Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.56
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.56 2010/11/21 04:56:36 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.56 2010/11/21 04:56:36 uebayasi Exp $");
     35 
     36 #include "opt_xip.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mount.h>
     43 #include <sys/namei.h>
     44 #include <sys/vnode.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/kmem.h>
     47 #include <sys/poll.h>
     48 #include <sys/mman.h>
     49 #include <sys/file.h>
     50 #include <sys/kauth.h>
     51 #include <sys/fstrans.h>
     52 #include <sys/buf.h>
     53 #include <sys/once.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 #ifdef XIP
     63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
     64     int *, int, vm_prot_t, int, int, const int);
     65 static int genfs_do_getpages_xip_io_done(struct vnode *, voff_t, struct vm_page **,
     66     int *, int, vm_prot_t, int, int, const int);
     67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
     68     struct vm_page **);
     69 #endif
     70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     71     off_t, enum uio_rw);
     72 static void genfs_dio_iodone(struct buf *);
     73 
     74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     75     void (*)(struct buf *));
     76 static void genfs_rel_pages(struct vm_page **, int);
     77 static void genfs_markdirty(struct vnode *);
     78 
     79 int genfs_maxdio = MAXPHYS;
     80 
     81 static void
     82 genfs_rel_pages(struct vm_page **pgs, int npages)
     83 {
     84 	int i;
     85 
     86 	for (i = 0; i < npages; i++) {
     87 		struct vm_page *pg = pgs[i];
     88 
     89 		if (pg == NULL || pg == PGO_DONTCARE)
     90 			continue;
     91 		if (pg->flags & PG_FAKE) {
     92 			pg->flags |= PG_RELEASED;
     93 		}
     94 	}
     95 	mutex_enter(&uvm_pageqlock);
     96 	uvm_page_unbusy(pgs, npages);
     97 	mutex_exit(&uvm_pageqlock);
     98 }
     99 
    100 static void
    101 genfs_markdirty(struct vnode *vp)
    102 {
    103 	struct genfs_node * const gp = VTOG(vp);
    104 
    105 	KASSERT(mutex_owned(&vp->v_interlock));
    106 	gp->g_dirtygen++;
    107 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    108 		vn_syncer_add_to_worklist(vp, filedelay);
    109 	}
    110 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    111 		vp->v_iflag |= VI_WRMAPDIRTY;
    112 	}
    113 }
    114 
    115 /*
    116  * generic VM getpages routine.
    117  * Return PG_BUSY pages for the given range,
    118  * reading from backing store if necessary.
    119  */
    120 
    121 int
    122 genfs_getpages(void *v)
    123 {
    124 	struct vop_getpages_args /* {
    125 		struct vnode *a_vp;
    126 		voff_t a_offset;
    127 		struct vm_page **a_m;
    128 		int *a_count;
    129 		int a_centeridx;
    130 		vm_prot_t a_access_type;
    131 		int a_advice;
    132 		int a_flags;
    133 	} */ * const ap = v;
    134 
    135 	off_t diskeof, memeof;
    136 	int i, error, npages;
    137 	const int flags = ap->a_flags;
    138 	struct vnode * const vp = ap->a_vp;
    139 	struct uvm_object * const uobj = &vp->v_uobj;
    140 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    141 	const bool async = (flags & PGO_SYNCIO) == 0;
    142 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    143 	bool has_trans = false;
    144 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    145 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    146 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    147 #ifdef XIP
    148 	const bool xip = (ap->a_vp->v_vflag & VV_XIP) != 0;
    149 #else
    150 #define	xip	0
    151 #endif
    152 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    153 
    154 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    155 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    156 
    157 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    158 	    vp->v_type == VLNK || vp->v_type == VBLK);
    159 
    160 startover:
    161 	error = 0;
    162 	const voff_t origvsize = vp->v_size;
    163 	const off_t origoffset = ap->a_offset;
    164 	const int orignpages = *ap->a_count;
    165 
    166 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    167 	if (flags & PGO_PASTEOF) {
    168 		off_t newsize;
    169 #if defined(DIAGNOSTIC)
    170 		off_t writeeof;
    171 #endif /* defined(DIAGNOSTIC) */
    172 
    173 		newsize = MAX(origvsize,
    174 		    origoffset + (orignpages << PAGE_SHIFT));
    175 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    176 #if defined(DIAGNOSTIC)
    177 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    178 		if (newsize > round_page(writeeof)) {
    179 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    180 			    __func__, newsize, round_page(writeeof));
    181 		}
    182 #endif /* defined(DIAGNOSTIC) */
    183 	} else {
    184 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    185 	}
    186 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    187 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    188 	KASSERT(orignpages > 0);
    189 
    190 	/*
    191 	 * Bounds-check the request.
    192 	 */
    193 
    194 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    195 		if ((flags & PGO_LOCKED) == 0) {
    196 			mutex_exit(&uobj->vmobjlock);
    197 		}
    198 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    199 		    origoffset, *ap->a_count, memeof,0);
    200 		error = EINVAL;
    201 		goto out_err;
    202 	}
    203 
    204 	/* uobj is locked */
    205 
    206 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    207 	    (vp->v_type != VBLK ||
    208 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    209 		int updflags = 0;
    210 
    211 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    212 			updflags = GOP_UPDATE_ACCESSED;
    213 		}
    214 		if (memwrite) {
    215 			updflags |= GOP_UPDATE_MODIFIED;
    216 		}
    217 		if (updflags != 0) {
    218 			GOP_MARKUPDATE(vp, updflags);
    219 		}
    220 	}
    221 
    222 	/*
    223 	 * For PGO_LOCKED requests, just return whatever's in memory.
    224 	 */
    225 
    226 	if (flags & PGO_LOCKED) {
    227 #if 0
    228 		genfs_getpages_mem();
    229 	} else {
    230 		genfs_getpages_io();
    231 	}
    232 }
    233 
    234 int
    235 genfs_getpages_mem()
    236 {
    237 #endif
    238 		int nfound;
    239 		struct vm_page *pg;
    240 
    241 		if (xip) {
    242 			*ap->a_count = 0;
    243 			return 0;
    244 		}
    245 
    246 		KASSERT(!glocked);
    247 		npages = *ap->a_count;
    248 #if defined(DEBUG)
    249 		for (i = 0; i < npages; i++) {
    250 			pg = ap->a_m[i];
    251 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    252 		}
    253 #endif /* defined(DEBUG) */
    254 		nfound = uvn_findpages(uobj, origoffset, &npages,
    255 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    256 		KASSERT(npages == *ap->a_count);
    257 		if (nfound == 0) {
    258 			error = EBUSY;
    259 			goto out_err;
    260 		}
    261 		if (!genfs_node_rdtrylock(vp)) {
    262 			genfs_rel_pages(ap->a_m, npages);
    263 
    264 			/*
    265 			 * restore the array.
    266 			 */
    267 
    268 			for (i = 0; i < npages; i++) {
    269 				pg = ap->a_m[i];
    270 
    271 				if (pg != NULL && pg != PGO_DONTCARE) {
    272 					ap->a_m[i] = NULL;
    273 				}
    274 				KASSERT(pg == NULL || pg == PGO_DONTCARE);
    275 			}
    276 		} else {
    277 			genfs_node_unlock(vp);
    278 		}
    279 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    280 		if (error == 0 && memwrite) {
    281 			genfs_markdirty(vp);
    282 		}
    283 		goto out_err;
    284 	}
    285 	mutex_exit(&uobj->vmobjlock);
    286 #if 0
    287 }
    288 
    289 int
    290 genfs_getpages_io()
    291 {
    292 #endif
    293 	/*
    294 	 * find the requested pages and make some simple checks.
    295 	 * leave space in the page array for a whole block.
    296 	 */
    297 
    298 #define	vp2fs_bshift(vp) \
    299 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
    300 #define	vp2dev_bshift(vp) \
    301 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
    302 
    303 	const int fs_bshift = vp2fs_bshift(vp);
    304 	const int dev_bshift = vp2dev_bshift(vp);
    305 	const int fs_bsize = 1 << fs_bshift;
    306 #define	blk_mask	(fs_bsize - 1)
    307 #define	trunc_blk(x)	((x) & ~blk_mask)
    308 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    309 
    310 	const int orignmempages = MIN(orignpages,
    311 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    312 	npages = orignmempages;
    313 	const off_t startoffset = trunc_blk(origoffset);
    314 	const off_t endoffset = MIN(
    315 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    316 	    round_page(memeof));
    317 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    318 
    319 	const int pgs_size = sizeof(struct vm_page *) *
    320 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    321 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    322 
    323 	if (pgs_size > sizeof(pgs_onstack)) {
    324 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    325 		if (pgs == NULL) {
    326 			pgs = pgs_onstack;
    327 			error = ENOMEM;
    328 			goto out_err;
    329 		}
    330 	} else {
    331 		pgs = pgs_onstack;
    332 		(void)memset(pgs, 0, pgs_size);
    333 	}
    334 
    335 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    336 	    ridx, npages, startoffset, endoffset);
    337 #if 0
    338 }
    339 
    340 int
    341 genfs_getpages_io_relock()
    342 {
    343 #endif
    344 	if (!has_trans) {
    345 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    346 		has_trans = true;
    347 	}
    348 
    349 	/*
    350 	 * hold g_glock to prevent a race with truncate.
