Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.61
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.61 2010/11/21 14:52:23 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.61 2010/11/21 14:52:23 uebayasi Exp $");
     35 
     36 #include "opt_xip.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mount.h>
     43 #include <sys/namei.h>
     44 #include <sys/vnode.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/kmem.h>
     47 #include <sys/poll.h>
     48 #include <sys/mman.h>
     49 #include <sys/file.h>
     50 #include <sys/kauth.h>
     51 #include <sys/fstrans.h>
     52 #include <sys/buf.h>
     53 
     54 #include <miscfs/genfs/genfs.h>
     55 #include <miscfs/genfs/genfs_node.h>
     56 #include <miscfs/specfs/specdev.h>
     57 
     58 #include <uvm/uvm.h>
     59 #include <uvm/uvm_pager.h>
     60 
     61 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     62     off_t, enum uio_rw);
     63 static void genfs_dio_iodone(struct buf *);
     64 
     65 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     66     void (*)(struct buf *));
     67 static void genfs_rel_pages(struct vm_page **, int);
     68 static void genfs_markdirty(struct vnode *);
     69 
     70 int genfs_maxdio = MAXPHYS;
     71 
     72 static void
     73 genfs_rel_pages(struct vm_page **pgs, int npages)
     74 {
     75 	int i;
     76 
     77 	for (i = 0; i < npages; i++) {
     78 		struct vm_page *pg = pgs[i];
     79 
     80 		if (pg == NULL || pg == PGO_DONTCARE)
     81 			continue;
     82 		if (pg->flags & PG_FAKE) {
     83 			pg->flags |= PG_RELEASED;
     84 		}
     85 	}
     86 	mutex_enter(&uvm_pageqlock);
     87 	uvm_page_unbusy(pgs, npages);
     88 	mutex_exit(&uvm_pageqlock);
     89 }
     90 
     91 static void
     92 genfs_markdirty(struct vnode *vp)
     93 {
     94 	struct genfs_node * const gp = VTOG(vp);
     95 
     96 	KASSERT(mutex_owned(&vp->v_interlock));
     97 	gp->g_dirtygen++;
     98 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     99 		vn_syncer_add_to_worklist(vp, filedelay);
    100 	}
    101 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    102 		vp->v_iflag |= VI_WRMAPDIRTY;
    103 	}
    104 }
    105 
    106 /*
    107  * generic VM getpages routine.
    108  * Return PG_BUSY pages for the given range,
    109  * reading from backing store if necessary.
    110  */
    111 
    112 int
    113 genfs_getpages(void *v)
    114 {
    115 	struct vop_getpages_args /* {
    116 		struct vnode *a_vp;
    117 		voff_t a_offset;
    118 		struct vm_page **a_m;
    119 		int *a_count;
    120 		int a_centeridx;
    121 		vm_prot_t a_access_type;
    122 		int a_advice;
    123 		int a_flags;
    124 	} */ * const ap = v;
    125 
    126 	off_t diskeof, memeof;
    127 	int i, error, npages;
    128 	const int flags = ap->a_flags;
    129 	struct vnode * const vp = ap->a_vp;
    130 	struct uvm_object * const uobj = &vp->v_uobj;
    131 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    132 	const bool async = (flags & PGO_SYNCIO) == 0;
    133 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    134 	bool has_trans = false;
    135 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    136 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    137 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    138 #ifdef XIP
    139 	const bool xip = (ap->a_vp->v_vflag & VV_XIP) != 0;
    140 #else
    141 #define	xip	0
    142 #endif
    143 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    144 
    145 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    146 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    147 
    148 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    149 	    vp->v_type == VLNK || vp->v_type == VBLK);
    150 
    151 startover:
    152 	error = 0;
    153 	const voff_t origvsize = vp->v_size;
    154 	const off_t origoffset = ap->a_offset;
    155 	const int orignpages = *ap->a_count;
    156 
    157 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    158 	if (flags & PGO_PASTEOF) {
    159 		off_t newsize;
    160 #if defined(DIAGNOSTIC)
    161 		off_t writeeof;
    162 #endif /* defined(DIAGNOSTIC) */
    163 
    164 		newsize = MAX(origvsize,
    165 		    origoffset + (orignpages << PAGE_SHIFT));
    166 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    167 #if defined(DIAGNOSTIC)
    168 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    169 		if (newsize > round_page(writeeof)) {
    170 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    171 			    __func__, newsize, round_page(writeeof));
    172 		}
    173 #endif /* defined(DIAGNOSTIC) */
    174 	} else {
    175 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    176 	}
    177 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    178 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    179 	KASSERT(orignpages > 0);
    180 
    181 	/*
    182 	 * Bounds-check the request.
