genfs_io.c revision 1.36.2.58 1 /* $NetBSD: genfs_io.c,v 1.36.2.58 2010/11/21 06:46:15 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.58 2010/11/21 06:46:15 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53
54 #include <miscfs/genfs/genfs.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <miscfs/specfs/specdev.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_pager.h>
60
61 #ifdef XIP
62 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
63 int *, int, vm_prot_t, int, int, const int);
64 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
65 struct vm_page **);
66 #endif
67 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
68 off_t, enum uio_rw);
69 static void genfs_dio_iodone(struct buf *);
70
71 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
72 void (*)(struct buf *));
73 static void genfs_rel_pages(struct vm_page **, int);
74 static void genfs_markdirty(struct vnode *);
75
76 int genfs_maxdio = MAXPHYS;
77
78 static void
79 genfs_rel_pages(struct vm_page **pgs, int npages)
80 {
81 int i;
82
83 for (i = 0; i < npages; i++) {
84 struct vm_page *pg = pgs[i];
85
86 if (pg == NULL || pg == PGO_DONTCARE)
87 continue;
88 if (pg->flags & PG_FAKE) {
89 pg->flags |= PG_RELEASED;
90 }
91 }
92 mutex_enter(&uvm_pageqlock);
93 uvm_page_unbusy(pgs, npages);
94 mutex_exit(&uvm_pageqlock);
95 }
96
97 static void
98 genfs_markdirty(struct vnode *vp)
99 {
100 struct genfs_node * const gp = VTOG(vp);
101
102 KASSERT(mutex_owned(&vp->v_interlock));
103 gp->g_dirtygen++;
104 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
105 vn_syncer_add_to_worklist(vp, filedelay);
106 }
107 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
108 vp->v_iflag |= VI_WRMAPDIRTY;
109 }
110 }
111
112 /*
113 * generic VM getpages routine.
114 * Return PG_BUSY pages for the given range,
115 * reading from backing store if necessary.
116 */
117
118 int
119 genfs_getpages(void *v)
120 {
121 struct vop_getpages_args /* {
122 struct vnode *a_vp;
123 voff_t a_offset;
124 struct vm_page **a_m;
125 int *a_count;
126 int a_centeridx;
127 vm_prot_t a_access_type;
128 int a_advice;
129 int a_flags;
130 } */ * const ap = v;
131
132 off_t diskeof, memeof;
133 int i, error, npages;
134 const int flags = ap->a_flags;
135 struct vnode * const vp = ap->a_vp;
136 struct uvm_object * const uobj = &vp->v_uobj;
137 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
138 const bool async = (flags & PGO_SYNCIO) == 0;
139 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
140 bool has_trans = false;
141 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
142 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
143 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
144 #ifdef XIP
145 const bool xip = (ap->a_vp->v_vflag & VV_XIP) != 0;
146 #else
147 #define xip 0
148 #endif
149 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
150
151 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
152 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
153
154 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
155 vp->v_type == VLNK || vp->v_type == VBLK);
156
157 startover:
158 error = 0;
159 const voff_t origvsize = vp->v_size;
160 const off_t origoffset = ap->a_offset;
161 const int orignpages = *ap->a_count;
162
163 GOP_SIZE(vp, origvsize, &diskeof, 0);
164 if (flags & PGO_PASTEOF) {
165 off_t newsize;
166 #if defined(DIAGNOSTIC)
167 off_t writeeof;
168 #endif /* defined(DIAGNOSTIC) */
169
170 newsize = MAX(origvsize,
171 origoffset + (orignpages << PAGE_SHIFT));
172 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
173 #if defined(DIAGNOSTIC)
174 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
175 if (newsize > round_page(writeeof)) {
176 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
177 __func__, newsize, round_page(writeeof));
178 }
179 #endif /* defined(DIAGNOSTIC) */
180 } else {
181 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
182 }
183 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
184 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
185 KASSERT(orignpages > 0);
186
187 /*
188 * Bounds-check the request.
189 */
190
191 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
192 if ((flags & PGO_LOCKED) == 0) {
193 mutex_exit(&uobj->vmobjlock);
194 }
195 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
196 origoffset, *ap->a_count, memeof,0);
197 error = EINVAL;
198 goto out_err;
199 }
200
201 /* uobj is locked */
202
203 if ((flags & PGO_NOTIMESTAMP) == 0 &&
204 (vp->v_type != VBLK ||
205 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
206 int updflags = 0;
207
208 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
209 updflags = GOP_UPDATE_ACCESSED;
210 }
211 if (memwrite) {
212 updflags |= GOP_UPDATE_MODIFIED;
213 }
214 if (updflags != 0) {
215 GOP_MARKUPDATE(vp, updflags);
216 }
217 }
218
219 /*
220 * For PGO_LOCKED requests, just return whatever's in memory.
221 */
222
223 if (flags & PGO_LOCKED) {
224 #if 0
225 genfs_getpages_mem();
226 } else {
227 genfs_getpages_io();
228 }
229 }
230
231 int
232 genfs_getpages_mem()
233 {
234 #endif
235 int nfound;
236 struct vm_page *pg;
237
238 if (xip) {
239 *ap->a_count = 0;
240 return 0;
241 }
242
243 KASSERT(!glocked);
244 npages = *ap->a_count;
245 #if defined(DEBUG)
246 for (i = 0; i < npages; i++) {
247 pg = ap->a_m[i];
248 KASSERT(pg == NULL || pg == PGO_DONTCARE);
249 }
250 #endif /* defined(DEBUG) */
251 nfound = uvn_findpages(uobj, origoffset, &npages,
252 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
253 KASSERT(npages == *ap->a_count);
254 if (nfound == 0) {
255 error = EBUSY;
256 goto out_err;
257 }
258 if (!genfs_node_rdtrylock(vp)) {
259 genfs_rel_pages(ap->a_m, npages);
260
261 /*
262 * restore the array.
263 */
264
265 for (i = 0; i < npages; i++) {
266 pg = ap->a_m[i];
267
268 if (pg != NULL && pg != PGO_DONTCARE) {
269 ap->a_m[i] = NULL;
270 }
271 KASSERT(pg == NULL || pg == PGO_DONTCARE);
272 }
273 } else {
274 genfs_node_unlock(vp);
275 }
276 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
277 if (error == 0 && memwrite) {
278 genfs_markdirty(vp);
279 }
280 goto out_err;
281 }
282 mutex_exit(&uobj->vmobjlock);
283 #if 0
284 }
285
286 int
287 genfs_getpages_io()
288 {
289 #endif
290 /*
291 * find the requested pages and make some simple checks.
292 * leave space in the page array for a whole block.
293 */
294
295 #define vp2fs_bshift(vp) \
296 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
297 #define vp2dev_bshift(vp) \
298 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
299
300 const int fs_bshift = vp2fs_bshift(vp);
301 const int dev_bshift = vp2dev_bshift(vp);
302 const int fs_bsize = 1 << fs_bshift;
303 #define blk_mask (fs_bsize - 1)
304 #define trunc_blk(x) ((x) & ~blk_mask)
305 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
306
307 const int orignmempages = MIN(orignpages,
308 round_page(memeof - origoffset) >> PAGE_SHIFT);
309 npages = orignmempages;
310 const off_t startoffset = trunc_blk(origoffset);
311 const off_t endoffset = MIN(
312 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
313 round_page(memeof));
314 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
315
316 const int pgs_size = sizeof(struct vm_page *) *
317 ((endoffset - startoffset) >> PAGE_SHIFT);
318 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
319
320 if (pgs_size > sizeof(pgs_onstack)) {
321 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
322 if (pgs == NULL) {
323 pgs = pgs_onstack;
324 error = ENOMEM;
325 goto out_err;
326 }
327 } else {
328 pgs = pgs_onstack;
329 (void)memset(pgs, 0, pgs_size);
330 }
331
332 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
333 ridx, npages, startoffset, endoffset);
334 #if 0
335 }
336
337 int
338 genfs_getpages_io_relock()
339 {
340 #endif
341 if (!has_trans) {
342 fstrans_start(vp->v_mount, FSTRANS_SHARED);
343 has_trans = true;
344 }
345
346 /*
347 * hold g_glock to prevent a race with truncate.