    351 	 *
    352 	 * check if our idea of v_size is still valid.
    353 	 */
    354 
    355 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    356 	if (!glocked) {
    357 		if (blockalloc) {
    358 			genfs_node_wrlock(vp);
    359 		} else {
    360 			genfs_node_rdlock(vp);
    361 		}
    362 	}
    363 	mutex_enter(&uobj->vmobjlock);
    364 	if (vp->v_size < origvsize) {
    365 		if (!glocked) {
    366 			genfs_node_unlock(vp);
    367 		}
    368 		if (pgs != pgs_onstack)
    369 			kmem_free(pgs, pgs_size);
    370 		goto startover;
    371 	}
    372 #if 0
    373 }
    374 
    375 int
    376 genfs_getpages_io_findpages()
    377 {
    378 #endif
    379     if (!xip) {
    380 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    381 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    382 		if (!glocked) {
    383 			genfs_node_unlock(vp);
    384 		}
    385 		KASSERT(async != 0);
    386 		genfs_rel_pages(&pgs[ridx], orignmempages);
    387 		mutex_exit(&uobj->vmobjlock);
    388 		error = EBUSY;
    389 		goto out_err_free;
    390 	}
    391 
    392 	/*
    393 	 * if the pages are already resident, just return them.
    394 	 */
    395 
    396 	for (i = 0; i < npages; i++) {
    397 		struct vm_page *pg = pgs[ridx + i];
    398 
    399 		if ((pg->flags & PG_FAKE) ||
    400 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    401 			break;
    402 		}
    403 	}
    404 	if (i == npages) {
    405 		if (!glocked) {
    406 			genfs_node_unlock(vp);
    407 		}
    408 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    409 		npages += ridx;
    410 		goto out;
    411 	}
    412     }
    413 
    414 	/*
    415 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    416 	 */
    417 
    418 	if (overwrite) {
    419 #if 0
    420 		genfs_getpages_io_overwrite();
    421 	} else {
    422 		genfs_getpages_io_read();
    423 	}
    424 }
    425 
    426 int
    427 genfs_getpages_io_overwrite()
    428 {
    429 	{
    430 #endif
    431 		KASSERT(!xip);
    432 
    433 		if (!glocked) {
    434 			genfs_node_unlock(vp);
    435 		}
    436 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    437 
    438 		for (i = 0; i < npages; i++) {
    439 			struct vm_page *pg = pgs[ridx + i];
    440 
    441 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    442 		}
    443 		npages += ridx;
    444 		goto out;
    445 	}
    446 #if 0
    447 }
    448 
    449 int
    450 genfs_getpages_io_read()
    451 {
    452 #endif
    453 	/*
    454 	 * the page wasn't resident and we're not overwriting,
    455 	 * so we're going to have to do some i/o.
    456 	 * find any additional pages needed to cover the expanded range.
    457 	 */
    458 #if 0
    459 }
    460 
    461 int
    462 genfs_getpages_io_read_allocpages()
    463 {
    464 #endif
    465     if (!xip) {
    466 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    467 	if (startoffset != origoffset || npages != orignmempages) {
    468 		int npgs;
    469 
    470 		/*
    471 		 * we need to avoid deadlocks caused by locking
    472 		 * additional pages at lower offsets than pages we
    473 		 * already have locked.  unlock them all and start over.
    474 		 */
    475 
    476 		genfs_rel_pages(&pgs[ridx], orignmempages);
    477 		memset(pgs, 0, pgs_size);
    478 
    479 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    480 		    startoffset, endoffset, 0,0);
    481 		npgs = npages;
    482 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    483 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    484 			if (!glocked) {
    485 				genfs_node_unlock(vp);
    486 			}
    487 			KASSERT(async != 0);
    488 			genfs_rel_pages(pgs, npages);
    489 			mutex_exit(&uobj->vmobjlock);
    490 			error = EBUSY;
    491 			goto out_err_free;
    492 		}
    493 	}
    494     }
    495 #if 0
    496 }
    497 
    498 int
    499 genfs_getpages_io_read_bio()
    500 {
    501 #endif
    502 	mutex_exit(&uobj->vmobjlock);
    503 
    504     {
    505 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    506 	vaddr_t kva = 0;
    507 	struct buf *bp = NULL, *mbp = NULL;
    508 	bool sawhole = false;
    509 
    510 	/*
    511 	 * read the desired page(s).
    512 	 */
    513 
    514 	totalbytes = npages << PAGE_SHIFT;
    515 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    516 	tailbytes = totalbytes - bytes;
    517 	skipbytes = 0;
    518 #if 0
    519 }
    520 
    521 int
    522 genfs_getpages_io_read_bio_prepare()
    523 {
    524 #endif
    525     if (!xip) {
    526 	kva = uvm_pagermapin(pgs, npages,
    527 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    528 
    529 	mbp = getiobuf(vp, true);
    530 	mbp->b_bufsize = totalbytes;
    531 	mbp->b_data = (void *)kva;
    532 	mbp->b_resid = mbp->b_bcount = bytes;
    533 	mbp->b_cflags = BC_BUSY;
    534 	if (async) {
    535 		mbp->b_flags = B_READ | B_ASYNC;
    536 		mbp->b_iodone = uvm_aio_biodone;
    537 	} else {
    538 		mbp->b_flags = B_READ;
    539 		mbp->b_iodone = NULL;
    540 	}
    541 	if (async)
    542 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    543 	else
    544 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    545     }
    546 #if 0
    547 }
    548 
    549 #endif
    550 	/*
    551 	 * if EOF is in the middle of the range, zero the part past EOF.
    552 	 * skip over pages which are not PG_FAKE since in that case they have
    553 	 * valid data that we need to preserve.
    554 	 */
    555 
    556 	tailstart = bytes;
    557 	while (tailbytes > 0) {
    558 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    559 
    560 		KASSERT(len <= tailbytes);
    561 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    562 			memset((void *)(kva + tailstart), 0, len);
    563 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    564 			    kva, tailstart, len, 0);
    565 		}
    566 		tailstart += len;
    567 		tailbytes -= len;
    568 	}
    569 #if 0
    570 }
    571 
    572 int
    573 genfs_getpages_io_read_bio_loop()
    574 {
    575 #endif
    576 	/*
    577 	 * now loop over the pages, reading as needed.
    578 	 */
    579 
    580 	bp = NULL;
    581 	off_t offset;
    582 	for (offset = startoffset;
    583 	    bytes > 0;
    584 	    offset += iobytes, bytes -= iobytes) {
    585 		int run;
    586 		daddr_t lbn, blkno;
    587 		int pidx;
    588 		struct vnode *devvp;
    589 
    590 		/*
    591 		 * skip pages which don't need to be read.
    592 		 */
    593 
    594 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    595 	    if (!xip) {
    596 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    597 			size_t b;
    598 
    599 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    600 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    601 				sawhole = true;
    602 			}
    603 			b = MIN(PAGE_SIZE, bytes);
    604 			offset += b;
    605 			bytes -= b;
    606 			skipbytes += b;
    607 			pidx++;
    608 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    609 			    offset, 0,0,0);
    610 			if (bytes == 0) {
    611 				goto loopdone;
    612 			}
    613 		}
    614 	    }
    615 
    616 		/*
    617 		 * bmap the file to find out the blkno to read from and
    618 		 * how much we can read in one i/o.  if bmap returns an error,
    619 		 * skip the rest of the top-level i/o.
    620 		 */
    621 
    622 		lbn = offset >> fs_bshift;
    623 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    624 		if (error) {
    625 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    626 			    lbn,error,0,0);
    627 			skipbytes += bytes;
    628 			bytes = 0;
    629 			goto loopdone;
    630 		}
    631 
    632 		/*
    633 		 * see how many pages can be read with this i/o.
    634 		 * reduce the i/o size if necessary to avoid
    635 		 * overwriting pages with valid data.
    636 		 */
    637 
    638 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    639 		    bytes);
    640 		if (offset + iobytes > round_page(offset)) {
    641 			int pcount;
    642 
    643 			pcount = 1;
    644 			while ((pidx + pcount < npages) && (
    645 			    /*
    646 			     * in XIP case, we don't know what page to read
    647 			     * at this point!
    648 			     */
    649 			    xip ||
    650 			    (pgs[pidx + pcount]->flags & PG_FAKE))) {
    651 				pcount++;
    652 			}
    653 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    654 			    (offset - trunc_page(offset)));
    655 		}
    656 
    657 		/*
    658 		 * if this block isn't allocated, zero it instead of
    659 		 * reading it.  unless we are going to allocate blocks,
    660 		 * mark the pages we zeroed PG_RDONLY.
