genfs_io.c revision 1.36.2.57 1 /* $NetBSD: genfs_io.c,v 1.36.2.57 2010/11/21 05:19:56 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.57 2010/11/21 05:19:56 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef XIP
63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
64 int *, int, vm_prot_t, int, int, const int);
65 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
66 struct vm_page **);
67 #endif
68 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
69 off_t, enum uio_rw);
70 static void genfs_dio_iodone(struct buf *);
71
72 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
73 void (*)(struct buf *));
74 static void genfs_rel_pages(struct vm_page **, int);
75 static void genfs_markdirty(struct vnode *);
76
77 int genfs_maxdio = MAXPHYS;
78
79 static void
80 genfs_rel_pages(struct vm_page **pgs, int npages)
81 {
82 int i;
83
84 for (i = 0; i < npages; i++) {
85 struct vm_page *pg = pgs[i];
86
87 if (pg == NULL || pg == PGO_DONTCARE)
88 continue;
89 if (pg->flags & PG_FAKE) {
90 pg->flags |= PG_RELEASED;
91 }
92 }
93 mutex_enter(&uvm_pageqlock);
94 uvm_page_unbusy(pgs, npages);
95 mutex_exit(&uvm_pageqlock);
96 }
97
98 static void
99 genfs_markdirty(struct vnode *vp)
100 {
101 struct genfs_node * const gp = VTOG(vp);
102
103 KASSERT(mutex_owned(&vp->v_interlock));
104 gp->g_dirtygen++;
105 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
106 vn_syncer_add_to_worklist(vp, filedelay);
107 }
108 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
109 vp->v_iflag |= VI_WRMAPDIRTY;
110 }
111 }
112
113 /*
114 * generic VM getpages routine.
115 * Return PG_BUSY pages for the given range,
116 * reading from backing store if necessary.
117 */
118
119 int
120 genfs_getpages(void *v)
121 {
122 struct vop_getpages_args /* {
123 struct vnode *a_vp;
124 voff_t a_offset;
125 struct vm_page **a_m;
126 int *a_count;
127 int a_centeridx;
128 vm_prot_t a_access_type;
129 int a_advice;
130 int a_flags;
131 } */ * const ap = v;
132
133 off_t diskeof, memeof;
134 int i, error, npages;
135 const int flags = ap->a_flags;
136 struct vnode * const vp = ap->a_vp;
137 struct uvm_object * const uobj = &vp->v_uobj;
138 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
139 const bool async = (flags & PGO_SYNCIO) == 0;
140 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
141 bool has_trans = false;
142 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
143 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
144 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
145 #ifdef XIP
146 const bool xip = (ap->a_vp->v_vflag & VV_XIP) != 0;
147 #else
148 #define xip 0
149 #endif
150 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
151
152 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
153 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
154
155 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
156 vp->v_type == VLNK || vp->v_type == VBLK);
157
158 startover:
159 error = 0;
160 const voff_t origvsize = vp->v_size;
161 const off_t origoffset = ap->a_offset;
162 const int orignpages = *ap->a_count;
163
164 GOP_SIZE(vp, origvsize, &diskeof, 0);
165 if (flags & PGO_PASTEOF) {
166 off_t newsize;
167 #if defined(DIAGNOSTIC)
168 off_t writeeof;
169 #endif /* defined(DIAGNOSTIC) */
170
171 newsize = MAX(origvsize,
172 origoffset + (orignpages << PAGE_SHIFT));
173 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
174 #if defined(DIAGNOSTIC)
175 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
176 if (newsize > round_page(writeeof)) {
177 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
178 __func__, newsize, round_page(writeeof));
179 }
180 #endif /* defined(DIAGNOSTIC) */
181 } else {
182 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
183 }
184 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
185 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
186 KASSERT(orignpages > 0);
187
188 /*
189 * Bounds-check the request.
190 */
191
192 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
193 if ((flags & PGO_LOCKED) == 0) {
194 mutex_exit(&uobj->vmobjlock);
195 }
196 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
197 origoffset, *ap->a_count, memeof,0);
198 error = EINVAL;
199 goto out_err;
200 }
201
202 /* uobj is locked */
203
204 if ((flags & PGO_NOTIMESTAMP) == 0 &&
205 (vp->v_type != VBLK ||
206 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
207 int updflags = 0;
208
209 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
210 updflags = GOP_UPDATE_ACCESSED;
211 }
212 if (memwrite) {
213 updflags |= GOP_UPDATE_MODIFIED;
214 }
215 if (updflags != 0) {
216 GOP_MARKUPDATE(vp, updflags);
217 }
218 }
219
220 /*
221 * For PGO_LOCKED requests, just return whatever's in memory.
222 */
223
224 if (flags & PGO_LOCKED) {
225 #if 0
226 genfs_getpages_mem();
227 } else {
228 genfs_getpages_io();
229 }
230 }
231
232 int
233 genfs_getpages_mem()
234 {
235 #endif
236 int nfound;
237 struct vm_page *pg;
238
239 if (xip) {
240 *ap->a_count = 0;
241 return 0;
242 }
243
244 KASSERT(!glocked);
245 npages = *ap->a_count;
246 #if defined(DEBUG)
247 for (i = 0; i < npages; i++) {
248 pg = ap->a_m[i];
249 KASSERT(pg == NULL || pg == PGO_DONTCARE);
250 }
251 #endif /* defined(DEBUG) */
252 nfound = uvn_findpages(uobj, origoffset, &npages,
253 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
254 KASSERT(npages == *ap->a_count);
255 if (nfound == 0) {
256 error = EBUSY;
257 goto out_err;
258 }
259 if (!genfs_node_rdtrylock(vp)) {
260 genfs_rel_pages(ap->a_m, npages);
261
262 /*
263 * restore the array.
264 */
265
266 for (i = 0; i < npages; i++) {
267 pg = ap->a_m[i];
268
269 if (pg != NULL && pg != PGO_DONTCARE) {
270 ap->a_m[i] = NULL;
271 }
272 KASSERT(pg == NULL || pg == PGO_DONTCARE);
273 }
274 } else {
275 genfs_node_unlock(vp);
276 }
277 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
278 if (error == 0 && memwrite) {
279 genfs_markdirty(vp);
280 }
281 goto out_err;
282 }
283 mutex_exit(&uobj->vmobjlock);
284 #if 0
285 }
286
287 int
288 genfs_getpages_io()
289 {
290 #endif
291 /*
292 * find the requested pages and make some simple checks.
293 * leave space in the page array for a whole block.
294 */
295
296 #define vp2fs_bshift(vp) \
297 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
298 #define vp2dev_bshift(vp) \
299 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
300
301 const int fs_bshift = vp2fs_bshift(vp);
302 const int dev_bshift = vp2dev_bshift(vp);
303 const int fs_bsize = 1 << fs_bshift;
304 #define blk_mask (fs_bsize - 1)
305 #define trunc_blk(x) ((x) & ~blk_mask)
306 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
307
308 const int orignmempages = MIN(orignpages,
309 round_page(memeof - origoffset) >> PAGE_SHIFT);
310 npages = orignmempages;
311 const off_t startoffset = trunc_blk(origoffset);
312 const off_t endoffset = MIN(
313 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
314 round_page(memeof));
315 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
316
317 const int pgs_size = sizeof(struct vm_page *) *
318 ((endoffset - startoffset) >> PAGE_SHIFT);
319 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
320
321 if (pgs_size > sizeof(pgs_onstack)) {
322 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
323 if (pgs == NULL) {
324 pgs = pgs_onstack;
325 error = ENOMEM;
326 goto out_err;
327 }
328 } else {
329 pgs = pgs_onstack;
330 (void)memset(pgs, 0, pgs_size);
331 }
332
333 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
334 ridx, npages, startoffset, endoffset);
335 #if 0
336 }
337
338 int
339 genfs_getpages_io_relock()
340 {
341 #endif
342 if (!has_trans) {
343 fstrans_start(vp->v_mount, FSTRANS_SHARED);
344 has_trans = true;
345 }
346
347 /*
348 * hold g_glock to prevent a race with truncate.
