genfs_io.c revision 1.36.2.51 1 /* $NetBSD: genfs_io.c,v 1.36.2.51 2010/11/20 07:47:34 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.51 2010/11/20 07:47:34 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef XIP
63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
64 int *, int, vm_prot_t, int, int, const int);
65 static int genfs_do_getpages_xip_io_done(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int, const int);
67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
68 struct vm_page **);
69 #endif
70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
71 off_t, enum uio_rw);
72 static void genfs_dio_iodone(struct buf *);
73
74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
75 void (*)(struct buf *));
76 static void genfs_rel_pages(struct vm_page **, int);
77 static void genfs_markdirty(struct vnode *);
78
79 int genfs_maxdio = MAXPHYS;
80
81 static void
82 genfs_rel_pages(struct vm_page **pgs, int npages)
83 {
84 int i;
85
86 for (i = 0; i < npages; i++) {
87 struct vm_page *pg = pgs[i];
88
89 if (pg == NULL || pg == PGO_DONTCARE)
90 continue;
91 if (pg->flags & PG_FAKE) {
92 pg->flags |= PG_RELEASED;
93 }
94 }
95 mutex_enter(&uvm_pageqlock);
96 uvm_page_unbusy(pgs, npages);
97 mutex_exit(&uvm_pageqlock);
98 }
99
100 static void
101 genfs_markdirty(struct vnode *vp)
102 {
103 struct genfs_node * const gp = VTOG(vp);
104
105 KASSERT(mutex_owned(&vp->v_interlock));
106 gp->g_dirtygen++;
107 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
108 vn_syncer_add_to_worklist(vp, filedelay);
109 }
110 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
111 vp->v_iflag |= VI_WRMAPDIRTY;
112 }
113 }
114
115 /*
116 * generic VM getpages routine.
117 * Return PG_BUSY pages for the given range,
118 * reading from backing store if necessary.
119 */
120
121 int
122 genfs_getpages(void *v)
123 {
124 struct vop_getpages_args /* {
125 struct vnode *a_vp;
126 voff_t a_offset;
127 struct vm_page **a_m;
128 int *a_count;
129 int a_centeridx;
130 vm_prot_t a_access_type;
131 int a_advice;
132 int a_flags;
133 } */ * const ap = v;
134
135 off_t diskeof, memeof;
136 int i, error, npages;
137 const int flags = ap->a_flags;
138 struct vnode * const vp = ap->a_vp;
139 struct uvm_object * const uobj = &vp->v_uobj;
140 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
141 const bool async = (flags & PGO_SYNCIO) == 0;
142 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
143 bool has_trans = false;
144 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
145 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
146 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
147 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
148
149 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
150 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
151
152 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
153 vp->v_type == VLNK || vp->v_type == VBLK);
154
155 startover:
156 error = 0;
157 const voff_t origvsize = vp->v_size;
158 const off_t origoffset = ap->a_offset;
159 const int orignpages = *ap->a_count;
160
161 GOP_SIZE(vp, origvsize, &diskeof, 0);
162 if (flags & PGO_PASTEOF) {
163 off_t newsize;
164 #if defined(DIAGNOSTIC)
165 off_t writeeof;
166 #endif /* defined(DIAGNOSTIC) */
167
168 newsize = MAX(origvsize,
169 origoffset + (orignpages << PAGE_SHIFT));
170 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
171 #if defined(DIAGNOSTIC)
172 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
173 if (newsize > round_page(writeeof)) {
174 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
175 __func__, newsize, round_page(writeeof));
176 }
177 #endif /* defined(DIAGNOSTIC) */
178 } else {
179 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
180 }
181 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
182 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
183 KASSERT(orignpages > 0);
184
185 /*
186 * Bounds-check the request.
187 */
188
189 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
190 if ((flags & PGO_LOCKED) == 0) {
191 mutex_exit(&uobj->vmobjlock);
192 }
193 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
194 origoffset, *ap->a_count, memeof,0);
195 error = EINVAL;
196 goto out_err;
197 }
198
199 /* uobj is locked */
200
201 if ((flags & PGO_NOTIMESTAMP) == 0 &&
202 (vp->v_type != VBLK ||
203 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
204 int updflags = 0;
205
206 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
207 updflags = GOP_UPDATE_ACCESSED;
208 }
209 if (memwrite) {
210 updflags |= GOP_UPDATE_MODIFIED;
211 }
212 if (updflags != 0) {
213 GOP_MARKUPDATE(vp, updflags);
214 }
215 }
216
217 /*
218 * For PGO_LOCKED requests, just return whatever's in memory.
219 */
220
221 if (flags & PGO_LOCKED) {
222 #if 0
223 genfs_getpages_mem();
224 } else {
225 genfs_getpages_io();
226 }
227 }
228
229 int
230 genfs_getpages_mem()
231 {
232 #endif
233 int nfound;
234 struct vm_page *pg;
235
236 #ifdef XIP
237 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
238 *ap->a_count = 0;
239 return 0;
240 }
241 #endif
242
243 KASSERT(!glocked);
244 npages = *ap->a_count;
245 #if defined(DEBUG)
246 for (i = 0; i < npages; i++) {
247 pg = ap->a_m[i];
248 KASSERT(pg == NULL || pg == PGO_DONTCARE);
249 }
250 #endif /* defined(DEBUG) */
251 nfound = uvn_findpages(uobj, origoffset, &npages,
252 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
253 KASSERT(npages == *ap->a_count);
254 if (nfound == 0) {
255 error = EBUSY;
256 goto out_err;
257 }
258 if (!genfs_node_rdtrylock(vp)) {
259 genfs_rel_pages(ap->a_m, npages);
260
261 /*
262 * restore the array.
263 */
264
265 for (i = 0; i < npages; i++) {
266 pg = ap->a_m[i];
267
268 if (pg != NULL && pg != PGO_DONTCARE) {
269 ap->a_m[i] = NULL;
270 }
271 KASSERT(pg == NULL || pg == PGO_DONTCARE);
272 }
273 } else {
274 genfs_node_unlock(vp);
275 }
276 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
277 if (error == 0 && memwrite) {
278 genfs_markdirty(vp);
279 }
280 goto out_err;
281 }
282 mutex_exit(&uobj->vmobjlock);
283 #if 0
284 }
285
286 int
287 genfs_getpages_io()
288 {
289 #endif
290 /*
291 * find the requested pages and make some simple checks.
292 * leave space in the page array for a whole block.
293 */
294
295 #define vp2fs_bshift(vp) \
296 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
297 #define vp2dev_bshift(vp) \
298 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
299
300 const int fs_bshift = vp2fs_bshift(vp);
301 const int dev_bshift = vp2dev_bshift(vp);
302 const int fs_bsize = 1 << fs_bshift;
303 #define blk_mask (fs_bsize - 1)
304 #define trunc_blk(x) ((x) & ~blk_mask)
305 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
306
307 const int orignmempages = MIN(orignpages,
308 round_page(memeof - origoffset) >> PAGE_SHIFT);
309 npages = orignmempages;
310 const off_t startoffset = trunc_blk(origoffset);
311 const off_t endoffset = MIN(
312 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
313 round_page(memeof));
314 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
315
316 const int pgs_size = sizeof(struct vm_page *) *
317 ((endoffset - startoffset) >> PAGE_SHIFT);
318 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
319
320 if (pgs_size > sizeof(pgs_onstack)) {
321 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
322 if (pgs == NULL) {
323 pgs = pgs_onstack;
324 error = ENOMEM;
325 goto out_err;
326 }
327 } else {
328 pgs = pgs_onstack;
329 (void)memset(pgs, 0, pgs_size);
330 }
331
332 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
333 ridx, npages, startoffset, endoffset);
334 #if 0
335 }
336
337 int
338 genfs_getpages_io_relock()
339 {
340 #endif
341 if (!has_trans) {
342 fstrans_start(vp->v_mount, FSTRANS_SHARED);
343 has_trans = true;
344 }
345
346 /*
347 * hold g_glock to prevent a race with truncate.
348 *
349 * check if our idea of v_size is still valid.
