof, offset, startoffset;
   1803 	size_t bytes, iobytes, skipbytes;
   1804 	struct buf *mbp, *bp;
   1805 	const bool async = (flags & PGO_SYNCIO) == 0;
   1806 	const bool iowrite = rw == UIO_WRITE;
   1807 	const int brw = iowrite ? B_WRITE : B_READ;
   1808 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1809 
   1810 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1811 	    vp, kva, len, flags);
   1812 
   1813 	KASSERT(vp->v_size <= vp->v_writesize);
   1814 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1815 	if (vp->v_type != VBLK) {
   1816 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1817 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1818 	} else {
   1819 		fs_bshift = DEV_BSHIFT;
   1820 		dev_bshift = DEV_BSHIFT;
   1821 	}
   1822 	error = 0;
   1823 	startoffset = off;
   1824 	bytes = MIN(len, eof - startoffset);
   1825 	skipbytes = 0;
   1826 	KASSERT(bytes != 0);
   1827 
   1828 	if (iowrite) {
   1829 		mutex_enter(&vp->v_interlock);
   1830 		vp->v_numoutput += 2;
   1831 		mutex_exit(&vp->v_interlock);
   1832 	}
   1833 	mbp = getiobuf(vp, true);
   1834 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1835 	    vp, mbp, vp->v_numoutput, bytes);
   1836 	mbp->b_bufsize = len;
   1837 	mbp->b_data = (void *)kva;
   1838 	mbp->b_resid = mbp->b_bcount = bytes;
   1839 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1840 	if (async) {
   1841 		mbp->b_flags = brw | B_ASYNC;
   1842 		mbp->b_iodone = iodone;
   1843 	} else {
   1844 		mbp->b_flags = brw;
   1845 		mbp->b_iodone = NULL;
   1846 	}
   1847 	if (curlwp == uvm.pagedaemon_lwp)
   1848 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1849 	else if (async)
   1850 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1851 	else
   1852 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1853 
   1854 	bp = NULL;
   1855 	for (offset = startoffset;
   1856 	    bytes > 0;
   1857 	    offset += iobytes, bytes -= iobytes) {
   1858 		int run;
   1859 		daddr_t lbn, blkno;
   1860 		struct vnode *devvp;
   1861 
   1862 		/*
   1863 		 * bmap the file to find out the blkno to read from and
   1864 		 * how much we can read in one i/o.  if bmap returns an error,
   1865 		 * skip the rest of the top-level i/o.
   1866 		 */
   1867 
   1868 		lbn = offset >> fs_bshift;
   1869 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1870 		if (error) {
   1871 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1872 			    lbn,error,0,0);
   1873 			skipbytes += bytes;
   1874 			bytes = 0;
   1875 			goto loopdone;
   1876 		}
   1877 
   1878 		/*
   1879 		 * see how many pages can be read with this i/o.
   1880 		 * reduce the i/o size if necessary to avoid
   1881 		 * overwriting pages with valid data.
   1882 		 */
   1883 
   1884 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1885 		    bytes);
   1886 
   1887 		/*
   1888 		 * if this block isn't allocated, zero it instead of
   1889 		 * reading it.  unless we are going to allocate blocks,
   1890 		 * mark the pages we zeroed PG_RDONLY.
   1891 		 */
   1892 
   1893 		if (blkno == (daddr_t)-1) {
   1894 			if (!iowrite) {
   1895 				memset((char *)kva + (offset - startoffset), 0,
   1896 				    iobytes);
   1897 			}
   1898 			skipbytes += iobytes;
   1899 			continue;
   1900 		}
   1901 
   1902 		/*
   1903 		 * allocate a sub-buf for this piece of the i/o
   1904 		 * (or just use mbp if there's only 1 piece),
   1905 		 * and start it going.