349 *
350 * check if our idea of v_size is still valid.
351 */
352
353 KASSERT(!glocked || genfs_node_wrlocked(vp));
354 if (!glocked) {
355 if (blockalloc) {
356 genfs_node_wrlock(vp);
357 } else {
358 genfs_node_rdlock(vp);
359 }
360 }
361 mutex_enter(&uobj->vmobjlock);
362 if (vp->v_size < origvsize) {
363 if (!glocked) {
364 genfs_node_unlock(vp);
365 }
366 if (pgs != pgs_onstack)
367 kmem_free(pgs, pgs_size);
368 goto startover;
369 }
370 #if 0
371 }
372
373 int
374 genfs_getpages_io_findpages()
375 {
376 #endif
377 if (!xip) {
378 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
379 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
380 if (!glocked) {
381 genfs_node_unlock(vp);
382 }
383 KASSERT(async != 0);
384 genfs_rel_pages(&pgs[ridx], orignmempages);
385 mutex_exit(&uobj->vmobjlock);
386 error = EBUSY;
387 goto out_err_free;
388 }
389
390 /*
391 * if the pages are already resident, just return them.
392 */
393
394 for (i = 0; i < npages; i++) {
395 struct vm_page *pg = pgs[ridx + i];
396
397 if ((pg->flags & PG_FAKE) ||
398 (blockalloc && (pg->flags & PG_RDONLY))) {
399 break;
400 }
401 }
402 if (i == npages) {
403 if (!glocked) {
404 genfs_node_unlock(vp);
405 }
406 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
407 npages += ridx;
408 goto out;
409 }
410 }
411
412 /*
413 * if PGO_OVERWRITE is set, don't bother reading the pages.
414 */
415
416 if (overwrite) {
417 #if 0
418 genfs_getpages_io_overwrite();
419 } else {
420 genfs_getpages_io_read();
421 }
422 }
423
424 int
425 genfs_getpages_io_overwrite()
426 {
427 {
428 #endif
429 KASSERT(!xip);
430
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
435
436 for (i = 0; i < npages; i++) {
437 struct vm_page *pg = pgs[ridx + i];
438
439 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
440 }
441 npages += ridx;
442 goto out;
443 }
444 #if 0
445 }
446
447 int
448 genfs_getpages_io_read()
449 {
450 #endif
451 /*
452 * the page wasn't resident and we're not overwriting,
453 * so we're going to have to do some i/o.
454 * find any additional pages needed to cover the expanded range.
455 */
456 #if 0
457 }
458
459 int
460 genfs_getpages_io_read_allocpages()
461 {
462 #endif
463 if (!xip) {
464 npages = (endoffset - startoffset) >> PAGE_SHIFT;
465 if (startoffset != origoffset || npages != orignmempages) {
466 int npgs;
467
468 /*
469 * we need to avoid deadlocks caused by locking
470 * additional pages at lower offsets than pages we
471 * already have locked. unlock them all and start over.
472 */
473
474 genfs_rel_pages(&pgs[ridx], orignmempages);
475 memset(pgs, 0, pgs_size);
476
477 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
478 startoffset, endoffset, 0,0);
479 npgs = npages;
480 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
481 async ? UFP_NOWAIT : UFP_ALL) != npages) {
482 if (!glocked) {
483 genfs_node_unlock(vp);
484 }
485 KASSERT(async != 0);
486 genfs_rel_pages(pgs, npages);
487 mutex_exit(&uobj->vmobjlock);
488 error = EBUSY;
489 goto out_err_free;
490 }
491 }
492 }
493 #if 0
494 }
495
496 int
497 genfs_getpages_io_read_bio()
498 {
499 #endif
500 mutex_exit(&uobj->vmobjlock);
501
502 {
503 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
504 vaddr_t kva = 0;
505 struct buf *bp = NULL, *mbp = NULL;
506 bool sawhole = false;
507
508 /*
509 * read the desired page(s).
510 */
511
512 totalbytes = npages << PAGE_SHIFT;
513 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
514 tailbytes = totalbytes - bytes;
515 skipbytes = 0;
516 #if 0
517 }
518
519 int
520 genfs_getpages_io_read_bio_prepare()
521 {
522 #endif
523 if (!xip) {
524 kva = uvm_pagermapin(pgs, npages,
525 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
526
527 mbp = getiobuf(vp, true);
528 mbp->b_bufsize = totalbytes;
529 mbp->b_data = (void *)kva;
530 mbp->b_resid = mbp->b_bcount = bytes;
531 mbp->b_cflags = BC_BUSY;
532 if (async) {
533 mbp->b_flags = B_READ | B_ASYNC;
534 mbp->b_iodone = uvm_aio_biodone;
535 } else {
536 mbp->b_flags = B_READ;
537 mbp->b_iodone = NULL;
538 }
539 if (async)
540 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
541 else
542 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
543 }
544 #if 0
545 }
546
547 #endif
548 /*
549 * if EOF is in the middle of the range, zero the part past EOF.
550 * skip over pages which are not PG_FAKE since in that case they have
551 * valid data that we need to preserve.
552 */
553
554 tailstart = bytes;
555 while (tailbytes > 0) {
556 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
557
558 KASSERT(len <= tailbytes);
559 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
560 memset((void *)(kva + tailstart), 0, len);
561 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
562 kva, tailstart, len, 0);
563 }
564 tailstart += len;
565 tailbytes -= len;
566 }
567 #if 0
568 }
569
570 int
571 genfs_getpages_io_read_bio_loop()
572 {
573 #endif
574 /*
575 * now loop over the pages, reading as needed.
576 */
577
578 bp = NULL;
579 off_t offset;
580 for (offset = startoffset;
581 bytes > 0;
582 offset += iobytes, bytes -= iobytes) {
583 int run;
584 daddr_t lbn, blkno;
585 int pidx;
586 struct vnode *devvp;
587
588 /*
589 * skip pages which don't need to be read.
590 */
591
592 pidx = (offset - startoffset) >> PAGE_SHIFT;
593 if (!xip) {
594 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
595 size_t b;
596
597 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
598 if ((pgs[pidx]->flags & PG_RDONLY)) {
599 sawhole = true;
600 }
601 b = MIN(PAGE_SIZE, bytes);
602 offset += b;
603 bytes -= b;
604 skipbytes += b;
605 pidx++;
606 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
607 offset, 0,0,0);
608 if (bytes == 0) {
609 goto loopdone;
610 }
611 }
612 }
613
614 /*
615 * bmap the file to find out the blkno to read from and
616 * how much we can read in one i/o. if bmap returns an error,
617 * skip the rest of the top-level i/o.
618 */
619
620 lbn = offset >> fs_bshift;
621 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
622 if (error) {
623 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
624 lbn,error,0,0);
625 skipbytes += bytes;
626 bytes = 0;
627 goto loopdone;
628 }
629
630 /*
631 * see how many pages can be read with this i/o.
632 * reduce the i/o size if necessary to avoid
633 * overwriting pages with valid data.
634 */
635
636 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
637 bytes);
638 if (offset + iobytes > round_page(offset)) {
639 int pcount;
640
641 pcount = 1;
642 while ((pidx + pcount < npages) && (
643 /*
644 * in XIP case, we don't know what page to read
645 * at this point!
646 */
647 xip ||
648 (pgs[pidx + pcount]->flags & PG_FAKE))) {
649 pcount++;
650 }
651 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
652 (offset - trunc_page(offset)));
653 }
654
655 /*
656 * if this block isn't allocated, zero it instead of
657 * reading it. unless we are going to allocate blocks,
658 * mark the pages we zeroed PG_RDONLY.
