genfs_io.c revision 1.36.2.50 1 /* $NetBSD: genfs_io.c,v 1.36.2.50 2010/11/20 05:15:59 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.50 2010/11/20 05:15:59 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef XIP
63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
64 int *, int, vm_prot_t, int, int, const int);
65 static int genfs_do_getpages_xip_io_done(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int, const int);
67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
68 struct vm_page **);
69 #endif
70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
71 off_t, enum uio_rw);
72 static void genfs_dio_iodone(struct buf *);
73
74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
75 void (*)(struct buf *));
76 static void genfs_rel_pages(struct vm_page **, int);
77 static void genfs_markdirty(struct vnode *);
78
79 int genfs_maxdio = MAXPHYS;
80
81 static void
82 genfs_rel_pages(struct vm_page **pgs, int npages)
83 {
84 int i;
85
86 for (i = 0; i < npages; i++) {
87 struct vm_page *pg = pgs[i];
88
89 if (pg == NULL || pg == PGO_DONTCARE)
90 continue;
91 if (pg->flags & PG_FAKE) {
92 pg->flags |= PG_RELEASED;
93 }
94 }
95 mutex_enter(&uvm_pageqlock);
96 uvm_page_unbusy(pgs, npages);
97 mutex_exit(&uvm_pageqlock);
98 }
99
100 static void
101 genfs_markdirty(struct vnode *vp)
102 {
103 struct genfs_node * const gp = VTOG(vp);
104
105 KASSERT(mutex_owned(&vp->v_interlock));
106 gp->g_dirtygen++;
107 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
108 vn_syncer_add_to_worklist(vp, filedelay);
109 }
110 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
111 vp->v_iflag |= VI_WRMAPDIRTY;
112 }
113 }
114
115 /*
116 * generic VM getpages routine.
117 * Return PG_BUSY pages for the given range,
118 * reading from backing store if necessary.
119 */
120
121 int
122 genfs_getpages(void *v)
123 {
124 struct vop_getpages_args /* {
125 struct vnode *a_vp;
126 voff_t a_offset;
127 struct vm_page **a_m;
128 int *a_count;
129 int a_centeridx;
130 vm_prot_t a_access_type;
131 int a_advice;
132 int a_flags;
133 } */ * const ap = v;
134
135 off_t diskeof, memeof;
136 int i, error, npages;
137 const int flags = ap->a_flags;
138 struct vnode * const vp = ap->a_vp;
139 struct uvm_object * const uobj = &vp->v_uobj;
140 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
141 const bool async = (flags & PGO_SYNCIO) == 0;
142 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
143 bool has_trans = false;
144 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
145 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
146 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
147 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
148
149 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
150 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
151
152 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
153 vp->v_type == VLNK || vp->v_type == VBLK);
154
155 startover:
156 error = 0;
157 const voff_t origvsize = vp->v_size;
158 const off_t origoffset = ap->a_offset;
159 const int orignpages = *ap->a_count;
160
161 GOP_SIZE(vp, origvsize, &diskeof, 0);
162 if (flags & PGO_PASTEOF) {
163 off_t newsize;
164 #if defined(DIAGNOSTIC)
165 off_t writeeof;
166 #endif /* defined(DIAGNOSTIC) */
167
168 newsize = MAX(origvsize,
169 origoffset + (orignpages << PAGE_SHIFT));
170 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
171 #if defined(DIAGNOSTIC)
172 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
173 if (newsize > round_page(writeeof)) {
174 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
175 __func__, newsize, round_page(writeeof));
176 }
177 #endif /* defined(DIAGNOSTIC) */
178 } else {
179 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
180 }
181 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
182 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
183 KASSERT(orignpages > 0);
184
185 /*
186 * Bounds-check the request.
187 */
188
189 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
190 if ((flags & PGO_LOCKED) == 0) {
191 mutex_exit(&uobj->vmobjlock);
192 }
193 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
194 origoffset, *ap->a_count, memeof,0);
195 error = EINVAL;
196 goto out_err;
197 }
198
199 /* uobj is locked */
200
201 if ((flags & PGO_NOTIMESTAMP) == 0 &&
202 (vp->v_type != VBLK ||
203 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
204 int updflags = 0;
205
206 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
207 updflags = GOP_UPDATE_ACCESSED;
208 }
209 if (memwrite) {
210 updflags |= GOP_UPDATE_MODIFIED;
211 }
212 if (updflags != 0) {
213 GOP_MARKUPDATE(vp, updflags);
214 }
215 }
216
217 /*
218 * For PGO_LOCKED requests, just return whatever's in memory.
219 */
220
221 if (flags & PGO_LOCKED) {
222 #if 0
223 genfs_getpages_mem();
224 } else {
225 genfs_getpages_io();
226 }
227 }
228
229 int
230 genfs_getpages_mem()
231 {
232 #endif
233 int nfound;
234 struct vm_page *pg;
235
236 #ifdef XIP
237 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
238 *ap->a_count = 0;
239 return 0;
240 }
241 #endif
242
243 KASSERT(!glocked);
244 npages = *ap->a_count;
245 #if defined(DEBUG)
246 for (i = 0; i < npages; i++) {
247 pg = ap->a_m[i];
248 KASSERT(pg == NULL || pg == PGO_DONTCARE);
249 }
250 #endif /* defined(DEBUG) */
251 nfound = uvn_findpages(uobj, origoffset, &npages,
252 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
253 KASSERT(npages == *ap->a_count);
254 if (nfound == 0) {
255 error = EBUSY;
256 goto out_err;
257 }
258 if (!genfs_node_rdtrylock(vp)) {
259 genfs_rel_pages(ap->a_m, npages);
260
261 /*
262 * restore the array.
263 */
264
265 for (i = 0; i < npages; i++) {
266 pg = ap->a_m[i];
267
268 if (pg != NULL && pg != PGO_DONTCARE) {
269 ap->a_m[i] = NULL;
270 }
271 KASSERT(pg == NULL || pg == PGO_DONTCARE);
272 }
273 } else {
274 genfs_node_unlock(vp);
275 }
276 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
277 if (error == 0 && memwrite) {
278 genfs_markdirty(vp);
279 }
280 goto out_err;
281 }
282 mutex_exit(&uobj->vmobjlock);
283 #if 0
284 }
285
286 int
287 genfs_getpages_io()
288 {
289 #endif
290 /*
291 * find the requested pages and make some simple checks.
292 * leave space in the page array for a whole block.
293 */
294
295 #define vp2fs_bshift(vp) \
296 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
297 #define vp2dev_bshift(vp) \
298 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
299
300 const int fs_bshift = vp2fs_bshift(vp);
301 const int dev_bshift = vp2dev_bshift(vp);
302 const int fs_bsize = 1 << fs_bshift;
303 #define blk_mask (fs_bsize - 1)
304 #define trunc_blk(x) ((x) & ~blk_mask)
305 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
306
307 const int orignmempages = MIN(orignpages,
308 round_page(memeof - origoffset) >> PAGE_SHIFT);
309 npages = orignmempages;
310 const off_t startoffset = trunc_blk(origoffset);
311 const off_t endoffset = MIN(
312 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
313 round_page(memeof));
314 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
315
316 const int pgs_size = sizeof(struct vm_page *) *
317 ((endoffset - startoffset) >> PAGE_SHIFT);
318 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
319
320 if (pgs_size > sizeof(pgs_onstack)) {
321 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
322 if (pgs == NULL) {
323 pgs = pgs_onstack;
324 error = ENOMEM;
325 goto out_err;
326 }
327 } else {
328 pgs = pgs_onstack;
329 (void)memset(pgs, 0, pgs_size);
330 }
331
332 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
333 ridx, npages, startoffset, endoffset);
334 #if 0
335 }
336
337 int
338 genfs_getpages_io_relock()
339 {
340 #endif
341 if (!has_trans) {
342 fstrans_start(vp->v_mount, FSTRANS_SHARED);
343 has_trans = true;
344 }
345
346 /*
347 * hold g_glock to prevent a race with truncate.
348 *
349 * check if our idea of v_size is still valid.