   1906 		 */
   1907 
   1908 		if (offset == startoffset && iobytes == bytes) {
   1909 			bp = mbp;
   1910 		} else {
   1911 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1912 			    vp, bp, vp->v_numoutput, 0);
   1913 			bp = getiobuf(vp, true);
   1914 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1915 		}
   1916 		bp->b_lblkno = 0;
   1917 
   1918 		/* adjust physical blkno for partial blocks */
   1919 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1920 		    dev_bshift);
   1921 
   1922 		UVMHIST_LOG(ubchist,
   1923 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1924 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1925 
   1926 		VOP_STRATEGY(devvp, bp);
   1927 	}
   1928 
   1929 loopdone:
   1930 	if (skipbytes) {
   1931 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1932 	}
   1933 	nestiobuf_done(mbp, skipbytes, error);
   1934 	if (async) {
   1935 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1936 		return (0);
   1937 	}
   1938 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1939 	error = biowait(mbp);
   1940 	s = splbio();
   1941 	(*iodone)(mbp);
   1942 	splx(s);
   1943 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1944 	return (error);
   1945 }
   1946 
   1947 int
   1948 genfs_compat_getpages(void *v)
   1949 {
   1950 	struct vop_getpages_args /* {
   1951 		struct vnode *a_vp;
   1952 		voff_t a_offset;
   1953 		struct vm_page **a_m;
   1954 		int *a_count;
   1955 		int a_centeridx;
   1956 		vm_prot_t a_access_type;
   1957 		int a_advice;
   1958 		int a_flags;
   1959 	} */ *ap = v;
   1960 
   1961 	off_t origoffset;
   1962 	struct vnode *vp = ap->a_vp;
   1963 	struct uvm_object *uobj = &vp->v_uobj;
   1964 	struct vm_page *pg, **pgs;
   1965 	vaddr_t kva;
   1966 	int i, error, orignpages, npages;
   1967 	struct iovec iov;
   1968 	struct uio uio;
   1969 	kauth_cred_t cred = curlwp->l_cred;
   1970 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1971 
   1972 	error = 0;
   1973 	origoffset = ap->a_offset;
   1974 	orignpages = *ap->a_count;
   1975 	pgs = ap->a_m;
   1976 
   1977 	if (ap->a_flags & PGO_LOCKED) {
   1978 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1979 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1980 
   1981 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1982 		if (error == 0 && memwrite) {
   1983 			genfs_markdirty(vp);
   1984 		}
   1985 		return error;
   1986 	}
   1987 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1988 		mutex_exit(&uobj->vmobjlock);
   1989 		return EINVAL;
   1990 	}
   1991 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1992 		mutex_exit(&uobj->vmobjlock);
   1993 		return 0;
   1994 	}
   1995 	npages = orignpages;
   1996 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1997 	mutex_exit(&uobj->vmobjlock);
   1998 	kva = uvm_pagermapin(pgs, npages,
   1999 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   2000 	for (i = 0; i < npages; i++) {
   2001 		pg = pgs[i];
   2002 		if ((pg->flags & PG_FAKE) == 0) {
   2003 			continue;
   2004 		}
   2005 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   2006 		iov.iov_len = PAGE_SIZE;
   2007 		uio.uio_iov = &iov;
   2008 		uio.uio_iovcnt = 1;
   2009 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   2010 		uio.uio_rw = UIO_READ;
   2011 		uio.uio_resid = PAGE_SIZE;
   2012 		UIO_SETUP_SYSSPACE(&uio);
   2013 		/* XXX vn_lock */
   2014 		error = VOP_READ(vp, &uio, 0, cred);
   2015 		if (error) {
   2016 			break;
   2017 		}
   2018 		if (uio.uio_resid) {
   2019 			memset(iov.iov_base, 0, uio.uio_resid);
   2020 		}
   2021 	}
   2022 	uvm_pagermapout(kva, npages);
   2023 	mutex_enter(&uobj->vmobjlock);
   2024 	mutex_enter(&uvm_pageqlock);
   2025 	for (i = 0; i < npages; i++) {
   2026 		pg = pgs[i];
   2027 		if (error && (pg->flags & PG_FAKE) != 0) {
   2028 			pg->flags |= PG_RELEASED;
   2029 		} else {
   2030 			pmap_clear_modify(pg);
   2031 			uvm_pageactivate(pg);
   2032 		}
   2033 	}
   2034 	if (error) {