348 *
349 * check if our idea of v_size is still valid.
350 */
351
352 KASSERT(!glocked || genfs_node_wrlocked(vp));
353 if (!glocked) {
354 if (blockalloc) {
355 genfs_node_wrlock(vp);
356 } else {
357 genfs_node_rdlock(vp);
358 }
359 }
360 mutex_enter(&uobj->vmobjlock);
361 if (vp->v_size < origvsize) {
362 if (!glocked) {
363 genfs_node_unlock(vp);
364 }
365 if (pgs != pgs_onstack)
366 kmem_free(pgs, pgs_size);
367 goto startover;
368 }
369 #if 0
370 }
371
372 int
373 genfs_getpages_io_findpages()
374 {
375 #endif
376 if (!xip) {
377 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
378 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
379 if (!glocked) {
380 genfs_node_unlock(vp);
381 }
382 KASSERT(async != 0);
383 genfs_rel_pages(&pgs[ridx], orignmempages);
384 mutex_exit(&uobj->vmobjlock);
385 error = EBUSY;
386 goto out_err_free;
387 }
388
389 /*
390 * if the pages are already resident, just return them.
391 */
392
393 for (i = 0; i < npages; i++) {
394 struct vm_page *pg = pgs[ridx + i];
395
396 if ((pg->flags & PG_FAKE) ||
397 (blockalloc && (pg->flags & PG_RDONLY))) {
398 break;
399 }
400 }
401 if (i == npages) {
402 if (!glocked) {
403 genfs_node_unlock(vp);
404 }
405 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
406 npages += ridx;
407 goto out;
408 }
409 }
410
411 /*
412 * if PGO_OVERWRITE is set, don't bother reading the pages.
413 */
414
415 if (overwrite) {
416 #if 0
417 genfs_getpages_io_overwrite();
418 } else {
419 genfs_getpages_io_read();
420 }
421 }
422
423 int
424 genfs_getpages_io_overwrite()
425 {
426 {
427 #endif
428 KASSERT(!xip);
429
430 if (!glocked) {
431 genfs_node_unlock(vp);
432 }
433 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
434
435 for (i = 0; i < npages; i++) {
436 struct vm_page *pg = pgs[ridx + i];
437
438 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
439 }
440 npages += ridx;
441 goto out;
442 }
443 #if 0
444 }
445
446 int
447 genfs_getpages_io_read()
448 {
449 #endif
450 /*
451 * the page wasn't resident and we're not overwriting,
452 * so we're going to have to do some i/o.
453 * find any additional pages needed to cover the expanded range.
454 */
455 #if 0
456 }
457
458 int
459 genfs_getpages_io_read_allocpages()
460 {
461 #endif
462 if (!xip) {
463 npages = (endoffset - startoffset) >> PAGE_SHIFT;
464 if (startoffset != origoffset || npages != orignmempages) {
465 int npgs;
466
467 /*
468 * we need to avoid deadlocks caused by locking
469 * additional pages at lower offsets than pages we
470 * already have locked. unlock them all and start over.
471 */
472
473 genfs_rel_pages(&pgs[ridx], orignmempages);
474 memset(pgs, 0, pgs_size);
475
476 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
477 startoffset, endoffset, 0,0);
478 npgs = npages;
479 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
480 async ? UFP_NOWAIT : UFP_ALL) != npages) {
481 if (!glocked) {
482 genfs_node_unlock(vp);
483 }
484 KASSERT(async != 0);
485 genfs_rel_pages(pgs, npages);
486 mutex_exit(&uobj->vmobjlock);
487 error = EBUSY;
488 goto out_err_free;
489 }
490 }
491 }
492 #if 0
493 }
494
495 int
496 genfs_getpages_io_read_bio()
497 {
498 #endif
499 mutex_exit(&uobj->vmobjlock);
500
501 {
502 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
503 vaddr_t kva = 0;
504 struct buf *bp = NULL, *mbp = NULL;
505 bool sawhole = false;
506
507 /*
508 * read the desired page(s).
509 */
510
511 totalbytes = npages << PAGE_SHIFT;
512 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
513 tailbytes = totalbytes - bytes;
514 skipbytes = 0;
515 #if 0
516 }
517
518 int
519 genfs_getpages_io_read_bio_prepare()
520 {
521 #endif
522 if (!xip) {
523 kva = uvm_pagermapin(pgs, npages,
524 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
525
526 mbp = getiobuf(vp, true);
527 mbp->b_bufsize = totalbytes;
528 mbp->b_data = (void *)kva;
529 mbp->b_resid = mbp->b_bcount = bytes;
530 mbp->b_cflags = BC_BUSY;
531 if (async) {
532 mbp->b_flags = B_READ | B_ASYNC;
533 mbp->b_iodone = uvm_aio_biodone;
534 } else {
535 mbp->b_flags = B_READ;
536 mbp->b_iodone = NULL;
537 }
538 if (async)
539 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
540 else
541 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
542 }
543 #if 0
544 }
545
546 #endif
547 /*
548 * if EOF is in the middle of the range, zero the part past EOF.
549 * skip over pages which are not PG_FAKE since in that case they have
550 * valid data that we need to preserve.
551 */
552
553 tailstart = bytes;
554 while (tailbytes > 0) {
555 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
556
557 KASSERT(len <= tailbytes);
558 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
559 memset((void *)(kva + tailstart), 0, len);
560 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
561 kva, tailstart, len, 0);
562 }
563 tailstart += len;
564 tailbytes -= len;
565 }
566 #if 0
567 }
568
569 int
570 genfs_getpages_io_read_bio_loop()
571 {
572 #endif
573 /*
574 * now loop over the pages, reading as needed.
575 */
576
577 bp = NULL;
578 off_t offset;
579 for (offset = startoffset;
580 bytes > 0;
581 offset += iobytes, bytes -= iobytes) {
582 int run;
583 daddr_t lbn, blkno;
584 int pidx;
585 struct vnode *devvp;
586
587 /*
588 * skip pages which don't need to be read.
589 */
590
591 pidx = (offset - startoffset) >> PAGE_SHIFT;
592 if (!xip) {
593 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
594 size_t b;
595
596 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
597 if ((pgs[pidx]->flags & PG_RDONLY)) {
598 sawhole = true;
599 }
600 b = MIN(PAGE_SIZE, bytes);
601 offset += b;
602 bytes -= b;
603 skipbytes += b;
604 pidx++;
605 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
606 offset, 0,0,0);
607 if (bytes == 0) {
608 goto loopdone;
609 }
610 }
611 }
612
613 /*
614 * bmap the file to find out the blkno to read from and
615 * how much we can read in one i/o. if bmap returns an error,
616 * skip the rest of the top-level i/o.
617 */
618
619 lbn = offset >> fs_bshift;
620 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
621 if (error) {
622 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
623 lbn,error,0,0);
624 skipbytes += bytes;
625 bytes = 0;
626 goto loopdone;
627 }
628
629 /*
630 * see how many pages can be read with this i/o.
631 * reduce the i/o size if necessary to avoid
632 * overwriting pages with valid data.
633 */
634
635 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
636 bytes);
637 if (offset + iobytes > round_page(offset)) {
638 int pcount;
639
640 pcount = 1;
641 while ((pidx + pcount < npages) && (
642 /*
643 * in XIP case, we don't know what page to read
644 * at this point!
645 */
646 xip ||
647 (pgs[pidx + pcount]->flags & PG_FAKE))) {
648 pcount++;
649 }
650 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
651 (offset - trunc_page(offset)));
652 }
653
654 /*
655 * if this block isn't allocated, zero it instead of
656 * reading it. unless we are going to allocate blocks,
657 * mark the pages we zeroed PG_RDONLY.