350 */
351
352 KASSERT(!glocked || genfs_node_wrlocked(vp));
353 if (!glocked) {
354 if (blockalloc) {
355 genfs_node_wrlock(vp);
356 } else {
357 genfs_node_rdlock(vp);
358 }
359 }
360 mutex_enter(&uobj->vmobjlock);
361 if (vp->v_size < origvsize) {
362 if (!glocked) {
363 genfs_node_unlock(vp);
364 }
365 if (pgs != pgs_onstack)
366 kmem_free(pgs, pgs_size);
367 goto startover;
368 }
369 #if 0
370 }
371
372 int
373 genfs_getpages_io_findpages()
374 {
375 #endif
376 #ifdef XIP
377 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
378 goto genfs_getpages_io_read_allocpages_done;
379 #endif
380
381 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
382 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
383 if (!glocked) {
384 genfs_node_unlock(vp);
385 }
386 KASSERT(async != 0);
387 genfs_rel_pages(&pgs[ridx], orignmempages);
388 mutex_exit(&uobj->vmobjlock);
389 error = EBUSY;
390 goto out_err_free;
391 }
392
393 /*
394 * if the pages are already resident, just return them.
395 */
396
397 for (i = 0; i < npages; i++) {
398 struct vm_page *pg = pgs[ridx + i];
399
400 if ((pg->flags & PG_FAKE) ||
401 (blockalloc && (pg->flags & PG_RDONLY))) {
402 break;
403 }
404 }
405 if (i == npages) {
406 if (!glocked) {
407 genfs_node_unlock(vp);
408 }
409 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
410 npages += ridx;
411 goto out;
412 }
413
414 /*
415 * if PGO_OVERWRITE is set, don't bother reading the pages.
416 */
417
418 if (overwrite) {
419 #if 0
420 genfs_getpages_io_overwrite();
421 } else {
422 genfs_getpages_io_read();
423 }
424 }
425
426 int
427 genfs_getpages_io_overwrite()
428 {
429 {
430 #endif
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
435
436 for (i = 0; i < npages; i++) {
437 struct vm_page *pg = pgs[ridx + i];
438
439 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
440 }
441 npages += ridx;
442 goto out;
443 }
444 #if 0
445 }
446
447 int
448 genfs_getpages_io_read()
449 {
450 #endif
451 /*
452 * the page wasn't resident and we're not overwriting,
453 * so we're going to have to do some i/o.
454 * find any additional pages needed to cover the expanded range.
455 */
456 #if 0
457 }
458
459 int
460 genfs_getpages_io_read_allocpages()
461 {
462 #endif
463 npages = (endoffset - startoffset) >> PAGE_SHIFT;
464 if (startoffset != origoffset || npages != orignmempages) {
465 int npgs;
466
467 /*
468 * we need to avoid deadlocks caused by locking
469 * additional pages at lower offsets than pages we
470 * already have locked. unlock them all and start over.
471 */
472
473 genfs_rel_pages(&pgs[ridx], orignmempages);
474 memset(pgs, 0, pgs_size);
475
476 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
477 startoffset, endoffset, 0,0);
478 npgs = npages;
479 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
480 async ? UFP_NOWAIT : UFP_ALL) != npages) {
481 if (!glocked) {
482 genfs_node_unlock(vp);
483 }
484 KASSERT(async != 0);
485 genfs_rel_pages(pgs, npages);
486 mutex_exit(&uobj->vmobjlock);
487 error = EBUSY;
488 goto out_err_free;
489 }
490 }
491 #ifdef XIP
492 genfs_getpages_io_read_allocpages_done:
493 #endif
494 #if 0
495 }
496
497 int
498 genfs_getpages_io_read_bio()
499 {
500 #endif
501 mutex_exit(&uobj->vmobjlock);
502
503 {
504 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
505 vaddr_t kva = 0;
506 struct buf *bp = NULL, *mbp = NULL;
507 bool sawhole = false;
508
509 /*
510 * read the desired page(s).
511 */
512
513 totalbytes = npages << PAGE_SHIFT;
514 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
515 tailbytes = totalbytes - bytes;
516 skipbytes = 0;
517
518 #if 1
519 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
520 goto genfs_getpages_bio_prepare_done;
521 #endif
522 #if 0
523 }
524
525 int
526 genfs_getpages_io_read_bio_prepare()
527 {
528 #endif
529 kva = uvm_pagermapin(pgs, npages,
530 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
531
532 mbp = getiobuf(vp, true);
533 mbp->b_bufsize = totalbytes;
534 mbp->b_data = (void *)kva;
535 mbp->b_resid = mbp->b_bcount = bytes;
536 mbp->b_cflags = BC_BUSY;
537 if (async) {
538 mbp->b_flags = B_READ | B_ASYNC;
539 mbp->b_iodone = uvm_aio_biodone;
540 } else {
541 mbp->b_flags = B_READ;
542 mbp->b_iodone = NULL;
543 }
544 if (async)
545 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
546 else
547 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
548 #if 0
549 }
550
551 #endif
552 #if 1
553 genfs_getpages_bio_prepare_done:
554 #endif
555
556 /*
557 * if EOF is in the middle of the range, zero the part past EOF.
558 * skip over pages which are not PG_FAKE since in that case they have
559 * valid data that we need to preserve.
560 */
561
562 tailstart = bytes;
563 while (tailbytes > 0) {
564 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
565
566 KASSERT(len <= tailbytes);
567 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
568 memset((void *)(kva + tailstart), 0, len);
569 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
570 kva, tailstart, len, 0);
571 }
572 tailstart += len;
573 tailbytes -= len;
574 }
575
576 #if 1
577 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
578 error = genfs_do_getpages_xip_io(
579 ap->a_vp,
580 ap->a_offset,
581 pgs,
582 ap->a_count,
583 ap->a_centeridx,
584 ap->a_access_type,
585 ap->a_advice,
586 ap->a_flags,
587 orignmempages);
588 if (0)
589 goto loopdone;
590 }
591 #endif
592 #if 0
593 }
594
595 int
596 genfs_getpages_io_read_bio_loop()
597 {
598 #endif
599 /*
600 * now loop over the pages, reading as needed.
601 */
602
603 bp = NULL;
604 off_t offset;
605 for (offset = startoffset;
606 bytes > 0;
607 offset += iobytes, bytes -= iobytes) {
608 int run;
609 daddr_t lbn, blkno;
610 int pidx;
611 struct vnode *devvp;
612
613 /*
614 * skip pages which don't need to be read.
615 */
616
617 pidx = (offset - startoffset) >> PAGE_SHIFT;
618 #ifdef XIP
619 if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
620 #endif
621 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
622 size_t b;
623
624 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
625 if ((pgs[pidx]->flags & PG_RDONLY)) {
626 sawhole = true;
627 }
628 b = MIN(PAGE_SIZE, bytes);
629 offset += b;
630 bytes -= b;
631 skipbytes += b;
632 pidx++;
633 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
634 offset, 0,0,0);
635 if (bytes == 0) {
636 goto loopdone;
637 }
638 }
639 #ifdef XIP
640 }
641 #endif
642
643 /*
644 * bmap the file to find out the blkno to read from and
645 * how much we can read in one i/o. if bmap returns an error,
646 * skip the rest of the top-level i/o.
647 */
648
649 lbn = offset >> fs_bshift;
650 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
651 if (error) {
652 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
653 lbn,error,0,0);
654 skipbytes += bytes;
655 bytes = 0;
656 goto loopdone;
657 }
658
659 /*
660 * see how many pages can be read with this i/o.
661 * reduce the i/o size if necessary to avoid
662 * overwriting pages with valid data.
663 */
664
665 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
666 bytes);
667 if (offset + iobytes > round_page(offset)) {
668 int pcount;
669
670 pcount = 1;
671 #ifdef XIP
672 if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
673 #endif
674 while (pidx + pcount < npages &&
675 pgs[pidx + pcount]->flags & PG_FAKE) {
676 pcount++;
677 }
678 #ifdef XIP
679 }
680 #endif
681 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
682 (offset - trunc_page(offset)));
683 }
684
685 /*
686 * if this block isn't allocated, zero it instead of
687 * reading it. unless we are going to allocate blocks,
688 * mark the pages we zeroed PG_RDONLY.