659 */
660
661 if (blkno == (daddr_t)-1) {
662 if (!xip) {
663 int holepages = (round_page(offset + iobytes) -
664 trunc_page(offset)) >> PAGE_SHIFT;
665 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
666
667 KASSERT(!xip);
668
669 sawhole = true;
670 memset((char *)kva + (offset - startoffset), 0,
671 iobytes);
672 skipbytes += iobytes;
673
674 for (i = 0; i < holepages; i++) {
675 if (memwrite) {
676 pgs[pidx + i]->flags &= ~PG_CLEAN;
677 }
678 if (!blockalloc) {
679 pgs[pidx + i]->flags |= PG_RDONLY;
680 }
681 }
682 } else {
683 panic("XIP hole page is not supported yet");
684 }
685 continue;
686 }
687
688 if (!xip) {
689 /*
690 * allocate a sub-buf for this piece of the i/o
691 * (or just use mbp if there's only 1 piece),
692 * and start it going.
693 */
694
695 if (offset == startoffset && iobytes == bytes) {
696 bp = mbp;
697 } else {
698 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
699 vp, bp, vp->v_numoutput, 0);
700 bp = getiobuf(vp, true);
701 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
702 }
703 bp->b_lblkno = 0;
704
705 /* adjust physical blkno for partial blocks */
706 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
707 dev_bshift);
708
709 UVMHIST_LOG(ubchist,
710 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
711 bp, offset, bp->b_bcount, bp->b_blkno);
712
713 VOP_STRATEGY(devvp, bp);
714 }
715 #ifdef XIP
716 else {
717 /*
718 * XIP page metadata assignment
719 * - Unallocated block is redirected to the dedicated zero'ed
720 * page.
721 */
722 const daddr_t blk_off = blkno << dev_bshift;
723 const daddr_t fs_off = origoffset - startoffset;
724
725 int npgs = iobytes >> PAGE_SHIFT;
726 UVMHIST_LOG(ubchist,
727 "xip iobytes=0x%lx ridx=%d pidx=%d npgs=%d",
728 (long)iobytes, ridx, pidx, npgs);
729
730 /* XXX optimize */
731 for (i = 0; i < npgs; i++) {
732 const daddr_t pg_off = i << PAGE_SHIFT;
733 struct vm_page *pg;
734
735 UVMHIST_LOG(ubchist,
736 "xip blk_off=0x%lx fs_off=0x%lx pg_off=%lx",
737 (long)blk_off, (long)fs_off, (long)pg_off, 0);
738
739 pg = uvn_findpage_xip(devvp, &vp->v_uobj,
740 blk_off + fs_off + pg_off);
741 KASSERT(pg != NULL);
742 UVMHIST_LOG(ubchist,
743 "xip pg %d => phys_addr=0x%lx (%p)",
744 ridx + pidx + i, (long)pg->phys_addr, pg, 0);
745 pgs[ridx + pidx + i] = pg;
746 }
747 }
748 #endif
749 }
750
751 loopdone:
752 #if 0
753
754 int
755 genfs_getpages_biodone()
756 {
757 #endif
758 if (!xip) {
759 nestiobuf_done(mbp, skipbytes, error);
760 if (async) {
761 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
762 if (!glocked) {
763 genfs_node_unlock(vp);
764 }
765 error = 0;
766 goto out_err_free;
767 }
768 if (bp != NULL) {
769 error = biowait(mbp);
770 }
771
772 /* Remove the mapping (make KVA available as soon as possible) */
773 uvm_pagermapout(kva, npages);
774
775 /*
776 * if this we encountered a hole then we have to do a little more work.
777 * for read faults, we marked the page PG_RDONLY so that future
778 * write accesses to the page will fault again.
779 * for write faults, we must make sure that the backing store for
780 * the page is completely allocated while the pages are locked.
781 */
782
783 if (!error && sawhole && blockalloc) {
784 /*
785 * XXX: This assumes that we come here only via
786 * the mmio path
787 */
788 if (vp->v_mount->mnt_wapbl) {
789 error = WAPBL_BEGIN(vp->v_mount);
790 }
791
792 if (!error) {
793 error = GOP_ALLOC(vp, startoffset,
794 npages << PAGE_SHIFT, 0, cred);
795 if (vp->v_mount->mnt_wapbl) {
796 WAPBL_END(vp->v_mount);
797 }
798 }
799
800 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
801 startoffset, npages << PAGE_SHIFT, error,0);
802 if (!error) {
803 for (i = 0; i < npages; i++) {
804 struct vm_page *pg = pgs[i];
805
806 if (pg == NULL) {
807 continue;
808 }
809 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
810 UVMHIST_LOG(ubchist, "mark dirty pg %p",
811 pg,0,0,0);
812 }
813 }
814 }
815
816 putiobuf(mbp);
817 }
818 #if 0
819 }
820
821 #endif
822 }
823
824 if (!glocked) {
825 genfs_node_unlock(vp);
826 }
827
828 mutex_enter(&uobj->vmobjlock);
829 #if 0
830 }
831
832 int
833 genfs_getpages_generic_io_done()
834 {
835 #endif
836 /*
837 * we're almost done! release the pages...
838 * for errors, we free the pages.
839 * otherwise we activate them and mark them as valid and clean.
840 * also, unbusy pages that were not actually requested.
841 */
842
843 if (error) {
844 for (i = 0; i < npages; i++) {
845 struct vm_page *pg = pgs[i];
846
847 if (pg == NULL) {
848 continue;
849 }
850 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
851 pg, pg->flags, 0,0);
852 if (pg->flags & PG_FAKE) {
853 pg->flags |= PG_RELEASED;
854 }
855 }
856 mutex_enter(&uvm_pageqlock);
857 uvm_page_unbusy(pgs, npages);
858 mutex_exit(&uvm_pageqlock);
859 mutex_exit(&uobj->vmobjlock);
860 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
861 goto out_err_free;
862 }
863
864 out:
865 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
866 error = 0;
867
868 if (!xip) {
869 mutex_enter(&uvm_pageqlock);
870 for (i = 0; i < npages; i++) {
871 struct vm_page *pg = pgs[i];
872 if (pg == NULL) {
873 continue;
874 }
875 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
876 pg, pg->flags, 0,0);
877 if (pg->flags & PG_FAKE && !overwrite) {
878 pg->flags &= ~(PG_FAKE);
879 pmap_clear_modify(pgs[i]);
880 }
881 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
882 if (i < ridx || i >= ridx + orignmempages || async) {
883 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
884 pg, pg->offset,0,0);
885 if (pg->flags & PG_WANTED) {
886 wakeup(pg);
887 }
888 if (pg->flags & PG_FAKE) {
889 KASSERT(overwrite);
890 uvm_pagezero(pg);
891 }
892 if (pg->flags & PG_RELEASED) {
893 uvm_pagefree(pg);
894 continue;
895 }
896 uvm_pageenqueue(pg);
897 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
898 UVM_PAGE_OWN(pg, NULL);
899 }
900 }
901 mutex_exit(&uvm_pageqlock);
902
903 if (memwrite) {
904 genfs_markdirty(vp);
905 }
906 } else {
907 KASSERT(npages == orignmempages);
908 for (i = ridx; i < ridx + npages; i++) {
909 struct vm_page *pg = pgs[i];
910
911 KASSERT(pg != NULL);
912 KASSERT((pg->flags & PG_RDONLY) != 0);
913 KASSERT((pg->flags & PG_BUSY) != 0);
914 KASSERT((pg->flags & PG_CLEAN) != 0);
915 KASSERT((pg->flags & PG_DEVICE) != 0);
916 KASSERT((pg->flags & PG_FAKE) == 0);
917
918 /*
919 * XXXUEBS
920 * Actually this is not necessary, because device pages are
921 * "stateless", and they have no owner.