658 */
659
660 if (blkno == (daddr_t)-1) {
661 if (!xip) {
662 int holepages = (round_page(offset + iobytes) -
663 trunc_page(offset)) >> PAGE_SHIFT;
664 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
665
666 KASSERT(!xip);
667
668 sawhole = true;
669 memset((char *)kva + (offset - startoffset), 0,
670 iobytes);
671 skipbytes += iobytes;
672
673 for (i = 0; i < holepages; i++) {
674 if (memwrite) {
675 pgs[pidx + i]->flags &= ~PG_CLEAN;
676 }
677 if (!blockalloc) {
678 pgs[pidx + i]->flags |= PG_RDONLY;
679 }
680 }
681 } else {
682 panic("XIP hole page is not supported yet");
683 }
684 continue;
685 }
686
687 if (!xip) {
688 /*
689 * allocate a sub-buf for this piece of the i/o
690 * (or just use mbp if there's only 1 piece),
691 * and start it going.
692 */
693
694 if (offset == startoffset && iobytes == bytes) {
695 bp = mbp;
696 } else {
697 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
698 vp, bp, vp->v_numoutput, 0);
699 bp = getiobuf(vp, true);
700 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
701 }
702 bp->b_lblkno = 0;
703
704 /* adjust physical blkno for partial blocks */
705 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
706 dev_bshift);
707
708 UVMHIST_LOG(ubchist,
709 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
710 bp, offset, bp->b_bcount, bp->b_blkno);
711
712 VOP_STRATEGY(devvp, bp);
713 } else {
714 #ifdef XIP
715 /*
716 * XIP page metadata assignment
717 * - Unallocated block is redirected to the dedicated zero'ed
718 * page.
719 */
720 const daddr_t blk_off = blkno << dev_bshift;
721 const daddr_t fs_off = origoffset - startoffset;
722
723 int npgs = iobytes >> PAGE_SHIFT;
724 UVMHIST_LOG(ubchist,
725 "xip iobytes=0x%lx ridx=%d pidx=%d npgs=%d",
726 (long)iobytes, ridx, pidx, npgs);
727
728 /* XXX optimize */
729 for (i = 0; i < npgs; i++) {
730 const daddr_t pg_off = i << PAGE_SHIFT;
731 struct vm_page *pg;
732
733 UVMHIST_LOG(ubchist,
734 "xip blk_off=0x%lx fs_off=0x%lx pg_off=%lx",
735 (long)blk_off, (long)fs_off, (long)pg_off, 0);
736
737 pg = uvn_findpage_xip(devvp, &vp->v_uobj,
738 blk_off + fs_off + pg_off);
739 KASSERT(pg != NULL);
740 UVMHIST_LOG(ubchist,
741 "xip pg %d => phys_addr=0x%lx (%p)",
742 ridx + pidx + i, (long)pg->phys_addr, pg, 0);
743 pgs[ridx + pidx + i] = pg;
744 }
745 #endif
746 }
747 }
748
749 loopdone:
750 #if 0
751
752 int
753 genfs_getpages_biodone()
754 {
755 #endif
756 if (!xip) {
757 nestiobuf_done(mbp, skipbytes, error);
758 if (async) {
759 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
760 if (!glocked) {
761 genfs_node_unlock(vp);
762 }
763 error = 0;
764 goto out_err_free;
765 }
766 if (bp != NULL) {
767 error = biowait(mbp);
768 }
769
770 /* Remove the mapping (make KVA available as soon as possible) */
771 uvm_pagermapout(kva, npages);
772
773 /*
774 * if this we encountered a hole then we have to do a little more work.
775 * for read faults, we marked the page PG_RDONLY so that future
776 * write accesses to the page will fault again.
777 * for write faults, we must make sure that the backing store for
778 * the page is completely allocated while the pages are locked.
779 */
780
781 if (!error && sawhole && blockalloc) {
782 /*
783 * XXX: This assumes that we come here only via
784 * the mmio path
785 */
786 if (vp->v_mount->mnt_wapbl) {
787 error = WAPBL_BEGIN(vp->v_mount);
788 }
789
790 if (!error) {
791 error = GOP_ALLOC(vp, startoffset,
792 npages << PAGE_SHIFT, 0, cred);
793 if (vp->v_mount->mnt_wapbl) {
794 WAPBL_END(vp->v_mount);
795 }
796 }
797
798 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
799 startoffset, npages << PAGE_SHIFT, error,0);
800 if (!error) {
801 for (i = 0; i < npages; i++) {
802 struct vm_page *pg = pgs[i];
803
804 if (pg == NULL) {
805 continue;
806 }
807 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
808 UVMHIST_LOG(ubchist, "mark dirty pg %p",
809 pg,0,0,0);
810 }
811 }
812 }
813
814 putiobuf(mbp);
815 }
816 #if 0
817 }
818
819 #endif
820 }
821
822 if (!glocked) {
823 genfs_node_unlock(vp);
824 }
825
826 mutex_enter(&uobj->vmobjlock);
827 #if 0
828 }
829
830 int
831 genfs_getpages_generic_io_done()
832 {
833 #endif
834 /*
835 * we're almost done! release the pages...
836 * for errors, we free the pages.
837 * otherwise we activate them and mark them as valid and clean.
838 * also, unbusy pages that were not actually requested.
839 */
840
841 if (error) {
842 for (i = 0; i < npages; i++) {
843 struct vm_page *pg = pgs[i];
844
845 if (pg == NULL) {
846 continue;
847 }
848 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
849 pg, pg->flags, 0,0);
850 if (pg->flags & PG_FAKE) {
851 pg->flags |= PG_RELEASED;
852 }
853 }
854 mutex_enter(&uvm_pageqlock);
855 uvm_page_unbusy(pgs, npages);
856 mutex_exit(&uvm_pageqlock);
857 mutex_exit(&uobj->vmobjlock);
858 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
859 goto out_err_free;
860 }
861
862 out:
863 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
864 error = 0;
865
866 if (!xip) {
867 mutex_enter(&uvm_pageqlock);
868 for (i = 0; i < npages; i++) {
869 struct vm_page *pg = pgs[i];
870 if (pg == NULL) {
871 continue;
872 }
873 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
874 pg, pg->flags, 0,0);
875 if (pg->flags & PG_FAKE && !overwrite) {
876 pg->flags &= ~(PG_FAKE);
877 pmap_clear_modify(pgs[i]);
878 }
879 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
880 if (i < ridx || i >= ridx + orignmempages || async) {
881 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
882 pg, pg->offset,0,0);
883 if (pg->flags & PG_WANTED) {
884 wakeup(pg);
885 }
886 if (pg->flags & PG_FAKE) {
887 KASSERT(overwrite);
888 uvm_pagezero(pg);
889 }
890 if (pg->flags & PG_RELEASED) {
891 uvm_pagefree(pg);
892 continue;
893 }
894 uvm_pageenqueue(pg);
895 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
896 UVM_PAGE_OWN(pg, NULL);
897 }
898 }
899 mutex_exit(&uvm_pageqlock);
900 if (memwrite) {
901 genfs_markdirty(vp);
902 }
903 } else {
904 KASSERT(npages == orignmempages);
905 for (i = ridx; i < ridx + npages; i++) {
906 struct vm_page *pg = pgs[i];
907
908 KASSERT(pg != NULL);
909 KASSERT((pg->flags & PG_RDONLY) != 0);
910 KASSERT((pg->flags & PG_BUSY) != 0);
911 KASSERT((pg->flags & PG_CLEAN) != 0);
912 KASSERT((pg->flags & PG_DEVICE) != 0);
913 KASSERT((pg->flags & PG_FAKE) == 0);
914
915 /*
916 * XXXUEBS
917 * Actually this is not necessary, because device pages are
918 * "stateless", and they have no owner.