689 */
690
691 if (blkno == (daddr_t)-1) {
692 #ifdef XIP
693 if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
694 #endif
695 int holepages = (round_page(offset + iobytes) -
696 trunc_page(offset)) >> PAGE_SHIFT;
697 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
698
699 KASSERT((ap->a_vp->v_vflag & VV_XIP) == 0);
700
701 sawhole = true;
702 memset((char *)kva + (offset - startoffset), 0,
703 iobytes);
704 skipbytes += iobytes;
705
706 for (i = 0; i < holepages; i++) {
707 if (memwrite) {
708 pgs[pidx + i]->flags &= ~PG_CLEAN;
709 }
710 if (!blockalloc) {
711 pgs[pidx + i]->flags |= PG_RDONLY;
712 }
713 }
714 #ifdef XIP
715 } else {
716 panic("XIP hole page is not supported yet");
717 }
718 #endif
719 continue;
720 }
721
722 #ifdef XIP
723 if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
724 #endif
725 /*
726 * allocate a sub-buf for this piece of the i/o
727 * (or just use mbp if there's only 1 piece),
728 * and start it going.
729 */
730
731 KASSERT((ap->a_vp->v_vflag & VV_XIP) == 0);
732
733 if (offset == startoffset && iobytes == bytes) {
734 bp = mbp;
735 } else {
736 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
737 vp, bp, vp->v_numoutput, 0);
738 bp = getiobuf(vp, true);
739 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
740 }
741 bp->b_lblkno = 0;
742
743 /* adjust physical blkno for partial blocks */
744 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
745 dev_bshift);
746
747 UVMHIST_LOG(ubchist,
748 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
749 bp, offset, bp->b_bcount, bp->b_blkno);
750
751 VOP_STRATEGY(devvp, bp);
752 }
753 #ifdef XIP
754 else {
755 /*
756 * XIP page metadata assignment
757 * - Unallocated block is redirected to the dedicated zero'ed
758 * page.
759 */
760 const int npgs = MIN(
761 iobytes >> PAGE_SHIFT,
762 ((1 + run) << fs_bshift) >> PAGE_SHIFT);
763 const daddr_t blk_off = blkno << dev_bshift;
764 const daddr_t fs_off = origoffset - startoffset;
765
766 for (i = ridx + pidx; i < npgs; i++) {
767 const daddr_t pg_off = pidx << PAGE_SHIFT;
768 struct vm_page *pg;
769
770 UVMHIST_LOG(ubchist,
771 "xip blk_off=0x%lx fs_off=0x%lx pg_off=%lx",
772 (long)blk_off, (long)fs_off, (long)pg_off, 0);
773
774 pg = uvn_findpage_xip(devvp, &vp->v_uobj,
775 blk_off + fs_off + pg_off);
776 KASSERT(pg != NULL);
777 UVMHIST_LOG(ubchist,
778 "xip pgs %d => phys_addr=0x%lx (%p)",
779 i,
780 (long)pg->phys_addr,
781 pg,
782 0);
783 pgs[i] = pg;
784 }
785 }
786 #endif
787 }
788
789 loopdone:
790 #if 1
791 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
792 goto genfs_getpages_biodone_done;
793 }
794 #endif
795 #if 0
796
797 int
798 genfs_getpages_biodone()
799 {
800 #endif
801 nestiobuf_done(mbp, skipbytes, error);
802 if (async) {
803 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
804 if (!glocked) {
805 genfs_node_unlock(vp);
806 }
807 error = 0;
808 goto out_err_free;
809 }
810 if (bp != NULL) {
811 error = biowait(mbp);
812 }
813
814 /* Remove the mapping (make KVA available as soon as possible) */
815 uvm_pagermapout(kva, npages);
816
817 /*
818 * if this we encountered a hole then we have to do a little more work.
819 * for read faults, we marked the page PG_RDONLY so that future
820 * write accesses to the page will fault again.
821 * for write faults, we must make sure that the backing store for
822 * the page is completely allocated while the pages are locked.
823 */
824
825 if (!error && sawhole && blockalloc) {
826 /*
827 * XXX: This assumes that we come here only via
828 * the mmio path
829 */
830 if (vp->v_mount->mnt_wapbl) {
831 error = WAPBL_BEGIN(vp->v_mount);
832 }
833
834 if (!error) {
835 error = GOP_ALLOC(vp, startoffset,
836 npages << PAGE_SHIFT, 0, cred);
837 if (vp->v_mount->mnt_wapbl) {
838 WAPBL_END(vp->v_mount);
839 }
840 }
841
842 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
843 startoffset, npages << PAGE_SHIFT, error,0);
844 if (!error) {
845 for (i = 0; i < npages; i++) {
846 struct vm_page *pg = pgs[i];
847
848 if (pg == NULL) {
849 continue;
850 }
851 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
852 UVMHIST_LOG(ubchist, "mark dirty pg %p",
853 pg,0,0,0);
854 }
855 }
856 }
857
858 putiobuf(mbp);
859 #if 0
860 }
861
862 #endif
863 #if 1
864 genfs_getpages_biodone_done:
865 {}
866 #endif
867 }
868
869 if (!glocked) {
870 genfs_node_unlock(vp);
871 }
872
873 #if 1
874 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
875 error = genfs_do_getpages_xip_io_done(
876 ap->a_vp,
877 ap->a_offset,
878 pgs,
879 ap->a_count,
880 ap->a_centeridx,
881 ap->a_access_type,
882 ap->a_advice,
883 ap->a_flags,
884 orignmempages);
885 goto genfs_getpages_generic_io_done_done;
886 }
887 #endif
888 #if 0
889 else {
890 error = genfs_getpages_generic_io_done();
891 }
892 }
893
894 int
895 genfs_getpages_generic_io_done()
896 {
897 #endif
898
899 mutex_enter(&uobj->vmobjlock);
900
901 /*
902 * we're almost done! release the pages...
903 * for errors, we free the pages.
904 * otherwise we activate them and mark them as valid and clean.
905 * also, unbusy pages that were not actually requested.
906 */
907
908 if (error) {
909 for (i = 0; i < npages; i++) {
910 struct vm_page *pg = pgs[i];
911
912 if (pg == NULL) {
913 continue;
914 }
915 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
916 pg, pg->flags, 0,0);
917 if (pg->flags & PG_FAKE) {
918 pg->flags |= PG_RELEASED;
919 }
920 }
921 mutex_enter(&uvm_pageqlock);
922 uvm_page_unbusy(pgs, npages);
923 mutex_exit(&uvm_pageqlock);
924 mutex_exit(&uobj->vmobjlock);
925 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
926 goto out_err_free;
927 }
928
929 out:
930 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
931 error = 0;
932 mutex_enter(&uvm_pageqlock);
933 for (i = 0; i < npages; i++) {
934 struct vm_page *pg = pgs[i];
935 if (pg == NULL) {
936 continue;
937 }
938 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
939 pg, pg->flags, 0,0);
940 if (pg->flags & PG_FAKE && !overwrite) {
941 pg->flags &= ~(PG_FAKE);
942 pmap_clear_modify(pgs[i]);
943 }
944 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
945 if (i < ridx || i >= ridx + orignmempages || async) {
946 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
947 pg, pg->offset,0,0);
948 if (pg->flags & PG_WANTED) {
949 wakeup(pg);
950 }
951 if (pg->flags & PG_FAKE) {
952 KASSERT(overwrite);
953 uvm_pagezero(pg);
954 }
955 if (pg->flags & PG_RELEASED) {
956 uvm_pagefree(pg);
957 continue;
958 }
959 uvm_pageenqueue(pg);
960 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
961 UVM_PAGE_OWN(pg, NULL);
962 }
963 }
964 mutex_exit(&uvm_pageqlock);
965
966 if (memwrite) {
967 genfs_markdirty(vp);
968 }
969 mutex_exit(&uobj->vmobjlock);
970
971 #if 1
972 genfs_getpages_generic_io_done_done:
973 {}
974 #endif
975 if (ap->a_m != NULL) {
976 memcpy(ap->a_m, &pgs[ridx],
977 orignmempages * sizeof(struct vm_page *));
978 }
979 #if 0
980 }
981
982 #endif
983
984 out_err_free:
985 if (pgs != NULL && pgs != pgs_onstack)
986 kmem_free(pgs, pgs_size);
987 out_err:
988 if (has_trans)
989 fstrans_done(vp->v_mount);
990 return error;
991 }
992
993 #ifdef XIP
994 /*
995 * genfs_do_getpages_xip_io
996 * Return "direct pages" of XIP vnode. The block addresses of XIP
997 * vnode pages are returned back to the VM fault handler as the
998 * actually mapped physical addresses.