350 */
351
352 KASSERT(!glocked || genfs_node_wrlocked(vp));
353 if (!glocked) {
354 if (blockalloc) {
355 genfs_node_wrlock(vp);
356 } else {
357 genfs_node_rdlock(vp);
358 }
359 }
360 mutex_enter(&uobj->vmobjlock);
361 if (vp->v_size < origvsize) {
362 if (!glocked) {
363 genfs_node_unlock(vp);
364 }
365 if (pgs != pgs_onstack)
366 kmem_free(pgs, pgs_size);
367 goto startover;
368 }
369 #if 0
370 }
371
372 int
373 genfs_getpages_io_findpages()
374 {
375 #endif
376 #ifdef XIP
377 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
378 goto genfs_getpages_io_read_allocpages_done;
379 #endif
380
381 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
382 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
383 if (!glocked) {
384 genfs_node_unlock(vp);
385 }
386 KASSERT(async != 0);
387 genfs_rel_pages(&pgs[ridx], orignmempages);
388 mutex_exit(&uobj->vmobjlock);
389 error = EBUSY;
390 goto out_err_free;
391 }
392
393 /*
394 * if the pages are already resident, just return them.
395 */
396
397 for (i = 0; i < npages; i++) {
398 struct vm_page *pg = pgs[ridx + i];
399
400 if ((pg->flags & PG_FAKE) ||
401 (blockalloc && (pg->flags & PG_RDONLY))) {
402 break;
403 }
404 }
405 if (i == npages) {
406 if (!glocked) {
407 genfs_node_unlock(vp);
408 }
409 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
410 npages += ridx;
411 goto out;
412 }
413
414 /*
415 * if PGO_OVERWRITE is set, don't bother reading the pages.
416 */
417
418 if (overwrite) {
419 #if 0
420 genfs_getpages_io_overwrite();
421 } else {
422 genfs_getpages_io_read();
423 }
424 }
425
426 int
427 genfs_getpages_io_overwrite()
428 {
429 {
430 #endif
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
435
436 for (i = 0; i < npages; i++) {
437 struct vm_page *pg = pgs[ridx + i];
438
439 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
440 }
441 npages += ridx;
442 goto out;
443 }
444 #if 0
445 }
446
447 int
448 genfs_getpages_io_read()
449 {
450 #endif
451 /*
452 * the page wasn't resident and we're not overwriting,
453 * so we're going to have to do some i/o.
454 * find any additional pages needed to cover the expanded range.
455 */
456 #if 0
457 }
458
459 int
460 genfs_getpages_io_read_allocpages()
461 {
462 #endif
463 npages = (endoffset - startoffset) >> PAGE_SHIFT;
464 if (startoffset != origoffset || npages != orignmempages) {
465 int npgs;
466
467 /*
468 * we need to avoid deadlocks caused by locking
469 * additional pages at lower offsets than pages we
470 * already have locked. unlock them all and start over.
471 */
472
473 genfs_rel_pages(&pgs[ridx], orignmempages);
474 memset(pgs, 0, pgs_size);
475
476 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
477 startoffset, endoffset, 0,0);
478 npgs = npages;
479 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
480 async ? UFP_NOWAIT : UFP_ALL) != npages) {
481 if (!glocked) {
482 genfs_node_unlock(vp);
483 }
484 KASSERT(async != 0);
485 genfs_rel_pages(pgs, npages);
486 mutex_exit(&uobj->vmobjlock);
487 error = EBUSY;
488 goto out_err_free;
489 }
490 }
491 #ifdef XIP
492 genfs_getpages_io_read_allocpages_done:
493 #endif
494 #if 0
495 }
496
497 int
498 genfs_getpages_io_read_bio()
499 {
500 #endif
501 mutex_exit(&uobj->vmobjlock);
502
503 {
504 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
505 vaddr_t kva = 0;
506 struct buf *bp = NULL, *mbp = NULL;
507 bool sawhole = false;
508
509 /*
510 * read the desired page(s).
511 */
512
513 totalbytes = npages << PAGE_SHIFT;
514 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
515 tailbytes = totalbytes - bytes;
516 skipbytes = 0;
517
518 #if 1
519 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
520 goto genfs_getpages_bio_prepare_done;
521 #endif
522 #if 0
523 }
524
525 int
526 genfs_getpages_io_read_bio_prepare()
527 {
528 #endif
529 kva = uvm_pagermapin(pgs, npages,
530 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
531
532 mbp = getiobuf(vp, true);
533 mbp->b_bufsize = totalbytes;
534 mbp->b_data = (void *)kva;
535 mbp->b_resid = mbp->b_bcount = bytes;
536 mbp->b_cflags = BC_BUSY;
537 if (async) {
538 mbp->b_flags = B_READ | B_ASYNC;
539 mbp->b_iodone = uvm_aio_biodone;
540 } else {
541 mbp->b_flags = B_READ;
542 mbp->b_iodone = NULL;
543 }
544 if (async)
545 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
546 else
547 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
548 #if 0
549 }
550
551 #endif
552 #if 1
553 genfs_getpages_bio_prepare_done:
554 #endif
555
556 /*
557 * if EOF is in the middle of the range, zero the part past EOF.
558 * skip over pages which are not PG_FAKE since in that case they have
559 * valid data that we need to preserve.
560 */
561
562 tailstart = bytes;
563 while (tailbytes > 0) {
564 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
565
566 KASSERT(len <= tailbytes);
567 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
568 memset((void *)(kva + tailstart), 0, len);
569 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
570 kva, tailstart, len, 0);
571 }
572 tailstart += len;
573 tailbytes -= len;
574 }
575
576 #if 1
577 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
578 error = genfs_do_getpages_xip_io(
579 ap->a_vp,
580 ap->a_offset,
581 pgs,
582 ap->a_count,
583 ap->a_centeridx,
584 ap->a_access_type,
585 ap->a_advice,
586 ap->a_flags,
587 orignmempages);
588 if (0)
589 goto loopdone;
590 }
591 #endif
592 #if 0
593 }
594
595 int
596 genfs_getpages_io_read_bio_loop()
597 {
598 #endif
599 /*
600 * now loop over the pages, reading as needed.
601 */
602
603 bp = NULL;
604 off_t offset;
605 for (offset = startoffset;
606 bytes > 0;
607 offset += iobytes, bytes -= iobytes) {
608 int run;
609 daddr_t lbn, blkno;
610 int pidx;
611 struct vnode *devvp;
612
613 /*
614 * skip pages which don't need to be read.
615 */
616
617 pidx = (offset - startoffset) >> PAGE_SHIFT;
618 #ifdef XIP
619 if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
620 #endif
621 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
622 size_t b;
623
624 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
625 if ((pgs[pidx]->flags & PG_RDONLY)) {
626 sawhole = true;
627 }
628 b = MIN(PAGE_SIZE, bytes);
629 offset += b;
630 bytes -= b;
631 skipbytes += b;
632 pidx++;
633 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
634 offset, 0,0,0);
635 if (bytes == 0) {
636 goto loopdone;
637 }
638 }
639 #ifdef XIP
640 }
641 #endif
642
643 /*
644 * bmap the file to find out the blkno to read from and
645 * how much we can read in one i/o. if bmap returns an error,
646 * skip the rest of the top-level i/o.
647 */
648
649 lbn = offset >> fs_bshift;
650 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
651 if (error) {
652 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
653 lbn,error,0,0);
654 skipbytes += bytes;
655 bytes = 0;
656 goto loopdone;
657 }
658
659 /*
660 * see how many pages can be read with this i/o.
661 * reduce the i/o size if necessary to avoid
662 * overwriting pages with valid data.
663 */
664
665 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
666 bytes);
667 if (offset + iobytes > round_page(offset)) {
668 int pcount;
669
670 pcount = 1;
671 while ((pidx + pcount < npages) && (
672 #ifdef XIP
673 /*
674 * in XIP case, we don't know what page to read
675 * at this point!
676 */
677 ((ap->a_vp->v_vflag & VV_XIP) != 0) ||
678 #else
679 0 ||
680 #endif
681 (pgs[pidx + pcount]->flags & PG_FAKE))) {
682 pcount++;
683 }
684 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
685 (offset - trunc_page(offset)));
686 }
687
688 /*
689 * if this block isn't allocated, zero it instead of
690 * reading it. unless we are going to allocate blocks,
691 * mark the pages we zeroed PG_RDONLY.