919 */
920 pg->uobject = &vp->v_uobj;
921 }
922 } /* xip */
923 mutex_exit(&uobj->vmobjlock);
924 if (ap->a_m != NULL) {
925 memcpy(ap->a_m, &pgs[ridx],
926 orignmempages * sizeof(struct vm_page *));
927 KASSERT(error != 0 || ap->a_m[ap->a_centeridx] != NULL);
928 }
929 #if 0
930 }
931
932 #endif
933
934 out_err_free:
935 if (pgs != NULL && pgs != pgs_onstack)
936 kmem_free(pgs, pgs_size);
937 out_err:
938 if (has_trans)
939 fstrans_done(vp->v_mount);
940 return error;
941 }
942
943 #ifdef XIP
944 /*
945 * genfs_do_getpages_xip_io
946 * Return "direct pages" of XIP vnode. The block addresses of XIP
947 * vnode pages are returned back to the VM fault handler as the
948 * actually mapped physical addresses.
949 */
950 static int
951 genfs_do_getpages_xip_io(
952 struct vnode *vp,
953 voff_t origoffset,
954 struct vm_page **pps,
955 int *npagesp,
956 int centeridx,
957 vm_prot_t access_type,
958 int advice,
959 int flags,
960 const int orignmempages)
961 {
962 const int fs_bshift = vp2fs_bshift(vp);
963 const int dev_bshift = vp2dev_bshift(vp);
964 const int fs_bsize = 1 << fs_bshift;
965
966 int error;
967 off_t off;
968 int i;
969
970 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
971
972 KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
973
974 #ifdef UVMHIST
975 const off_t startoffset = trunc_blk(origoffset);
976 const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
977 #endif
978
979 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
980
981 UVMHIST_LOG(ubchist,
982 "ridx=%d xip npages=%d startoff=0x%lx endoff=0x%lx",
983 ridx, orignmempages, (long)startoffset, (long)endoffset);
984
985 off = origoffset;
986 for (i = ridx; i < ridx + orignmempages; i++) {
987 daddr_t blkno;
988 int run;
989 struct vnode *devvp;
990
991 KASSERT((off - origoffset) >> PAGE_SHIFT == i - ridx);
992
993 const daddr_t lbn = trunc_blk(off) >> fs_bshift;
994
995 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
996 KASSERT(error == 0);
997 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
998 (long)lbn, (long)blkno, run, 0);
999
1000 const daddr_t blk_off = blkno << dev_bshift;
1001 const daddr_t fs_off = origoffset - (lbn << fs_bshift);
1002
1003 /*
1004 * XIP page metadata assignment
1005 * - Unallocated block is redirected to the dedicated zero'ed
1006 * page.
1007 */
1008 if (blkno < 0) {
1009 panic("XIP hole is not supported yet!");
1010 } else {
1011 KASSERT(off - origoffset == (i - ridx) << PAGE_SHIFT);
1012
1013 const daddr_t pg_off = (i - ridx) << PAGE_SHIFT;
1014
1015 struct vm_page *pg;
1016
1017 UVMHIST_LOG(ubchist,
1018 "xip blk_off=%lx fs_off=%lx pg_off=%lx",
1019 (long)blk_off, (long)fs_off, (long)pg_off, 0);
1020
1021 pg = uvn_findpage_xip(devvp, &vp->v_uobj,
1022 blk_off + fs_off + pg_off);
1023 KASSERT(pg != NULL);
1024 UVMHIST_LOG(ubchist,
1025 "xip pgs %d => phys_addr=0x%lx (%p)",
1026 i, (long)pg->phys_addr, pg, 0);
1027 pps[i] = pg;
1028 }
1029
1030 off += PAGE_SIZE;
1031 }
1032
1033 return 0;
1034 }
1035 #endif
1036
1037 /*
1038 * generic VM putpages routine.
1039 * Write the given range of pages to backing store.
1040 *
1041 * => "offhi == 0" means flush all pages at or after "offlo".
1042 * => object should be locked by caller. we return with the
1043 * object unlocked.
1044 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1045 * thus, a caller might want to unlock higher level resources
1046 * (e.g. vm_map) before calling flush.
1047 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
1048 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1049 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1050 * that new pages are inserted on the tail end of the list. thus,
1051 * we can make a complete pass through the object in one go by starting
1052 * at the head and working towards the tail (new pages are put in
1053 * front of us).
1054 * => NOTE: we are allowed to lock the page queues, so the caller
1055 * must not be holding the page queue lock.
1056 *
1057 * note on "cleaning" object and PG_BUSY pages:
1058 * this routine is holding the lock on the object. the only time
1059 * that it can run into a PG_BUSY page that it does not own is if
1060 * some other process has started I/O on the page (e.g. either
1061 * a pagein, or a pageout). if the PG_BUSY page is being paged
1062 * in, then it can not be dirty (!PG_CLEAN) because no one has
1063 * had a chance to modify it yet. if the PG_BUSY page is being
1064 * paged out then it means that someone else has already started
1065 * cleaning the page for us (how nice!). in this case, if we
1066 * have syncio specified, then after we make our pass through the
1067 * object we need to wait for the other PG_BUSY pages to clear
1068 * off (i.e. we need to do an iosync). also note that once a
1069 * page is PG_BUSY it must stay in its object until it is un-busyed.
1070 *
1071 * note on page traversal:
1072 * we can traverse the pages in an object either by going down the
1073 * linked list in "uobj->memq", or we can go over the address range
1074 * by page doing hash table lookups for each address. depending
1075 * on how many pages are in the object it may be cheaper to do one
1076 * or the other. we set "by_list" to true if we are using memq.
1077 * if the cost of a hash lookup was equal to the cost of the list
1078 * traversal we could compare the number of pages in the start->stop
1079 * range to the total number of pages in the object. however, it
1080 * seems that a hash table lookup is more expensive than the linked
1081 * list traversal, so we multiply the number of pages in the
1082 * range by an estimate of the relatively higher cost of the hash lookup.
1083 */
1084
1085 int
1086 genfs_putpages(void *v)
1087 {
1088 struct vop_putpages_args /* {
1089 struct vnode *a_vp;
1090 voff_t a_offlo;
1091 voff_t a_offhi;
1092 int a_flags;
1093 } */ * const ap = v;
1094
1095 #ifdef XIP
1096 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1097 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1098 ap->a_flags, NULL);
1099 else
1100 #endif
1101 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1102 ap->a_flags, NULL);
1103 }
1104
1105 int
1106 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1107 int origflags, struct vm_page **busypg)
1108 {
1109 struct uvm_object * const uobj = &vp->v_uobj;
1110 kmutex_t * const slock = &uobj->vmobjlock;
1111 off_t off;
1112 /* Even for strange MAXPHYS, the shift rounds down to a page */
1113 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1114 int i, error, npages, nback;
1115 int freeflag;
1116 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1117 bool wasclean, by_list, needs_clean, yld;
1118 bool async = (origflags & PGO_SYNCIO) == 0;
1119 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1120 struct lwp * const l = curlwp ? curlwp : &lwp0;
1121 struct genfs_node * const gp = VTOG(vp);
1122 int flags;
1123 int dirtygen;
1124 bool modified;
1125 bool need_wapbl;
1126 bool has_trans;
1127 bool cleanall;
1128 bool onworklst;
1129
1130 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1131
1132 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1133 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1134 KASSERT(startoff < endoff || endoff == 0);
1135
1136 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1137 vp, uobj->uo_npages, startoff, endoff - startoff);
1138
1139 has_trans = false;
1140 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1141 (origflags & PGO_JOURNALLOCKED) == 0);
1142
1143 retry:
1144 modified = false;
1145 flags = origflags;
1146 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1147 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1148 if (uobj->uo_npages == 0) {
1149 if (vp->v_iflag & VI_ONWORKLST) {
1150 vp->v_iflag &= ~VI_WRMAPDIRTY;
1151 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1152 vn_syncer_remove_from_worklist(vp);
1153 }
1154 if (has_trans) {
1155 if (need_wapbl)
1156 WAPBL_END(vp->v_mount);
1157 fstrans_done(vp->v_mount);
1158 }
1159 mutex_exit(slock);
1160 return (0);
1161 }
1162
1163 /*
1164 * the vnode has pages, set up to process the request.