999 */
1000 static int
1001 genfs_do_getpages_xip_io(
1002 struct vnode *vp,
1003 voff_t origoffset,
1004 struct vm_page **pps,
1005 int *npagesp,
1006 int centeridx,
1007 vm_prot_t access_type,
1008 int advice,
1009 int flags,
1010 const int orignmempages)
1011 {
1012 const int fs_bshift = vp2fs_bshift(vp);
1013 const int dev_bshift = vp2dev_bshift(vp);
1014 const int fs_bsize = 1 << fs_bshift;
1015
1016 int error;
1017 off_t off;
1018 int i;
1019
1020 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
1021
1022 KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
1023
1024 #ifdef UVMHIST
1025 const off_t startoffset = trunc_blk(origoffset);
1026 const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
1027 #endif
1028
1029 UVMHIST_LOG(ubchist, "xip npages=%d startoffset=%lx endoffset=%lx",
1030 orignmempages, (long)startoffset, (long)endoffset, 0);
1031
1032 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
1033
1034 off = origoffset;
1035 for (i = ridx; i < ridx + orignmempages; i++) {
1036 daddr_t blkno;
1037 int run;
1038 struct vnode *devvp;
1039
1040 KASSERT((off - origoffset) >> PAGE_SHIFT == i - ridx);
1041
1042 const daddr_t lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
1043
1044 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1045 KASSERT(error == 0);
1046 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
1047 (long)lbn, (long)blkno, run, 0);
1048
1049 const daddr_t blk_off = blkno << dev_bshift;
1050 const daddr_t fs_off = origoffset - (lbn << fs_bshift);
1051
1052 /*
1053 * XIP page metadata assignment
1054 * - Unallocated block is redirected to the dedicated zero'ed
1055 * page.
1056 */
1057 if (blkno < 0) {
1058 panic("XIP hole is not supported yet!");
1059 } else {
1060 KASSERT(off - origoffset == (i - ridx) << PAGE_SHIFT);
1061
1062 const daddr_t pg_off = (i - ridx) << PAGE_SHIFT;
1063
1064 UVMHIST_LOG(ubchist,
1065 "xip blk_off=%lx fs_off=%lx pg_off=%lx",
1066 (long)blk_off, (long)fs_off, (long)pg_off, 0);
1067
1068 pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
1069 blk_off + fs_off + pg_off);
1070 KASSERT(pps[i] != NULL);
1071 }
1072
1073 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
1074 i,
1075 (long)pps[i]->phys_addr,
1076 pps[i],
1077 0);
1078
1079 off += PAGE_SIZE;
1080 }
1081
1082 return 0;
1083 }
1084
1085 int
1086 genfs_do_getpages_xip_io_done(
1087 struct vnode *vp,
1088 voff_t origoffset,
1089 struct vm_page **pps,
1090 int *npagesp,
1091 int centeridx,
1092 vm_prot_t access_type,
1093 int advice,
1094 int flags,
1095 const int orignmempages)
1096 {
1097 struct uvm_object * const uobj = &vp->v_uobj;
1098 int i;
1099
1100 const int fs_bshift = vp2fs_bshift(vp);
1101 const int fs_bsize = 1 << fs_bshift;
1102
1103 const off_t startoffset = trunc_blk(origoffset);
1104 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
1105
1106 mutex_enter(&uobj->vmobjlock);
1107
1108 for (i = ridx; i < ridx + orignmempages; i++) {
1109 struct vm_page *pg = pps[i];
1110
1111 KASSERT((pg->flags & PG_RDONLY) != 0);
1112 KASSERT((pg->flags & PG_BUSY) == 0);
1113 KASSERT((pg->flags & PG_CLEAN) != 0);
1114 KASSERT((pg->flags & PG_DEVICE) != 0);
1115 pg->flags |= PG_BUSY;
1116 pg->flags &= ~PG_FAKE;
1117 pg->uobject = &vp->v_uobj;
1118 }
1119
1120 mutex_exit(&uobj->vmobjlock);
1121
1122 *npagesp = orignmempages;
1123
1124 return 0;
1125 }
1126 #endif
1127
1128 /*
1129 * generic VM putpages routine.
1130 * Write the given range of pages to backing store.
1131 *
1132 * => "offhi == 0" means flush all pages at or after "offlo".
1133 * => object should be locked by caller. we return with the
1134 * object unlocked.
1135 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1136 * thus, a caller might want to unlock higher level resources
1137 * (e.g. vm_map) before calling flush.
1138 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
1139 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1140 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1141 * that new pages are inserted on the tail end of the list. thus,
1142 * we can make a complete pass through the object in one go by starting
1143 * at the head and working towards the tail (new pages are put in
1144 * front of us).
1145 * => NOTE: we are allowed to lock the page queues, so the caller
1146 * must not be holding the page queue lock.
1147 *
1148 * note on "cleaning" object and PG_BUSY pages:
1149 * this routine is holding the lock on the object. the only time
1150 * that it can run into a PG_BUSY page that it does not own is if
1151 * some other process has started I/O on the page (e.g. either
1152 * a pagein, or a pageout). if the PG_BUSY page is being paged
1153 * in, then it can not be dirty (!PG_CLEAN) because no one has
1154 * had a chance to modify it yet. if the PG_BUSY page is being
1155 * paged out then it means that someone else has already started
1156 * cleaning the page for us (how nice!). in this case, if we
1157 * have syncio specified, then after we make our pass through the
1158 * object we need to wait for the other PG_BUSY pages to clear
1159 * off (i.e. we need to do an iosync). also note that once a
1160 * page is PG_BUSY it must stay in its object until it is un-busyed.
1161 *
1162 * note on page traversal:
1163 * we can traverse the pages in an object either by going down the
1164 * linked list in "uobj->memq", or we can go over the address range
1165 * by page doing hash table lookups for each address. depending
1166 * on how many pages are in the object it may be cheaper to do one
1167 * or the other. we set "by_list" to true if we are using memq.
1168 * if the cost of a hash lookup was equal to the cost of the list
1169 * traversal we could compare the number of pages in the start->stop
1170 * range to the total number of pages in the object. however, it
1171 * seems that a hash table lookup is more expensive than the linked
1172 * list traversal, so we multiply the number of pages in the
1173 * range by an estimate of the relatively higher cost of the hash lookup.
1174 */
1175
1176 int
1177 genfs_putpages(void *v)
1178 {
1179 struct vop_putpages_args /* {
1180 struct vnode *a_vp;
1181 voff_t a_offlo;
1182 voff_t a_offhi;
1183 int a_flags;
1184 } */ * const ap = v;
1185
1186 #ifdef XIP
1187 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1188 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1189 ap->a_flags, NULL);
1190 else
1191 #endif
1192 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1193 ap->a_flags, NULL);
1194 }
1195
1196 int
1197 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1198 int origflags, struct vm_page **busypg)
1199 {
1200 struct uvm_object * const uobj = &vp->v_uobj;
1201 kmutex_t * const slock = &uobj->vmobjlock;
1202 off_t off;
1203 /* Even for strange MAXPHYS, the shift rounds down to a page */
1204 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1205 int i, error, npages, nback;
1206 int freeflag;
1207 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1208 bool wasclean, by_list, needs_clean, yld;
1209 bool async = (origflags & PGO_SYNCIO) == 0;
1210 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1211 struct lwp * const l = curlwp ? curlwp : &lwp0;
1212 struct genfs_node * const gp = VTOG(vp);
1213 int flags;
1214 int dirtygen;
1215 bool modified;
1216 bool need_wapbl;
1217 bool has_trans;
1218 bool cleanall;
1219 bool onworklst;
1220
1221 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1222
1223 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1224 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1225 KASSERT(startoff < endoff || endoff == 0);
1226
1227 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1228 vp, uobj->uo_npages, startoff, endoff - startoff);
1229
1230 has_trans = false;
1231 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1232 (origflags & PGO_JOURNALLOCKED) == 0);
1233
1234 retry:
1235 modified = false;
1236 flags = origflags;
1237 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1238 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1239 if (uobj->uo_npages == 0) {
1240 if (vp->v_iflag & VI_ONWORKLST) {
1241 vp->v_iflag &= ~VI_WRMAPDIRTY;
1242 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1243 vn_syncer_remove_from_worklist(vp);
1244 }
1245 if (has_trans) {
1246 if (need_wapbl)
1247 WAPBL_END(vp->v_mount);
1248 fstrans_done(vp->v_mount);
1249 }
1250 mutex_exit(slock);
1251 return (0);
1252 }
1253
1254 /*
1255 * the vnode has pages, set up to process the request.