    183 	 */
    184 
    185 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    186 		if ((flags & PGO_LOCKED) == 0) {
    187 			mutex_exit(&uobj->vmobjlock);
    188 		}
    189 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    190 		    origoffset, *ap->a_count, memeof,0);
    191 		error = EINVAL;
    192 		goto out_err;
    193 	}
    194 
    195 	/* uobj is locked */
    196 
    197 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    198 	    (vp->v_type != VBLK ||
    199 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    200 		int updflags = 0;
    201 
    202 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    203 			updflags = GOP_UPDATE_ACCESSED;
    204 		}
    205 		if (memwrite) {
    206 			updflags |= GOP_UPDATE_MODIFIED;
    207 		}
    208 		if (updflags != 0) {
    209 			GOP_MARKUPDATE(vp, updflags);
    210 		}
    211 	}
    212 
    213 	/*
    214 	 * For PGO_LOCKED requests, just return whatever's in memory.
    215 	 */
    216 
    217 	if (flags & PGO_LOCKED) {
    218 #if 0
    219 		genfs_getpages_mem();
    220 	} else {
    221 		genfs_getpages_io();
    222 	}
    223 }
    224 
    225 int
    226 genfs_getpages_mem()
    227 {
    228 #endif
    229 		int nfound;
    230 		struct vm_page *pg;
    231 
    232 		if (xip) {
    233 			*ap->a_count = 0;
    234 			return 0;
    235 		}
    236 
    237 		KASSERT(!glocked);
    238 		npages = *ap->a_count;
    239 #if defined(DEBUG)
    240 		for (i = 0; i < npages; i++) {
    241 			pg = ap->a_m[i];
    242 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    243 		}
    244 #endif /* defined(DEBUG) */
    245 		nfound = uvn_findpages(uobj, origoffset, &npages,
    246 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    247 		KASSERT(npages == *ap->a_count);
    248 		if (nfound == 0) {
    249 			error = EBUSY;
    250 			goto out_err;
    251 		}
    252 		if (!genfs_node_rdtrylock(vp)) {
    253 			genfs_rel_pages(ap->a_m, npages);
    254 
    255 			/*
    256 			 * restore the array.
    257 			 */
    258 
    259 			for (i = 0; i < npages; i++) {
    260 				pg = ap->a_m[i];
    261 
    262 				if (pg != NULL && pg != PGO_DONTCARE) {
    263 					ap->a_m[i] = NULL;
    264 				}
    265 				KASSERT(pg == NULL || pg == PGO_DONTCARE);
    266 			}
    267 		} else {
    268 			genfs_node_unlock(vp);
    269 		}
    270 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    271 		if (error == 0 && memwrite) {
    272 			genfs_markdirty(vp);
    273 		}
    274 		goto out_err;
    275 	}
    276 	mutex_exit(&uobj->vmobjlock);
    277 #if 0
    278 }
    279 
    280 int
    281 genfs_getpages_io()
    282 {
    283 #endif
    284 	/*
    285 	 * find the requested pages and make some simple checks.
    286 	 * leave space in the page array for a whole block.
    287 	 */
    288 
    289 #define	vp2fs_bshift(vp) \
    290 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
    291 #define	vp2dev_bshift(vp) \
    292 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
    293 
    294 	const int fs_bshift = vp2fs_bshift(vp);
    295 	const int dev_bshift = vp2dev_bshift(vp);
    296 	const int fs_bsize = 1 << fs_bshift;
    297 #define	blk_mask	(fs_bsize - 1)
    298 #define	trunc_blk(x)	((x) & ~blk_mask)
    299 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    300 
    301 	const int orignmempages = MIN(orignpages,
    302 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    303 	npages = orignmempages;
    304 	const off_t startoffset = trunc_blk(origoffset);
    305 	const off_t endoffset = MIN(
    306 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    307 	    round_page(memeof));
    308 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    309 
    310 	const int pgs_size = sizeof(struct vm_page *) *
    311 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    312 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    313 
    314 	if (pgs_size > sizeof(pgs_onstack)) {
    315 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    316 		if (pgs == NULL) {
    317 			pgs = pgs_onstack;
    318 			error = ENOMEM;
    319 			goto out_err;
    320 		}
    321 	} else {
    322 		pgs = pgs_onstack;
    323 		(void)memset(pgs, 0, pgs_size);
    324 	}
    325 
    326 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    327 	    ridx, npages, startoffset, endoffset);
    328 #if 0
    329 }
    330 
    331 int
    332 genfs_getpages_io_relock()
    333 {
    334 #endif
    335 	if (!has_trans) {
    336 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    337 		has_trans = true;
    338 	}
    339 
    340 	/*
    341 	 * hold g_glock to prevent a race with truncate.
    342 	 *
    343 	 * check if our idea of v_size is still valid.
    344 	 */
    345 
    346 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    347 	if (!glocked) {
    348 		if (blockalloc) {
    349 			genfs_node_wrlock(vp);
    350 		} else {
    351 			genfs_node_rdlock(vp);
    352 		}
    353 	}
    354 	mutex_enter(&uobj->vmobjlock);
    355 	if (vp->v_size < origvsize) {
    356 		if (!glocked) {
    357 			genfs_node_unlock(vp);
    358 		}
    359 		if (pgs != pgs_onstack)
    360 			kmem_free(pgs, pgs_size);
    361 		goto startover;
    362 	}
    363 #if 0
    364 }
    365 
    366 int
    367 genfs_getpages_io_findpages()
    368 {
    369 #endif
    370     if (!xip) {
    371 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    372 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    373 		if (!glocked) {
    374 			genfs_node_unlock(vp);
    375 		}
    376 		KASSERT(async != 0);
    377 		genfs_rel_pages(&pgs[ridx], orignmempages);
    378 		mutex_exit(&uobj->vmobjlock);
    379 		error = EBUSY;
    380 		goto out_err_free;
    381 	}
    382 
    383 	/*
    384 	 * if the pages are already resident, just return them.