1165 */
1166
1167 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1168 mutex_exit(slock);
1169 if (pagedaemon) {
1170 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1171 if (error)
1172 return error;
1173 } else
1174 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1175 if (need_wapbl) {
1176 error = WAPBL_BEGIN(vp->v_mount);
1177 if (error) {
1178 fstrans_done(vp->v_mount);
1179 return error;
1180 }
1181 }
1182 has_trans = true;
1183 mutex_enter(slock);
1184 goto retry;
1185 }
1186
1187 error = 0;
1188 wasclean = (vp->v_numoutput == 0);
1189 off = startoff;
1190 if (endoff == 0 || flags & PGO_ALLPAGES) {
1191 endoff = trunc_page(LLONG_MAX);
1192 }
1193 by_list = (uobj->uo_npages <=
1194 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1195
1196 #if !defined(DEBUG)
1197 /*
1198 * if this vnode is known not to have dirty pages,
1199 * don't bother to clean it out.
1200 */
1201
1202 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1203 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1204 goto skip_scan;
1205 }
1206 flags &= ~PGO_CLEANIT;
1207 }
1208 #endif /* !defined(DEBUG) */
1209
1210 /*
1211 * start the loop. when scanning by list, hold the last page
1212 * in the list before we start. pages allocated after we start
1213 * will be added to the end of the list, so we can stop at the
1214 * current last page.
1215 */
1216
1217 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1218 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1219 (vp->v_iflag & VI_ONWORKLST) != 0;
1220 dirtygen = gp->g_dirtygen;
1221 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1222 if (by_list) {
1223 curmp.flags = PG_MARKER;
1224 endmp.flags = PG_MARKER;
1225 pg = TAILQ_FIRST(&uobj->memq);
1226 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1227 } else {
1228 pg = uvm_pagelookup(uobj, off);
1229 }
1230 nextpg = NULL;
1231 while (by_list || off < endoff) {
1232
1233 /*
1234 * if the current page is not interesting, move on to the next.
1235 */
1236
1237 KASSERT(pg == NULL || pg->uobject == uobj ||
1238 (pg->flags & PG_MARKER) != 0);
1239 KASSERT(pg == NULL ||
1240 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1241 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1242 if (by_list) {
1243 if (pg == &endmp) {
1244 break;
1245 }
1246 if (pg->flags & PG_MARKER) {
1247 pg = TAILQ_NEXT(pg, listq.queue);
1248 continue;
1249 }
1250 if (pg->offset < startoff || pg->offset >= endoff ||
1251 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1252 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1253 wasclean = false;
1254 }
1255 pg = TAILQ_NEXT(pg, listq.queue);
1256 continue;
1257 }
1258 off = pg->offset;
1259 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1260 if (pg != NULL) {
1261 wasclean = false;
1262 }
1263 off += PAGE_SIZE;
1264 if (off < endoff) {
1265 pg = uvm_pagelookup(uobj, off);
1266 }
1267 continue;
1268 }
1269
1270 /*
1271 * if the current page needs to be cleaned and it's busy,
1272 * wait for it to become unbusy.
1273 */
1274
1275 yld = (l->l_cpu->ci_schedstate.spc_flags &
1276 SPCF_SHOULDYIELD) && !pagedaemon;
1277 if (pg->flags & PG_BUSY || yld) {
1278 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1279 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1280 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1281 error = EDEADLK;
1282 if (busypg != NULL)
1283 *busypg = pg;
1284 break;
1285 }
1286 if (pagedaemon) {
1287 /*
1288 * someone has taken the page while we
1289 * dropped the lock for fstrans_start.
1290 */
1291 break;
1292 }
1293 if (by_list) {
1294 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1295 UVMHIST_LOG(ubchist, "curmp next %p",
1296 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1297 }
1298 if (yld) {
1299 mutex_exit(slock);
1300 preempt();
1301 mutex_enter(slock);
1302 } else {
1303 pg->flags |= PG_WANTED;
1304 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1305 mutex_enter(slock);
1306 }
1307 if (by_list) {
1308 UVMHIST_LOG(ubchist, "after next %p",
1309 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1310 pg = TAILQ_NEXT(&curmp, listq.queue);
1311 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1312 } else {
1313 pg = uvm_pagelookup(uobj, off);
1314 }
1315 continue;
1316 }
1317
1318 /*
1319 * if we're freeing, remove all mappings of the page now.
1320 * if we're cleaning, check if the page is needs to be cleaned.
1321 */
1322
1323 if (flags & PGO_FREE) {
1324 pmap_page_protect(pg, VM_PROT_NONE);
1325 } else if (flags & PGO_CLEANIT) {
1326
1327 /*
1328 * if we still have some hope to pull this vnode off
1329 * from the syncer queue, write-protect the page.
1330 */
1331
1332 if (cleanall && wasclean &&
1333 gp->g_dirtygen == dirtygen) {
1334
1335 /*
1336 * uobj pages get wired only by uvm_fault
1337 * where uobj is locked.
1338 */
1339
1340 if (pg->wire_count == 0) {
1341 pmap_page_protect(pg,
1342 VM_PROT_READ|VM_PROT_EXECUTE);
1343 } else {
1344 cleanall = false;
1345 }
1346 }
1347 }
1348
1349 if (flags & PGO_CLEANIT) {
1350 needs_clean = pmap_clear_modify(pg) ||
1351 (pg->flags & PG_CLEAN) == 0;
1352 pg->flags |= PG_CLEAN;
1353 } else {
1354 needs_clean = false;
1355 }
1356
1357 /*
1358 * if we're cleaning, build a cluster.
1359 * the cluster will consist of pages which are currently dirty,
1360 * but they will be returned to us marked clean.
1361 * if not cleaning, just operate on the one page.
1362 */
1363
1364 if (needs_clean) {
1365 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1366 wasclean = false;
1367 memset(pgs, 0, sizeof(pgs));
1368 pg->flags |= PG_BUSY;
1369 UVM_PAGE_OWN(pg, "genfs_putpages");
1370
1371 /*
1372 * first look backward.
1373 */
1374
1375 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1376 nback = npages;
1377 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1378 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1379 if (nback) {
1380 memmove(&pgs[0], &pgs[npages - nback],
1381 nback * sizeof(pgs[0]));
1382 if (npages - nback < nback)
1383 memset(&pgs[nback], 0,
1384 (npages - nback) * sizeof(pgs[0]));
1385 else
1386 memset(&pgs[npages - nback], 0,
1387 nback * sizeof(pgs[0]));
1388 }
1389
1390 /*
1391 * then plug in our page of interest.
1392 */
1393
1394 pgs[nback] = pg;
1395
1396 /*
1397 * then look forward to fill in the remaining space in
1398 * the array of pages.
1399 */
1400
1401 npages = maxpages - nback - 1;
1402 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1403 &pgs[nback + 1],
1404 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1405 npages += nback + 1;
1406 } else {
1407 pgs[0] = pg;
1408 npages = 1;
1409 nback = 0;
1410 }
1411
1412 /*
1413 * apply FREE or DEACTIVATE options if requested.
1414 */
1415
1416 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1417 mutex_enter(&uvm_pageqlock);
1418 }
1419 for (i = 0; i < npages; i++) {
1420 tpg = pgs[i];
1421 KASSERT(tpg->uobject == uobj);
1422 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1423 pg = tpg;
1424 if (tpg->offset < startoff || tpg->offset >= endoff)
1425 continue;
1426 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1427 uvm_pagedeactivate(tpg);
1428 } else if (flags & PGO_FREE) {
1429 pmap_page_protect(tpg, VM_PROT_NONE);
1430 if (tpg->flags & PG_BUSY) {
1431 tpg->flags |= freeflag;
1432 if (pagedaemon) {
1433 uvm_pageout_start(1);
1434 uvm_pagedequeue(tpg);
1435 }
1436 } else {
1437
1438 /*
1439 * ``page is not busy''
1440 * implies that npages is 1
1441 * and needs_clean is false.