1256 */
1257
1258 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1259 mutex_exit(slock);
1260 if (pagedaemon) {
1261 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1262 if (error)
1263 return error;
1264 } else
1265 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1266 if (need_wapbl) {
1267 error = WAPBL_BEGIN(vp->v_mount);
1268 if (error) {
1269 fstrans_done(vp->v_mount);
1270 return error;
1271 }
1272 }
1273 has_trans = true;
1274 mutex_enter(slock);
1275 goto retry;
1276 }
1277
1278 error = 0;
1279 wasclean = (vp->v_numoutput == 0);
1280 off = startoff;
1281 if (endoff == 0 || flags & PGO_ALLPAGES) {
1282 endoff = trunc_page(LLONG_MAX);
1283 }
1284 by_list = (uobj->uo_npages <=
1285 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1286
1287 #if !defined(DEBUG)
1288 /*
1289 * if this vnode is known not to have dirty pages,
1290 * don't bother to clean it out.
1291 */
1292
1293 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1294 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1295 goto skip_scan;
1296 }
1297 flags &= ~PGO_CLEANIT;
1298 }
1299 #endif /* !defined(DEBUG) */
1300
1301 /*
1302 * start the loop. when scanning by list, hold the last page
1303 * in the list before we start. pages allocated after we start
1304 * will be added to the end of the list, so we can stop at the
1305 * current last page.
1306 */
1307
1308 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1309 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1310 (vp->v_iflag & VI_ONWORKLST) != 0;
1311 dirtygen = gp->g_dirtygen;
1312 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1313 if (by_list) {
1314 curmp.flags = PG_MARKER;
1315 endmp.flags = PG_MARKER;
1316 pg = TAILQ_FIRST(&uobj->memq);
1317 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1318 } else {
1319 pg = uvm_pagelookup(uobj, off);
1320 }
1321 nextpg = NULL;
1322 while (by_list || off < endoff) {
1323
1324 /*
1325 * if the current page is not interesting, move on to the next.
1326 */
1327
1328 KASSERT(pg == NULL || pg->uobject == uobj ||
1329 (pg->flags & PG_MARKER) != 0);
1330 KASSERT(pg == NULL ||
1331 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1332 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1333 if (by_list) {
1334 if (pg == &endmp) {
1335 break;
1336 }
1337 if (pg->flags & PG_MARKER) {
1338 pg = TAILQ_NEXT(pg, listq.queue);
1339 continue;
1340 }
1341 if (pg->offset < startoff || pg->offset >= endoff ||
1342 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1343 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1344 wasclean = false;
1345 }
1346 pg = TAILQ_NEXT(pg, listq.queue);
1347 continue;
1348 }
1349 off = pg->offset;
1350 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1351 if (pg != NULL) {
1352 wasclean = false;
1353 }
1354 off += PAGE_SIZE;
1355 if (off < endoff) {
1356 pg = uvm_pagelookup(uobj, off);
1357 }
1358 continue;
1359 }
1360
1361 /*
1362 * if the current page needs to be cleaned and it's busy,
1363 * wait for it to become unbusy.
1364 */
1365
1366 yld = (l->l_cpu->ci_schedstate.spc_flags &
1367 SPCF_SHOULDYIELD) && !pagedaemon;
1368 if (pg->flags & PG_BUSY || yld) {
1369 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1370 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1371 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1372 error = EDEADLK;
1373 if (busypg != NULL)
1374 *busypg = pg;
1375 break;
1376 }
1377 if (pagedaemon) {
1378 /*
1379 * someone has taken the page while we
1380 * dropped the lock for fstrans_start.
1381 */
1382 break;
1383 }
1384 if (by_list) {
1385 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1386 UVMHIST_LOG(ubchist, "curmp next %p",
1387 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1388 }
1389 if (yld) {
1390 mutex_exit(slock);
1391 preempt();
1392 mutex_enter(slock);
1393 } else {
1394 pg->flags |= PG_WANTED;
1395 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1396 mutex_enter(slock);
1397 }
1398 if (by_list) {
1399 UVMHIST_LOG(ubchist, "after next %p",
1400 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1401 pg = TAILQ_NEXT(&curmp, listq.queue);
1402 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1403 } else {
1404 pg = uvm_pagelookup(uobj, off);
1405 }
1406 continue;
1407 }
1408
1409 /*
1410 * if we're freeing, remove all mappings of the page now.
1411 * if we're cleaning, check if the page is needs to be cleaned.
1412 */
1413
1414 if (flags & PGO_FREE) {
1415 pmap_page_protect(pg, VM_PROT_NONE);
1416 } else if (flags & PGO_CLEANIT) {
1417
1418 /*
1419 * if we still have some hope to pull this vnode off
1420 * from the syncer queue, write-protect the page.
1421 */
1422
1423 if (cleanall && wasclean &&
1424 gp->g_dirtygen == dirtygen) {
1425
1426 /*
1427 * uobj pages get wired only by uvm_fault
1428 * where uobj is locked.
1429 */
1430
1431 if (pg->wire_count == 0) {
1432 pmap_page_protect(pg,
1433 VM_PROT_READ|VM_PROT_EXECUTE);
1434 } else {
1435 cleanall = false;
1436 }
1437 }
1438 }
1439
1440 if (flags & PGO_CLEANIT) {
1441 needs_clean = pmap_clear_modify(pg) ||
1442 (pg->flags & PG_CLEAN) == 0;
1443 pg->flags |= PG_CLEAN;
1444 } else {
1445 needs_clean = false;
1446 }
1447
1448 /*
1449 * if we're cleaning, build a cluster.
1450 * the cluster will consist of pages which are currently dirty,
1451 * but they will be returned to us marked clean.
1452 * if not cleaning, just operate on the one page.
1453 */
1454
1455 if (needs_clean) {
1456 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1457 wasclean = false;
1458 memset(pgs, 0, sizeof(pgs));
1459 pg->flags |= PG_BUSY;
1460 UVM_PAGE_OWN(pg, "genfs_putpages");
1461
1462 /*
1463 * first look backward.
1464 */
1465
1466 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1467 nback = npages;
1468 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1469 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1470 if (nback) {
1471 memmove(&pgs[0], &pgs[npages - nback],
1472 nback * sizeof(pgs[0]));
1473 if (npages - nback < nback)
1474 memset(&pgs[nback], 0,
1475 (npages - nback) * sizeof(pgs[0]));
1476 else
1477 memset(&pgs[npages - nback], 0,
1478 nback * sizeof(pgs[0]));
1479 }
1480
1481 /*
1482 * then plug in our page of interest.
1483 */
1484
1485 pgs[nback] = pg;
1486
1487 /*
1488 * then look forward to fill in the remaining space in
1489 * the array of pages.
1490 */
1491
1492 npages = maxpages - nback - 1;
1493 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1494 &pgs[nback + 1],
1495 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1496 npages += nback + 1;
1497 } else {
1498 pgs[0] = pg;
1499 npages = 1;
1500 nback = 0;
1501 }
1502
1503 /*
1504 * apply FREE or DEACTIVATE options if requested.