692 */
693
694 if (blkno == (daddr_t)-1) {
695 #ifdef XIP
696 if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
697 #endif
698 int holepages = (round_page(offset + iobytes) -
699 trunc_page(offset)) >> PAGE_SHIFT;
700 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
701
702 KASSERT((ap->a_vp->v_vflag & VV_XIP) == 0);
703
704 sawhole = true;
705 memset((char *)kva + (offset - startoffset), 0,
706 iobytes);
707 skipbytes += iobytes;
708
709 for (i = 0; i < holepages; i++) {
710 if (memwrite) {
711 pgs[pidx + i]->flags &= ~PG_CLEAN;
712 }
713 if (!blockalloc) {
714 pgs[pidx + i]->flags |= PG_RDONLY;
715 }
716 }
717 #ifdef XIP
718 } else {
719 panic("XIP hole page is not supported yet");
720 }
721 #endif
722 continue;
723 }
724
725 #ifdef XIP
726 if ((ap->a_vp->v_vflag & VV_XIP) == 0) {
727 #endif
728 /*
729 * allocate a sub-buf for this piece of the i/o
730 * (or just use mbp if there's only 1 piece),
731 * and start it going.
732 */
733
734 KASSERT((ap->a_vp->v_vflag & VV_XIP) == 0);
735
736 if (offset == startoffset && iobytes == bytes) {
737 bp = mbp;
738 } else {
739 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
740 vp, bp, vp->v_numoutput, 0);
741 bp = getiobuf(vp, true);
742 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
743 }
744 bp->b_lblkno = 0;
745
746 /* adjust physical blkno for partial blocks */
747 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
748 dev_bshift);
749
750 UVMHIST_LOG(ubchist,
751 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
752 bp, offset, bp->b_bcount, bp->b_blkno);
753
754 VOP_STRATEGY(devvp, bp);
755 }
756 #ifdef XIP
757 else {
758 /*
759 * XIP page metadata assignment
760 * - Unallocated block is redirected to the dedicated zero'ed
761 * page.
762 */
763 const int npgs = MIN(
764 iobytes >> PAGE_SHIFT,
765 ((1 + run) << fs_bshift) >> PAGE_SHIFT);
766 const daddr_t blk_off = blkno << dev_bshift;
767 const daddr_t fs_off = origoffset - startoffset;
768
769 for (i = ridx + pidx; i < npgs; i++) {
770 const daddr_t pg_off = pidx << PAGE_SHIFT;
771 struct vm_page *pg;
772
773 UVMHIST_LOG(ubchist,
774 "xip blk_off=0x%lx fs_off=0x%lx pg_off=%lx",
775 (long)blk_off, (long)fs_off, (long)pg_off, 0);
776
777 pg = uvn_findpage_xip(devvp, &vp->v_uobj,
778 blk_off + fs_off + pg_off);
779 KASSERT(pg != NULL);
780 UVMHIST_LOG(ubchist,
781 "xip pgs %d => phys_addr=0x%lx (%p)",
782 i,
783 (long)pg->phys_addr,
784 pg,
785 0);
786 pgs[i] = pg;
787 }
788 }
789 #endif
790 }
791
792 loopdone:
793 #if 1
794 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
795 goto genfs_getpages_biodone_done;
796 }
797 #endif
798 #if 0
799
800 int
801 genfs_getpages_biodone()
802 {
803 #endif
804 nestiobuf_done(mbp, skipbytes, error);
805 if (async) {
806 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
807 if (!glocked) {
808 genfs_node_unlock(vp);
809 }
810 error = 0;
811 goto out_err_free;
812 }
813 if (bp != NULL) {
814 error = biowait(mbp);
815 }
816
817 /* Remove the mapping (make KVA available as soon as possible) */
818 uvm_pagermapout(kva, npages);
819
820 /*
821 * if this we encountered a hole then we have to do a little more work.
822 * for read faults, we marked the page PG_RDONLY so that future
823 * write accesses to the page will fault again.
824 * for write faults, we must make sure that the backing store for
825 * the page is completely allocated while the pages are locked.
826 */
827
828 if (!error && sawhole && blockalloc) {
829 /*
830 * XXX: This assumes that we come here only via
831 * the mmio path
832 */
833 if (vp->v_mount->mnt_wapbl) {
834 error = WAPBL_BEGIN(vp->v_mount);
835 }
836
837 if (!error) {
838 error = GOP_ALLOC(vp, startoffset,
839 npages << PAGE_SHIFT, 0, cred);
840 if (vp->v_mount->mnt_wapbl) {
841 WAPBL_END(vp->v_mount);
842 }
843 }
844
845 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
846 startoffset, npages << PAGE_SHIFT, error,0);
847 if (!error) {
848 for (i = 0; i < npages; i++) {
849 struct vm_page *pg = pgs[i];
850
851 if (pg == NULL) {
852 continue;
853 }
854 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
855 UVMHIST_LOG(ubchist, "mark dirty pg %p",
856 pg,0,0,0);
857 }
858 }
859 }
860
861 putiobuf(mbp);
862 #if 0
863 }
864
865 #endif
866 #if 1
867 genfs_getpages_biodone_done:
868 {}
869 #endif
870 }
871
872 if (!glocked) {
873 genfs_node_unlock(vp);
874 }
875
876 #if 1
877 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
878 error = genfs_do_getpages_xip_io_done(
879 ap->a_vp,
880 ap->a_offset,
881 pgs,
882 ap->a_count,
883 ap->a_centeridx,
884 ap->a_access_type,
885 ap->a_advice,
886 ap->a_flags,
887 orignmempages);
888 goto genfs_getpages_generic_io_done_done;
889 }
890 #endif
891 #if 0
892 else {
893 error = genfs_getpages_generic_io_done();
894 }
895 }
896
897 int
898 genfs_getpages_generic_io_done()
899 {
900 #endif
901
902 mutex_enter(&uobj->vmobjlock);
903
904 /*
905 * we're almost done! release the pages...
906 * for errors, we free the pages.
907 * otherwise we activate them and mark them as valid and clean.
908 * also, unbusy pages that were not actually requested.
909 */
910
911 if (error) {
912 for (i = 0; i < npages; i++) {
913 struct vm_page *pg = pgs[i];
914
915 if (pg == NULL) {
916 continue;
917 }
918 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
919 pg, pg->flags, 0,0);
920 if (pg->flags & PG_FAKE) {
921 pg->flags |= PG_RELEASED;
922 }
923 }
924 mutex_enter(&uvm_pageqlock);
925 uvm_page_unbusy(pgs, npages);
926 mutex_exit(&uvm_pageqlock);
927 mutex_exit(&uobj->vmobjlock);
928 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
929 goto out_err_free;
930 }
931
932 out:
933 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
934 error = 0;
935 mutex_enter(&uvm_pageqlock);
936 for (i = 0; i < npages; i++) {
937 struct vm_page *pg = pgs[i];
938 if (pg == NULL) {
939 continue;
940 }
941 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
942 pg, pg->flags, 0,0);
943 if (pg->flags & PG_FAKE && !overwrite) {
944 pg->flags &= ~(PG_FAKE);
945 pmap_clear_modify(pgs[i]);
946 }
947 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
948 if (i < ridx || i >= ridx + orignmempages || async) {
949 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
950 pg, pg->offset,0,0);
951 if (pg->flags & PG_WANTED) {
952 wakeup(pg);
953 }
954 if (pg->flags & PG_FAKE) {
955 KASSERT(overwrite);
956 uvm_pagezero(pg);
957 }
958 if (pg->flags & PG_RELEASED) {
959 uvm_pagefree(pg);
960 continue;
961 }
962 uvm_pageenqueue(pg);
963 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
964 UVM_PAGE_OWN(pg, NULL);
965 }
966 }
967 mutex_exit(&uvm_pageqlock);
968
969 if (memwrite) {
970 genfs_markdirty(vp);
971 }
972 mutex_exit(&uobj->vmobjlock);
973
974 #if 1
975 genfs_getpages_generic_io_done_done:
976 {}
977 #endif
978 if (ap->a_m != NULL) {
979 memcpy(ap->a_m, &pgs[ridx],
980 orignmempages * sizeof(struct vm_page *));
981 }
982 #if 0
983 }
984
985 #endif
986
987 out_err_free:
988 if (pgs != NULL && pgs != pgs_onstack)
989 kmem_free(pgs, pgs_size);
990 out_err:
991 if (has_trans)
992 fstrans_done(vp->v_mount);
993 return error;
994 }
995
996 #ifdef XIP
997 /*
998 * genfs_do_getpages_xip_io
999 * Return "direct pages" of XIP vnode. The block addresses of XIP
1000 * vnode pages are returned back to the VM fault handler as the
1001 * actually mapped physical addresses.