1442 */
1443
1444 nextpg = TAILQ_NEXT(tpg, listq.queue);
1445 uvm_pagefree(tpg);
1446 if (pagedaemon)
1447 uvmexp.pdfreed++;
1448 }
1449 }
1450 }
1451 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1452 mutex_exit(&uvm_pageqlock);
1453 }
1454 if (needs_clean) {
1455 modified = true;
1456
1457 /*
1458 * start the i/o. if we're traversing by list,
1459 * keep our place in the list with a marker page.
1460 */
1461
1462 if (by_list) {
1463 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1464 listq.queue);
1465 }
1466 mutex_exit(slock);
1467 error = GOP_WRITE(vp, pgs, npages, flags);
1468 mutex_enter(slock);
1469 if (by_list) {
1470 pg = TAILQ_NEXT(&curmp, listq.queue);
1471 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1472 }
1473 if (error) {
1474 break;
1475 }
1476 if (by_list) {
1477 continue;
1478 }
1479 }
1480
1481 /*
1482 * find the next page and continue if there was no error.
1483 */
1484
1485 if (by_list) {
1486 if (nextpg) {
1487 pg = nextpg;
1488 nextpg = NULL;
1489 } else {
1490 pg = TAILQ_NEXT(pg, listq.queue);
1491 }
1492 } else {
1493 off += (npages - nback) << PAGE_SHIFT;
1494 if (off < endoff) {
1495 pg = uvm_pagelookup(uobj, off);
1496 }
1497 }
1498 }
1499 if (by_list) {
1500 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1501 }
1502
1503 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1504 (vp->v_type != VBLK ||
1505 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1506 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1507 }
1508
1509 /*
1510 * if we're cleaning and there was nothing to clean,
1511 * take us off the syncer list. if we started any i/o
1512 * and we're doing sync i/o, wait for all writes to finish.
1513 */
1514
1515 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1516 (vp->v_iflag & VI_ONWORKLST) != 0) {
1517 #if defined(DEBUG)
1518 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1519 if ((pg->flags & PG_MARKER) != 0) {
1520 continue;
1521 }
1522 if ((pg->flags & PG_CLEAN) == 0) {
1523 printf("%s: %p: !CLEAN\n", __func__, pg);
1524 }
1525 if (pmap_is_modified(pg)) {
1526 printf("%s: %p: modified\n", __func__, pg);
1527 }
1528 }
1529 #endif /* defined(DEBUG) */
1530 vp->v_iflag &= ~VI_WRMAPDIRTY;
1531 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1532 vn_syncer_remove_from_worklist(vp);
1533 }
1534
1535 #if !defined(DEBUG)
1536 skip_scan:
1537 #endif /* !defined(DEBUG) */
1538
1539 /* Wait for output to complete. */
1540 if (!wasclean && !async && vp->v_numoutput != 0) {
1541 while (vp->v_numoutput != 0)
1542 cv_wait(&vp->v_cv, slock);
1543 }
1544 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1545 mutex_exit(slock);
1546
1547 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1548 /*
1549 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1550 * retrying is not a big deal because, in many cases,
1551 * uobj->uo_npages is already 0 here.
1552 */
1553 mutex_enter(slock);
1554 goto retry;
1555 }
1556
1557 if (has_trans) {
1558 if (need_wapbl)
1559 WAPBL_END(vp->v_mount);
1560 fstrans_done(vp->v_mount);
1561 }
1562
1563 return (error);
1564 }
1565
1566 #ifdef XIP
1567 int
1568 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1569 int flags, struct vm_page **busypg)
1570 {
1571 struct uvm_object *uobj = &vp->v_uobj;
1572 #ifdef DIAGNOSTIC
1573 struct genfs_node * const gp = VTOG(vp);
1574 #endif
1575
1576 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1577
1578 KASSERT(mutex_owned(&uobj->vmobjlock));
1579 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1580 KASSERT(vp->v_numoutput == 0);
1581 KASSERT(gp->g_dirtygen == 0);
1582
1583 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1584 vp, uobj->uo_npages, startoff, endoff - startoff);
1585
1586 /*
1587 * XIP pages are read-only, and never become dirty. They're also never
1588 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1589 * pages, so we ignore them.
1590 */
1591 if ((flags & PGO_FREE) == 0)
1592 goto done;
1593
1594 /*
1595 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1596 * mappings of both XIP pages and XIP zero pages.
1597 *
1598 * Zero page is freed when one of its mapped offset is freed, even if
1599 * one file (vnode) has many holes and mapping its zero page to all
1600 * of those hole pages.
1601 *
1602 * We don't know which pages are currently mapped in the given vnode,
1603 * because XIP pages are not added to vnode. What we can do is to
1604 * locate pages by querying the filesystem as done in getpages. Call
1605 * genfs_do_getpages_xip_io().
1606 */
1607
1608 off_t off, eof;
1609
1610 off = trunc_page(startoff);
1611 if (endoff == 0 || (flags & PGO_ALLPAGES))
1612 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1613 else
1614 eof = endoff;
1615
1616 while (off < eof) {
1617 int npages, orignpages, error, i;
1618 struct vm_page *pgs[maxpages], *pg;
1619
1620 npages = round_page(eof - off) >> PAGE_SHIFT;
1621 if (npages > maxpages)
1622 npages = maxpages;
1623
1624 orignpages = npages;
1625 KASSERT(mutex_owned(&uobj->vmobjlock));
1626 mutex_exit(&uobj->vmobjlock);
1627 error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
1628 VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
1629 KASSERT(error == 0);
1630 KASSERT(npages == orignpages);
1631 mutex_enter(&uobj->vmobjlock);
1632 for (i = 0; i < npages; i++) {
1633 pg = pgs[i];
1634 if (pg == NULL || pg == PGO_DONTCARE)
1635 continue;
1636 /*
1637 * Freeing normal XIP pages; nothing to do.
1638 */
1639 pmap_page_protect(pg, VM_PROT_NONE);
1640 KASSERT((pg->flags & PG_RDONLY) != 0);
1641 KASSERT((pg->flags & PG_CLEAN) != 0);
1642 KASSERT((pg->flags & PG_FAKE) == 0);
1643 KASSERT((pg->flags & PG_DEVICE) != 0);
1644 pg->flags &= ~PG_BUSY;
1645 }
1646 off += npages << PAGE_SHIFT;
1647 }
1648
1649 KASSERT(uobj->uo_npages == 0);
1650
1651 done:
1652 KASSERT(mutex_owned(&uobj->vmobjlock));
1653 mutex_exit(&uobj->vmobjlock);
1654 return 0;
1655 }
1656 #endif
1657
1658 int
1659 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1660 {
1661 off_t off;
1662 vaddr_t kva;
1663 size_t len;
1664 int error;
1665 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1666
1667 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1668 vp, pgs, npages, flags);
1669
1670 off = pgs[0]->offset;
1671 kva = uvm_pagermapin(pgs, npages,
1672 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1673 len = npages << PAGE_SHIFT;
1674
1675 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1676 uvm_aio_biodone);
1677
1678 return error;
1679 }
1680
1681 int
1682 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1683 {
1684 off_t off;
1685 vaddr_t kva;
1686 size_t len;
1687 int error;
1688 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1689
1690 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1691 vp, pgs, npages, flags);
1692
1693 off = pgs[0]->offset;
1694 kva = uvm_pagermapin(pgs, npages,
1695 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1696 len = npages << PAGE_SHIFT;
1697
1698 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1699 uvm_aio_biodone);
1700
1701 return error;
1702 }
1703
1704 /*
1705 * Backend routine for doing I/O to vnode pages. Pages are already locked
1706 * and mapped into kernel memory. Here we just look up the underlying
1707 * device block addresses and call the strategy routine.