    385 	 */
    386 
    387 	for (i = 0; i < npages; i++) {
    388 		struct vm_page *pg = pgs[ridx + i];
    389 
    390 		if ((pg->flags & PG_FAKE) ||
    391 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    392 			break;
    393 		}
    394 	}
    395 	if (i == npages) {
    396 		if (!glocked) {
    397 			genfs_node_unlock(vp);
    398 		}
    399 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    400 		npages += ridx;
    401 		goto out;
    402 	}
    403     }
    404 
    405 	/*
    406 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    407 	 */
    408 
    409 	if (overwrite) {
    410 #if 0
    411 		genfs_getpages_io_overwrite();
    412 	} else {
    413 		genfs_getpages_io_read();
    414 	}
    415 }
    416 
    417 int
    418 genfs_getpages_io_overwrite()
    419 {
    420 	{
    421 #endif
    422 		KASSERT(!xip);
    423 
    424 		if (!glocked) {
    425 			genfs_node_unlock(vp);
    426 		}
    427 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    428 
    429 		for (i = 0; i < npages; i++) {
    430 			struct vm_page *pg = pgs[ridx + i];
    431 
    432 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    433 		}
    434 		npages += ridx;
    435 		goto out;
    436 	}
    437 #if 0
    438 }
    439 
    440 int
    441 genfs_getpages_io_read()
    442 {
    443 #endif
    444 	/*
    445 	 * the page wasn't resident and we're not overwriting,
    446 	 * so we're going to have to do some i/o.
    447 	 * find any additional pages needed to cover the expanded range.
    448 	 */
    449 #if 0
    450 }
    451 
    452 int
    453 genfs_getpages_io_read_allocpages()
    454 {
    455 #endif
    456     if (!xip) {
    457 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    458 	if (startoffset != origoffset || npages != orignmempages) {
    459 		int npgs;
    460 
    461 		/*
    462 		 * we need to avoid deadlocks caused by locking
    463 		 * additional pages at lower offsets than pages we
    464 		 * already have locked.  unlock them all and start over.
    465 		 */
    466 
    467 		genfs_rel_pages(&pgs[ridx], orignmempages);
    468 		memset(pgs, 0, pgs_size);
    469 
    470 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    471 		    startoffset, endoffset, 0,0);
    472 		npgs = npages;
    473 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    474 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    475 			if (!glocked) {
    476 				genfs_node_unlock(vp);
    477 			}
    478 			KASSERT(async != 0);
    479 			genfs_rel_pages(pgs, npages);
    480 			mutex_exit(&uobj->vmobjlock);
    481 			error = EBUSY;
    482 			goto out_err_free;
    483 		}
    484 	}
    485     }
    486 #if 0
    487 }
    488 
    489 int
    490 genfs_getpages_io_read_bio()
    491 {
    492 #endif
    493 	mutex_exit(&uobj->vmobjlock);
    494 
    495     {
    496 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    497 	vaddr_t kva = 0;
    498 	struct buf *bp = NULL, *mbp = NULL;
    499 	bool sawhole = false;
    500 
    501 	/*
    502 	 * read the desired page(s).
    503 	 */
    504 
    505 	totalbytes = npages << PAGE_SHIFT;
    506 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    507 	tailbytes = totalbytes - bytes;
    508 	skipbytes = 0;
    509 #if 0
    510 }
    511 
    512 int
    513 genfs_getpages_io_read_bio_prepare()
    514 {
    515 #endif
    516     if (!xip) {
    517 	kva = uvm_pagermapin(pgs, npages,
    518 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    519 
    520 	mbp = getiobuf(vp, true);
    521 	mbp->b_bufsize = totalbytes;
    522 	mbp->b_data = (void *)kva;
    523 	mbp->b_resid = mbp->b_bcount = bytes;
    524 	mbp->b_cflags = BC_BUSY;
    525 	if (async) {
    526 		mbp->b_flags = B_READ | B_ASYNC;
    527 		mbp->b_iodone = uvm_aio_biodone;
    528 	} else {
    529 		mbp->b_flags = B_READ;
    530 		mbp->b_iodone = NULL;
    531 	}
    532 	if (async)
    533 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    534 	else
    535 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    536     }
    537 #if 0
    538 }
    539 
    540 #endif
    541 	/*
    542 	 * if EOF is in the middle of the range, zero the part past EOF.
    543 	 * skip over pages which are not PG_FAKE since in that case they have
    544 	 * valid data that we need to preserve.