    661 		 */
    662 
    663 		if (blkno == (daddr_t)-1) {
    664 		    if (!xip) {
    665 			int holepages = (round_page(offset + iobytes) -
    666 			    trunc_page(offset)) >> PAGE_SHIFT;
    667 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    668 
    669 			KASSERT(!xip);
    670 
    671 			sawhole = true;
    672 			memset((char *)kva + (offset - startoffset), 0,
    673 			    iobytes);
    674 			skipbytes += iobytes;
    675 
    676 			for (i = 0; i < holepages; i++) {
    677 				if (memwrite) {
    678 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    679 				}
    680 				if (!blockalloc) {
    681 					pgs[pidx + i]->flags |= PG_RDONLY;
    682 				}
    683 			}
    684 		    } else {
    685 			panic("XIP hole page is not supported yet");
    686 		    }
    687 			continue;
    688 		}
    689 
    690 	    if (!xip) {
    691 		/*
    692 		 * allocate a sub-buf for this piece of the i/o
    693 		 * (or just use mbp if there's only 1 piece),
    694 		 * and start it going.
    695 		 */
    696 
    697 		if (offset == startoffset && iobytes == bytes) {
    698 			bp = mbp;
    699 		} else {
    700 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    701 			    vp, bp, vp->v_numoutput, 0);
    702 			bp = getiobuf(vp, true);
    703 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    704 		}
    705 		bp->b_lblkno = 0;
    706 
    707 		/* adjust physical blkno for partial blocks */
    708 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    709 		    dev_bshift);
    710 
    711 		UVMHIST_LOG(ubchist,
    712 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    713 		    bp, offset, bp->b_bcount, bp->b_blkno);
    714 
    715 		VOP_STRATEGY(devvp, bp);
    716 	    }
    717 #ifdef XIP
    718 	    else {
    719 		/*
    720 		 * XIP page metadata assignment
    721 		 * - Unallocated block is redirected to the dedicated zero'ed
    722 		 *   page.
    723 		 */
    724 		const daddr_t blk_off = blkno << dev_bshift;
    725 		const daddr_t fs_off = origoffset - startoffset;
    726 
    727 		int npgs = iobytes >> PAGE_SHIFT;
    728 		UVMHIST_LOG(ubchist,
    729 		    "xip iobytes=0x%lx ridx=%d pidx=%d npgs=%d",
    730 		    (long)iobytes, ridx, pidx, npgs);
    731 
    732 		/* XXX optimize */
    733 		for (i = 0; i < npgs; i++) {
    734 			const daddr_t pg_off = i << PAGE_SHIFT;
    735 			struct vm_page *pg;
    736 
    737 			UVMHIST_LOG(ubchist,
    738 			    "xip blk_off=0x%lx fs_off=0x%lx pg_off=%lx",
    739 			    (long)blk_off, (long)fs_off, (long)pg_off, 0);
    740 
    741 			pg = uvn_findpage_xip(devvp, &vp->v_uobj,
    742 			    blk_off + fs_off + pg_off);
    743 			KASSERT(pg != NULL);
    744 			UVMHIST_LOG(ubchist,
    745 			    "xip pg %d => phys_addr=0x%lx (%p)",
    746 			    ridx + pidx + i, (long)pg->phys_addr, pg, 0);
    747 			pgs[ridx + pidx + i] = pg;
    748 		}
    749 	    }
    750 #endif
    751 	}
    752 
    753 loopdone:
    754 #if 0
    755 
    756 int
    757 genfs_getpages_biodone()
    758 {
    759 #endif
    760     if (!xip) {
    761 	nestiobuf_done(mbp, skipbytes, error);
    762 	if (async) {
    763 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    764 		if (!glocked) {
    765 			genfs_node_unlock(vp);
    766 		}
    767 		error = 0;
    768 		goto out_err_free;
    769 	}
    770 	if (bp != NULL) {
    771 		error = biowait(mbp);
    772 	}
    773 
    774 	/* Remove the mapping (make KVA available as soon as possible) */
    775 	uvm_pagermapout(kva, npages);
    776 
    777 	/*
    778 	 * if this we encountered a hole then we have to do a little more work.
    779 	 * for read faults, we marked the page PG_RDONLY so that future
    780 	 * write accesses to the page will fault again.
    781 	 * for write faults, we must make sure that the backing store for
    782 	 * the page is completely allocated while the pages are locked.
    783 	 */
    784 
    785 	if (!error && sawhole && blockalloc) {
    786 		/*
    787 		 * XXX: This assumes that we come here only via
    788 		 * the mmio path
    789 		 */
    790 		if (vp->v_mount->mnt_wapbl) {
    791 			error = WAPBL_BEGIN(vp->v_mount);
    792 		}
    793 
    794 		if (!error) {
    795 			error = GOP_ALLOC(vp, startoffset,
    796 			    npages << PAGE_SHIFT, 0, cred);
    797 			if (vp->v_mount->mnt_wapbl) {
    798 				WAPBL_END(vp->v_mount);
    799 			}
    800 		}
    801 
    802 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    803 		    startoffset, npages << PAGE_SHIFT, error,0);
    804 		if (!error) {
    805 			for (i = 0; i < npages; i++) {
    806 				struct vm_page *pg = pgs[i];
    807 
    808 				if (pg == NULL) {
    809 					continue;
    810 				}
    811 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    812 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    813 				    pg,0,0,0);
    814 			}
    815 		}
    816 	}
    817 
    818 	putiobuf(mbp);
    819     }
    820 #if 0
    821 }
    822 
    823 #endif
    824     }
    825 
    826 	if (!glocked) {
    827 		genfs_node_unlock(vp);
    828 	}
    829 
    830     if (xip) {
    831 		error = genfs_do_getpages_xip_io_done(
    832 			ap->a_vp,
    833 			ap->a_offset,
    834 			pgs,
    835 			ap->a_count,
    836 			ap->a_centeridx,
    837 			ap->a_access_type,
    838 			ap->a_advice,
    839 			ap->a_flags,
    840 			orignmempages);
    841     } else {
    842 #if 0
    843 }
    844 
    845 int
    846 genfs_getpages_generic_io_done()
    847 {
    848 #endif
    849 
    850 	mutex_enter(&uobj->vmobjlock);
    851 
    852 	/*
    853 	 * we're almost done!  release the pages...
    854 	 * for errors, we free the pages.
    855 	 * otherwise we activate them and mark them as valid and clean.
    856 	 * also, unbusy pages that were not actually requested.
    857 	 */
    858 
    859 	if (error) {
    860 		for (i = 0; i < npages; i++) {
    861 			struct vm_page *pg = pgs[i];
    862 
    863 			if (pg == NULL) {
    864 				continue;
    865 			}
    866 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    867 			    pg, pg->flags, 0,0);
    868 			if (pg->flags & PG_FAKE) {
    869 				pg->flags |= PG_RELEASED;
    870 			}
    871 		}
    872 		mutex_enter(&uvm_pageqlock);
    873 		uvm_page_unbusy(pgs, npages);
    874 		mutex_exit(&uvm_pageqlock);
    875 		mutex_exit(&uobj->vmobjlock);
    876 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    877 		goto out_err_free;
    878 	}
    879 
    880 out:
    881 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    882 	error = 0;
    883 	mutex_enter(&uvm_pageqlock);
    884 	for (i = 0; i < npages; i++) {
    885 		struct vm_page *pg = pgs[i];
    886 		if (pg == NULL) {
    887 			continue;
    888 		}
    889 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    890 		    pg, pg->flags, 0,0);
    891 		if (pg->flags & PG_FAKE && !overwrite) {
    892 			pg->flags &= ~(PG_FAKE);
    893 			pmap_clear_modify(pgs[i]);
    894 		}
    895 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    896 		if (i < ridx || i >= ridx + orignmempages || async) {
    897 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    898 			    pg, pg->offset,0,0);
    899 			if (pg->flags & PG_WANTED) {
    900 				wakeup(pg);
    901 			}
    902 			if (pg->flags & PG_FAKE) {
    903 				KASSERT(overwrite);
    904 				uvm_pagezero(pg);
    905 			}
    906 			if (pg->flags & PG_RELEASED) {
    907 				uvm_pagefree(pg);
    908 				continue;
    909 			}
    910 			uvm_pageenqueue(pg);
    911 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    912 			UVM_PAGE_OWN(pg, NULL);
    913 		}
    914 	}
    915 	mutex_exit(&uvm_pageqlock);
    916 
    917 	if (memwrite) {
    918 		genfs_markdirty(vp);
    919 	}
    920 	mutex_exit(&uobj->vmobjlock);
    921     } /* !xip */
    922 
    923 	if (ap->a_m != NULL) {
    924 		memcpy(ap->a_m, &pgs[ridx],
    925 		    orignmempages * sizeof(struct vm_page *));
    926 		KASSERT(error != 0 || ap->a_m[ap->a_centeridx] != NULL);
    927 	}
    928 #if 0
    929 }
    930 
    931 #endif
    932 
    933 out_err_free:
    934 	if (pgs != NULL && pgs != pgs_onstack)
    935 		kmem_free(pgs, pgs_size);
    936 out_err:
    937 	if (has_trans)
    938 		fstrans_done(vp->v_mount);
    939 	return error;
    940 }
    941 
    942 #ifdef XIP
    943 /*
    944  * genfs_do_getpages_xip_io
    945  *      Return "direct pages" of XIP vnode.  The block addresses of XIP
    946  *      vnode pages are returned back to the VM fault handler as the
    947  *	actually mapped physical addresses.