1708 */
1709
1710 static int
1711 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1712 enum uio_rw rw, void (*iodone)(struct buf *))
1713 {
1714 int s, error;
1715 int fs_bshift, dev_bshift;
1716 off_t eof, offset, startoffset;
1717 size_t bytes, iobytes, skipbytes;
1718 struct buf *mbp, *bp;
1719 const bool async = (flags & PGO_SYNCIO) == 0;
1720 const bool iowrite = rw == UIO_WRITE;
1721 const int brw = iowrite ? B_WRITE : B_READ;
1722 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1723
1724 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1725 vp, kva, len, flags);
1726
1727 KASSERT(vp->v_size <= vp->v_writesize);
1728 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1729 if (vp->v_type != VBLK) {
1730 fs_bshift = vp->v_mount->mnt_fs_bshift;
1731 dev_bshift = vp->v_mount->mnt_dev_bshift;
1732 } else {
1733 fs_bshift = DEV_BSHIFT;
1734 dev_bshift = DEV_BSHIFT;
1735 }
1736 error = 0;
1737 startoffset = off;
1738 bytes = MIN(len, eof - startoffset);
1739 skipbytes = 0;
1740 KASSERT(bytes != 0);
1741
1742 if (iowrite) {
1743 mutex_enter(&vp->v_interlock);
1744 vp->v_numoutput += 2;
1745 mutex_exit(&vp->v_interlock);
1746 }
1747 mbp = getiobuf(vp, true);
1748 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1749 vp, mbp, vp->v_numoutput, bytes);
1750 mbp->b_bufsize = len;
1751 mbp->b_data = (void *)kva;
1752 mbp->b_resid = mbp->b_bcount = bytes;
1753 mbp->b_cflags = BC_BUSY | BC_AGE;
1754 if (async) {
1755 mbp->b_flags = brw | B_ASYNC;
1756 mbp->b_iodone = iodone;
1757 } else {
1758 mbp->b_flags = brw;
1759 mbp->b_iodone = NULL;
1760 }
1761 if (curlwp == uvm.pagedaemon_lwp)
1762 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1763 else if (async)
1764 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1765 else
1766 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1767
1768 bp = NULL;
1769 for (offset = startoffset;
1770 bytes > 0;
1771 offset += iobytes, bytes -= iobytes) {
1772 int run;
1773 daddr_t lbn, blkno;
1774 struct vnode *devvp;
1775
1776 /*
1777 * bmap the file to find out the blkno to read from and
1778 * how much we can read in one i/o. if bmap returns an error,
1779 * skip the rest of the top-level i/o.
1780 */
1781
1782 lbn = offset >> fs_bshift;
1783 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1784 if (error) {
1785 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1786 lbn,error,0,0);
1787 skipbytes += bytes;
1788 bytes = 0;
1789 goto loopdone;
1790 }
1791
1792 /*
1793 * see how many pages can be read with this i/o.
1794 * reduce the i/o size if necessary to avoid
1795 * overwriting pages with valid data.
1796 */
1797
1798 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1799 bytes);
1800
1801 /*
1802 * if this block isn't allocated, zero it instead of
1803 * reading it. unless we are going to allocate blocks,
1804 * mark the pages we zeroed PG_RDONLY.
1805 */
1806
1807 if (blkno == (daddr_t)-1) {
1808 if (!iowrite) {
1809 memset((char *)kva + (offset - startoffset), 0,
1810 iobytes);
1811 }
1812 skipbytes += iobytes;
1813 continue;
1814 }
1815
1816 /*
1817 * allocate a sub-buf for this piece of the i/o
1818 * (or just use mbp if there's only 1 piece),
1819 * and start it going.
1820 */
1821
1822 if (offset == startoffset && iobytes == bytes) {
1823 bp = mbp;
1824 } else {
1825 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1826 vp, bp, vp->v_numoutput, 0);
1827 bp = getiobuf(vp, true);
1828 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1829 }
1830 bp->b_lblkno = 0;
1831
1832 /* adjust physical blkno for partial blocks */
1833 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1834 dev_bshift);
1835
1836 UVMHIST_LOG(ubchist,
1837 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1838 bp, offset, bp->b_bcount, bp->b_blkno);
1839
1840 VOP_STRATEGY(devvp, bp);
1841 }
1842
1843 loopdone:
1844 if (skipbytes) {
1845 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1846 }
1847 nestiobuf_done(mbp, skipbytes, error);
1848 if (async) {
1849 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1850 return (0);
1851 }
1852 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1853 error = biowait(mbp);
1854 s = splbio();
1855 (*iodone)(mbp);
1856 splx(s);
1857 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1858 return (error);
1859 }
1860
1861 int
1862 genfs_compat_getpages(void *v)
1863 {
1864 struct vop_getpages_args /* {
1865 struct vnode *a_vp;
1866 voff_t a_offset;
1867 struct vm_page **a_m;
1868 int *a_count;
1869 int a_centeridx;
1870 vm_prot_t a_access_type;
1871 int a_advice;
1872 int a_flags;
1873 } */ *ap = v;
1874
1875 off_t origoffset;
1876 struct vnode *vp = ap->a_vp;
1877 struct uvm_object *uobj = &vp->v_uobj;
1878 struct vm_page *pg, **pgs;
1879 vaddr_t kva;
1880 int i, error, orignpages, npages;
1881 struct iovec iov;
1882 struct uio uio;
1883 kauth_cred_t cred = curlwp->l_cred;
1884 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1885
1886 error = 0;
1887 origoffset = ap->a_offset;
1888 orignpages = *ap->a_count;
1889 pgs = ap->a_m;
1890
1891 if (ap->a_flags & PGO_LOCKED) {
1892 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1893 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1894
1895 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1896 if (error == 0 && memwrite) {
1897 genfs_markdirty(vp);
1898 }
1899 return error;
1900 }
1901 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1902 mutex_exit(&uobj->vmobjlock);
1903 return EINVAL;
1904 }
1905 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1906 mutex_exit(&uobj->vmobjlock);
1907 return 0;
1908 }
1909 npages = orignpages;
1910 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1911 mutex_exit(&uobj->vmobjlock);
1912 kva = uvm_pagermapin(pgs, npages,
1913 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1914 for (i = 0; i < npages; i++) {
1915 pg = pgs[i];
1916 if ((pg->flags & PG_FAKE) == 0) {
1917 continue;
1918 }
1919 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1920 iov.iov_len = PAGE_SIZE;
1921 uio.uio_iov = &iov;
1922 uio.uio_iovcnt = 1;
1923 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1924 uio.uio_rw = UIO_READ;
1925 uio.uio_resid = PAGE_SIZE;
1926 UIO_SETUP_SYSSPACE(&uio);
1927 /* XXX vn_lock */
1928 error = VOP_READ(vp, &uio, 0, cred);
1929 if (error) {
1930 break;
1931 }
1932 if (uio.uio_resid) {
1933 memset(iov.iov_base, 0, uio.uio_resid);
1934 }
1935 }
1936 uvm_pagermapout(kva, npages);
1937 mutex_enter(&uobj->vmobjlock);
1938 mutex_enter(&uvm_pageqlock);
1939 for (i = 0; i < npages; i++) {
1940 pg = pgs[i];
1941 if (error && (pg->flags & PG_FAKE) != 0) {
1942 pg->flags |= PG_RELEASED;
1943 } else {
1944 pmap_clear_modify(pg);
1945 uvm_pageactivate(pg);
1946 }
1947 }
1948 if (error) {
1949 uvm_page_unbusy(pgs, npages);
1950 }
1951 mutex_exit(&uvm_pageqlock);
1952 if (error == 0 && memwrite) {
1953 genfs_markdirty(vp);
1954 }
1955 mutex_exit(&uobj->vmobjlock);
1956 return error;
1957 }
1958
1959 int
1960 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1961 int flags)
1962 {
1963 off_t offset;
1964 struct iovec iov;
1965 struct uio uio;
1966 kauth_cred_t cred = curlwp->l_cred;
1967 struct buf *bp;
1968 vaddr_t kva;
1969 int error;
1970
1971 offset = pgs[0]->offset;
1972 kva = uvm_pagermapin(pgs, npages,
1973 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1974
1975 iov.iov_base = (void *)kva;
1976 iov.iov_len = npages << PAGE_SHIFT;
1977 uio.uio_iov = &iov;
1978 uio.uio_iovcnt = 1;
1979 uio.uio_offset = offset;
1980 uio.uio_rw = UIO_WRITE;
1981 uio.uio_resid = npages << PAGE_SHIFT;
1982 UIO_SETUP_SYSSPACE(&uio);
1983 /* XXX vn_lock */
1984 error = VOP_WRITE(vp, &uio, 0, cred);
1985
1986 mutex_enter(&vp->v_interlock);
1987 vp->v_numoutput++;
1988 mutex_exit(&vp->v_interlock);
1989
1990 bp = getiobuf(vp, true);
1991 bp->b_cflags = BC_BUSY | BC_AGE;
1992 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1993 bp->b_data = (char *)kva;
1994 bp->b_bcount = npages << PAGE_SHIFT;
1995 bp->b_bufsize = npages << PAGE_SHIFT;
1996 bp->b_resid = 0;
1997 bp->b_error = error;
1998 uvm_aio_aiodone(bp);
1999 return (error);
2000 }
2001
2002 /*
2003 * Process a uio using direct I/O. If we reach a part of the request
2004 * which cannot be processed in this fashion for some reason, just return.