    545 	 */
    546 
    547 	tailstart = bytes;
    548 	while (tailbytes > 0) {
    549 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    550 
    551 		KASSERT(len <= tailbytes);
    552 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    553 			memset((void *)(kva + tailstart), 0, len);
    554 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    555 			    kva, tailstart, len, 0);
    556 		}
    557 		tailstart += len;
    558 		tailbytes -= len;
    559 	}
    560 #if 0
    561 }
    562 
    563 int
    564 genfs_getpages_io_read_bio_loop()
    565 {
    566 #endif
    567 	/*
    568 	 * now loop over the pages, reading as needed.
    569 	 */
    570 
    571 	bp = NULL;
    572 	off_t offset;
    573 	for (offset = startoffset;
    574 	    bytes > 0;
    575 	    offset += iobytes, bytes -= iobytes) {
    576 		int run;
    577 		daddr_t lbn, blkno;
    578 		int pidx;
    579 		struct vnode *devvp;
    580 
    581 		/*
    582 		 * skip pages which don't need to be read.
    583 		 */
    584 
    585 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    586 	    if (!xip) {
    587 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    588 			size_t b;
    589 
    590 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    591 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    592 				sawhole = true;
    593 			}
    594 			b = MIN(PAGE_SIZE, bytes);
    595 			offset += b;
    596 			bytes -= b;
    597 			skipbytes += b;
    598 			pidx++;
    599 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    600 			    offset, 0,0,0);
    601 			if (bytes == 0) {
    602 				goto loopdone;
    603 			}
    604 		}
    605 	    }
    606 
    607 		/*
    608 		 * bmap the file to find out the blkno to read from and
    609 		 * how much we can read in one i/o.  if bmap returns an error,
    610 		 * skip the rest of the top-level i/o.
    611 		 */
    612 
    613 		lbn = offset >> fs_bshift;
    614 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    615 		if (error) {
    616 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    617 			    lbn,error,0,0);
    618 			skipbytes += bytes;
    619 			bytes = 0;
    620 			goto loopdone;
    621 		}
    622 
    623 		/*
    624 		 * see how many pages can be read with this i/o.
    625 		 * reduce the i/o size if necessary to avoid
    626 		 * overwriting pages with valid data.
    627 		 */
    628 
    629 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    630 		    bytes);
    631 		if (offset + iobytes > round_page(offset)) {
    632 			int pcount;
    633 
    634 			pcount = 1;
    635 			while ((pidx + pcount < npages) && (
    636 			    /*
    637 			     * in XIP case, we don't know what page to read
    638 			     * at this point!
    639 			     */
    640 			    xip ||
    641 			    (pgs[pidx + pcount]->flags & PG_FAKE))) {
    642 				pcount++;
    643 			}
    644 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    645 			    (offset - trunc_page(offset)));
    646 		}
    647 
    648 		/*
    649 		 * if this block isn't allocated, zero it instead of
    650 		 * reading it.  unless we are going to allocate blocks,
    651 		 * mark the pages we zeroed PG_RDONLY.
    652 		 */
    653 
    654 		if (blkno == (daddr_t)-1) {
    655 			int holepages = (round_page(offset + iobytes) -
    656 			    trunc_page(offset)) >> PAGE_SHIFT;
    657 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    658 
    659 		    if (!xip) {
    660 			sawhole = true;
    661 			memset((char *)kva + (offset - startoffset), 0,
    662 			    iobytes);
    663 			skipbytes += iobytes;
    664 
    665 			for (i = 0; i < holepages; i++) {
    666 				if (memwrite) {
    667 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    668 				}
    669 				if (!blockalloc) {
    670 					pgs[pidx + i]->flags |= PG_RDONLY;
    671 				}
    672 			}
    673 		    } else {
    674 			for (i = 0; i < holepages; i++) {
    675 				pgs[ridx + pidx + i] = PGO_ZERO;
    676 			}
    677 			UVMHIST_LOG(ubchist, "xip HOLE pgs %d .. %d",
    678 			    pidx, pidx + holepages - 1, 0, 0);
    679 		    }
    680 			continue;
    681 		}
    682 
    683 	    if (!xip) {
    684 		/*
    685 		 * allocate a sub-buf for this piece of the i/o
    686 		 * (or just use mbp if there's only 1 piece),
    687 		 * and start it going.
    688 		 */
    689 
    690 		if (offset == startoffset && iobytes == bytes) {
    691 			bp = mbp;
    692 		} else {
    693 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    694 			    vp, bp, vp->v_numoutput, 0);
    695 			bp = getiobuf(vp, true);
    696 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    697 		}
    698 		bp->b_lblkno = 0;
    699 
    700 		/* adjust physical blkno for partial blocks */
    701 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    702 		    dev_bshift);
    703 
    704 		UVMHIST_LOG(ubchist,
    705 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    706 		    bp, offset, bp->b_bcount, bp->b_blkno);
    707 
    708 		VOP_STRATEGY(devvp, bp);
    709 	    } else {
    710 #ifdef XIP
    711 		/*
    712 		 * XIP page metadata assignment
    713 		 * - Unallocated block is redirected to the dedicated zero'ed
    714 		 *   page.