922 */
923 pg->uobject = &vp->v_uobj;
924 }
925 } /* xip */
926
927 mutex_exit(&uobj->vmobjlock);
928
929 if (ap->a_m != NULL) {
930 memcpy(ap->a_m, &pgs[ridx],
931 orignmempages * sizeof(struct vm_page *));
932 KASSERT(error != 0 || ap->a_m[ap->a_centeridx] != NULL);
933 }
934 #if 0
935 }
936
937 #endif
938
939 out_err_free:
940 if (pgs != NULL && pgs != pgs_onstack)
941 kmem_free(pgs, pgs_size);
942 out_err:
943 if (has_trans)
944 fstrans_done(vp->v_mount);
945 return error;
946 }
947
948 #ifdef XIP
949 /*
950 * genfs_do_getpages_xip_io
951 * Return "direct pages" of XIP vnode. The block addresses of XIP
952 * vnode pages are returned back to the VM fault handler as the
953 * actually mapped physical addresses.
954 */
955 static int
956 genfs_do_getpages_xip_io(
957 struct vnode *vp,
958 voff_t origoffset,
959 struct vm_page **pps,
960 int *npagesp,
961 int centeridx,
962 vm_prot_t access_type,
963 int advice,
964 int flags,
965 const int orignmempages)
966 {
967 const int fs_bshift = vp2fs_bshift(vp);
968 const int dev_bshift = vp2dev_bshift(vp);
969 const int fs_bsize = 1 << fs_bshift;
970
971 int error;
972 off_t off;
973 int i;
974
975 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
976
977 KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
978
979 #ifdef UVMHIST
980 const off_t startoffset = trunc_blk(origoffset);
981 const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
982 #endif
983
984 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
985
986 UVMHIST_LOG(ubchist,
987 "ridx=%d xip npages=%d startoff=0x%lx endoff=0x%lx",
988 ridx, orignmempages, (long)startoffset, (long)endoffset);
989
990 off = origoffset;
991 for (i = ridx; i < ridx + orignmempages; i++) {
992 daddr_t blkno;
993 int run;
994 struct vnode *devvp;
995
996 KASSERT((off - origoffset) >> PAGE_SHIFT == i - ridx);
997
998 const daddr_t lbn = trunc_blk(off) >> fs_bshift;
999
1000 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1001 KASSERT(error == 0);
1002 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
1003 (long)lbn, (long)blkno, run, 0);
1004
1005 const daddr_t blk_off = blkno << dev_bshift;
1006 const daddr_t fs_off = origoffset - (lbn << fs_bshift);
1007
1008 /*
1009 * XIP page metadata assignment
1010 * - Unallocated block is redirected to the dedicated zero'ed
1011 * page.
1012 */
1013 if (blkno < 0) {
1014 panic("XIP hole is not supported yet!");
1015 } else {
1016 KASSERT(off - origoffset == (i - ridx) << PAGE_SHIFT);
1017
1018 const daddr_t pg_off = (i - ridx) << PAGE_SHIFT;
1019
1020 struct vm_page *pg;
1021
1022 UVMHIST_LOG(ubchist,
1023 "xip blk_off=%lx fs_off=%lx pg_off=%lx",
1024 (long)blk_off, (long)fs_off, (long)pg_off, 0);
1025
1026 pg = uvn_findpage_xip(devvp, &vp->v_uobj,
1027 blk_off + fs_off + pg_off);
1028 KASSERT(pg != NULL);
1029 UVMHIST_LOG(ubchist,
1030 "xip pgs %d => phys_addr=0x%lx (%p)",
1031 i, (long)pg->phys_addr, pg, 0);
1032 pps[i] = pg;
1033 }
1034
1035 off += PAGE_SIZE;
1036 }
1037
1038 return 0;
1039 }
1040 #endif
1041
1042 /*
1043 * generic VM putpages routine.
1044 * Write the given range of pages to backing store.
1045 *
1046 * => "offhi == 0" means flush all pages at or after "offlo".
1047 * => object should be locked by caller. we return with the
1048 * object unlocked.
1049 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1050 * thus, a caller might want to unlock higher level resources
1051 * (e.g. vm_map) before calling flush.
1052 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
1053 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1054 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1055 * that new pages are inserted on the tail end of the list. thus,
1056 * we can make a complete pass through the object in one go by starting
1057 * at the head and working towards the tail (new pages are put in
1058 * front of us).
1059 * => NOTE: we are allowed to lock the page queues, so the caller
1060 * must not be holding the page queue lock.
1061 *
1062 * note on "cleaning" object and PG_BUSY pages:
1063 * this routine is holding the lock on the object. the only time
1064 * that it can run into a PG_BUSY page that it does not own is if
1065 * some other process has started I/O on the page (e.g. either
1066 * a pagein, or a pageout). if the PG_BUSY page is being paged
1067 * in, then it can not be dirty (!PG_CLEAN) because no one has
1068 * had a chance to modify it yet. if the PG_BUSY page is being
1069 * paged out then it means that someone else has already started
1070 * cleaning the page for us (how nice!). in this case, if we
1071 * have syncio specified, then after we make our pass through the
1072 * object we need to wait for the other PG_BUSY pages to clear
1073 * off (i.e. we need to do an iosync). also note that once a
1074 * page is PG_BUSY it must stay in its object until it is un-busyed.
1075 *
1076 * note on page traversal:
1077 * we can traverse the pages in an object either by going down the
1078 * linked list in "uobj->memq", or we can go over the address range
1079 * by page doing hash table lookups for each address. depending
1080 * on how many pages are in the object it may be cheaper to do one
1081 * or the other. we set "by_list" to true if we are using memq.
1082 * if the cost of a hash lookup was equal to the cost of the list
1083 * traversal we could compare the number of pages in the start->stop
1084 * range to the total number of pages in the object. however, it
1085 * seems that a hash table lookup is more expensive than the linked
1086 * list traversal, so we multiply the number of pages in the
1087 * range by an estimate of the relatively higher cost of the hash lookup.
1088 */
1089
1090 int
1091 genfs_putpages(void *v)
1092 {
1093 struct vop_putpages_args /* {
1094 struct vnode *a_vp;
1095 voff_t a_offlo;
1096 voff_t a_offhi;
1097 int a_flags;
1098 } */ * const ap = v;
1099
1100 #ifdef XIP
1101 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1102 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1103 ap->a_flags, NULL);
1104 else
1105 #endif
1106 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1107 ap->a_flags, NULL);
1108 }
1109
1110 int
1111 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1112 int origflags, struct vm_page **busypg)
1113 {
1114 struct uvm_object * const uobj = &vp->v_uobj;
1115 kmutex_t * const slock = &uobj->vmobjlock;
1116 off_t off;
1117 /* Even for strange MAXPHYS, the shift rounds down to a page */
1118 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1119 int i, error, npages, nback;
1120 int freeflag;
1121 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1122 bool wasclean, by_list, needs_clean, yld;
1123 bool async = (origflags & PGO_SYNCIO) == 0;
1124 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1125 struct lwp * const l = curlwp ? curlwp : &lwp0;
1126 struct genfs_node * const gp = VTOG(vp);
1127 int flags;
1128 int dirtygen;
1129 bool modified;
1130 bool need_wapbl;
1131 bool has_trans;
1132 bool cleanall;
1133 bool onworklst;
1134
1135 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1136
1137 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1138 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1139 KASSERT(startoff < endoff || endoff == 0);
1140
1141 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1142 vp, uobj->uo_npages, startoff, endoff - startoff);
1143
1144 has_trans = false;
1145 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1146 (origflags & PGO_JOURNALLOCKED) == 0);
1147
1148 retry:
1149 modified = false;
1150 flags = origflags;
1151 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1152 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1153 if (uobj->uo_npages == 0) {
1154 if (vp->v_iflag & VI_ONWORKLST) {
1155 vp->v_iflag &= ~VI_WRMAPDIRTY;
1156 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1157 vn_syncer_remove_from_worklist(vp);
1158 }
1159 if (has_trans) {
1160 if (need_wapbl)
1161 WAPBL_END(vp->v_mount);
1162 fstrans_done(vp->v_mount);
1163 }
1164 mutex_exit(slock);
1165 return (0);
1166 }
1167
1168 /*
1169 * the vnode has pages, set up to process the request.