   2035 		uvm_page_unbusy(pgs, npages);
   2036 	}
   2037 	mutex_exit(&uvm_pageqlock);
   2038 	if (error == 0 && memwrite) {
   2039 		genfs_markdirty(vp);
   2040 	}
   2041 	mutex_exit(&uobj->vmobjlock);
   2042 	return error;
   2043 }
   2044 
   2045 int
   2046 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   2047     int flags)
   2048 {
   2049 	off_t offset;
   2050 	struct iovec iov;
   2051 	struct uio uio;
   2052 	kauth_cred_t cred = curlwp->l_cred;
   2053 	struct buf *bp;
   2054 	vaddr_t kva;
   2055 	int error;
   2056 
   2057 	offset = pgs[0]->offset;
   2058 	kva = uvm_pagermapin(pgs, npages,
   2059 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   2060 
   2061 	iov.iov_base = (void *)kva;
   2062 	iov.iov_len = npages << PAGE_SHIFT;
   2063 	uio.uio_iov = &iov;
   2064 	uio.uio_iovcnt = 1;
   2065 	uio.uio_offset = offset;
   2066 	uio.uio_rw = UIO_WRITE;
   2067 	uio.uio_resid = npages << PAGE_SHIFT;
   2068 	UIO_SETUP_SYSSPACE(&uio);
   2069 	/* XXX vn_lock */
   2070 	error = VOP_WRITE(vp, &uio, 0, cred);
   2071 
   2072 	mutex_enter(&vp->v_interlock);
   2073 	vp->v_numoutput++;
   2074 	mutex_exit(&vp->v_interlock);
   2075 
   2076 	bp = getiobuf(vp, true);
   2077 	bp->b_cflags = BC_BUSY | BC_AGE;
   2078 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   2079 	bp->b_data = (char *)kva;
   2080 	bp->b_bcount = npages << PAGE_SHIFT;
   2081 	bp->b_bufsize = npages << PAGE_SHIFT;
   2082 	bp->b_resid = 0;
   2083 	bp->b_error = error;
   2084 	uvm_aio_aiodone(bp);
   2085 	return (error);
   2086 }
   2087 
   2088 /*
   2089  * Process a uio using direct I/O.  If we reach a part of the request
   2090  * which cannot be processed in this fashion for some reason, just return.
   2091  * The caller must handle some additional part of the request using
   2092  * buffered I/O before trying direct I/O again.
   2093  */
   2094 
   2095 void
   2096 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   2097 {
   2098 	struct vmspace *vs;
   2099 	struct iovec *iov;
   2100 	vaddr_t va;
   2101 	size_t len;
   2102 	const int mask = DEV_BSIZE - 1;
   2103 	int error;
   2104 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   2105 	    (ioflag & IO_JOURNALLOCKED) == 0);
   2106 
   2107 	/*
   2108 	 * We only support direct I/O to user space for now.
   2109 	 */
   2110 
   2111 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   2112 		return;
   2113 	}
   2114 
   2115 	/*
   2116 	 * If the vnode is mapped, we would need to get the getpages lock
   2117 	 * to stabilize the bmap, but then we would get into trouble whil e
   2118 	 * locking the pages if the pages belong to this same vnode (or a
   2119 	 * multi-vnode cascade to the same effect).  Just fall back to
   2120 	 * buffered I/O if the vnode is mapped to avoid this mess.
   2121 	 */
   2122 
   2123 	if (vp->v_vflag & VV_MAPPED) {
   2124 		return;
   2125 	}
   2126 
   2127 	if (need_wapbl) {
   2128 		error = WAPBL_BEGIN(vp->v_mount);
   2129 		if (error)
   2130 			return;
   2131 	}
   2132 
   2133 	/*
   2134 	 * Do as much of the uio as possible with direct I/O.
   2135 	 */
   2136 
   2137 	vs = uio->uio_vmspace;
   2138 	while (uio->uio_resid) {
   2139 		iov = uio->uio_iov;
   2140 		if (iov->iov_len == 0) {
   2141 			uio->uio_iov++;
   2142 			uio->uio_iovcnt--;
   2143 			continue;
   2144 		}
   2145 		va = (vaddr_t)iov->iov_base;
   2146 		len = MIN(iov->iov_len, genfs_maxdio);
   2147 		len &= ~mask;
   2148 
   2149 		/*
   2150 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   2151 		 * the current EOF, then fall back to buffered I/O.
   2152 		 */
   2153 
   2154 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   2155 			break;
   2156 		}
   2157 
   2158 		/*
   2159 		 * Check alignment.  The file offset must be at least
   2160 		 * sector-aligned.  The exact constraint on memory alignment
   2161 		 * is very hardware-dependent, but requiring sector-aligned
   2162 		 * addresses there too is safe.