1505 */
1506
1507 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1508 mutex_enter(&uvm_pageqlock);
1509 }
1510 for (i = 0; i < npages; i++) {
1511 tpg = pgs[i];
1512 KASSERT(tpg->uobject == uobj);
1513 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1514 pg = tpg;
1515 if (tpg->offset < startoff || tpg->offset >= endoff)
1516 continue;
1517 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1518 uvm_pagedeactivate(tpg);
1519 } else if (flags & PGO_FREE) {
1520 pmap_page_protect(tpg, VM_PROT_NONE);
1521 if (tpg->flags & PG_BUSY) {
1522 tpg->flags |= freeflag;
1523 if (pagedaemon) {
1524 uvm_pageout_start(1);
1525 uvm_pagedequeue(tpg);
1526 }
1527 } else {
1528
1529 /*
1530 * ``page is not busy''
1531 * implies that npages is 1
1532 * and needs_clean is false.
1533 */
1534
1535 nextpg = TAILQ_NEXT(tpg, listq.queue);
1536 uvm_pagefree(tpg);
1537 if (pagedaemon)
1538 uvmexp.pdfreed++;
1539 }
1540 }
1541 }
1542 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1543 mutex_exit(&uvm_pageqlock);
1544 }
1545 if (needs_clean) {
1546 modified = true;
1547
1548 /*
1549 * start the i/o. if we're traversing by list,
1550 * keep our place in the list with a marker page.
1551 */
1552
1553 if (by_list) {
1554 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1555 listq.queue);
1556 }
1557 mutex_exit(slock);
1558 error = GOP_WRITE(vp, pgs, npages, flags);
1559 mutex_enter(slock);
1560 if (by_list) {
1561 pg = TAILQ_NEXT(&curmp, listq.queue);
1562 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1563 }
1564 if (error) {
1565 break;
1566 }
1567 if (by_list) {
1568 continue;
1569 }
1570 }
1571
1572 /*
1573 * find the next page and continue if there was no error.
1574 */
1575
1576 if (by_list) {
1577 if (nextpg) {
1578 pg = nextpg;
1579 nextpg = NULL;
1580 } else {
1581 pg = TAILQ_NEXT(pg, listq.queue);
1582 }
1583 } else {
1584 off += (npages - nback) << PAGE_SHIFT;
1585 if (off < endoff) {
1586 pg = uvm_pagelookup(uobj, off);
1587 }
1588 }
1589 }
1590 if (by_list) {
1591 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1592 }
1593
1594 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1595 (vp->v_type != VBLK ||
1596 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1597 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1598 }
1599
1600 /*
1601 * if we're cleaning and there was nothing to clean,
1602 * take us off the syncer list. if we started any i/o
1603 * and we're doing sync i/o, wait for all writes to finish.
1604 */
1605
1606 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1607 (vp->v_iflag & VI_ONWORKLST) != 0) {
1608 #if defined(DEBUG)
1609 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1610 if ((pg->flags & PG_MARKER) != 0) {
1611 continue;
1612 }
1613 if ((pg->flags & PG_CLEAN) == 0) {
1614 printf("%s: %p: !CLEAN\n", __func__, pg);
1615 }
1616 if (pmap_is_modified(pg)) {
1617 printf("%s: %p: modified\n", __func__, pg);
1618 }
1619 }
1620 #endif /* defined(DEBUG) */
1621 vp->v_iflag &= ~VI_WRMAPDIRTY;
1622 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1623 vn_syncer_remove_from_worklist(vp);
1624 }
1625
1626 #if !defined(DEBUG)
1627 skip_scan:
1628 #endif /* !defined(DEBUG) */
1629
1630 /* Wait for output to complete. */
1631 if (!wasclean && !async && vp->v_numoutput != 0) {
1632 while (vp->v_numoutput != 0)
1633 cv_wait(&vp->v_cv, slock);
1634 }
1635 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1636 mutex_exit(slock);
1637
1638 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1639 /*
1640 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1641 * retrying is not a big deal because, in many cases,
1642 * uobj->uo_npages is already 0 here.
1643 */
1644 mutex_enter(slock);
1645 goto retry;
1646 }
1647
1648 if (has_trans) {
1649 if (need_wapbl)
1650 WAPBL_END(vp->v_mount);
1651 fstrans_done(vp->v_mount);
1652 }
1653
1654 return (error);
1655 }
1656
1657 #ifdef XIP
1658 int
1659 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1660 int flags, struct vm_page **busypg)
1661 {
1662 struct uvm_object *uobj = &vp->v_uobj;
1663 #ifdef DIAGNOSTIC
1664 struct genfs_node * const gp = VTOG(vp);
1665 #endif
1666
1667 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1668
1669 KASSERT(mutex_owned(&uobj->vmobjlock));
1670 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1671 KASSERT(vp->v_numoutput == 0);
1672 KASSERT(gp->g_dirtygen == 0);
1673
1674 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1675 vp, uobj->uo_npages, startoff, endoff - startoff);
1676
1677 /*
1678 * XIP pages are read-only, and never become dirty. They're also never
1679 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1680 * pages, so we ignore them.
1681 */
1682 if ((flags & PGO_FREE) == 0)
1683 goto done;
1684
1685 /*
1686 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1687 * mappings of both XIP pages and XIP zero pages.
1688 *
1689 * Zero page is freed when one of its mapped offset is freed, even if
1690 * one file (vnode) has many holes and mapping its zero page to all
1691 * of those hole pages.
1692 *
1693 * We don't know which pages are currently mapped in the given vnode,
1694 * because XIP pages are not added to vnode. What we can do is to
1695 * locate pages by querying the filesystem as done in getpages. Call
1696 * genfs_do_getpages_xip_io().
1697 */
1698
1699 off_t off, eof;
1700
1701 off = trunc_page(startoff);
1702 if (endoff == 0 || (flags & PGO_ALLPAGES))
1703 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1704 else
1705 eof = endoff;
1706
1707 while (off < eof) {
1708 int npages, orignpages, error, i;
1709 struct vm_page *pgs[maxpages], *pg;
1710
1711 npages = round_page(eof - off) >> PAGE_SHIFT;
1712 if (npages > maxpages)
1713 npages = maxpages;
1714
1715 orignpages = npages;
1716 KASSERT(mutex_owned(&uobj->vmobjlock));
1717 mutex_exit(&uobj->vmobjlock);
1718 error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
1719 VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
1720 KASSERT(error == 0);
1721 KASSERT(npages == orignpages);
1722 mutex_enter(&uobj->vmobjlock);
1723 for (i = 0; i < npages; i++) {
1724 pg = pgs[i];
1725 if (pg == NULL || pg == PGO_DONTCARE)
1726 continue;
1727 /*
1728 * Freeing normal XIP pages; nothing to do.
1729 */
1730 pmap_page_protect(pg, VM_PROT_NONE);
1731 KASSERT((pg->flags & PG_RDONLY) != 0);
1732 KASSERT((pg->flags & PG_CLEAN) != 0);
1733 KASSERT((pg->flags & PG_FAKE) == 0);
1734 KASSERT((pg->flags & PG_DEVICE) != 0);
1735 pg->flags &= ~PG_BUSY;
1736 }
1737 off += npages << PAGE_SHIFT;
1738 }
1739
1740 KASSERT(uobj->uo_npages == 0);
1741
1742 done:
1743 KASSERT(mutex_owned(&uobj->vmobjlock));
1744 mutex_exit(&uobj->vmobjlock);
1745 return 0;
1746 }
1747 #endif
1748
1749 int
1750 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1751 {
1752 off_t off;
1753 vaddr_t kva;
1754 size_t len;
1755 int error;
1756 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1757
1758 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1759 vp, pgs, npages, flags);
1760
1761 off = pgs[0]->offset;
1762 kva = uvm_pagermapin(pgs, npages,
1763 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1764 len = npages << PAGE_SHIFT;
1765
1766 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1767 uvm_aio_biodone);
1768
1769 return error;
1770 }
1771
1772 int
1773 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1774 {
1775 off_t off;
1776 vaddr_t kva;
1777 size_t len;
1778 int error;
1779 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1780
1781 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1782 vp, pgs, npages, flags);
1783
1784 off = pgs[0]->offset;
1785 kva = uvm_pagermapin(pgs, npages,
1786 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1787 len = npages << PAGE_SHIFT;
1788
1789 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1790 uvm_aio_biodone);
1791
1792 return error;
1793 }
1794
1795 /*
1796 * Backend routine for doing I/O to vnode pages. Pages are already locked
1797 * and mapped into kernel memory. Here we just look up the underlying
1798 * device block addresses and call the strategy routine.