1170 */
1171
1172 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1173 mutex_exit(slock);
1174 if (pagedaemon) {
1175 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1176 if (error)
1177 return error;
1178 } else
1179 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1180 if (need_wapbl) {
1181 error = WAPBL_BEGIN(vp->v_mount);
1182 if (error) {
1183 fstrans_done(vp->v_mount);
1184 return error;
1185 }
1186 }
1187 has_trans = true;
1188 mutex_enter(slock);
1189 goto retry;
1190 }
1191
1192 error = 0;
1193 wasclean = (vp->v_numoutput == 0);
1194 off = startoff;
1195 if (endoff == 0 || flags & PGO_ALLPAGES) {
1196 endoff = trunc_page(LLONG_MAX);
1197 }
1198 by_list = (uobj->uo_npages <=
1199 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1200
1201 #if !defined(DEBUG)
1202 /*
1203 * if this vnode is known not to have dirty pages,
1204 * don't bother to clean it out.
1205 */
1206
1207 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1208 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1209 goto skip_scan;
1210 }
1211 flags &= ~PGO_CLEANIT;
1212 }
1213 #endif /* !defined(DEBUG) */
1214
1215 /*
1216 * start the loop. when scanning by list, hold the last page
1217 * in the list before we start. pages allocated after we start
1218 * will be added to the end of the list, so we can stop at the
1219 * current last page.
1220 */
1221
1222 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1223 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1224 (vp->v_iflag & VI_ONWORKLST) != 0;
1225 dirtygen = gp->g_dirtygen;
1226 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1227 if (by_list) {
1228 curmp.flags = PG_MARKER;
1229 endmp.flags = PG_MARKER;
1230 pg = TAILQ_FIRST(&uobj->memq);
1231 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1232 } else {
1233 pg = uvm_pagelookup(uobj, off);
1234 }
1235 nextpg = NULL;
1236 while (by_list || off < endoff) {
1237
1238 /*
1239 * if the current page is not interesting, move on to the next.
1240 */
1241
1242 KASSERT(pg == NULL || pg->uobject == uobj ||
1243 (pg->flags & PG_MARKER) != 0);
1244 KASSERT(pg == NULL ||
1245 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1246 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1247 if (by_list) {
1248 if (pg == &endmp) {
1249 break;
1250 }
1251 if (pg->flags & PG_MARKER) {
1252 pg = TAILQ_NEXT(pg, listq.queue);
1253 continue;
1254 }
1255 if (pg->offset < startoff || pg->offset >= endoff ||
1256 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1257 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1258 wasclean = false;
1259 }
1260 pg = TAILQ_NEXT(pg, listq.queue);
1261 continue;
1262 }
1263 off = pg->offset;
1264 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1265 if (pg != NULL) {
1266 wasclean = false;
1267 }
1268 off += PAGE_SIZE;
1269 if (off < endoff) {
1270 pg = uvm_pagelookup(uobj, off);
1271 }
1272 continue;
1273 }
1274
1275 /*
1276 * if the current page needs to be cleaned and it's busy,
1277 * wait for it to become unbusy.
1278 */
1279
1280 yld = (l->l_cpu->ci_schedstate.spc_flags &
1281 SPCF_SHOULDYIELD) && !pagedaemon;
1282 if (pg->flags & PG_BUSY || yld) {
1283 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1284 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1285 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1286 error = EDEADLK;
1287 if (busypg != NULL)
1288 *busypg = pg;
1289 break;
1290 }
1291 if (pagedaemon) {
1292 /*
1293 * someone has taken the page while we
1294 * dropped the lock for fstrans_start.
1295 */
1296 break;
1297 }
1298 if (by_list) {
1299 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1300 UVMHIST_LOG(ubchist, "curmp next %p",
1301 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1302 }
1303 if (yld) {
1304 mutex_exit(slock);
1305 preempt();
1306 mutex_enter(slock);
1307 } else {
1308 pg->flags |= PG_WANTED;
1309 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1310 mutex_enter(slock);
1311 }
1312 if (by_list) {
1313 UVMHIST_LOG(ubchist, "after next %p",
1314 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1315 pg = TAILQ_NEXT(&curmp, listq.queue);
1316 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1317 } else {
1318 pg = uvm_pagelookup(uobj, off);
1319 }
1320 continue;
1321 }
1322
1323 /*
1324 * if we're freeing, remove all mappings of the page now.
1325 * if we're cleaning, check if the page is needs to be cleaned.
1326 */
1327
1328 if (flags & PGO_FREE) {
1329 pmap_page_protect(pg, VM_PROT_NONE);
1330 } else if (flags & PGO_CLEANIT) {
1331
1332 /*
1333 * if we still have some hope to pull this vnode off
1334 * from the syncer queue, write-protect the page.
1335 */
1336
1337 if (cleanall && wasclean &&
1338 gp->g_dirtygen == dirtygen) {
1339
1340 /*
1341 * uobj pages get wired only by uvm_fault
1342 * where uobj is locked.
1343 */
1344
1345 if (pg->wire_count == 0) {
1346 pmap_page_protect(pg,
1347 VM_PROT_READ|VM_PROT_EXECUTE);
1348 } else {
1349 cleanall = false;
1350 }
1351 }
1352 }
1353
1354 if (flags & PGO_CLEANIT) {
1355 needs_clean = pmap_clear_modify(pg) ||
1356 (pg->flags & PG_CLEAN) == 0;
1357 pg->flags |= PG_CLEAN;
1358 } else {
1359 needs_clean = false;
1360 }
1361
1362 /*
1363 * if we're cleaning, build a cluster.
1364 * the cluster will consist of pages which are currently dirty,
1365 * but they will be returned to us marked clean.
1366 * if not cleaning, just operate on the one page.
1367 */
1368
1369 if (needs_clean) {
1370 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1371 wasclean = false;
1372 memset(pgs, 0, sizeof(pgs));
1373 pg->flags |= PG_BUSY;
1374 UVM_PAGE_OWN(pg, "genfs_putpages");
1375
1376 /*
1377 * first look backward.
1378 */
1379
1380 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1381 nback = npages;
1382 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1383 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1384 if (nback) {
1385 memmove(&pgs[0], &pgs[npages - nback],
1386 nback * sizeof(pgs[0]));
1387 if (npages - nback < nback)
1388 memset(&pgs[nback], 0,
1389 (npages - nback) * sizeof(pgs[0]));
1390 else
1391 memset(&pgs[npages - nback], 0,
1392 nback * sizeof(pgs[0]));
1393 }
1394
1395 /*
1396 * then plug in our page of interest.
1397 */
1398
1399 pgs[nback] = pg;
1400
1401 /*
1402 * then look forward to fill in the remaining space in
1403 * the array of pages.
1404 */
1405
1406 npages = maxpages - nback - 1;
1407 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1408 &pgs[nback + 1],
1409 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1410 npages += nback + 1;
1411 } else {
1412 pgs[0] = pg;
1413 npages = 1;
1414 nback = 0;
1415 }
1416
1417 /*
1418 * apply FREE or DEACTIVATE options if requested.
1419 */
1420
1421 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1422 mutex_enter(&uvm_pageqlock);
1423 }
1424 for (i = 0; i < npages; i++) {
1425 tpg = pgs[i];
1426 KASSERT(tpg->uobject == uobj);
1427 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1428 pg = tpg;
1429 if (tpg->offset < startoff || tpg->offset >= endoff)
1430 continue;
1431 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1432 uvm_pagedeactivate(tpg);
1433 } else if (flags & PGO_FREE) {
1434 pmap_page_protect(tpg, VM_PROT_NONE);
1435 if (tpg->flags & PG_BUSY) {
1436 tpg->flags |= freeflag;
1437 if (pagedaemon) {
1438 uvm_pageout_start(1);
1439 uvm_pagedequeue(tpg);
1440 }
1441 } else {
1442
1443 /*
1444 * ``page is not busy''
1445 * implies that npages is 1
1446 * and needs_clean is false.