2005 * The caller must handle some additional part of the request using
2006 * buffered I/O before trying direct I/O again.
2007 */
2008
2009 void
2010 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
2011 {
2012 struct vmspace *vs;
2013 struct iovec *iov;
2014 vaddr_t va;
2015 size_t len;
2016 const int mask = DEV_BSIZE - 1;
2017 int error;
2018 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
2019 (ioflag & IO_JOURNALLOCKED) == 0);
2020
2021 /*
2022 * We only support direct I/O to user space for now.
2023 */
2024
2025 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
2026 return;
2027 }
2028
2029 /*
2030 * If the vnode is mapped, we would need to get the getpages lock
2031 * to stabilize the bmap, but then we would get into trouble whil e
2032 * locking the pages if the pages belong to this same vnode (or a
2033 * multi-vnode cascade to the same effect). Just fall back to
2034 * buffered I/O if the vnode is mapped to avoid this mess.
2035 */
2036
2037 if (vp->v_vflag & VV_MAPPED) {
2038 return;
2039 }
2040
2041 if (need_wapbl) {
2042 error = WAPBL_BEGIN(vp->v_mount);
2043 if (error)
2044 return;
2045 }
2046
2047 /*
2048 * Do as much of the uio as possible with direct I/O.
2049 */
2050
2051 vs = uio->uio_vmspace;
2052 while (uio->uio_resid) {
2053 iov = uio->uio_iov;
2054 if (iov->iov_len == 0) {
2055 uio->uio_iov++;
2056 uio->uio_iovcnt--;
2057 continue;
2058 }
2059 va = (vaddr_t)iov->iov_base;
2060 len = MIN(iov->iov_len, genfs_maxdio);
2061 len &= ~mask;
2062
2063 /*
2064 * If the next chunk is smaller than DEV_BSIZE or extends past
2065 * the current EOF, then fall back to buffered I/O.
2066 */
2067
2068 if (len == 0 || uio->uio_offset + len > vp->v_size) {
2069 break;
2070 }
2071
2072 /*
2073 * Check alignment. The file offset must be at least
2074 * sector-aligned. The exact constraint on memory alignment
2075 * is very hardware-dependent, but requiring sector-aligned
2076 * addresses there too is safe.
2077 */
2078
2079 if (uio->uio_offset & mask || va & mask) {
2080 break;
2081 }
2082 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2083 uio->uio_rw);
2084 if (error) {
2085 break;
2086 }
2087 iov->iov_base = (char *)iov->iov_base + len;
2088 iov->iov_len -= len;
2089 uio->uio_offset += len;
2090 uio->uio_resid -= len;
2091 }
2092
2093 if (need_wapbl)
2094 WAPBL_END(vp->v_mount);
2095 }
2096
2097 /*
2098 * Iodone routine for direct I/O. We don't do much here since the request is
2099 * always synchronous, so the caller will do most of the work after biowait().
2100 */
2101
2102 static void
2103 genfs_dio_iodone(struct buf *bp)
2104 {
2105
2106 KASSERT((bp->b_flags & B_ASYNC) == 0);
2107 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2108 mutex_enter(bp->b_objlock);
2109 vwakeup(bp);
2110 mutex_exit(bp->b_objlock);
2111 }
2112 putiobuf(bp);
2113 }
2114
2115 /*
2116 * Process one chunk of a direct I/O request.
2117 */
2118
2119 static int
2120 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2121 off_t off, enum uio_rw rw)
2122 {
2123 struct vm_map *map;
2124 struct pmap *upm, *kpm;
2125 size_t klen = round_page(uva + len) - trunc_page(uva);
2126 off_t spoff, epoff;
2127 vaddr_t kva, puva;
2128 paddr_t pa;
2129 vm_prot_t prot;
2130 int error, rv, poff, koff;
2131 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2132 (rw == UIO_WRITE ? PGO_FREE : 0);
2133
2134 /*
2135 * For writes, verify that this range of the file already has fully
2136 * allocated backing store. If there are any holes, just punt and
2137 * make the caller take the buffered write path.
2138 */
2139
2140 if (rw == UIO_WRITE) {
2141 daddr_t lbn, elbn, blkno;
2142 int bsize, bshift, run;
2143
2144 bshift = vp->v_mount->mnt_fs_bshift;
2145 bsize = 1 << bshift;
2146 lbn = off >> bshift;
2147 elbn = (off + len + bsize - 1) >> bshift;
2148 while (lbn < elbn) {
2149 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2150 if (error) {
2151 return error;
2152 }
2153 if (blkno == (daddr_t)-1) {
2154 return ENOSPC;
2155 }
2156 lbn += 1 + run;
2157 }
2158 }
2159
2160 /*
2161 * Flush any cached pages for parts of the file that we're about to
2162 * access. If we're writing, invalidate pages as well.
2163 */
2164
2165 spoff = trunc_page(off);
2166 epoff = round_page(off + len);
2167 mutex_enter(&vp->v_interlock);
2168 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2169 if (error) {
2170 return error;
2171 }
2172
2173 /*
2174 * Wire the user pages and remap them into kernel memory.
2175 */
2176
2177 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2178 error = uvm_vslock(vs, (void *)uva, len, prot);
2179 if (error) {
2180 return error;
2181 }
2182
2183 map = &vs->vm_map;
2184 upm = vm_map_pmap(map);
2185 kpm = vm_map_pmap(kernel_map);
2186 kva = uvm_km_alloc(kernel_map, klen, 0,
2187 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2188 puva = trunc_page(uva);
2189 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2190 rv = pmap_extract(upm, puva + poff, &pa);
2191 KASSERT(rv);
2192 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2193 }
2194 pmap_update(kpm);
2195
2196 /*
2197 * Do the I/O.
2198 */
2199
2200 koff = uva - trunc_page(uva);
2201 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2202 genfs_dio_iodone);
2203
2204 /*
2205 * Tear down the kernel mapping.
2206 */
2207
2208 pmap_remove(kpm, kva, kva + klen);
2209 pmap_update(kpm);
2210 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2211
2212 /*
2213 * Unwire the user pages.
2214 */
2215
2216 uvm_vsunlock(vs, (void *)uva, len);
2217 return error;
2218 }
2219
2220