    715 		 */
    716 		const daddr_t blk_off = blkno << dev_bshift;
    717 		const daddr_t fs_off = origoffset - startoffset;
    718 
    719 		int npgs = iobytes >> PAGE_SHIFT;
    720 		UVMHIST_LOG(ubchist,
    721 		    "xip iobytes=0x%lx ridx=%d pidx=%d npgs=%d",
    722 		    (long)iobytes, ridx, pidx, npgs);
    723 
    724 		/* XXX optimize */
    725 		for (i = 0; i < npgs; i++) {
    726 			const daddr_t pg_off = i << PAGE_SHIFT;
    727 			struct vm_page *pg;
    728 
    729 			UVMHIST_LOG(ubchist,
    730 			    "xip blk_off=0x%lx fs_off=0x%lx pg_off=%lx",
    731 			    (long)blk_off, (long)fs_off, (long)pg_off, 0);
    732 
    733 			pg = uvn_findpage_xip(devvp, &vp->v_uobj,
    734 			    blk_off + fs_off + pg_off);
    735 			KASSERT(pg != NULL);
    736 			UVMHIST_LOG(ubchist,
    737 			    "xip pg %d => phys_addr=0x%lx (%p)",
    738 			    ridx + pidx + i, (long)pg->phys_addr, pg, 0);
    739 			pgs[ridx + pidx + i] = pg;
    740 		}
    741 #endif
    742 	    }
    743 	}
    744 
    745 loopdone:
    746 #if 0
    747 
    748 int
    749 genfs_getpages_biodone()
    750 {
    751 #endif
    752     if (!xip) {
    753 	nestiobuf_done(mbp, skipbytes, error);
    754 	if (async) {
    755 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    756 		if (!glocked) {
    757 			genfs_node_unlock(vp);
    758 		}
    759 		error = 0;
    760 		goto out_err_free;
    761 	}
    762 	if (bp != NULL) {
    763 		error = biowait(mbp);
    764 	}
    765 
    766 	/* Remove the mapping (make KVA available as soon as possible) */
    767 	uvm_pagermapout(kva, npages);
    768 
    769 	/*
    770 	 * if this we encountered a hole then we have to do a little more work.
    771 	 * for read faults, we marked the page PG_RDONLY so that future
    772 	 * write accesses to the page will fault again.
    773 	 * for write faults, we must make sure that the backing store for
    774 	 * the page is completely allocated while the pages are locked.
    775 	 */
    776 
    777 	if (!error && sawhole && blockalloc) {
    778 		/*
    779 		 * XXX: This assumes that we come here only via
    780 		 * the mmio path
    781 		 */
    782 		if (vp->v_mount->mnt_wapbl) {
    783 			error = WAPBL_BEGIN(vp->v_mount);
    784 		}
    785 
    786 		if (!error) {
    787 			error = GOP_ALLOC(vp, startoffset,
    788 			    npages << PAGE_SHIFT, 0, cred);
    789 			if (vp->v_mount->mnt_wapbl) {
    790 				WAPBL_END(vp->v_mount);
    791 			}
    792 		}
    793 
    794 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    795 		    startoffset, npages << PAGE_SHIFT, error,0);
    796 		if (!error) {
    797 			for (i = 0; i < npages; i++) {
    798 				struct vm_page *pg = pgs[i];
    799 
    800 				if (pg == NULL) {
    801 					continue;
    802 				}
    803 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    804 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    805 				    pg,0,0,0);
    806 			}
    807 		}
    808 	}
    809 
    810 	putiobuf(mbp);
    811     }
    812 #if 0
    813 }
    814 
    815 #endif
    816     }
    817 
    818 	if (!glocked) {
    819 		genfs_node_unlock(vp);
    820 	}
    821 
    822 	mutex_enter(&uobj->vmobjlock);
    823 #if 0
    824 }
    825 
    826 int
    827 genfs_getpages_generic_io_done()
    828 {
    829 #endif
    830 	/*
    831 	 * we're almost done!  release the pages...
    832 	 * for errors, we free the pages.
    833 	 * otherwise we activate them and mark them as valid and clean.
    834 	 * also, unbusy pages that were not actually requested.