1002 */
1003 static int
1004 genfs_do_getpages_xip_io(
1005 struct vnode *vp,
1006 voff_t origoffset,
1007 struct vm_page **pps,
1008 int *npagesp,
1009 int centeridx,
1010 vm_prot_t access_type,
1011 int advice,
1012 int flags,
1013 const int orignmempages)
1014 {
1015 const int fs_bshift = vp2fs_bshift(vp);
1016 const int dev_bshift = vp2dev_bshift(vp);
1017 const int fs_bsize = 1 << fs_bshift;
1018
1019 int error;
1020 off_t off;
1021 int i;
1022
1023 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
1024
1025 KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
1026
1027 #ifdef UVMHIST
1028 const off_t startoffset = trunc_blk(origoffset);
1029 const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
1030 #endif
1031
1032 UVMHIST_LOG(ubchist, "xip npages=%d startoffset=%lx endoffset=%lx",
1033 orignmempages, (long)startoffset, (long)endoffset, 0);
1034
1035 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
1036
1037 off = origoffset;
1038 for (i = ridx; i < ridx + orignmempages; i++) {
1039 daddr_t blkno;
1040 int run;
1041 struct vnode *devvp;
1042
1043 KASSERT((off - origoffset) >> PAGE_SHIFT == i - ridx);
1044
1045 const daddr_t lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
1046
1047 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1048 KASSERT(error == 0);
1049 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
1050 (long)lbn, (long)blkno, run, 0);
1051
1052 const daddr_t blk_off = blkno << dev_bshift;
1053 const daddr_t fs_off = origoffset - (lbn << fs_bshift);
1054
1055 /*
1056 * XIP page metadata assignment
1057 * - Unallocated block is redirected to the dedicated zero'ed
1058 * page.
1059 */
1060 if (blkno < 0) {
1061 panic("XIP hole is not supported yet!");
1062 } else {
1063 KASSERT(off - origoffset == (i - ridx) << PAGE_SHIFT);
1064
1065 const daddr_t pg_off = (i - ridx) << PAGE_SHIFT;
1066
1067 UVMHIST_LOG(ubchist,
1068 "xip blk_off=%lx fs_off=%lx pg_off=%lx",
1069 (long)blk_off, (long)fs_off, (long)pg_off, 0);
1070
1071 pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
1072 blk_off + fs_off + pg_off);
1073 KASSERT(pps[i] != NULL);
1074 }
1075
1076 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
1077 i,
1078 (long)pps[i]->phys_addr,
1079 pps[i],
1080 0);
1081
1082 off += PAGE_SIZE;
1083 }
1084
1085 return 0;
1086 }
1087
1088 int
1089 genfs_do_getpages_xip_io_done(
1090 struct vnode *vp,
1091 voff_t origoffset,
1092 struct vm_page **pps,
1093 int *npagesp,
1094 int centeridx,
1095 vm_prot_t access_type,
1096 int advice,
1097 int flags,
1098 const int orignmempages)
1099 {
1100 struct uvm_object * const uobj = &vp->v_uobj;
1101 int i;
1102
1103 const int fs_bshift = vp2fs_bshift(vp);
1104 const int fs_bsize = 1 << fs_bshift;
1105
1106 const off_t startoffset = trunc_blk(origoffset);
1107 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
1108
1109 mutex_enter(&uobj->vmobjlock);
1110
1111 for (i = ridx; i < ridx + orignmempages; i++) {
1112 struct vm_page *pg = pps[i];
1113
1114 KASSERT((pg->flags & PG_RDONLY) != 0);
1115 KASSERT((pg->flags & PG_BUSY) == 0);
1116 KASSERT((pg->flags & PG_CLEAN) != 0);
1117 KASSERT((pg->flags & PG_DEVICE) != 0);
1118 pg->flags |= PG_BUSY;
1119 pg->flags &= ~PG_FAKE;
1120 pg->uobject = &vp->v_uobj;
1121 }
1122
1123 mutex_exit(&uobj->vmobjlock);
1124
1125 *npagesp = orignmempages;
1126
1127 return 0;
1128 }
1129 #endif
1130
1131 /*
1132 * generic VM putpages routine.
1133 * Write the given range of pages to backing store.
1134 *
1135 * => "offhi == 0" means flush all pages at or after "offlo".
1136 * => object should be locked by caller. we return with the
1137 * object unlocked.
1138 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1139 * thus, a caller might want to unlock higher level resources
1140 * (e.g. vm_map) before calling flush.
1141 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
1142 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1143 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1144 * that new pages are inserted on the tail end of the list. thus,
1145 * we can make a complete pass through the object in one go by starting
1146 * at the head and working towards the tail (new pages are put in
1147 * front of us).
1148 * => NOTE: we are allowed to lock the page queues, so the caller
1149 * must not be holding the page queue lock.
1150 *
1151 * note on "cleaning" object and PG_BUSY pages:
1152 * this routine is holding the lock on the object. the only time
1153 * that it can run into a PG_BUSY page that it does not own is if
1154 * some other process has started I/O on the page (e.g. either
1155 * a pagein, or a pageout). if the PG_BUSY page is being paged
1156 * in, then it can not be dirty (!PG_CLEAN) because no one has
1157 * had a chance to modify it yet. if the PG_BUSY page is being
1158 * paged out then it means that someone else has already started
1159 * cleaning the page for us (how nice!). in this case, if we
1160 * have syncio specified, then after we make our pass through the
1161 * object we need to wait for the other PG_BUSY pages to clear
1162 * off (i.e. we need to do an iosync). also note that once a
1163 * page is PG_BUSY it must stay in its object until it is un-busyed.
1164 *
1165 * note on page traversal:
1166 * we can traverse the pages in an object either by going down the
1167 * linked list in "uobj->memq", or we can go over the address range
1168 * by page doing hash table lookups for each address. depending
1169 * on how many pages are in the object it may be cheaper to do one
1170 * or the other. we set "by_list" to true if we are using memq.
1171 * if the cost of a hash lookup was equal to the cost of the list
1172 * traversal we could compare the number of pages in the start->stop
1173 * range to the total number of pages in the object. however, it
1174 * seems that a hash table lookup is more expensive than the linked
1175 * list traversal, so we multiply the number of pages in the
1176 * range by an estimate of the relatively higher cost of the hash lookup.