    948  */
    949 static int
    950 genfs_do_getpages_xip_io(
    951 	struct vnode *vp,
    952 	voff_t origoffset,
    953 	struct vm_page **pps,
    954 	int *npagesp,
    955 	int centeridx,
    956 	vm_prot_t access_type,
    957 	int advice,
    958 	int flags,
    959 	const int orignmempages)
    960 {
    961 	const int fs_bshift = vp2fs_bshift(vp);
    962 	const int dev_bshift = vp2dev_bshift(vp);
    963 	const int fs_bsize = 1 << fs_bshift;
    964 
    965 	int error;
    966 	off_t off;
    967 	int i;
    968 
    969 	UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
    970 
    971 	KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
    972 
    973 #ifdef UVMHIST
    974 	const off_t startoffset = trunc_blk(origoffset);
    975 	const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
    976 #endif
    977 
    978 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    979 
    980 	UVMHIST_LOG(ubchist,
    981 	    "ridx=%d xip npages=%d startoff=0x%lx endoff=0x%lx",
    982 	    ridx, orignmempages, (long)startoffset, (long)endoffset);
    983 
    984 	off = origoffset;
    985 	for (i = ridx; i < ridx + orignmempages; i++) {
    986 		daddr_t blkno;
    987 		int run;
    988 		struct vnode *devvp;
    989 
    990 		KASSERT((off - origoffset) >> PAGE_SHIFT == i - ridx);
    991 
    992 		const daddr_t lbn = trunc_blk(off) >> fs_bshift;
    993 
    994 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    995 		KASSERT(error == 0);
    996 		UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
    997 		    (long)lbn, (long)blkno, run, 0);
    998 
    999 		const daddr_t blk_off = blkno << dev_bshift;
   1000 		const daddr_t fs_off = origoffset - (lbn << fs_bshift);
   1001 
   1002 		/*
   1003 		 * XIP page metadata assignment
   1004 		 * - Unallocated block is redirected to the dedicated zero'ed
   1005 		 *   page.
   1006 		 */
   1007 		if (blkno < 0) {
   1008 			panic("XIP hole is not supported yet!");
   1009 		} else {
   1010 			KASSERT(off - origoffset == (i - ridx) << PAGE_SHIFT);
   1011 
   1012 			const daddr_t pg_off = (i - ridx) << PAGE_SHIFT;
   1013 
   1014 			struct vm_page *pg;
   1015 
   1016 			UVMHIST_LOG(ubchist,
   1017 			    "xip blk_off=%lx fs_off=%lx pg_off=%lx",
   1018 			    (long)blk_off, (long)fs_off, (long)pg_off, 0);
   1019 
   1020 			pg = uvn_findpage_xip(devvp, &vp->v_uobj,
   1021 			    blk_off + fs_off + pg_off);
   1022 			KASSERT(pg != NULL);
   1023 			UVMHIST_LOG(ubchist,
   1024 			    "xip pgs %d => phys_addr=0x%lx (%p)",
   1025 			    i, (long)pg->phys_addr, pg, 0);
   1026 			pps[i] = pg;
   1027 		}
   1028 
   1029 		off += PAGE_SIZE;
   1030 	}
   1031 
   1032 	return 0;
   1033 }
   1034 
   1035 int
   1036 genfs_do_getpages_xip_io_done(
   1037 	struct vnode *vp,
   1038 	voff_t origoffset,
   1039 	struct vm_page **pps,
   1040 	int *npagesp,
   1041 	int centeridx,
   1042 	vm_prot_t access_type,
   1043 	int advice,
   1044 	int flags,
   1045 	const int orignmempages)
   1046 {
   1047 	struct uvm_object * const uobj = &vp->v_uobj;
   1048 	int i;
   1049 
   1050 	const int fs_bshift = vp2fs_bshift(vp);
   1051 	const int fs_bsize = 1 << fs_bshift;
   1052 
   1053 	const off_t startoffset = trunc_blk(origoffset);
   1054 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
   1055 
   1056 	mutex_enter(&uobj->vmobjlock);
   1057 
   1058 	for (i = ridx; i < ridx + orignmempages; i++) {
   1059 		struct vm_page *pg = pps[i];
   1060 
   1061 		KASSERT(pg != NULL);
   1062 		KASSERT((pg->flags & PG_RDONLY) != 0);
   1063 		KASSERT((pg->flags & PG_BUSY) != 0);
   1064 		KASSERT((pg->flags & PG_CLEAN) != 0);
   1065 		KASSERT((pg->flags & PG_DEVICE) != 0);
   1066 		KASSERT((pg->flags & PG_FAKE) == 0);
   1067 		pg->uobject = &vp->v_uobj;
   1068 	}
   1069 
   1070 	mutex_exit(&uobj->vmobjlock);
   1071 
   1072 	*npagesp = orignmempages;
   1073 
   1074 	return 0;
   1075 }
   1076 #endif
   1077 
   1078 /*
   1079  * generic VM putpages routine.
   1080  * Write the given range of pages to backing store.
   1081  *
   1082  * => "offhi == 0" means flush all pages at or after "offlo".
   1083  * => object should be locked by caller.  we return with the
   1084  *      object unlocked.
   1085  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
   1086  *	thus, a caller might want to unlock higher level resources
   1087  *	(e.g. vm_map) before calling flush.
   1088  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
   1089  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
   1090  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
   1091  *	that new pages are inserted on the tail end of the list.   thus,
   1092  *	we can make a complete pass through the object in one go by starting
   1093  *	at the head and working towards the tail (new pages are put in
   1094  *	front of us).
   1095  * => NOTE: we are allowed to lock the page queues, so the caller
   1096  *	must not be holding the page queue lock.
   1097  *
   1098  * note on "cleaning" object and PG_BUSY pages:
   1099  *	this routine is holding the lock on the object.   the only time
   1100  *	that it can run into a PG_BUSY page that it does not own is if
   1101  *	some other process has started I/O on the page (e.g. either
   1102  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1103  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1104  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1105  *	paged out then it means that someone else has already started
   1106  *	cleaning the page for us (how nice!).    in this case, if we
   1107  *	have syncio specified, then after we make our pass through the
   1108  *	object we need to wait for the other PG_BUSY pages to clear
   1109  *	off (i.e. we need to do an iosync).   also note that once a
   1110  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1111  *
   1112  * note on page traversal:
   1113  *	we can traverse the pages in an object either by going down the
   1114  *	linked list in "uobj->memq", or we can go over the address range
   1115  *	by page doing hash table lookups for each address.    depending
   1116  *	on how many pages are in the object it may be cheaper to do one
   1117  *	or the other.   we set "by_list" to true if we are using memq.
   1118  *	if the cost of a hash lookup was equal to the cost of the list
   1119  *	traversal we could compare the number of pages in the start->stop
   1120  *	range to the total number of pages in the object.   however, it
   1121  *	seems that a hash table lookup is more expensive than the linked
   1122  *	list traversal, so we multiply the number of pages in the
   1123  *	range by an estimate of the relatively higher cost of the hash lookup.
   1124  */
   1125 
   1126 int
   1127 genfs_putpages(void *v)
   1128 {
   1129 	struct vop_putpages_args /* {
   1130 		struct vnode *a_vp;
   1131 		voff_t a_offlo;
   1132 		voff_t a_offhi;
   1133 		int a_flags;
   1134 	} */ * const ap = v;
   1135 
   1136 #ifdef XIP
   1137 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
   1138 		return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1139 		    ap->a_flags, NULL);
   1140 	else
   1141 #endif
   1142 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1143 	    ap->a_flags, NULL);
   1144 }
   1145 
   1146 int
   1147 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
   1148     int origflags, struct vm_page **busypg)
   1149 {
   1150 	struct uvm_object * const uobj = &vp->v_uobj;
   1151 	kmutex_t * const slock = &uobj->vmobjlock;
   1152 	off_t off;
   1153 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1154 #define maxpages (MAXPHYS >> PAGE_SHIFT)
   1155 	int i, error, npages, nback;
   1156 	int freeflag;
   1157 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1158 	bool wasclean, by_list, needs_clean, yld;
   1159 	bool async = (origflags & PGO_SYNCIO) == 0;
   1160 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
   1161 	struct lwp * const l = curlwp ? curlwp : &lwp0;
   1162 	struct genfs_node * const gp = VTOG(vp);
   1163 	int flags;
   1164 	int dirtygen;
   1165 	bool modified;
   1166 	bool need_wapbl;
   1167 	bool has_trans;
   1168 	bool cleanall;
   1169 	bool onworklst;
   1170 
   1171 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1172 
   1173 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1174 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1175 	KASSERT(startoff < endoff || endoff == 0);
   1176 
   1177 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1178 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1179 
   1180 	has_trans = false;
   1181 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
   1182 	    (origflags & PGO_JOURNALLOCKED) == 0);
   1183 
   1184 retry:
   1185 	modified = false;
   1186 	flags = origflags;
   1187 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
   1188 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
   1189 	if (uobj->uo_npages == 0) {
   1190 		if (vp->v_iflag & VI_ONWORKLST) {
   1191 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1192 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1193 				vn_syncer_remove_from_worklist(vp);
   1194 		}
   1195 		if (has_trans) {
   1196 			if (need_wapbl)
   1197 				WAPBL_END(vp->v_mount);
   1198 			fstrans_done(vp->v_mount);
   1199 		}
   1200 		mutex_exit(slock);
   1201 		return (0);
   1202 	}
   1203 
   1204 	/*
   1205 	 * the vnode has pages, set up to process the request.