    835 	 */
    836 
    837 	if (error) {
    838 		for (i = 0; i < npages; i++) {
    839 			struct vm_page *pg = pgs[i];
    840 
    841 			if (pg == NULL) {
    842 				continue;
    843 			}
    844 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    845 			    pg, pg->flags, 0,0);
    846 			if (pg->flags & PG_FAKE) {
    847 				pg->flags |= PG_RELEASED;
    848 			}
    849 		}
    850 		mutex_enter(&uvm_pageqlock);
    851 		uvm_page_unbusy(pgs, npages);
    852 		mutex_exit(&uvm_pageqlock);
    853 		mutex_exit(&uobj->vmobjlock);
    854 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    855 		goto out_err_free;
    856 	}
    857 
    858 out:
    859 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    860 	error = 0;
    861 
    862     if (!xip) {
    863 	mutex_enter(&uvm_pageqlock);
    864 	for (i = 0; i < npages; i++) {
    865 		struct vm_page *pg = pgs[i];
    866 		if (pg == NULL) {
    867 			continue;
    868 		}
    869 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    870 		    pg, pg->flags, 0,0);
    871 		if (pg->flags & PG_FAKE && !overwrite) {
    872 			pg->flags &= ~(PG_FAKE);
    873 			pmap_clear_modify(pgs[i]);
    874 		}
    875 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    876 		if (i < ridx || i >= ridx + orignmempages || async) {
    877 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    878 			    pg, pg->offset,0,0);
    879 			if (pg->flags & PG_WANTED) {
    880 				wakeup(pg);
    881 			}
    882 			if (pg->flags & PG_FAKE) {
    883 				KASSERT(overwrite);
    884 				uvm_pagezero(pg);
    885 			}
    886 			if (pg->flags & PG_RELEASED) {
    887 				uvm_pagefree(pg);
    888 				continue;
    889 			}
    890 			uvm_pageenqueue(pg);
    891 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    892 			UVM_PAGE_OWN(pg, NULL);
    893 		}
    894 	}
    895 	mutex_exit(&uvm_pageqlock);
    896 	if (memwrite) {
    897 		genfs_markdirty(vp);
    898 	}
    899     } else {
    900 	KASSERT(npages == orignmempages);
    901 	for (i = ridx; i < ridx + npages; i++) {
    902 		struct vm_page *pg = pgs[i];
    903 
    904 	    if (pg != PGO_ZERO) {
    905 		KASSERT(pg != NULL);
    906 		KASSERT((pg->flags & PG_RDONLY) != 0);
    907 		KASSERT((pg->flags & PG_BUSY) != 0);
    908 		KASSERT((pg->flags & PG_CLEAN) != 0);
    909 		KASSERT((pg->flags & PG_DEVICE) != 0);
    910 		KASSERT((pg->flags & PG_FAKE) == 0);
    911 
    912 		/*
    913 		 * XXXUEBS
    914 		 * Actually this is not necessary, because device
    915 		 * pages are "stateless", and they have no owner.
    916 		 */
    917 		pg->uobject = &vp->v_uobj;
    918 	    } else {
    919 		/*
    920 		 * XIP hole pages are passed as a magic pointer
    921 		 * back to fault handlers.  Fault handlers are
    922 		 * respoinsible to check it and redirect the VA to
    923 		 * a single "zero page".
    924 		 */
    925 	    }
    926 	}
    927     } /* xip */
    928 	mutex_exit(&uobj->vmobjlock);
    929 	if (ap->a_m != NULL) {
    930 		memcpy(ap->a_m, &pgs[ridx],
    931 		    orignmempages * sizeof(struct vm_page *));
    932 		KASSERT(error != 0 || ap->a_m[ap->a_centeridx] != NULL);
    933 	}
    934 #if 0
    935 }
    936 
    937 #endif
    938 
    939 out_err_free:
    940 	if (pgs != NULL && pgs != pgs_onstack)
    941 		kmem_free(pgs, pgs_size);
    942 out_err:
    943 	if (has_trans)
    944 		fstrans_done(vp->v_mount);
    945 	return error;
    946 }
    947 
    948 /*
    949  * generic VM putpages routine.
    950  * Write the given range of pages to backing store.
    951  *
    952  * => "offhi == 0" means flush all pages at or after "offlo".
    953  * => object should be locked by caller.  we return with the
    954  *      object unlocked.
    955  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    956  *	thus, a caller might want to unlock higher level resources
    957  *	(e.g. vm_map) before calling flush.
    958  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    959  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    960  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    961  *	that new pages are inserted on the tail end of the list.   thus,
    962  *	we can make a complete pass through the object in one go by starting
    963  *	at the head and working towards the tail (new pages are put in
    964  *	front of us).
    965  * => NOTE: we are allowed to lock the page queues, so the caller
    966  *	must not be holding the page queue lock.
    967  *
    968  * note on "cleaning" object and PG_BUSY pages:
    969  *	this routine is holding the lock on the object.   the only time
    970  *	that it can run into a PG_BUSY page that it does not own is if
    971  *	some other process has started I/O on the page (e.g. either
    972  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    973  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    974  *	had a chance to modify it yet.    if the PG_BUSY page is being
    975  *	paged out then it means that someone else has already started
    976  *	cleaning the page for us (how nice!).    in this case, if we
    977  *	have syncio specified, then after we make our pass through the
    978  *	object we need to wait for the other PG_BUSY pages to clear
    979  *	off (i.e. we need to do an iosync).   also note that once a
    980  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    981  *
    982  * note on page traversal:
    983  *	we can traverse the pages in an object either by going down the
    984  *	linked list in "uobj->memq", or we can go over the address range
    985  *	by page doing hash table lookups for each address.    depending
    986  *	on how many pages are in the object it may be cheaper to do one
    987  *	or the other.   we set "by_list" to true if we are using memq.