1799 */
1800
1801 static int
1802 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1803 enum uio_rw rw, void (*iodone)(struct buf *))
1804 {
1805 int s, error;
1806 int fs_bshift, dev_bshift;
1807 off_t eof, offset, startoffset;
1808 size_t bytes, iobytes, skipbytes;
1809 struct buf *mbp, *bp;
1810 const bool async = (flags & PGO_SYNCIO) == 0;
1811 const bool iowrite = rw == UIO_WRITE;
1812 const int brw = iowrite ? B_WRITE : B_READ;
1813 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1814
1815 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1816 vp, kva, len, flags);
1817
1818 KASSERT(vp->v_size <= vp->v_writesize);
1819 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1820 if (vp->v_type != VBLK) {
1821 fs_bshift = vp->v_mount->mnt_fs_bshift;
1822 dev_bshift = vp->v_mount->mnt_dev_bshift;
1823 } else {
1824 fs_bshift = DEV_BSHIFT;
1825 dev_bshift = DEV_BSHIFT;
1826 }
1827 error = 0;
1828 startoffset = off;
1829 bytes = MIN(len, eof - startoffset);
1830 skipbytes = 0;
1831 KASSERT(bytes != 0);
1832
1833 if (iowrite) {
1834 mutex_enter(&vp->v_interlock);
1835 vp->v_numoutput += 2;
1836 mutex_exit(&vp->v_interlock);
1837 }
1838 mbp = getiobuf(vp, true);
1839 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1840 vp, mbp, vp->v_numoutput, bytes);
1841 mbp->b_bufsize = len;
1842 mbp->b_data = (void *)kva;
1843 mbp->b_resid = mbp->b_bcount = bytes;
1844 mbp->b_cflags = BC_BUSY | BC_AGE;
1845 if (async) {
1846 mbp->b_flags = brw | B_ASYNC;
1847 mbp->b_iodone = iodone;
1848 } else {
1849 mbp->b_flags = brw;
1850 mbp->b_iodone = NULL;
1851 }
1852 if (curlwp == uvm.pagedaemon_lwp)
1853 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1854 else if (async)
1855 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1856 else
1857 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1858
1859 bp = NULL;
1860 for (offset = startoffset;
1861 bytes > 0;
1862 offset += iobytes, bytes -= iobytes) {
1863 int run;
1864 daddr_t lbn, blkno;
1865 struct vnode *devvp;
1866
1867 /*
1868 * bmap the file to find out the blkno to read from and
1869 * how much we can read in one i/o. if bmap returns an error,
1870 * skip the rest of the top-level i/o.
1871 */
1872
1873 lbn = offset >> fs_bshift;
1874 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1875 if (error) {
1876 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1877 lbn,error,0,0);
1878 skipbytes += bytes;
1879 bytes = 0;
1880 goto loopdone;
1881 }
1882
1883 /*
1884 * see how many pages can be read with this i/o.
1885 * reduce the i/o size if necessary to avoid
1886 * overwriting pages with valid data.
1887 */
1888
1889 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1890 bytes);
1891
1892 /*
1893 * if this block isn't allocated, zero it instead of
1894 * reading it. unless we are going to allocate blocks,
1895 * mark the pages we zeroed PG_RDONLY.
1896 */
1897
1898 if (blkno == (daddr_t)-1) {
1899 if (!iowrite) {
1900 memset((char *)kva + (offset - startoffset), 0,
1901 iobytes);
1902 }
1903 skipbytes += iobytes;
1904 continue;
1905 }
1906
1907 /*
1908 * allocate a sub-buf for this piece of the i/o
1909 * (or just use mbp if there's only 1 piece),
1910 * and start it going.
1911 */
1912
1913 if (offset == startoffset && iobytes == bytes) {
1914 bp = mbp;
1915 } else {
1916 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1917 vp, bp, vp->v_numoutput, 0);
1918 bp = getiobuf(vp, true);
1919 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1920 }
1921 bp->b_lblkno = 0;
1922
1923 /* adjust physical blkno for partial blocks */
1924 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1925 dev_bshift);
1926
1927 UVMHIST_LOG(ubchist,
1928 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1929 bp, offset, bp->b_bcount, bp->b_blkno);
1930
1931 VOP_STRATEGY(devvp, bp);
1932 }
1933
1934 loopdone:
1935 if (skipbytes) {
1936 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1937 }
1938 nestiobuf_done(mbp, skipbytes, error);
1939 if (async) {
1940 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1941 return (0);
1942 }
1943 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1944 error = biowait(mbp);
1945 s = splbio();
1946 (*iodone)(mbp);
1947 splx(s);
1948 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1949 return (error);
1950 }
1951
1952 int
1953 genfs_compat_getpages(void *v)
1954 {
1955 struct vop_getpages_args /* {
1956 struct vnode *a_vp;
1957 voff_t a_offset;
1958 struct vm_page **a_m;
1959 int *a_count;
1960 int a_centeridx;
1961 vm_prot_t a_access_type;
1962 int a_advice;
1963 int a_flags;
1964 } */ *ap = v;
1965
1966 off_t origoffset;
1967 struct vnode *vp = ap->a_vp;
1968 struct uvm_object *uobj = &vp->v_uobj;
1969 struct vm_page *pg, **pgs;
1970 vaddr_t kva;
1971 int i, error, orignpages, npages;
1972 struct iovec iov;
1973 struct uio uio;
1974 kauth_cred_t cred = curlwp->l_cred;
1975 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1976
1977 error = 0;
1978 origoffset = ap->a_offset;
1979 orignpages = *ap->a_count;
1980 pgs = ap->a_m;
1981
1982 if (ap->a_flags & PGO_LOCKED) {
1983 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1984 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1985
1986 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1987 if (error == 0 && memwrite) {
1988 genfs_markdirty(vp);
1989 }
1990 return error;
1991 }
1992 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1993 mutex_exit(&uobj->vmobjlock);
1994 return EINVAL;
1995 }
1996 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1997 mutex_exit(&uobj->vmobjlock);
1998 return 0;
1999 }
2000 npages = orignpages;
2001 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
2002 mutex_exit(&uobj->vmobjlock);
2003 kva = uvm_pagermapin(pgs, npages,
2004 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
2005 for (i = 0; i < npages; i++) {
2006 pg = pgs[i];
2007 if ((pg->flags & PG_FAKE) == 0) {
2008 continue;
2009 }
2010 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
2011 iov.iov_len = PAGE_SIZE;
2012 uio.uio_iov = &iov;
2013 uio.uio_iovcnt = 1;
2014 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
2015 uio.uio_rw = UIO_READ;
2016 uio.uio_resid = PAGE_SIZE;
2017 UIO_SETUP_SYSSPACE(&uio);
2018 /* XXX vn_lock */
2019 error = VOP_READ(vp, &uio, 0, cred);
2020 if (error) {
2021 break;
2022 }
2023 if (uio.uio_resid) {
2024 memset(iov.iov_base, 0, uio.uio_resid);
2025 }
2026 }
2027 uvm_pagermapout(kva, npages);
2028 mutex_enter(&uobj->vmobjlock);
2029 mutex_enter(&uvm_pageqlock);
2030 for (i = 0; i < npages; i++) {
2031 pg = pgs[i];
2032 if (error && (pg->flags & PG_FAKE) != 0) {
2033 pg->flags |= PG_RELEASED;
2034 } else {
2035 pmap_clear_modify(pg);
2036 uvm_pageactivate(pg);
2037 }
2038 }
2039 if (error) {
2040 uvm_page_unbusy(pgs, npages);
2041 }
2042 mutex_exit(&uvm_pageqlock);
2043 if (error == 0 && memwrite) {
2044 genfs_markdirty(vp);
2045 }
2046 mutex_exit(&uobj->vmobjlock);
2047 return error;
2048 }
2049
2050 int
2051 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
2052 int flags)
2053 {
2054 off_t offset;
2055 struct iovec iov;
2056 struct uio uio;
2057 kauth_cred_t cred = curlwp->l_cred;
2058 struct buf *bp;
2059 vaddr_t kva;
2060 int error;
2061
2062 offset = pgs[0]->offset;
2063 kva = uvm_pagermapin(pgs, npages,
2064 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
2065
2066 iov.iov_base = (void *)kva;
2067 iov.iov_len = npages << PAGE_SHIFT;
2068 uio.uio_iov = &iov;
2069 uio.uio_iovcnt = 1;
2070 uio.uio_offset = offset;
2071 uio.uio_rw = UIO_WRITE;
2072 uio.uio_resid = npages << PAGE_SHIFT;
2073 UIO_SETUP_SYSSPACE(&uio);
2074 /* XXX vn_lock */
2075 error = VOP_WRITE(vp, &uio, 0, cred);
2076
2077 mutex_enter(&vp->v_interlock);
2078 vp->v_numoutput++;
2079 mutex_exit(&vp->v_interlock);
2080
2081 bp = getiobuf(vp, true);
2082 bp->b_cflags = BC_BUSY | BC_AGE;
2083 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
2084 bp->b_data = (char *)kva;
2085 bp->b_bcount = npages << PAGE_SHIFT;
2086 bp->b_bufsize = npages << PAGE_SHIFT;
2087 bp->b_resid = 0;
2088 bp->b_error = error;
2089 uvm_aio_aiodone(bp);
2090 return (error);
2091 }
2092
2093 /*
2094 * Process a uio using direct I/O. If we reach a part of the request
2095 * which cannot be processed in this fashion for some reason, just return.