   1206 	 */
   1207 
   1208 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
   1209 		mutex_exit(slock);
   1210 		if (pagedaemon) {
   1211 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1212 			if (error)
   1213 				return error;
   1214 		} else
   1215 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1216 		if (need_wapbl) {
   1217 			error = WAPBL_BEGIN(vp->v_mount);
   1218 			if (error) {
   1219 				fstrans_done(vp->v_mount);
   1220 				return error;
   1221 			}
   1222 		}
   1223 		has_trans = true;
   1224 		mutex_enter(slock);
   1225 		goto retry;
   1226 	}
   1227 
   1228 	error = 0;
   1229 	wasclean = (vp->v_numoutput == 0);
   1230 	off = startoff;
   1231 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1232 		endoff = trunc_page(LLONG_MAX);
   1233 	}
   1234 	by_list = (uobj->uo_npages <=
   1235 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
   1236 
   1237 #if !defined(DEBUG)
   1238 	/*
   1239 	 * if this vnode is known not to have dirty pages,
   1240 	 * don't bother to clean it out.
   1241 	 */
   1242 
   1243 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1244 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1245 			goto skip_scan;
   1246 		}
   1247 		flags &= ~PGO_CLEANIT;
   1248 	}
   1249 #endif /* !defined(DEBUG) */
   1250 
   1251 	/*
   1252 	 * start the loop.  when scanning by list, hold the last page
   1253 	 * in the list before we start.  pages allocated after we start
   1254 	 * will be added to the end of the list, so we can stop at the
   1255 	 * current last page.
   1256 	 */
   1257 
   1258 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1259 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1260 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1261 	dirtygen = gp->g_dirtygen;
   1262 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1263 	if (by_list) {
   1264 		curmp.flags = PG_MARKER;
   1265 		endmp.flags = PG_MARKER;
   1266 		pg = TAILQ_FIRST(&uobj->memq);
   1267 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1268 	} else {
   1269 		pg = uvm_pagelookup(uobj, off);
   1270 	}
   1271 	nextpg = NULL;
   1272 	while (by_list || off < endoff) {
   1273 
   1274 		/*
   1275 		 * if the current page is not interesting, move on to the next.
   1276 		 */
   1277 
   1278 		KASSERT(pg == NULL || pg->uobject == uobj ||
   1279 		    (pg->flags & PG_MARKER) != 0);
   1280 		KASSERT(pg == NULL ||
   1281 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1282 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
   1283 		if (by_list) {
   1284 			if (pg == &endmp) {
   1285 				break;
   1286 			}
   1287 			if (pg->flags & PG_MARKER) {
   1288 				pg = TAILQ_NEXT(pg, listq.queue);
   1289 				continue;
   1290 			}
   1291 			if (pg->offset < startoff || pg->offset >= endoff ||
   1292 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1293 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1294 					wasclean = false;
   1295 				}
   1296 				pg = TAILQ_NEXT(pg, listq.queue);
   1297 				continue;
   1298 			}
   1299 			off = pg->offset;
   1300 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1301 			if (pg != NULL) {
   1302 				wasclean = false;
   1303 			}
   1304 			off += PAGE_SIZE;
   1305 			if (off < endoff) {
   1306 				pg = uvm_pagelookup(uobj, off);
   1307 			}
   1308 			continue;
   1309 		}
   1310 
   1311 		/*
   1312 		 * if the current page needs to be cleaned and it's busy,
   1313 		 * wait for it to become unbusy.
   1314 		 */
   1315 
   1316 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1317 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1318 		if (pg->flags & PG_BUSY || yld) {
   1319 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1320 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1321 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1322 				error = EDEADLK;
   1323 				if (busypg != NULL)
   1324 					*busypg = pg;
   1325 				break;
   1326 			}
   1327 			if (pagedaemon) {
   1328 				/*
   1329 				 * someone has taken the page while we
   1330 				 * dropped the lock for fstrans_start.
   1331 				 */
   1332 				break;
   1333 			}
   1334 			if (by_list) {
   1335 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1336 				UVMHIST_LOG(ubchist, "curmp next %p",
   1337 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1338 			}
   1339 			if (yld) {
   1340 				mutex_exit(slock);
   1341 				preempt();
   1342 				mutex_enter(slock);
   1343 			} else {
   1344 				pg->flags |= PG_WANTED;
   1345 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1346 				mutex_enter(slock);
   1347 			}
   1348 			if (by_list) {
   1349 				UVMHIST_LOG(ubchist, "after next %p",
   1350 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1351 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1352 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1353 			} else {
   1354 				pg = uvm_pagelookup(uobj, off);
   1355 			}
   1356 			continue;
   1357 		}
   1358 
   1359 		/*
   1360 		 * if we're freeing, remove all mappings of the page now.
   1361 		 * if we're cleaning, check if the page is needs to be cleaned.
   1362 		 */
   1363 
   1364 		if (flags & PGO_FREE) {
   1365 			pmap_page_protect(pg, VM_PROT_NONE);
   1366 		} else if (flags & PGO_CLEANIT) {
   1367 
   1368 			/*
   1369 			 * if we still have some hope to pull this vnode off
   1370 			 * from the syncer queue, write-protect the page.
   1371 			 */
   1372 
   1373 			if (cleanall && wasclean &&
   1374 			    gp->g_dirtygen == dirtygen) {
   1375 
   1376 				/*
   1377 				 * uobj pages get wired only by uvm_fault
   1378 				 * where uobj is locked.
   1379 				 */
   1380 
   1381 				if (pg->wire_count == 0) {
   1382 					pmap_page_protect(pg,
   1383 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1384 				} else {
   1385 					cleanall = false;
   1386 				}
   1387 			}
   1388 		}
   1389 
   1390 		if (flags & PGO_CLEANIT) {
   1391 			needs_clean = pmap_clear_modify(pg) ||
   1392 			    (pg->flags & PG_CLEAN) == 0;
   1393 			pg->flags |= PG_CLEAN;
   1394 		} else {
   1395 			needs_clean = false;
   1396 		}
   1397 
   1398 		/*
   1399 		 * if we're cleaning, build a cluster.
   1400 		 * the cluster will consist of pages which are currently dirty,
   1401 		 * but they will be returned to us marked clean.
   1402 		 * if not cleaning, just operate on the one page.
   1403 		 */
   1404 
   1405 		if (needs_clean) {
   1406 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1407 			wasclean = false;
   1408 			memset(pgs, 0, sizeof(pgs));
   1409 			pg->flags |= PG_BUSY;
   1410 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1411 
   1412 			/*
   1413 			 * first look backward.
   1414 			 */
   1415 
   1416 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1417 			nback = npages;
   1418 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1419 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1420 			if (nback) {
   1421 				memmove(&pgs[0], &pgs[npages - nback],
   1422 				    nback * sizeof(pgs[0]));
   1423 				if (npages - nback < nback)
   1424 					memset(&pgs[nback], 0,
   1425 					    (npages - nback) * sizeof(pgs[0]));
   1426 				else
   1427 					memset(&pgs[npages - nback], 0,
   1428 					    nback * sizeof(pgs[0]));
   1429 			}
   1430 
   1431 			/*
   1432 			 * then plug in our page of interest.
   1433 			 */
   1434 
   1435 			pgs[nback] = pg;
   1436 
   1437 			/*
   1438 			 * then look forward to fill in the remaining space in
   1439 			 * the array of pages.
   1440 			 */
   1441 
   1442 			npages = maxpages - nback - 1;
   1443 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1444 			    &pgs[nback + 1],
   1445 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1446 			npages += nback + 1;
   1447 		} else {
   1448 			pgs[0] = pg;
   1449 			npages = 1;
   1450 			nback = 0;
   1451 		}
   1452 
   1453 		/*
   1454 		 * apply FREE or DEACTIVATE options if requested.