    988  *	if the cost of a hash lookup was equal to the cost of the list
    989  *	traversal we could compare the number of pages in the start->stop
    990  *	range to the total number of pages in the object.   however, it
    991  *	seems that a hash table lookup is more expensive than the linked
    992  *	list traversal, so we multiply the number of pages in the
    993  *	range by an estimate of the relatively higher cost of the hash lookup.
    994  */
    995 
    996 int
    997 genfs_putpages(void *v)
    998 {
    999 	struct vop_putpages_args /* {
   1000 		struct vnode *a_vp;
   1001 		voff_t a_offlo;
   1002 		voff_t a_offhi;
   1003 		int a_flags;
   1004 	} */ * const ap = v;
   1005 
   1006 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1007 	    ap->a_flags, NULL);
   1008 }
   1009 
   1010 int
   1011 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
   1012     int origflags, struct vm_page **busypg)
   1013 {
   1014 	struct uvm_object * const uobj = &vp->v_uobj;
   1015 	kmutex_t * const slock = &uobj->vmobjlock;
   1016 	off_t off;
   1017 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1018 #define maxpages (MAXPHYS >> PAGE_SHIFT)
   1019 	int i, error, npages, nback;
   1020 	int freeflag;
   1021 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1022 	bool wasclean, by_list, needs_clean, yld;
   1023 	bool async = (origflags & PGO_SYNCIO) == 0;
   1024 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
   1025 	struct lwp * const l = curlwp ? curlwp : &lwp0;
   1026 	struct genfs_node * const gp = VTOG(vp);
   1027 	int flags;
   1028 	int dirtygen;
   1029 	bool modified;
   1030 	bool need_wapbl;
   1031 	bool has_trans;
   1032 	bool cleanall;
   1033 	bool onworklst;
   1034 
   1035 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1036 
   1037 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1038 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1039 	KASSERT(startoff < endoff || endoff == 0);
   1040 
   1041 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1042 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1043 
   1044 	has_trans = false;
   1045 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
   1046 	    (origflags & PGO_JOURNALLOCKED) == 0);
   1047 
   1048 retry:
   1049 	modified = false;
   1050 	flags = origflags;
   1051 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
   1052 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
   1053 	KASSERT((vp->v_vflag & VV_XIP) == 0 || uobj->uo_npages == 0);
   1054 	if (uobj->uo_npages == 0) {
   1055 		if (vp->v_iflag & VI_ONWORKLST) {
   1056 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1057 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1058 				vn_syncer_remove_from_worklist(vp);
   1059 		}
   1060 		if (has_trans) {
   1061 			if (need_wapbl)
   1062 				WAPBL_END(vp->v_mount);
   1063 			fstrans_done(vp->v_mount);
   1064 		}
   1065 		mutex_exit(slock);
   1066 		return (0);
   1067 	}
   1068 
   1069 	/*
   1070 	 * the vnode has pages, set up to process the request.
   1071 	 */
   1072 
   1073 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
   1074 		mutex_exit(slock);
   1075 		if (pagedaemon) {
   1076 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1077 			if (error)
   1078 				return error;
   1079 		} else
   1080 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1081 		if (need_wapbl) {
   1082 			error = WAPBL_BEGIN(vp->v_mount);
   1083 			if (error) {
   1084 				fstrans_done(vp->v_mount);
   1085 				return error;
   1086 			}
   1087 		}
   1088 		has_trans = true;
   1089 		mutex_enter(slock);
   1090 		goto retry;
   1091 	}
   1092 
   1093 	error = 0;
   1094 	wasclean = (vp->v_numoutput == 0);
   1095 	off = startoff;
   1096 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1097 		endoff = trunc_page(LLONG_MAX);
   1098 	}
   1099 	by_list = (uobj->uo_npages <=
   1100 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
   1101 
   1102 #if !defined(DEBUG)
   1103 	/*
   1104 	 * if this vnode is known not to have dirty pages,
   1105 	 * don't bother to clean it out.
   1106 	 */
   1107 
   1108 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1109 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1110 			goto skip_scan;
   1111 		}
   1112 		flags &= ~PGO_CLEANIT;
   1113 	}
   1114 #endif /* !defined(DEBUG) */
   1115 
   1116 	/*
   1117 	 * start the loop.  when scanning by list, hold the last page
   1118 	 * in the list before we start.  pages allocated after we start
   1119 	 * will be added to the end of the list, so we can stop at the
   1120 	 * current last page.
   1121 	 */
   1122 
   1123 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1124 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1125 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1126 	dirtygen = gp->g_dirtygen;
   1127 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1128 	if (by_list) {
   1129 		curmp.flags = PG_MARKER;
   1130 		endmp.flags = PG_MARKER;
   1131 		pg = TAILQ_FIRST(&uobj->memq);
   1132 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1133 	} else {
   1134 		pg = uvm_pagelookup(uobj, off);
   1135 	}
   1136 	nextpg = NULL;
   1137 	while (by_list || off < endoff) {
   1138 
   1139 		/*
   1140 		 * if the current page is not interesting, move on to the next.