1177 */
1178
1179 int
1180 genfs_putpages(void *v)
1181 {
1182 struct vop_putpages_args /* {
1183 struct vnode *a_vp;
1184 voff_t a_offlo;
1185 voff_t a_offhi;
1186 int a_flags;
1187 } */ * const ap = v;
1188
1189 #ifdef XIP
1190 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1191 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1192 ap->a_flags, NULL);
1193 else
1194 #endif
1195 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1196 ap->a_flags, NULL);
1197 }
1198
1199 int
1200 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1201 int origflags, struct vm_page **busypg)
1202 {
1203 struct uvm_object * const uobj = &vp->v_uobj;
1204 kmutex_t * const slock = &uobj->vmobjlock;
1205 off_t off;
1206 /* Even for strange MAXPHYS, the shift rounds down to a page */
1207 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1208 int i, error, npages, nback;
1209 int freeflag;
1210 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1211 bool wasclean, by_list, needs_clean, yld;
1212 bool async = (origflags & PGO_SYNCIO) == 0;
1213 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1214 struct lwp * const l = curlwp ? curlwp : &lwp0;
1215 struct genfs_node * const gp = VTOG(vp);
1216 int flags;
1217 int dirtygen;
1218 bool modified;
1219 bool need_wapbl;
1220 bool has_trans;
1221 bool cleanall;
1222 bool onworklst;
1223
1224 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1225
1226 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1227 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1228 KASSERT(startoff < endoff || endoff == 0);
1229
1230 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1231 vp, uobj->uo_npages, startoff, endoff - startoff);
1232
1233 has_trans = false;
1234 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1235 (origflags & PGO_JOURNALLOCKED) == 0);
1236
1237 retry:
1238 modified = false;
1239 flags = origflags;
1240 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1241 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1242 if (uobj->uo_npages == 0) {
1243 if (vp->v_iflag & VI_ONWORKLST) {
1244 vp->v_iflag &= ~VI_WRMAPDIRTY;
1245 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1246 vn_syncer_remove_from_worklist(vp);
1247 }
1248 if (has_trans) {
1249 if (need_wapbl)
1250 WAPBL_END(vp->v_mount);
1251 fstrans_done(vp->v_mount);
1252 }
1253 mutex_exit(slock);
1254 return (0);
1255 }
1256
1257 /*
1258 * the vnode has pages, set up to process the request.
1259 */
1260
1261 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1262 mutex_exit(slock);
1263 if (pagedaemon) {
1264 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1265 if (error)
1266 return error;
1267 } else
1268 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1269 if (need_wapbl) {
1270 error = WAPBL_BEGIN(vp->v_mount);
1271 if (error) {
1272 fstrans_done(vp->v_mount);
1273 return error;
1274 }
1275 }
1276 has_trans = true;
1277 mutex_enter(slock);
1278 goto retry;
1279 }
1280
1281 error = 0;
1282 wasclean = (vp->v_numoutput == 0);
1283 off = startoff;
1284 if (endoff == 0 || flags & PGO_ALLPAGES) {
1285 endoff = trunc_page(LLONG_MAX);
1286 }
1287 by_list = (uobj->uo_npages <=
1288 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1289
1290 #if !defined(DEBUG)
1291 /*
1292 * if this vnode is known not to have dirty pages,
1293 * don't bother to clean it out.
1294 */
1295
1296 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1297 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1298 goto skip_scan;
1299 }
1300 flags &= ~PGO_CLEANIT;
1301 }
1302 #endif /* !defined(DEBUG) */
1303
1304 /*
1305 * start the loop. when scanning by list, hold the last page
1306 * in the list before we start. pages allocated after we start
1307 * will be added to the end of the list, so we can stop at the
1308 * current last page.
1309 */
1310
1311 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1312 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1313 (vp->v_iflag & VI_ONWORKLST) != 0;
1314 dirtygen = gp->g_dirtygen;
1315 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1316 if (by_list) {
1317 curmp.flags = PG_MARKER;
1318 endmp.flags = PG_MARKER;
1319 pg = TAILQ_FIRST(&uobj->memq);
1320 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1321 } else {
1322 pg = uvm_pagelookup(uobj, off);
1323 }
1324 nextpg = NULL;
1325 while (by_list || off < endoff) {
1326
1327 /*
1328 * if the current page is not interesting, move on to the next.
1329 */
1330
1331 KASSERT(pg == NULL || pg->uobject == uobj ||
1332 (pg->flags & PG_MARKER) != 0);
1333 KASSERT(pg == NULL ||
1334 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1335 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1336 if (by_list) {
1337 if (pg == &endmp) {
1338 break;
1339 }
1340 if (pg->flags & PG_MARKER) {
1341 pg = TAILQ_NEXT(pg, listq.queue);
1342 continue;
1343 }
1344 if (pg->offset < startoff || pg->offset >= endoff ||
1345 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1346 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1347 wasclean = false;
1348 }
1349 pg = TAILQ_NEXT(pg, listq.queue);
1350 continue;
1351 }
1352 off = pg->offset;
1353 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1354 if (pg != NULL) {
1355 wasclean = false;
1356 }
1357 off += PAGE_SIZE;
1358 if (off < endoff) {
1359 pg = uvm_pagelookup(uobj, off);
1360 }
1361 continue;
1362 }
1363
1364 /*
1365 * if the current page needs to be cleaned and it's busy,
1366 * wait for it to become unbusy.
1367 */
1368
1369 yld = (l->l_cpu->ci_schedstate.spc_flags &
1370 SPCF_SHOULDYIELD) && !pagedaemon;
1371 if (pg->flags & PG_BUSY || yld) {
1372 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1373 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1374 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1375 error = EDEADLK;
1376 if (busypg != NULL)
1377 *busypg = pg;
1378 break;
1379 }
1380 if (pagedaemon) {
1381 /*
1382 * someone has taken the page while we
1383 * dropped the lock for fstrans_start.
1384 */
1385 break;
1386 }
1387 if (by_list) {
1388 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1389 UVMHIST_LOG(ubchist, "curmp next %p",
1390 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1391 }
1392 if (yld) {
1393 mutex_exit(slock);
1394 preempt();
1395 mutex_enter(slock);
1396 } else {
1397 pg->flags |= PG_WANTED;
1398 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1399 mutex_enter(slock);
1400 }
1401 if (by_list) {
1402 UVMHIST_LOG(ubchist, "after next %p",
1403 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1404 pg = TAILQ_NEXT(&curmp, listq.queue);
1405 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1406 } else {
1407 pg = uvm_pagelookup(uobj, off);
1408 }
1409 continue;
1410 }
1411
1412 /*
1413 * if we're freeing, remove all mappings of the page now.
1414 * if we're cleaning, check if the page is needs to be cleaned.
1415 */
1416
1417 if (flags & PGO_FREE) {
1418 pmap_page_protect(pg, VM_PROT_NONE);
1419 } else if (flags & PGO_CLEANIT) {
1420
1421 /*
1422 * if we still have some hope to pull this vnode off
1423 * from the syncer queue, write-protect the page.
1424 */
1425
1426 if (cleanall && wasclean &&
1427 gp->g_dirtygen == dirtygen) {
1428
1429 /*
1430 * uobj pages get wired only by uvm_fault
1431 * where uobj is locked.
1432 */
1433
1434 if (pg->wire_count == 0) {
1435 pmap_page_protect(pg,
1436 VM_PROT_READ|VM_PROT_EXECUTE);
1437 } else {
1438 cleanall = false;
1439 }
1440 }
1441 }
1442
1443 if (flags & PGO_CLEANIT) {
1444 needs_clean = pmap_clear_modify(pg) ||
1445 (pg->flags & PG_CLEAN) == 0;
1446 pg->flags |= PG_CLEAN;
1447 } else {
1448 needs_clean = false;
1449 }
1450
1451 /*
1452 * if we're cleaning, build a cluster.
1453 * the cluster will consist of pages which are currently dirty,
1454 * but they will be returned to us marked clean.
1455 * if not cleaning, just operate on the one page.
1456 */
1457
1458 if (needs_clean) {
1459 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1460 wasclean = false;
1461 memset(pgs, 0, sizeof(pgs));
1462 pg->flags |= PG_BUSY;
1463 UVM_PAGE_OWN(pg, "genfs_putpages");
1464
1465 /*
1466 * first look backward.
1467 */
1468
1469 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1470 nback = npages;
1471 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1472 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1473 if (nback) {
1474 memmove(&pgs[0], &pgs[npages - nback],
1475 nback * sizeof(pgs[0]));
1476 if (npages - nback < nback)
1477 memset(&pgs[nback], 0,
1478 (npages - nback) * sizeof(pgs[0]));
1479 else
1480 memset(&pgs[npages - nback], 0,
1481 nback * sizeof(pgs[0]));
1482 }
1483
1484 /*
1485 * then plug in our page of interest.
1486 */
1487
1488 pgs[nback] = pg;
1489
1490 /*
1491 * then look forward to fill in the remaining space in
1492 * the array of pages.
1493 */
1494
1495 npages = maxpages - nback - 1;
1496 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1497 &pgs[nback + 1],
1498 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1499 npages += nback + 1;
1500 } else {
1501 pgs[0] = pg;
1502 npages = 1;
1503 nback = 0;
1504 }
1505
1506 /*
1507 * apply FREE or DEACTIVATE options if requested.