   1455 		 */
   1456 
   1457 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1458 			mutex_enter(&uvm_pageqlock);
   1459 		}
   1460 		for (i = 0; i < npages; i++) {
   1461 			tpg = pgs[i];
   1462 			KASSERT(tpg->uobject == uobj);
   1463 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1464 				pg = tpg;
   1465 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1466 				continue;
   1467 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1468 				uvm_pagedeactivate(tpg);
   1469 			} else if (flags & PGO_FREE) {
   1470 				pmap_page_protect(tpg, VM_PROT_NONE);
   1471 				if (tpg->flags & PG_BUSY) {
   1472 					tpg->flags |= freeflag;
   1473 					if (pagedaemon) {
   1474 						uvm_pageout_start(1);
   1475 						uvm_pagedequeue(tpg);
   1476 					}
   1477 				} else {
   1478 
   1479 					/*
   1480 					 * ``page is not busy''
   1481 					 * implies that npages is 1
   1482 					 * and needs_clean is false.
   1483 					 */
   1484 
   1485 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1486 					uvm_pagefree(tpg);
   1487 					if (pagedaemon)
   1488 						uvmexp.pdfreed++;
   1489 				}
   1490 			}
   1491 		}
   1492 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1493 			mutex_exit(&uvm_pageqlock);
   1494 		}
   1495 		if (needs_clean) {
   1496 			modified = true;
   1497 
   1498 			/*
   1499 			 * start the i/o.  if we're traversing by list,
   1500 			 * keep our place in the list with a marker page.
   1501 			 */
   1502 
   1503 			if (by_list) {
   1504 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1505 				    listq.queue);
   1506 			}
   1507 			mutex_exit(slock);
   1508 			error = GOP_WRITE(vp, pgs, npages, flags);
   1509 			mutex_enter(slock);
   1510 			if (by_list) {
   1511 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1512 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1513 			}
   1514 			if (error) {
   1515 				break;
   1516 			}
   1517 			if (by_list) {
   1518 				continue;
   1519 			}
   1520 		}
   1521 
   1522 		/*
   1523 		 * find the next page and continue if there was no error.
   1524 		 */
   1525 
   1526 		if (by_list) {
   1527 			if (nextpg) {
   1528 				pg = nextpg;
   1529 				nextpg = NULL;
   1530 			} else {
   1531 				pg = TAILQ_NEXT(pg, listq.queue);
   1532 			}
   1533 		} else {
   1534 			off += (npages - nback) << PAGE_SHIFT;
   1535 			if (off < endoff) {
   1536 				pg = uvm_pagelookup(uobj, off);
   1537 			}
   1538 		}
   1539 	}
   1540 	if (by_list) {
   1541 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1542 	}
   1543 
   1544 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1545 	    (vp->v_type != VBLK ||
   1546 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1547 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1548 	}
   1549 
   1550 	/*
   1551 	 * if we're cleaning and there was nothing to clean,
   1552 	 * take us off the syncer list.  if we started any i/o
   1553 	 * and we're doing sync i/o, wait for all writes to finish.
   1554 	 */
   1555 
   1556 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1557 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1558 #if defined(DEBUG)
   1559 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1560 			if ((pg->flags & PG_MARKER) != 0) {
   1561 				continue;
   1562 			}
   1563 			if ((pg->flags & PG_CLEAN) == 0) {
   1564 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1565 			}
   1566 			if (pmap_is_modified(pg)) {
   1567 				printf("%s: %p: modified\n", __func__, pg);
   1568 			}
   1569 		}
   1570 #endif /* defined(DEBUG) */
   1571 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1572 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1573 			vn_syncer_remove_from_worklist(vp);
   1574 	}
   1575 
   1576 #if !defined(DEBUG)
   1577 skip_scan:
   1578 #endif /* !defined(DEBUG) */
   1579 
   1580 	/* Wait for output to complete. */
   1581 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1582 		while (vp->v_numoutput != 0)
   1583 			cv_wait(&vp->v_cv, slock);
   1584 	}
   1585 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1586 	mutex_exit(slock);
   1587 
   1588 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1589 		/*
   1590 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1591 		 * retrying is not a big deal because, in many cases,
   1592 		 * uobj->uo_npages is already 0 here.
   1593 		 */
   1594 		mutex_enter(slock);
   1595 		goto retry;
   1596 	}
   1597 
   1598 	if (has_trans) {
   1599 		if (need_wapbl)
   1600 			WAPBL_END(vp->v_mount);
   1601 		fstrans_done(vp->v_mount);
   1602 	}
   1603 
   1604 	return (error);
   1605 }
   1606 
   1607 #ifdef XIP
   1608 int
   1609 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
   1610     int flags, struct vm_page **busypg)
   1611 {
   1612 	struct uvm_object *uobj = &vp->v_uobj;
   1613 #ifdef DIAGNOSTIC
   1614 	struct genfs_node * const gp = VTOG(vp);
   1615 #endif
   1616 
   1617 	UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
   1618 
   1619 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1620 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1621 	KASSERT(vp->v_numoutput == 0);
   1622 	KASSERT(gp->g_dirtygen == 0);
   1623 
   1624 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1625 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1626 
   1627 	/*
   1628 	 * XIP pages are read-only, and never become dirty.  They're also never
   1629 	 * queued.  PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
   1630 	 * pages, so we ignore them.
   1631 	 */
   1632 	if ((flags & PGO_FREE) == 0)
   1633 		goto done;
   1634 
   1635 	/*
   1636 	 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
   1637 	 * mappings of both XIP pages and XIP zero pages.
   1638 	 *
   1639 	 * Zero page is freed when one of its mapped offset is freed, even if
   1640 	 * one file (vnode) has many holes and mapping its zero page to all
   1641 	 * of those hole pages.
   1642 	 *
   1643 	 * We don't know which pages are currently mapped in the given vnode,
   1644 	 * because XIP pages are not added to vnode.  What we can do is to
   1645 	 * locate pages by querying the filesystem as done in getpages.  Call
   1646 	 * genfs_do_getpages_xip_io().
   1647 	 */
   1648 
   1649 	off_t off, eof;
   1650 
   1651 	off = trunc_page(startoff);
   1652 	if (endoff == 0 || (flags & PGO_ALLPAGES))
   1653 		GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
   1654 	else
   1655 		eof = endoff;
   1656 
   1657 	while (off < eof) {
   1658 		int npages, orignpages, error, i;
   1659 		struct vm_page *pgs[maxpages], *pg;
   1660 
   1661 		npages = round_page(eof - off) >> PAGE_SHIFT;
   1662 		if (npages > maxpages)
   1663 			npages = maxpages;
   1664 
   1665 		orignpages = npages;
   1666 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1667 		mutex_exit(&uobj->vmobjlock);
   1668 		error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
   1669 		    VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
   1670 		KASSERT(error == 0);
   1671 		KASSERT(npages == orignpages);
   1672 		mutex_enter(&uobj->vmobjlock);
   1673 		for (i = 0; i < npages; i++) {
   1674 			pg = pgs[i];
   1675 			if (pg == NULL || pg == PGO_DONTCARE)
   1676 				continue;
   1677 			/*
   1678 			 * Freeing normal XIP pages; nothing to do.
   1679 			 */
   1680 			pmap_page_protect(pg, VM_PROT_NONE);
   1681 			KASSERT((pg->flags & PG_RDONLY) != 0);
   1682 			KASSERT((pg->flags & PG_CLEAN) != 0);
   1683 			KASSERT((pg->flags & PG_FAKE) == 0);
   1684 			KASSERT((pg->flags & PG_DEVICE) != 0);
   1685 			pg->flags &= ~PG_BUSY;
   1686 		}
   1687 		off += npages << PAGE_SHIFT;
   1688 	}
   1689 
   1690 	KASSERT(uobj->uo_npages == 0);
   1691 
   1692 done:
   1693 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1694 	mutex_exit(&uobj->vmobjlock);
   1695 	return 0;
   1696 }
   1697 #endif
   1698 
   1699 int
   1700 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1701 {
   1702 	off_t off;
   1703 	vaddr_t kva;
   1704 	size_t len;
   1705 	int error;
   1706 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1707 
   1708 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1709 	    vp, pgs, npages, flags);
   1710 
   1711 	off = pgs[0]->offset;
   1712 	kva = uvm_pagermapin(pgs, npages,
   1713 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1714 	len = npages << PAGE_SHIFT;
   1715 
   1716 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1717 			    uvm_aio_biodone);
   1718 
   1719 	return error;
   1720 }
   1721 
   1722 int
   1723 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1724 {
   1725 	off_t off;
   1726 	vaddr_t kva;
   1727 	size_t len;
   1728 	int error;
   1729 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1730 
   1731 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1732 	    vp, pgs, npages, flags);
   1733 
   1734 	off = pgs[0]->offset;
   1735 	kva = uvm_pagermapin(pgs, npages,
   1736 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1737 	len = npages << PAGE_SHIFT;
   1738 
   1739 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1740 			    uvm_aio_biodone);
   1741 
   1742 	return error;
   1743 }
   1744 
   1745 /*
   1746  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1747  * and mapped into kernel memory.  Here we just look up the underlying
   1748  * device block addresses and call the strategy routine.