1447 */
1448
1449 nextpg = TAILQ_NEXT(tpg, listq.queue);
1450 uvm_pagefree(tpg);
1451 if (pagedaemon)
1452 uvmexp.pdfreed++;
1453 }
1454 }
1455 }
1456 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1457 mutex_exit(&uvm_pageqlock);
1458 }
1459 if (needs_clean) {
1460 modified = true;
1461
1462 /*
1463 * start the i/o. if we're traversing by list,
1464 * keep our place in the list with a marker page.
1465 */
1466
1467 if (by_list) {
1468 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1469 listq.queue);
1470 }
1471 mutex_exit(slock);
1472 error = GOP_WRITE(vp, pgs, npages, flags);
1473 mutex_enter(slock);
1474 if (by_list) {
1475 pg = TAILQ_NEXT(&curmp, listq.queue);
1476 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1477 }
1478 if (error) {
1479 break;
1480 }
1481 if (by_list) {
1482 continue;
1483 }
1484 }
1485
1486 /*
1487 * find the next page and continue if there was no error.
1488 */
1489
1490 if (by_list) {
1491 if (nextpg) {
1492 pg = nextpg;
1493 nextpg = NULL;
1494 } else {
1495 pg = TAILQ_NEXT(pg, listq.queue);
1496 }
1497 } else {
1498 off += (npages - nback) << PAGE_SHIFT;
1499 if (off < endoff) {
1500 pg = uvm_pagelookup(uobj, off);
1501 }
1502 }
1503 }
1504 if (by_list) {
1505 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1506 }
1507
1508 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1509 (vp->v_type != VBLK ||
1510 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1511 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1512 }
1513
1514 /*
1515 * if we're cleaning and there was nothing to clean,
1516 * take us off the syncer list. if we started any i/o
1517 * and we're doing sync i/o, wait for all writes to finish.
1518 */
1519
1520 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1521 (vp->v_iflag & VI_ONWORKLST) != 0) {
1522 #if defined(DEBUG)
1523 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1524 if ((pg->flags & PG_MARKER) != 0) {
1525 continue;
1526 }
1527 if ((pg->flags & PG_CLEAN) == 0) {
1528 printf("%s: %p: !CLEAN\n", __func__, pg);
1529 }
1530 if (pmap_is_modified(pg)) {
1531 printf("%s: %p: modified\n", __func__, pg);
1532 }
1533 }
1534 #endif /* defined(DEBUG) */
1535 vp->v_iflag &= ~VI_WRMAPDIRTY;
1536 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1537 vn_syncer_remove_from_worklist(vp);
1538 }
1539
1540 #if !defined(DEBUG)
1541 skip_scan:
1542 #endif /* !defined(DEBUG) */
1543
1544 /* Wait for output to complete. */
1545 if (!wasclean && !async && vp->v_numoutput != 0) {
1546 while (vp->v_numoutput != 0)
1547 cv_wait(&vp->v_cv, slock);
1548 }
1549 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1550 mutex_exit(slock);
1551
1552 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1553 /*
1554 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1555 * retrying is not a big deal because, in many cases,
1556 * uobj->uo_npages is already 0 here.
1557 */
1558 mutex_enter(slock);
1559 goto retry;
1560 }
1561
1562 if (has_trans) {
1563 if (need_wapbl)
1564 WAPBL_END(vp->v_mount);
1565 fstrans_done(vp->v_mount);
1566 }
1567
1568 return (error);
1569 }
1570
1571 #ifdef XIP
1572 int
1573 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1574 int flags, struct vm_page **busypg)
1575 {
1576 struct uvm_object *uobj = &vp->v_uobj;
1577 #ifdef DIAGNOSTIC
1578 struct genfs_node * const gp = VTOG(vp);
1579 #endif
1580
1581 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1582
1583 KASSERT(mutex_owned(&uobj->vmobjlock));
1584 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1585 KASSERT(vp->v_numoutput == 0);
1586 KASSERT(gp->g_dirtygen == 0);
1587
1588 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1589 vp, uobj->uo_npages, startoff, endoff - startoff);
1590
1591 /*
1592 * XIP pages are read-only, and never become dirty. They're also never
1593 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1594 * pages, so we ignore them.
1595 */
1596 if ((flags & PGO_FREE) == 0)
1597 goto done;
1598
1599 /*
1600 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1601 * mappings of both XIP pages and XIP zero pages.
1602 *
1603 * Zero page is freed when one of its mapped offset is freed, even if
1604 * one file (vnode) has many holes and mapping its zero page to all
1605 * of those hole pages.
1606 *
1607 * We don't know which pages are currently mapped in the given vnode,
1608 * because XIP pages are not added to vnode. What we can do is to
1609 * locate pages by querying the filesystem as done in getpages. Call
1610 * genfs_do_getpages_xip_io().
1611 */
1612
1613 off_t off, eof;
1614
1615 off = trunc_page(startoff);
1616 if (endoff == 0 || (flags & PGO_ALLPAGES))
1617 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1618 else
1619 eof = endoff;
1620
1621 while (off < eof) {
1622 int npages, orignpages, error, i;
1623 struct vm_page *pgs[maxpages], *pg;
1624
1625 npages = round_page(eof - off) >> PAGE_SHIFT;
1626 if (npages > maxpages)
1627 npages = maxpages;
1628
1629 orignpages = npages;
1630 KASSERT(mutex_owned(&uobj->vmobjlock));
1631 mutex_exit(&uobj->vmobjlock);
1632 error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
1633 VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
1634 KASSERT(error == 0);
1635 KASSERT(npages == orignpages);
1636 mutex_enter(&uobj->vmobjlock);
1637 for (i = 0; i < npages; i++) {
1638 pg = pgs[i];
1639 if (pg == NULL || pg == PGO_DONTCARE)
1640 continue;
1641 /*
1642 * Freeing normal XIP pages; nothing to do.
1643 */
1644 pmap_page_protect(pg, VM_PROT_NONE);
1645 KASSERT((pg->flags & PG_RDONLY) != 0);
1646 KASSERT((pg->flags & PG_CLEAN) != 0);
1647 KASSERT((pg->flags & PG_FAKE) == 0);
1648 KASSERT((pg->flags & PG_DEVICE) != 0);
1649 pg->flags &= ~PG_BUSY;
1650 }
1651 off += npages << PAGE_SHIFT;
1652 }
1653
1654 KASSERT(uobj->uo_npages == 0);
1655
1656 done:
1657 KASSERT(mutex_owned(&uobj->vmobjlock));
1658 mutex_exit(&uobj->vmobjlock);
1659 return 0;
1660 }
1661 #endif
1662
1663 int
1664 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1665 {
1666 off_t off;
1667 vaddr_t kva;
1668 size_t len;
1669 int error;
1670 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1671
1672 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1673 vp, pgs, npages, flags);
1674
1675 off = pgs[0]->offset;
1676 kva = uvm_pagermapin(pgs, npages,
1677 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1678 len = npages << PAGE_SHIFT;
1679
1680 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1681 uvm_aio_biodone);
1682
1683 return error;
1684 }
1685
1686 int
1687 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1688 {
1689 off_t off;
1690 vaddr_t kva;
1691 size_t len;
1692 int error;
1693 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1694
1695 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1696 vp, pgs, npages, flags);
1697
1698 off = pgs[0]->offset;
1699 kva = uvm_pagermapin(pgs, npages,
1700 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1701 len = npages << PAGE_SHIFT;
1702
1703 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1704 uvm_aio_biodone);
1705
1706 return error;
1707 }
1708
1709 /*
1710 * Backend routine for doing I/O to vnode pages. Pages are already locked
1711 * and mapped into kernel memory. Here we just look up the underlying
1712 * device block addresses and call the strategy routine.