2096 * The caller must handle some additional part of the request using
2097 * buffered I/O before trying direct I/O again.
2098 */
2099
2100 void
2101 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
2102 {
2103 struct vmspace *vs;
2104 struct iovec *iov;
2105 vaddr_t va;
2106 size_t len;
2107 const int mask = DEV_BSIZE - 1;
2108 int error;
2109 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
2110 (ioflag & IO_JOURNALLOCKED) == 0);
2111
2112 /*
2113 * We only support direct I/O to user space for now.
2114 */
2115
2116 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
2117 return;
2118 }
2119
2120 /*
2121 * If the vnode is mapped, we would need to get the getpages lock
2122 * to stabilize the bmap, but then we would get into trouble whil e
2123 * locking the pages if the pages belong to this same vnode (or a
2124 * multi-vnode cascade to the same effect). Just fall back to
2125 * buffered I/O if the vnode is mapped to avoid this mess.
2126 */
2127
2128 if (vp->v_vflag & VV_MAPPED) {
2129 return;
2130 }
2131
2132 if (need_wapbl) {
2133 error = WAPBL_BEGIN(vp->v_mount);
2134 if (error)
2135 return;
2136 }
2137
2138 /*
2139 * Do as much of the uio as possible with direct I/O.
2140 */
2141
2142 vs = uio->uio_vmspace;
2143 while (uio->uio_resid) {
2144 iov = uio->uio_iov;
2145 if (iov->iov_len == 0) {
2146 uio->uio_iov++;
2147 uio->uio_iovcnt--;
2148 continue;
2149 }
2150 va = (vaddr_t)iov->iov_base;
2151 len = MIN(iov->iov_len, genfs_maxdio);
2152 len &= ~mask;
2153
2154 /*
2155 * If the next chunk is smaller than DEV_BSIZE or extends past
2156 * the current EOF, then fall back to buffered I/O.
2157 */
2158
2159 if (len == 0 || uio->uio_offset + len > vp->v_size) {
2160 break;
2161 }
2162
2163 /*
2164 * Check alignment. The file offset must be at least
2165 * sector-aligned. The exact constraint on memory alignment
2166 * is very hardware-dependent, but requiring sector-aligned
2167 * addresses there too is safe.
2168 */
2169
2170 if (uio->uio_offset & mask || va & mask) {
2171 break;
2172 }
2173 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2174 uio->uio_rw);
2175 if (error) {
2176 break;
2177 }
2178 iov->iov_base = (char *)iov->iov_base + len;
2179 iov->iov_len -= len;
2180 uio->uio_offset += len;
2181 uio->uio_resid -= len;
2182 }
2183
2184 if (need_wapbl)
2185 WAPBL_END(vp->v_mount);
2186 }
2187
2188 /*
2189 * Iodone routine for direct I/O. We don't do much here since the request is
2190 * always synchronous, so the caller will do most of the work after biowait().
2191 */
2192
2193 static void
2194 genfs_dio_iodone(struct buf *bp)
2195 {
2196
2197 KASSERT((bp->b_flags & B_ASYNC) == 0);
2198 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2199 mutex_enter(bp->b_objlock);
2200 vwakeup(bp);
2201 mutex_exit(bp->b_objlock);
2202 }
2203 putiobuf(bp);
2204 }
2205
2206 /*
2207 * Process one chunk of a direct I/O request.
2208 */
2209
2210 static int
2211 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2212 off_t off, enum uio_rw rw)
2213 {
2214 struct vm_map *map;
2215 struct pmap *upm, *kpm;
2216 size_t klen = round_page(uva + len) - trunc_page(uva);
2217 off_t spoff, epoff;
2218 vaddr_t kva, puva;
2219 paddr_t pa;
2220 vm_prot_t prot;
2221 int error, rv, poff, koff;
2222 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2223 (rw == UIO_WRITE ? PGO_FREE : 0);
2224
2225 /*
2226 * For writes, verify that this range of the file already has fully
2227 * allocated backing store. If there are any holes, just punt and
2228 * make the caller take the buffered write path.
2229 */
2230
2231 if (rw == UIO_WRITE) {
2232 daddr_t lbn, elbn, blkno;
2233 int bsize, bshift, run;
2234
2235 bshift = vp->v_mount->mnt_fs_bshift;
2236 bsize = 1 << bshift;
2237 lbn = off >> bshift;
2238 elbn = (off + len + bsize - 1) >> bshift;
2239 while (lbn < elbn) {
2240 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2241 if (error) {
2242 return error;
2243 }
2244 if (blkno == (daddr_t)-1) {
2245 return ENOSPC;
2246 }
2247 lbn += 1 + run;
2248 }
2249 }
2250
2251 /*
2252 * Flush any cached pages for parts of the file that we're about to
2253 * access. If we're writing, invalidate pages as well.
2254 */
2255
2256 spoff = trunc_page(off);
2257 epoff = round_page(off + len);
2258 mutex_enter(&vp->v_interlock);
2259 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2260 if (error) {
2261 return error;
2262 }
2263
2264 /*
2265 * Wire the user pages and remap them into kernel memory.
2266 */
2267
2268 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2269 error = uvm_vslock(vs, (void *)uva, len, prot);
2270 if (error) {
2271 return error;
2272 }
2273
2274 map = &vs->vm_map;
2275 upm = vm_map_pmap(map);
2276 kpm = vm_map_pmap(kernel_map);
2277 kva = uvm_km_alloc(kernel_map, klen, 0,
2278 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2279 puva = trunc_page(uva);
2280 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2281 rv = pmap_extract(upm, puva + poff, &pa);
2282 KASSERT(rv);
2283 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2284 }
2285 pmap_update(kpm);
2286
2287 /*
2288 * Do the I/O.
2289 */
2290
2291 koff = uva - trunc_page(uva);
2292 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2293 genfs_dio_iodone);
2294
2295 /*
2296 * Tear down the kernel mapping.
2297 */
2298
2299 pmap_remove(kpm, kva, kva + klen);
2300 pmap_update(kpm);
2301 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2302
2303 /*
2304 * Unwire the user pages.
2305 */
2306
2307 uvm_vsunlock(vs, (void *)uva, len);
2308 return error;
2309 }
2310
2311