   1749  */
   1750 
   1751 static int
   1752 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1753     enum uio_rw rw, void (*iodone)(struct buf *))
   1754 {
   1755 	int s, error;
   1756 	int fs_bshift, dev_bshift;
   1757 	off_t eof, offset, startoffset;
   1758 	size_t bytes, iobytes, skipbytes;
   1759 	struct buf *mbp, *bp;
   1760 	const bool async = (flags & PGO_SYNCIO) == 0;
   1761 	const bool iowrite = rw == UIO_WRITE;
   1762 	const int brw = iowrite ? B_WRITE : B_READ;
   1763 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1764 
   1765 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1766 	    vp, kva, len, flags);
   1767 
   1768 	KASSERT(vp->v_size <= vp->v_writesize);
   1769 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1770 	if (vp->v_type != VBLK) {
   1771 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1772 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1773 	} else {
   1774 		fs_bshift = DEV_BSHIFT;
   1775 		dev_bshift = DEV_BSHIFT;
   1776 	}
   1777 	error = 0;
   1778 	startoffset = off;
   1779 	bytes = MIN(len, eof - startoffset);
   1780 	skipbytes = 0;
   1781 	KASSERT(bytes != 0);
   1782 
   1783 	if (iowrite) {
   1784 		mutex_enter(&vp->v_interlock);
   1785 		vp->v_numoutput += 2;
   1786 		mutex_exit(&vp->v_interlock);
   1787 	}
   1788 	mbp = getiobuf(vp, true);
   1789 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1790 	    vp, mbp, vp->v_numoutput, bytes);
   1791 	mbp->b_bufsize = len;
   1792 	mbp->b_data = (void *)kva;
   1793 	mbp->b_resid = mbp->b_bcount = bytes;
   1794 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1795 	if (async) {
   1796 		mbp->b_flags = brw | B_ASYNC;
   1797 		mbp->b_iodone = iodone;
   1798 	} else {
   1799 		mbp->b_flags = brw;
   1800 		mbp->b_iodone = NULL;
   1801 	}
   1802 	if (curlwp == uvm.pagedaemon_lwp)
   1803 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1804 	else if (async)
   1805 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1806 	else
   1807 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1808 
   1809 	bp = NULL;
   1810 	for (offset = startoffset;
   1811 	    bytes > 0;
   1812 	    offset += iobytes, bytes -= iobytes) {
   1813 		int run;
   1814 		daddr_t lbn, blkno;
   1815 		struct vnode *devvp;
   1816 
   1817 		/*
   1818 		 * bmap the file to find out the blkno to read from and
   1819 		 * how much we can read in one i/o.  if bmap returns an error,
   1820 		 * skip the rest of the top-level i/o.
   1821 		 */
   1822 
   1823 		lbn = offset >> fs_bshift;
   1824 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1825 		if (error) {
   1826 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1827 			    lbn,error,0,0);
   1828 			skipbytes += bytes;
   1829 			bytes = 0;
   1830 			goto loopdone;
   1831 		}
   1832 
   1833 		/*
   1834 		 * see how many pages can be read with this i/o.
   1835 		 * reduce the i/o size if necessary to avoid
   1836 		 * overwriting pages with valid data.
   1837 		 */
   1838 
   1839 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1840 		    bytes);
   1841 
   1842 		/*
   1843 		 * if this block isn't allocated, zero it instead of
   1844 		 * reading it.  unless we are going to allocate blocks,
   1845 		 * mark the pages we zeroed PG_RDONLY.
   1846 		 */
   1847 
   1848 		if (blkno == (daddr_t)-1) {
   1849 			if (!iowrite) {
   1850 				memset((char *)kva + (offset - startoffset), 0,
   1851 				    iobytes);
   1852 			}
   1853 			skipbytes += iobytes;
   1854 			continue;
   1855 		}
   1856 
   1857 		/*
   1858 		 * allocate a sub-buf for this piece of the i/o
   1859 		 * (or just use mbp if there's only 1 piece),
   1860 		 * and start it going.
   1861 		 */
   1862 
   1863 		if (offset == startoffset && iobytes == bytes) {
   1864 			bp = mbp;
   1865 		} else {
   1866 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1867 			    vp, bp, vp->v_numoutput, 0);
   1868 			bp = getiobuf(vp, true);
   1869 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1870 		}
   1871 		bp->b_lblkno = 0;
   1872 
   1873 		/* adjust physical blkno for partial blocks */
   1874 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1875 		    dev_bshift);
   1876 
   1877 		UVMHIST_LOG(ubchist,
   1878 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1879 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1880 
   1881 		VOP_STRATEGY(devvp, bp);
   1882 	}
   1883 
   1884 loopdone:
   1885 	if (skipbytes) {
   1886 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1887 	}
   1888 	nestiobuf_done(mbp, skipbytes, error);
   1889 	if (async) {
   1890 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1891 		return (0);
   1892 	}
   1893 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1894 	error = biowait(mbp);
   1895 	s = splbio();
   1896 	(*iodone)(mbp);
   1897 	splx(s);
   1898 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1899 	return (error);
   1900 }
   1901 
   1902 int
   1903 genfs_compat_getpages(void *v)
   1904 {
   1905 	struct vop_getpages_args /* {
   1906 		struct vnode *a_vp;
   1907 		voff_t a_offset;
   1908 		struct vm_page **a_m;
   1909 		int *a_count;
   1910 		int a_centeridx;
   1911 		vm_prot_t a_access_type;
   1912 		int a_advice;
   1913 		int a_flags;
   1914 	} */ *ap = v;
   1915 
   1916 	off_t origoffset;
   1917 	struct vnode *vp = ap->a_vp;
   1918 	struct uvm_object *uobj = &vp->v_uobj;
   1919 	struct vm_page *pg, **pgs;
   1920 	vaddr_t kva;
   1921 	int i, error, orignpages, npages;
   1922 	struct iovec iov;
   1923 	struct uio uio;
   1924 	kauth_cred_t cred = curlwp->l_cred;
   1925 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1926 
   1927 	error = 0;
   1928 	origoffset = ap->a_offset;
   1929 	orignpages = *ap->a_count;
   1930 	pgs = ap->a_m;
   1931 
   1932 	if (ap->a_flags & PGO_LOCKED) {
   1933 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1934 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1935 
   1936 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1937 		if (error == 0 && memwrite) {
   1938 			genfs_markdirty(vp);
   1939 		}
   1940 		return error;
   1941 	}
   1942 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1943 		mutex_exit(&uobj->vmobjlock);
   1944 		return EINVAL;
   1945 	}
   1946 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1947 		mutex_exit(&uobj->vmobjlock);
   1948 		return 0;
   1949 	}
   1950 	npages = orignpages;
   1951 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1952 	mutex_exit(&uobj->vmobjlock);
   1953 	kva = uvm_pagermapin(pgs, npages,
   1954 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1955 	for (i = 0; i < npages; i++) {
   1956 		pg = pgs[i];
   1957 		if ((pg->flags & PG_FAKE) == 0) {
   1958 			continue;
   1959 		}
   1960 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1961 		iov.iov_len = PAGE_SIZE;
   1962 		uio.uio_iov = &iov;
   1963 		uio.uio_iovcnt = 1;
   1964 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1965 		uio.uio_rw = UIO_READ;
   1966 		uio.uio_resid = PAGE_SIZE;
   1967 		UIO_SETUP_SYSSPACE(&uio);
   1968 		/* XXX vn_lock */
   1969 		error = VOP_READ(vp, &uio, 0, cred);
   1970 		if (error) {
   1971 			break;
   1972 		}
   1973 		if (uio.uio_resid) {
   1974 			memset(iov.iov_base, 0, uio.uio_resid);
   1975 		}
   1976 	}
   1977 	uvm_pagermapout(kva, npages);
   1978 	mutex_enter(&uobj->vmobjlock);
   1979 	mutex_enter(&uvm_pageqlock);
   1980 	for (i = 0; i < npages; i++) {
   1981 		pg = pgs[i];
   1982 		if (error && (pg->flags & PG_FAKE) != 0) {
   1983 			pg->flags |= PG_RELEASED;
   1984 		} else {
   1985 			pmap_clear_modify(pg);
   1986 			uvm_pageactivate(pg);
   1987 		}
   1988 	}
   1989 	if (error) {
   1990 		uvm_page_unbusy(pgs, npages);
   1991 	}
   1992 	mutex_exit(&uvm_pageqlock);
   1993 	if (error == 0 && memwrite) {
   1994 		genfs_markdirty(vp);
   1995 	}
   1996 	mutex_exit(&uobj->vmobjlock);
   1997 	return error;
   1998 }
   1999 
   2000 int
   2001 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   2002     int flags)
   2003 {
   2004 	off_t offset;
   2005 	struct iovec iov;
   2006 	struct uio uio;
   2007 	kauth_cred_t cred = curlwp->l_cred;
   2008 	struct buf *bp;
   2009 	vaddr_t kva;
   2010 	int error;
   2011 
   2012 	offset = pgs[0]->offset;
   2013 	kva = uvm_pagermapin(pgs, npages,
   2014 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   2015 
   2016 	iov.iov_base = (void *)kva;
   2017 	iov.iov_len = npages << PAGE_SHIFT;
   2018 	uio.uio_iov = &iov;
   2019 	uio.uio_iovcnt = 1;
   2020 	uio.uio_offset = offset;
   2021 	uio.uio_rw = UIO_WRITE;
   2022 	uio.uio_resid = npages << PAGE_SHIFT;
   2023 	UIO_SETUP_SYSSPACE(&uio);
   2024 	/* XXX vn_lock */
   2025 	error = VOP_WRITE(vp, &uio, 0, cred);
   2026 
   2027 	mutex_enter(&vp->v_interlock);
   2028 	vp->v_numoutput++;
   2029 	mutex_exit(&vp->v_interlock);
   2030 
   2031 	bp = getiobuf(vp, true);
   2032 	bp->b_cflags = BC_BUSY | BC_AGE;
   2033 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   2034 	bp->b_data = (char *)kva;
   2035 	bp->b_bcount = npages << PAGE_SHIFT;
   2036 	bp->b_bufsize = npages << PAGE_SHIFT;
   2037 	bp->b_resid = 0;
   2038 	bp->b_error = error;
   2039 	uvm_aio_aiodone(bp);
   2040 	return (error);
   2041 }
   2042 
   2043 /*
   2044  * Process a uio using direct I/O.  If we reach a part of the request
   2045  * which cannot be processed in this fashion for some reason, just return.