1508 */
1509
1510 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1511 mutex_enter(&uvm_pageqlock);
1512 }
1513 for (i = 0; i < npages; i++) {
1514 tpg = pgs[i];
1515 KASSERT(tpg->uobject == uobj);
1516 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1517 pg = tpg;
1518 if (tpg->offset < startoff || tpg->offset >= endoff)
1519 continue;
1520 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1521 uvm_pagedeactivate(tpg);
1522 } else if (flags & PGO_FREE) {
1523 pmap_page_protect(tpg, VM_PROT_NONE);
1524 if (tpg->flags & PG_BUSY) {
1525 tpg->flags |= freeflag;
1526 if (pagedaemon) {
1527 uvm_pageout_start(1);
1528 uvm_pagedequeue(tpg);
1529 }
1530 } else {
1531
1532 /*
1533 * ``page is not busy''
1534 * implies that npages is 1
1535 * and needs_clean is false.
1536 */
1537
1538 nextpg = TAILQ_NEXT(tpg, listq.queue);
1539 uvm_pagefree(tpg);
1540 if (pagedaemon)
1541 uvmexp.pdfreed++;
1542 }
1543 }
1544 }
1545 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1546 mutex_exit(&uvm_pageqlock);
1547 }
1548 if (needs_clean) {
1549 modified = true;
1550
1551 /*
1552 * start the i/o. if we're traversing by list,
1553 * keep our place in the list with a marker page.
1554 */
1555
1556 if (by_list) {
1557 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1558 listq.queue);
1559 }
1560 mutex_exit(slock);
1561 error = GOP_WRITE(vp, pgs, npages, flags);
1562 mutex_enter(slock);
1563 if (by_list) {
1564 pg = TAILQ_NEXT(&curmp, listq.queue);
1565 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1566 }
1567 if (error) {
1568 break;
1569 }
1570 if (by_list) {
1571 continue;
1572 }
1573 }
1574
1575 /*
1576 * find the next page and continue if there was no error.
1577 */
1578
1579 if (by_list) {
1580 if (nextpg) {
1581 pg = nextpg;
1582 nextpg = NULL;
1583 } else {
1584 pg = TAILQ_NEXT(pg, listq.queue);
1585 }
1586 } else {
1587 off += (npages - nback) << PAGE_SHIFT;
1588 if (off < endoff) {
1589 pg = uvm_pagelookup(uobj, off);
1590 }
1591 }
1592 }
1593 if (by_list) {
1594 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1595 }
1596
1597 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1598 (vp->v_type != VBLK ||
1599 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1600 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1601 }
1602
1603 /*
1604 * if we're cleaning and there was nothing to clean,
1605 * take us off the syncer list. if we started any i/o
1606 * and we're doing sync i/o, wait for all writes to finish.
1607 */
1608
1609 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1610 (vp->v_iflag & VI_ONWORKLST) != 0) {
1611 #if defined(DEBUG)
1612 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1613 if ((pg->flags & PG_MARKER) != 0) {
1614 continue;
1615 }
1616 if ((pg->flags & PG_CLEAN) == 0) {
1617 printf("%s: %p: !CLEAN\n", __func__, pg);
1618 }
1619 if (pmap_is_modified(pg)) {
1620 printf("%s: %p: modified\n", __func__, pg);
1621 }
1622 }
1623 #endif /* defined(DEBUG) */
1624 vp->v_iflag &= ~VI_WRMAPDIRTY;
1625 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1626 vn_syncer_remove_from_worklist(vp);
1627 }
1628
1629 #if !defined(DEBUG)
1630 skip_scan:
1631 #endif /* !defined(DEBUG) */
1632
1633 /* Wait for output to complete. */
1634 if (!wasclean && !async && vp->v_numoutput != 0) {
1635 while (vp->v_numoutput != 0)
1636 cv_wait(&vp->v_cv, slock);
1637 }
1638 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1639 mutex_exit(slock);
1640
1641 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1642 /*
1643 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1644 * retrying is not a big deal because, in many cases,
1645 * uobj->uo_npages is already 0 here.
1646 */
1647 mutex_enter(slock);
1648 goto retry;
1649 }
1650
1651 if (has_trans) {
1652 if (need_wapbl)
1653 WAPBL_END(vp->v_mount);
1654 fstrans_done(vp->v_mount);
1655 }
1656
1657 return (error);
1658 }
1659
1660 #ifdef XIP
1661 int
1662 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1663 int flags, struct vm_page **busypg)
1664 {
1665 struct uvm_object *uobj = &vp->v_uobj;
1666 #ifdef DIAGNOSTIC
1667 struct genfs_node * const gp = VTOG(vp);
1668 #endif
1669
1670 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1671
1672 KASSERT(mutex_owned(&uobj->vmobjlock));
1673 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1674 KASSERT(vp->v_numoutput == 0);
1675 KASSERT(gp->g_dirtygen == 0);
1676
1677 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1678 vp, uobj->uo_npages, startoff, endoff - startoff);
1679
1680 /*
1681 * XIP pages are read-only, and never become dirty. They're also never
1682 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1683 * pages, so we ignore them.
1684 */
1685 if ((flags & PGO_FREE) == 0)
1686 goto done;
1687
1688 /*
1689 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1690 * mappings of both XIP pages and XIP zero pages.
1691 *
1692 * Zero page is freed when one of its mapped offset is freed, even if
1693 * one file (vnode) has many holes and mapping its zero page to all
1694 * of those hole pages.
1695 *
1696 * We don't know which pages are currently mapped in the given vnode,
1697 * because XIP pages are not added to vnode. What we can do is to
1698 * locate pages by querying the filesystem as done in getpages. Call
1699 * genfs_do_getpages_xip_io().
1700 */
1701
1702 off_t off, eof;
1703
1704 off = trunc_page(startoff);
1705 if (endoff == 0 || (flags & PGO_ALLPAGES))
1706 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1707 else
1708 eof = endoff;
1709
1710 while (off < eof) {
1711 int npages, orignpages, error, i;
1712 struct vm_page *pgs[maxpages], *pg;
1713
1714 npages = round_page(eof - off) >> PAGE_SHIFT;
1715 if (npages > maxpages)
1716 npages = maxpages;
1717
1718 orignpages = npages;
1719 KASSERT(mutex_owned(&uobj->vmobjlock));
1720 mutex_exit(&uobj->vmobjlock);
1721 error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
1722 VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
1723 KASSERT(error == 0);
1724 KASSERT(npages == orignpages);
1725 mutex_enter(&uobj->vmobjlock);
1726 for (i = 0; i < npages; i++) {
1727 pg = pgs[i];
1728 if (pg == NULL || pg == PGO_DONTCARE)
1729 continue;
1730 /*
1731 * Freeing normal XIP pages; nothing to do.
1732 */
1733 pmap_page_protect(pg, VM_PROT_NONE);
1734 KASSERT((pg->flags & PG_RDONLY) != 0);
1735 KASSERT((pg->flags & PG_CLEAN) != 0);
1736 KASSERT((pg->flags & PG_FAKE) == 0);
1737 KASSERT((pg->flags & PG_DEVICE) != 0);
1738 pg->flags &= ~PG_BUSY;
1739 }
1740 off += npages << PAGE_SHIFT;
1741 }
1742
1743 KASSERT(uobj->uo_npages == 0);
1744
1745 done:
1746 KASSERT(mutex_owned(&uobj->vmobjlock));
1747 mutex_exit(&uobj->vmobjlock);
1748 return 0;
1749 }
1750 #endif
1751
1752 int
1753 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1754 {
1755 off_t off;
1756 vaddr_t kva;
1757 size_t len;
1758 int error;
1759 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1760
1761 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1762 vp, pgs, npages, flags);
1763
1764 off = pgs[0]->offset;
1765 kva = uvm_pagermapin(pgs, npages,
1766 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1767 len = npages << PAGE_SHIFT;
1768
1769 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1770 uvm_aio_biodone);
1771
1772 return error;
1773 }
1774
1775 int
1776 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1777 {
1778 off_t off;
1779 vaddr_t kva;
1780 size_t len;
1781 int error;
1782 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1783
1784 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1785 vp, pgs, npages, flags);
1786
1787 off = pgs[0]->offset;
1788 kva = uvm_pagermapin(pgs, npages,
1789 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1790 len = npages << PAGE_SHIFT;
1791
1792 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1793 uvm_aio_biodone);
1794
1795 return error;
1796 }
1797
1798 /*
1799 * Backend routine for doing I/O to vnode pages. Pages are already locked
1800 * and mapped into kernel memory. Here we just look up the underlying
1801 * device block addresses and call the strategy routine.