1713 */
1714
1715 static int
1716 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1717 enum uio_rw rw, void (*iodone)(struct buf *))
1718 {
1719 int s, error;
1720 int fs_bshift, dev_bshift;
1721 off_t eof, offset, startoffset;
1722 size_t bytes, iobytes, skipbytes;
1723 struct buf *mbp, *bp;
1724 const bool async = (flags & PGO_SYNCIO) == 0;
1725 const bool iowrite = rw == UIO_WRITE;
1726 const int brw = iowrite ? B_WRITE : B_READ;
1727 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1728
1729 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1730 vp, kva, len, flags);
1731
1732 KASSERT(vp->v_size <= vp->v_writesize);
1733 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1734 if (vp->v_type != VBLK) {
1735 fs_bshift = vp->v_mount->mnt_fs_bshift;
1736 dev_bshift = vp->v_mount->mnt_dev_bshift;
1737 } else {
1738 fs_bshift = DEV_BSHIFT;
1739 dev_bshift = DEV_BSHIFT;
1740 }
1741 error = 0;
1742 startoffset = off;
1743 bytes = MIN(len, eof - startoffset);
1744 skipbytes = 0;
1745 KASSERT(bytes != 0);
1746
1747 if (iowrite) {
1748 mutex_enter(&vp->v_interlock);
1749 vp->v_numoutput += 2;
1750 mutex_exit(&vp->v_interlock);
1751 }
1752 mbp = getiobuf(vp, true);
1753 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1754 vp, mbp, vp->v_numoutput, bytes);
1755 mbp->b_bufsize = len;
1756 mbp->b_data = (void *)kva;
1757 mbp->b_resid = mbp->b_bcount = bytes;
1758 mbp->b_cflags = BC_BUSY | BC_AGE;
1759 if (async) {
1760 mbp->b_flags = brw | B_ASYNC;
1761 mbp->b_iodone = iodone;
1762 } else {
1763 mbp->b_flags = brw;
1764 mbp->b_iodone = NULL;
1765 }
1766 if (curlwp == uvm.pagedaemon_lwp)
1767 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1768 else if (async)
1769 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1770 else
1771 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1772
1773 bp = NULL;
1774 for (offset = startoffset;
1775 bytes > 0;
1776 offset += iobytes, bytes -= iobytes) {
1777 int run;
1778 daddr_t lbn, blkno;
1779 struct vnode *devvp;
1780
1781 /*
1782 * bmap the file to find out the blkno to read from and
1783 * how much we can read in one i/o. if bmap returns an error,
1784 * skip the rest of the top-level i/o.
1785 */
1786
1787 lbn = offset >> fs_bshift;
1788 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1789 if (error) {
1790 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1791 lbn,error,0,0);
1792 skipbytes += bytes;
1793 bytes = 0;
1794 goto loopdone;
1795 }
1796
1797 /*
1798 * see how many pages can be read with this i/o.
1799 * reduce the i/o size if necessary to avoid
1800 * overwriting pages with valid data.
1801 */
1802
1803 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1804 bytes);
1805
1806 /*
1807 * if this block isn't allocated, zero it instead of
1808 * reading it. unless we are going to allocate blocks,
1809 * mark the pages we zeroed PG_RDONLY.
1810 */
1811
1812 if (blkno == (daddr_t)-1) {
1813 if (!iowrite) {
1814 memset((char *)kva + (offset - startoffset), 0,
1815 iobytes);
1816 }
1817 skipbytes += iobytes;
1818 continue;
1819 }
1820
1821 /*
1822 * allocate a sub-buf for this piece of the i/o
1823 * (or just use mbp if there's only 1 piece),
1824 * and start it going.
1825 */
1826
1827 if (offset == startoffset && iobytes == bytes) {
1828 bp = mbp;
1829 } else {
1830 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1831 vp, bp, vp->v_numoutput, 0);
1832 bp = getiobuf(vp, true);
1833 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1834 }
1835 bp->b_lblkno = 0;
1836
1837 /* adjust physical blkno for partial blocks */
1838 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1839 dev_bshift);
1840
1841 UVMHIST_LOG(ubchist,
1842 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1843 bp, offset, bp->b_bcount, bp->b_blkno);
1844
1845 VOP_STRATEGY(devvp, bp);
1846 }
1847
1848 loopdone:
1849 if (skipbytes) {
1850 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1851 }
1852 nestiobuf_done(mbp, skipbytes, error);
1853 if (async) {
1854 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1855 return (0);
1856 }
1857 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1858 error = biowait(mbp);
1859 s = splbio();
1860 (*iodone)(mbp);
1861 splx(s);
1862 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1863 return (error);
1864 }
1865
1866 int
1867 genfs_compat_getpages(void *v)
1868 {
1869 struct vop_getpages_args /* {
1870 struct vnode *a_vp;
1871 voff_t a_offset;
1872 struct vm_page **a_m;
1873 int *a_count;
1874 int a_centeridx;
1875 vm_prot_t a_access_type;
1876 int a_advice;
1877 int a_flags;
1878 } */ *ap = v;
1879
1880 off_t origoffset;
1881 struct vnode *vp = ap->a_vp;
1882 struct uvm_object *uobj = &vp->v_uobj;
1883 struct vm_page *pg, **pgs;
1884 vaddr_t kva;
1885 int i, error, orignpages, npages;
1886 struct iovec iov;
1887 struct uio uio;
1888 kauth_cred_t cred = curlwp->l_cred;
1889 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1890
1891 error = 0;
1892 origoffset = ap->a_offset;
1893 orignpages = *ap->a_count;
1894 pgs = ap->a_m;
1895
1896 if (ap->a_flags & PGO_LOCKED) {
1897 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1898 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1899
1900 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1901 if (error == 0 && memwrite) {
1902 genfs_markdirty(vp);
1903 }
1904 return error;
1905 }
1906 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1907 mutex_exit(&uobj->vmobjlock);
1908 return EINVAL;
1909 }
1910 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1911 mutex_exit(&uobj->vmobjlock);
1912 return 0;
1913 }
1914 npages = orignpages;
1915 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1916 mutex_exit(&uobj->vmobjlock);
1917 kva = uvm_pagermapin(pgs, npages,
1918 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1919 for (i = 0; i < npages; i++) {
1920 pg = pgs[i];
1921 if ((pg->flags & PG_FAKE) == 0) {
1922 continue;
1923 }
1924 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1925 iov.iov_len = PAGE_SIZE;
1926 uio.uio_iov = &iov;
1927 uio.uio_iovcnt = 1;
1928 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1929 uio.uio_rw = UIO_READ;
1930 uio.uio_resid = PAGE_SIZE;
1931 UIO_SETUP_SYSSPACE(&uio);
1932 /* XXX vn_lock */
1933 error = VOP_READ(vp, &uio, 0, cred);
1934 if (error) {
1935 break;
1936 }
1937 if (uio.uio_resid) {
1938 memset(iov.iov_base, 0, uio.uio_resid);
1939 }
1940 }
1941 uvm_pagermapout(kva, npages);
1942 mutex_enter(&uobj->vmobjlock);
1943 mutex_enter(&uvm_pageqlock);
1944 for (i = 0; i < npages; i++) {
1945 pg = pgs[i];
1946 if (error && (pg->flags & PG_FAKE) != 0) {
1947 pg->flags |= PG_RELEASED;
1948 } else {
1949 pmap_clear_modify(pg);
1950 uvm_pageactivate(pg);
1951 }
1952 }
1953 if (error) {
1954 uvm_page_unbusy(pgs, npages);
1955 }
1956 mutex_exit(&uvm_pageqlock);
1957 if (error == 0 && memwrite) {
1958 genfs_markdirty(vp);
1959 }
1960 mutex_exit(&uobj->vmobjlock);
1961 return error;
1962 }
1963
1964 int
1965 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1966 int flags)
1967 {
1968 off_t offset;
1969 struct iovec iov;
1970 struct uio uio;
1971 kauth_cred_t cred = curlwp->l_cred;
1972 struct buf *bp;
1973 vaddr_t kva;
1974 int error;
1975
1976 offset = pgs[0]->offset;
1977 kva = uvm_pagermapin(pgs, npages,
1978 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1979
1980 iov.iov_base = (void *)kva;
1981 iov.iov_len = npages << PAGE_SHIFT;
1982 uio.uio_iov = &iov;
1983 uio.uio_iovcnt = 1;
1984 uio.uio_offset = offset;
1985 uio.uio_rw = UIO_WRITE;
1986 uio.uio_resid = npages << PAGE_SHIFT;
1987 UIO_SETUP_SYSSPACE(&uio);
1988 /* XXX vn_lock */
1989 error = VOP_WRITE(vp, &uio, 0, cred);
1990
1991 mutex_enter(&vp->v_interlock);
1992 vp->v_numoutput++;
1993 mutex_exit(&vp->v_interlock);
1994
1995 bp = getiobuf(vp, true);
1996 bp->b_cflags = BC_BUSY | BC_AGE;
1997 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1998 bp->b_data = (char *)kva;
1999 bp->b_bcount = npages << PAGE_SHIFT;
2000 bp->b_bufsize = npages << PAGE_SHIFT;
2001 bp->b_resid = 0;
2002 bp->b_error = error;
2003 uvm_aio_aiodone(bp);
2004 return (error);
2005 }
2006
2007 /*
2008 * Process a uio using direct I/O. If we reach a part of the request
2009 * which cannot be processed in this fashion for some reason, just return.