   2046  * The caller must handle some additional part of the request using
   2047  * buffered I/O before trying direct I/O again.
   2048  */
   2049 
   2050 void
   2051 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   2052 {
   2053 	struct vmspace *vs;
   2054 	struct iovec *iov;
   2055 	vaddr_t va;
   2056 	size_t len;
   2057 	const int mask = DEV_BSIZE - 1;
   2058 	int error;
   2059 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   2060 	    (ioflag & IO_JOURNALLOCKED) == 0);
   2061 
   2062 	/*
   2063 	 * We only support direct I/O to user space for now.
   2064 	 */
   2065 
   2066 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   2067 		return;
   2068 	}
   2069 
   2070 	/*
   2071 	 * If the vnode is mapped, we would need to get the getpages lock
   2072 	 * to stabilize the bmap, but then we would get into trouble whil e
   2073 	 * locking the pages if the pages belong to this same vnode (or a
   2074 	 * multi-vnode cascade to the same effect).  Just fall back to
   2075 	 * buffered I/O if the vnode is mapped to avoid this mess.
   2076 	 */
   2077 
   2078 	if (vp->v_vflag & VV_MAPPED) {
   2079 		return;
   2080 	}
   2081 
   2082 	if (need_wapbl) {
   2083 		error = WAPBL_BEGIN(vp->v_mount);
   2084 		if (error)
   2085 			return;
   2086 	}
   2087 
   2088 	/*
   2089 	 * Do as much of the uio as possible with direct I/O.
   2090 	 */
   2091 
   2092 	vs = uio->uio_vmspace;
   2093 	while (uio->uio_resid) {
   2094 		iov = uio->uio_iov;
   2095 		if (iov->iov_len == 0) {
   2096 			uio->uio_iov++;
   2097 			uio->uio_iovcnt--;
   2098 			continue;
   2099 		}
   2100 		va = (vaddr_t)iov->iov_base;
   2101 		len = MIN(iov->iov_len, genfs_maxdio);
   2102 		len &= ~mask;
   2103 
   2104 		/*
   2105 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   2106 		 * the current EOF, then fall back to buffered I/O.
   2107 		 */
   2108 
   2109 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   2110 			break;
   2111 		}
   2112 
   2113 		/*
   2114 		 * Check alignment.  The file offset must be at least
   2115 		 * sector-aligned.  The exact constraint on memory alignment
   2116 		 * is very hardware-dependent, but requiring sector-aligned
   2117 		 * addresses there too is safe.
   2118 		 */
   2119 
   2120 		if (uio->uio_offset & mask || va & mask) {
   2121 			break;
   2122 		}
   2123 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   2124 					  uio->uio_rw);
   2125 		if (error) {
   2126 			break;
   2127 		}
   2128 		iov->iov_base = (char *)iov->iov_base + len;
   2129 		iov->iov_len -= len;
   2130 		uio->uio_offset += len;
   2131 		uio->uio_resid -= len;
   2132 	}
   2133 
   2134 	if (need_wapbl)
   2135 		WAPBL_END(vp->v_mount);
   2136 }
   2137 
   2138 /*
   2139  * Iodone routine for direct I/O.  We don't do much here since the request is
   2140  * always synchronous, so the caller will do most of the work after biowait().
   2141  */
   2142 
   2143 static void
   2144 genfs_dio_iodone(struct buf *bp)
   2145 {
   2146 
   2147 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   2148 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   2149 		mutex_enter(bp->b_objlock);
   2150 		vwakeup(bp);
   2151 		mutex_exit(bp->b_objlock);
   2152 	}
   2153 	putiobuf(bp);
   2154 }
   2155 
   2156 /*
   2157  * Process one chunk of a direct I/O request.
   2158  */
   2159 
   2160 static int
   2161 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   2162     off_t off, enum uio_rw rw)
   2163 {
   2164 	struct vm_map *map;
   2165 	struct pmap *upm, *kpm;
   2166 	size_t klen = round_page(uva + len) - trunc_page(uva);
   2167 	off_t spoff, epoff;
   2168 	vaddr_t kva, puva;
   2169 	paddr_t pa;
   2170 	vm_prot_t prot;
   2171 	int error, rv, poff, koff;
   2172 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   2173 		(rw == UIO_WRITE ? PGO_FREE : 0);
   2174 
   2175 	/*
   2176 	 * For writes, verify that this range of the file already has fully
   2177 	 * allocated backing store.  If there are any holes, just punt and
   2178 	 * make the caller take the buffered write path.
   2179 	 */
   2180 
   2181 	if (rw == UIO_WRITE) {
   2182 		daddr_t lbn, elbn, blkno;
   2183 		int bsize, bshift, run;
   2184 
   2185 		bshift = vp->v_mount->mnt_fs_bshift;
   2186 		bsize = 1 << bshift;
   2187 		lbn = off >> bshift;
   2188 		elbn = (off + len + bsize - 1) >> bshift;
   2189 		while (lbn < elbn) {
   2190 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   2191 			if (error) {
   2192 				return error;
   2193 			}
   2194 			if (blkno == (daddr_t)-1) {
   2195 				return ENOSPC;
   2196 			}
   2197 			lbn += 1 + run;
   2198 		}
   2199 	}
   2200 
   2201 	/*
   2202 	 * Flush any cached pages for parts of the file that we're about to
   2203 	 * access.  If we're writing, invalidate pages as well.
   2204 	 */
   2205 
   2206 	spoff = trunc_page(off);
   2207 	epoff = round_page(off + len);
   2208 	mutex_enter(&vp->v_interlock);
   2209 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   2210 	if (error) {
   2211 		return error;
   2212 	}
   2213 
   2214 	/*
   2215 	 * Wire the user pages and remap them into kernel memory.
   2216 	 */
   2217 
   2218 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   2219 	error = uvm_vslock(vs, (void *)uva, len, prot);
   2220 	if (error) {
   2221 		return error;
   2222 	}
   2223 
   2224 	map = &vs->vm_map;
   2225 	upm = vm_map_pmap(map);
   2226 	kpm = vm_map_pmap(kernel_map);
   2227 	kva = uvm_km_alloc(kernel_map, klen, 0,
   2228 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   2229 	puva = trunc_page(uva);
   2230 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   2231 		rv = pmap_extract(upm, puva + poff, &pa);
   2232 		KASSERT(rv);
   2233 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   2234 	}
   2235 	pmap_update(kpm);
   2236 
   2237 	/*
   2238 	 * Do the I/O.
   2239 	 */
   2240 
   2241 	koff = uva - trunc_page(uva);
   2242 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   2243 			    genfs_dio_iodone);
   2244 
   2245 	/*
   2246 	 * Tear down the kernel mapping.
   2247 	 */
   2248 
   2249 	pmap_remove(kpm, kva, kva + klen);
   2250 	pmap_update(kpm);
   2251 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   2252 
   2253 	/*
   2254 	 * Unwire the user pages.
   2255 	 */
   2256 
   2257 	uvm_vsunlock(vs, (void *)uva, len);
   2258 	return error;
   2259 }
   2260 
   2261