   2163 		 */
   2164 
   2165 		if (uio->uio_offset & mask || va & mask) {
   2166 			break;
   2167 		}
   2168 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   2169 					  uio->uio_rw);
   2170 		if (error) {
   2171 			break;
   2172 		}
   2173 		iov->iov_base = (char *)iov->iov_base + len;
   2174 		iov->iov_len -= len;
   2175 		uio->uio_offset += len;
   2176 		uio->uio_resid -= len;
   2177 	}
   2178 
   2179 	if (need_wapbl)
   2180 		WAPBL_END(vp->v_mount);
   2181 }
   2182 
   2183 /*
   2184  * Iodone routine for direct I/O.  We don't do much here since the request is
   2185  * always synchronous, so the caller will do most of the work after biowait().
   2186  */
   2187 
   2188 static void
   2189 genfs_dio_iodone(struct buf *bp)
   2190 {
   2191 
   2192 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   2193 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   2194 		mutex_enter(bp->b_objlock);
   2195 		vwakeup(bp);
   2196 		mutex_exit(bp->b_objlock);
   2197 	}
   2198 	putiobuf(bp);
   2199 }
   2200 
   2201 /*
   2202  * Process one chunk of a direct I/O request.
   2203  */
   2204 
   2205 static int
   2206 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   2207     off_t off, enum uio_rw rw)
   2208 {
   2209 	struct vm_map *map;
   2210 	struct pmap *upm, *kpm;
   2211 	size_t klen = round_page(uva + len) - trunc_page(uva);
   2212 	off_t spoff, epoff;
   2213 	vaddr_t kva, puva;
   2214 	paddr_t pa;
   2215 	vm_prot_t prot;
   2216 	int error, rv, poff, koff;
   2217 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   2218 		(rw == UIO_WRITE ? PGO_FREE : 0);
   2219 
   2220 	/*
   2221 	 * For writes, verify that this range of the file already has fully
   2222 	 * allocated backing store.  If there are any holes, just punt and
   2223 	 * make the caller take the buffered write path.
   2224 	 */
   2225 
   2226 	if (rw == UIO_WRITE) {
   2227 		daddr_t lbn, elbn, blkno;
   2228 		int bsize, bshift, run;
   2229 
   2230 		bshift = vp->v_mount->mnt_fs_bshift;
   2231 		bsize = 1 << bshift;
   2232 		lbn = off >> bshift;
   2233 		elbn = (off + len + bsize - 1) >> bshift;
   2234 		while (lbn < elbn) {
   2235 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   2236 			if (error) {
   2237 				return error;
   2238 			}
   2239 			if (blkno == (daddr_t)-1) {
   2240 				return ENOSPC;
   2241 			}
   2242 			lbn += 1 + run;
   2243 		}
   2244 	}
   2245 
   2246 	/*
   2247 	 * Flush any cached pages for parts of the file that we're about to
   2248 	 * access.  If we're writing, invalidate pages as well.
   2249 	 */
   2250 
   2251 	spoff = trunc_page(off);
   2252 	epoff = round_page(off + len);
   2253 	mutex_enter(&vp->v_interlock);
   2254 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   2255 	if (error) {
   2256 		return error;
   2257 	}
   2258 
   2259 	/*
   2260 	 * Wire the user pages and remap them into kernel memory.
   2261 	 */
   2262 
   2263 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   2264 	error = uvm_vslock(vs, (void *)uva, len, prot);
   2265 	if (error) {
   2266 		return error;
   2267 	}
   2268 
   2269 	map = &vs->vm_map;
   2270 	upm = vm_map_pmap(map);
   2271 	kpm = vm_map_pmap(kernel_map);
   2272 	kva = uvm_km_alloc(kernel_map, klen, 0,
   2273 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   2274 	puva = trunc_page(uva);
   2275 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   2276 		rv = pmap_extract(upm, puva + poff, &pa);
   2277 		KASSERT(rv);
   2278 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   2279 	}
   2280 	pmap_update(kpm);
   2281 
   2282 	/*
   2283 	 * Do the I/O.
   2284 	 */
   2285 
   2286 	koff = uva - trunc_page(uva);
   2287 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   2288 			    genfs_dio_iodone);
   2289 
   2290 	/*
   2291 	 * Tear down the kernel mapping.
   2292 	 */
   2293 
   2294 	pmap_remove(kpm, kva, kva + klen);
   2295 	pmap_update(kpm);
   2296 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   2297 
   2298 	/*
   2299 	 * Unwire the user pages.
   2300 	 */
   2301 
   2302 	uvm_vsunlock(vs, (void *)uva, len);
   2303 	return error;
   2304 }
   2305 
   2306