1802 */
1803
1804 static int
1805 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1806 enum uio_rw rw, void (*iodone)(struct buf *))
1807 {
1808 int s, error;
1809 int fs_bshift, dev_bshift;
1810 off_t eof, offset, startoffset;
1811 size_t bytes, iobytes, skipbytes;
1812 struct buf *mbp, *bp;
1813 const bool async = (flags & PGO_SYNCIO) == 0;
1814 const bool iowrite = rw == UIO_WRITE;
1815 const int brw = iowrite ? B_WRITE : B_READ;
1816 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1817
1818 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1819 vp, kva, len, flags);
1820
1821 KASSERT(vp->v_size <= vp->v_writesize);
1822 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1823 if (vp->v_type != VBLK) {
1824 fs_bshift = vp->v_mount->mnt_fs_bshift;
1825 dev_bshift = vp->v_mount->mnt_dev_bshift;
1826 } else {
1827 fs_bshift = DEV_BSHIFT;
1828 dev_bshift = DEV_BSHIFT;
1829 }
1830 error = 0;
1831 startoffset = off;
1832 bytes = MIN(len, eof - startoffset);
1833 skipbytes = 0;
1834 KASSERT(bytes != 0);
1835
1836 if (iowrite) {
1837 mutex_enter(&vp->v_interlock);
1838 vp->v_numoutput += 2;
1839 mutex_exit(&vp->v_interlock);
1840 }
1841 mbp = getiobuf(vp, true);
1842 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1843 vp, mbp, vp->v_numoutput, bytes);
1844 mbp->b_bufsize = len;
1845 mbp->b_data = (void *)kva;
1846 mbp->b_resid = mbp->b_bcount = bytes;
1847 mbp->b_cflags = BC_BUSY | BC_AGE;
1848 if (async) {
1849 mbp->b_flags = brw | B_ASYNC;
1850 mbp->b_iodone = iodone;
1851 } else {
1852 mbp->b_flags = brw;
1853 mbp->b_iodone = NULL;
1854 }
1855 if (curlwp == uvm.pagedaemon_lwp)
1856 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1857 else if (async)
1858 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1859 else
1860 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1861
1862 bp = NULL;
1863 for (offset = startoffset;
1864 bytes > 0;
1865 offset += iobytes, bytes -= iobytes) {
1866 int run;
1867 daddr_t lbn, blkno;
1868 struct vnode *devvp;
1869
1870 /*
1871 * bmap the file to find out the blkno to read from and
1872 * how much we can read in one i/o. if bmap returns an error,
1873 * skip the rest of the top-level i/o.
1874 */
1875
1876 lbn = offset >> fs_bshift;
1877 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1878 if (error) {
1879 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1880 lbn,error,0,0);
1881 skipbytes += bytes;
1882 bytes = 0;
1883 goto loopdone;
1884 }
1885
1886 /*
1887 * see how many pages can be read with this i/o.
1888 * reduce the i/o size if necessary to avoid
1889 * overwriting pages with valid data.
1890 */
1891
1892 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1893 bytes);
1894
1895 /*
1896 * if this block isn't allocated, zero it instead of
1897 * reading it. unless we are going to allocate blocks,
1898 * mark the pages we zeroed PG_RDONLY.
1899 */
1900
1901 if (blkno == (daddr_t)-1) {
1902 if (!iowrite) {
1903 memset((char *)kva + (offset - startoffset), 0,
1904 iobytes);
1905 }
1906 skipbytes += iobytes;
1907 continue;
1908 }
1909
1910 /*
1911 * allocate a sub-buf for this piece of the i/o
1912 * (or just use mbp if there's only 1 piece),
1913 * and start it going.
1914 */
1915
1916 if (offset == startoffset && iobytes == bytes) {
1917 bp = mbp;
1918 } else {
1919 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1920 vp, bp, vp->v_numoutput, 0);
1921 bp = getiobuf(vp, true);
1922 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1923 }
1924 bp->b_lblkno = 0;
1925
1926 /* adjust physical blkno for partial blocks */
1927 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1928 dev_bshift);
1929
1930 UVMHIST_LOG(ubchist,
1931 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1932 bp, offset, bp->b_bcount, bp->b_blkno);
1933
1934 VOP_STRATEGY(devvp, bp);
1935 }
1936
1937 loopdone:
1938 if (skipbytes) {
1939 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1940 }
1941 nestiobuf_done(mbp, skipbytes, error);
1942 if (async) {
1943 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1944 return (0);
1945 }
1946 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1947 error = biowait(mbp);
1948 s = splbio();
1949 (*iodone)(mbp);
1950 splx(s);
1951 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1952 return (error);
1953 }
1954
1955 int
1956 genfs_compat_getpages(void *v)
1957 {
1958 struct vop_getpages_args /* {
1959 struct vnode *a_vp;
1960 voff_t a_offset;
1961 struct vm_page **a_m;
1962 int *a_count;
1963 int a_centeridx;
1964 vm_prot_t a_access_type;
1965 int a_advice;
1966 int a_flags;
1967 } */ *ap = v;
1968
1969 off_t origoffset;
1970 struct vnode *vp = ap->a_vp;
1971 struct uvm_object *uobj = &vp->v_uobj;
1972 struct vm_page *pg, **pgs;
1973 vaddr_t kva;
1974 int i, error, orignpages, npages;
1975 struct iovec iov;
1976 struct uio uio;
1977 kauth_cred_t cred = curlwp->l_cred;
1978 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1979
1980 error = 0;
1981 origoffset = ap->a_offset;
1982 orignpages = *ap->a_count;
1983 pgs = ap->a_m;
1984
1985 if (ap->a_flags & PGO_LOCKED) {
1986 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1987 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1988
1989 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1990 if (error == 0 && memwrite) {
1991 genfs_markdirty(vp);
1992 }
1993 return error;
1994 }
1995 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1996 mutex_exit(&uobj->vmobjlock);
1997 return EINVAL;
1998 }
1999 if ((ap->a_flags & PGO_SYNCIO) == 0) {
2000 mutex_exit(&uobj->vmobjlock);
2001 return 0;
2002 }
2003 npages = orignpages;
2004 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
2005 mutex_exit(&uobj->vmobjlock);
2006 kva = uvm_pagermapin(pgs, npages,
2007 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
2008 for (i = 0; i < npages; i++) {
2009 pg = pgs[i];
2010 if ((pg->flags & PG_FAKE) == 0) {
2011 continue;
2012 }
2013 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
2014 iov.iov_len = PAGE_SIZE;
2015 uio.uio_iov = &iov;
2016 uio.uio_iovcnt = 1;
2017 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
2018 uio.uio_rw = UIO_READ;
2019 uio.uio_resid = PAGE_SIZE;
2020 UIO_SETUP_SYSSPACE(&uio);
2021 /* XXX vn_lock */
2022 error = VOP_READ(vp, &uio, 0, cred);
2023 if (error) {
2024 break;
2025 }
2026 if (uio.uio_resid) {
2027 memset(iov.iov_base, 0, uio.uio_resid);
2028 }
2029 }
2030 uvm_pagermapout(kva, npages);
2031 mutex_enter(&uobj->vmobjlock);
2032 mutex_enter(&uvm_pageqlock);
2033 for (i = 0; i < npages; i++) {
2034 pg = pgs[i];
2035 if (error && (pg->flags & PG_FAKE) != 0) {
2036 pg->flags |= PG_RELEASED;
2037 } else {
2038 pmap_clear_modify(pg);
2039 uvm_pageactivate(pg);
2040 }
2041 }
2042 if (error) {
2043 uvm_page_unbusy(pgs, npages);
2044 }
2045 mutex_exit(&uvm_pageqlock);
2046 if (error == 0 && memwrite) {
2047 genfs_markdirty(vp);
2048 }
2049 mutex_exit(&uobj->vmobjlock);
2050 return error;
2051 }
2052
2053 int
2054 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
2055 int flags)
2056 {
2057 off_t offset;
2058 struct iovec iov;
2059 struct uio uio;
2060 kauth_cred_t cred = curlwp->l_cred;
2061 struct buf *bp;
2062 vaddr_t kva;
2063 int error;
2064
2065 offset = pgs[0]->offset;
2066 kva = uvm_pagermapin(pgs, npages,
2067 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
2068
2069 iov.iov_base = (void *)kva;
2070 iov.iov_len = npages << PAGE_SHIFT;
2071 uio.uio_iov = &iov;
2072 uio.uio_iovcnt = 1;
2073 uio.uio_offset = offset;
2074 uio.uio_rw = UIO_WRITE;
2075 uio.uio_resid = npages << PAGE_SHIFT;
2076 UIO_SETUP_SYSSPACE(&uio);
2077 /* XXX vn_lock */
2078 error = VOP_WRITE(vp, &uio, 0, cred);
2079
2080 mutex_enter(&vp->v_interlock);
2081 vp->v_numoutput++;
2082 mutex_exit(&vp->v_interlock);
2083
2084 bp = getiobuf(vp, true);
2085 bp->b_cflags = BC_BUSY | BC_AGE;
2086 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
2087 bp->b_data = (char *)kva;
2088 bp->b_bcount = npages << PAGE_SHIFT;
2089 bp->b_bufsize = npages << PAGE_SHIFT;
2090 bp->b_resid = 0;
2091 bp->b_error = error;
2092 uvm_aio_aiodone(bp);
2093 return (error);
2094 }
2095
2096 /*
2097 * Process a uio using direct I/O. If we reach a part of the request
2098 * which cannot be processed in this fashion for some reason, just return.