2010 * The caller must handle some additional part of the request using
2011 * buffered I/O before trying direct I/O again.
2012 */
2013
2014 void
2015 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
2016 {
2017 struct vmspace *vs;
2018 struct iovec *iov;
2019 vaddr_t va;
2020 size_t len;
2021 const int mask = DEV_BSIZE - 1;
2022 int error;
2023 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
2024 (ioflag & IO_JOURNALLOCKED) == 0);
2025
2026 /*
2027 * We only support direct I/O to user space for now.
2028 */
2029
2030 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
2031 return;
2032 }
2033
2034 /*
2035 * If the vnode is mapped, we would need to get the getpages lock
2036 * to stabilize the bmap, but then we would get into trouble whil e
2037 * locking the pages if the pages belong to this same vnode (or a
2038 * multi-vnode cascade to the same effect). Just fall back to
2039 * buffered I/O if the vnode is mapped to avoid this mess.
2040 */
2041
2042 if (vp->v_vflag & VV_MAPPED) {
2043 return;
2044 }
2045
2046 if (need_wapbl) {
2047 error = WAPBL_BEGIN(vp->v_mount);
2048 if (error)
2049 return;
2050 }
2051
2052 /*
2053 * Do as much of the uio as possible with direct I/O.
2054 */
2055
2056 vs = uio->uio_vmspace;
2057 while (uio->uio_resid) {
2058 iov = uio->uio_iov;
2059 if (iov->iov_len == 0) {
2060 uio->uio_iov++;
2061 uio->uio_iovcnt--;
2062 continue;
2063 }
2064 va = (vaddr_t)iov->iov_base;
2065 len = MIN(iov->iov_len, genfs_maxdio);
2066 len &= ~mask;
2067
2068 /*
2069 * If the next chunk is smaller than DEV_BSIZE or extends past
2070 * the current EOF, then fall back to buffered I/O.
2071 */
2072
2073 if (len == 0 || uio->uio_offset + len > vp->v_size) {
2074 break;
2075 }
2076
2077 /*
2078 * Check alignment. The file offset must be at least
2079 * sector-aligned. The exact constraint on memory alignment
2080 * is very hardware-dependent, but requiring sector-aligned
2081 * addresses there too is safe.
2082 */
2083
2084 if (uio->uio_offset & mask || va & mask) {
2085 break;
2086 }
2087 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2088 uio->uio_rw);
2089 if (error) {
2090 break;
2091 }
2092 iov->iov_base = (char *)iov->iov_base + len;
2093 iov->iov_len -= len;
2094 uio->uio_offset += len;
2095 uio->uio_resid -= len;
2096 }
2097
2098 if (need_wapbl)
2099 WAPBL_END(vp->v_mount);
2100 }
2101
2102 /*
2103 * Iodone routine for direct I/O. We don't do much here since the request is
2104 * always synchronous, so the caller will do most of the work after biowait().
2105 */
2106
2107 static void
2108 genfs_dio_iodone(struct buf *bp)
2109 {
2110
2111 KASSERT((bp->b_flags & B_ASYNC) == 0);
2112 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2113 mutex_enter(bp->b_objlock);
2114 vwakeup(bp);
2115 mutex_exit(bp->b_objlock);
2116 }
2117 putiobuf(bp);
2118 }
2119
2120 /*
2121 * Process one chunk of a direct I/O request.
2122 */
2123
2124 static int
2125 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2126 off_t off, enum uio_rw rw)
2127 {
2128 struct vm_map *map;
2129 struct pmap *upm, *kpm;
2130 size_t klen = round_page(uva + len) - trunc_page(uva);
2131 off_t spoff, epoff;
2132 vaddr_t kva, puva;
2133 paddr_t pa;
2134 vm_prot_t prot;
2135 int error, rv, poff, koff;
2136 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2137 (rw == UIO_WRITE ? PGO_FREE : 0);
2138
2139 /*
2140 * For writes, verify that this range of the file already has fully
2141 * allocated backing store. If there are any holes, just punt and
2142 * make the caller take the buffered write path.
2143 */
2144
2145 if (rw == UIO_WRITE) {
2146 daddr_t lbn, elbn, blkno;
2147 int bsize, bshift, run;
2148
2149 bshift = vp->v_mount->mnt_fs_bshift;
2150 bsize = 1 << bshift;
2151 lbn = off >> bshift;
2152 elbn = (off + len + bsize - 1) >> bshift;
2153 while (lbn < elbn) {
2154 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2155 if (error) {
2156 return error;
2157 }
2158 if (blkno == (daddr_t)-1) {
2159 return ENOSPC;
2160 }
2161 lbn += 1 + run;
2162 }
2163 }
2164
2165 /*
2166 * Flush any cached pages for parts of the file that we're about to
2167 * access. If we're writing, invalidate pages as well.
2168 */
2169
2170 spoff = trunc_page(off);
2171 epoff = round_page(off + len);
2172 mutex_enter(&vp->v_interlock);
2173 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2174 if (error) {
2175 return error;
2176 }
2177
2178 /*
2179 * Wire the user pages and remap them into kernel memory.
2180 */
2181
2182 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2183 error = uvm_vslock(vs, (void *)uva, len, prot);
2184 if (error) {
2185 return error;
2186 }
2187
2188 map = &vs->vm_map;
2189 upm = vm_map_pmap(map);
2190 kpm = vm_map_pmap(kernel_map);
2191 kva = uvm_km_alloc(kernel_map, klen, 0,
2192 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2193 puva = trunc_page(uva);
2194 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2195 rv = pmap_extract(upm, puva + poff, &pa);
2196 KASSERT(rv);
2197 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2198 }
2199 pmap_update(kpm);
2200
2201 /*
2202 * Do the I/O.
2203 */
2204
2205 koff = uva - trunc_page(uva);
2206 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2207 genfs_dio_iodone);
2208
2209 /*
2210 * Tear down the kernel mapping.
2211 */
2212
2213 pmap_remove(kpm, kva, kva + klen);
2214 pmap_update(kpm);
2215 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2216
2217 /*
2218 * Unwire the user pages.
2219 */
2220
2221 uvm_vsunlock(vs, (void *)uva, len);
2222 return error;
2223 }
2224
2225