2099 * The caller must handle some additional part of the request using
2100 * buffered I/O before trying direct I/O again.
2101 */
2102
2103 void
2104 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
2105 {
2106 struct vmspace *vs;
2107 struct iovec *iov;
2108 vaddr_t va;
2109 size_t len;
2110 const int mask = DEV_BSIZE - 1;
2111 int error;
2112 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
2113 (ioflag & IO_JOURNALLOCKED) == 0);
2114
2115 /*
2116 * We only support direct I/O to user space for now.
2117 */
2118
2119 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
2120 return;
2121 }
2122
2123 /*
2124 * If the vnode is mapped, we would need to get the getpages lock
2125 * to stabilize the bmap, but then we would get into trouble whil e
2126 * locking the pages if the pages belong to this same vnode (or a
2127 * multi-vnode cascade to the same effect). Just fall back to
2128 * buffered I/O if the vnode is mapped to avoid this mess.
2129 */
2130
2131 if (vp->v_vflag & VV_MAPPED) {
2132 return;
2133 }
2134
2135 if (need_wapbl) {
2136 error = WAPBL_BEGIN(vp->v_mount);
2137 if (error)
2138 return;
2139 }
2140
2141 /*
2142 * Do as much of the uio as possible with direct I/O.
2143 */
2144
2145 vs = uio->uio_vmspace;
2146 while (uio->uio_resid) {
2147 iov = uio->uio_iov;
2148 if (iov->iov_len == 0) {
2149 uio->uio_iov++;
2150 uio->uio_iovcnt--;
2151 continue;
2152 }
2153 va = (vaddr_t)iov->iov_base;
2154 len = MIN(iov->iov_len, genfs_maxdio);
2155 len &= ~mask;
2156
2157 /*
2158 * If the next chunk is smaller than DEV_BSIZE or extends past
2159 * the current EOF, then fall back to buffered I/O.
2160 */
2161
2162 if (len == 0 || uio->uio_offset + len > vp->v_size) {
2163 break;
2164 }
2165
2166 /*
2167 * Check alignment. The file offset must be at least
2168 * sector-aligned. The exact constraint on memory alignment
2169 * is very hardware-dependent, but requiring sector-aligned
2170 * addresses there too is safe.
2171 */
2172
2173 if (uio->uio_offset & mask || va & mask) {
2174 break;
2175 }
2176 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2177 uio->uio_rw);
2178 if (error) {
2179 break;
2180 }
2181 iov->iov_base = (char *)iov->iov_base + len;
2182 iov->iov_len -= len;
2183 uio->uio_offset += len;
2184 uio->uio_resid -= len;
2185 }
2186
2187 if (need_wapbl)
2188 WAPBL_END(vp->v_mount);
2189 }
2190
2191 /*
2192 * Iodone routine for direct I/O. We don't do much here since the request is
2193 * always synchronous, so the caller will do most of the work after biowait().
2194 */
2195
2196 static void
2197 genfs_dio_iodone(struct buf *bp)
2198 {
2199
2200 KASSERT((bp->b_flags & B_ASYNC) == 0);
2201 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2202 mutex_enter(bp->b_objlock);
2203 vwakeup(bp);
2204 mutex_exit(bp->b_objlock);
2205 }
2206 putiobuf(bp);
2207 }
2208
2209 /*
2210 * Process one chunk of a direct I/O request.
2211 */
2212
2213 static int
2214 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2215 off_t off, enum uio_rw rw)
2216 {
2217 struct vm_map *map;
2218 struct pmap *upm, *kpm;
2219 size_t klen = round_page(uva + len) - trunc_page(uva);
2220 off_t spoff, epoff;
2221 vaddr_t kva, puva;
2222 paddr_t pa;
2223 vm_prot_t prot;
2224 int error, rv, poff, koff;
2225 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2226 (rw == UIO_WRITE ? PGO_FREE : 0);
2227
2228 /*
2229 * For writes, verify that this range of the file already has fully
2230 * allocated backing store. If there are any holes, just punt and
2231 * make the caller take the buffered write path.
2232 */
2233
2234 if (rw == UIO_WRITE) {
2235 daddr_t lbn, elbn, blkno;
2236 int bsize, bshift, run;
2237
2238 bshift = vp->v_mount->mnt_fs_bshift;
2239 bsize = 1 << bshift;
2240 lbn = off >> bshift;
2241 elbn = (off + len + bsize - 1) >> bshift;
2242 while (lbn < elbn) {
2243 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2244 if (error) {
2245 return error;
2246 }
2247 if (blkno == (daddr_t)-1) {
2248 return ENOSPC;
2249 }
2250 lbn += 1 + run;
2251 }
2252 }
2253
2254 /*
2255 * Flush any cached pages for parts of the file that we're about to
2256 * access. If we're writing, invalidate pages as well.
2257 */
2258
2259 spoff = trunc_page(off);
2260 epoff = round_page(off + len);
2261 mutex_enter(&vp->v_interlock);
2262 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2263 if (error) {
2264 return error;
2265 }
2266
2267 /*
2268 * Wire the user pages and remap them into kernel memory.
2269 */
2270
2271 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2272 error = uvm_vslock(vs, (void *)uva, len, prot);
2273 if (error) {
2274 return error;
2275 }
2276
2277 map = &vs->vm_map;
2278 upm = vm_map_pmap(map);
2279 kpm = vm_map_pmap(kernel_map);
2280 kva = uvm_km_alloc(kernel_map, klen, 0,
2281 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2282 puva = trunc_page(uva);
2283 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2284 rv = pmap_extract(upm, puva + poff, &pa);
2285 KASSERT(rv);
2286 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2287 }
2288 pmap_update(kpm);
2289
2290 /*
2291 * Do the I/O.
2292 */
2293
2294 koff = uva - trunc_page(uva);
2295 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2296 genfs_dio_iodone);
2297
2298 /*
2299 * Tear down the kernel mapping.
2300 */
2301
2302 pmap_remove(kpm, kva, kva + klen);
2303 pmap_update(kpm);
2304 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2305
2306 /*
2307 * Unwire the user pages.
2308 */
2309
2310 uvm_vsunlock(vs, (void *)uva, len);
2311 return error;
2312 }
2313
2314