   1141 		 */
   1142 
   1143 		KASSERT(pg == NULL || pg->uobject == uobj ||
   1144 		    (pg->flags & PG_MARKER) != 0);
   1145 		KASSERT(pg == NULL ||
   1146 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1147 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
   1148 		if (by_list) {
   1149 			if (pg == &endmp) {
   1150 				break;
   1151 			}
   1152 			if (pg->flags & PG_MARKER) {
   1153 				pg = TAILQ_NEXT(pg, listq.queue);
   1154 				continue;
   1155 			}
   1156 			if (pg->offset < startoff || pg->offset >= endoff ||
   1157 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1158 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1159 					wasclean = false;
   1160 				}
   1161 				pg = TAILQ_NEXT(pg, listq.queue);
   1162 				continue;
   1163 			}
   1164 			off = pg->offset;
   1165 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1166 			if (pg != NULL) {
   1167 				wasclean = false;
   1168 			}
   1169 			off += PAGE_SIZE;
   1170 			if (off < endoff) {
   1171 				pg = uvm_pagelookup(uobj, off);
   1172 			}
   1173 			continue;
   1174 		}
   1175 
   1176 		/*
   1177 		 * if the current page needs to be cleaned and it's busy,
   1178 		 * wait for it to become unbusy.
   1179 		 */
   1180 
   1181 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1182 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1183 		if (pg->flags & PG_BUSY || yld) {
   1184 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1185 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1186 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1187 				error = EDEADLK;
   1188 				if (busypg != NULL)
   1189 					*busypg = pg;
   1190 				break;
   1191 			}
   1192 			if (pagedaemon) {
   1193 				/*
   1194 				 * someone has taken the page while we
   1195 				 * dropped the lock for fstrans_start.
   1196 				 */
   1197 				break;
   1198 			}
   1199 			if (by_list) {
   1200 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1201 				UVMHIST_LOG(ubchist, "curmp next %p",
   1202 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1203 			}
   1204 			if (yld) {
   1205 				mutex_exit(slock);
   1206 				preempt();
   1207 				mutex_enter(slock);
   1208 			} else {
   1209 				pg->flags |= PG_WANTED;
   1210 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1211 				mutex_enter(slock);
   1212 			}
   1213 			if (by_list) {
   1214 				UVMHIST_LOG(ubchist, "after next %p",
   1215 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1216 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1217 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1218 			} else {
   1219 				pg = uvm_pagelookup(uobj, off);
   1220 			}
   1221 			continue;
   1222 		}
   1223 
   1224 		/*
   1225 		 * if we're freeing, remove all mappings of the page now.
   1226 		 * if we're cleaning, check if the page is needs to be cleaned.
   1227 		 */
   1228 
   1229 		if (flags & PGO_FREE) {
   1230 			pmap_page_protect(pg, VM_PROT_NONE);
   1231 		} else if (flags & PGO_CLEANIT) {
   1232 
   1233 			/*
   1234 			 * if we still have some hope to pull this vnode off
   1235 			 * from the syncer queue, write-protect the page.
   1236 			 */
   1237 
   1238 			if (cleanall && wasclean &&
   1239 			    gp->g_dirtygen == dirtygen) {
   1240 
   1241 				/*
   1242 				 * uobj pages get wired only by uvm_fault
   1243 				 * where uobj is locked.
   1244 				 */
   1245 
   1246 				if (pg->wire_count == 0) {
   1247 					pmap_page_protect(pg,
   1248 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1249 				} else {
   1250 					cleanall = false;
   1251 				}
   1252 			}
   1253 		}
   1254 
   1255 		if (flags & PGO_CLEANIT) {
   1256 			needs_clean = pmap_clear_modify(pg) ||
   1257 			    (pg->flags & PG_CLEAN) == 0;
   1258 			pg->flags |= PG_CLEAN;
   1259 		} else {
   1260 			needs_clean = false;
   1261 		}
   1262 
   1263 		/*
   1264 		 * if we're cleaning, build a cluster.
   1265 		 * the cluster will consist of pages which are currently dirty,
   1266 		 * but they will be returned to us marked clean.
   1267 		 * if not cleaning, just operate on the one page.
   1268 		 */
   1269 
   1270 		if (needs_clean) {
   1271 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1272 			wasclean = false;
   1273 			memset(pgs, 0, sizeof(pgs));
   1274 			pg->flags |= PG_BUSY;
   1275 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1276 
   1277 			/*
   1278 			 * first look backward.
   1279 			 */
   1280 
   1281 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1282 			nback = npages;
   1283 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1284 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1285 			if (nback) {
   1286 				memmove(&pgs[0], &pgs[npages - nback],
   1287 				    nback * sizeof(pgs[0]));
   1288 				if (npages - nback < nback)
   1289 					memset(&pgs[nback], 0,
   1290 					    (npages - nback) * sizeof(pgs[0]));
   1291 				else
   1292 					memset(&pgs[npages - nback], 0,
   1293 					    nback * sizeof(pgs[0]));
   1294 			}
   1295 
   1296 			/*
   1297 			 * then plug in our page of interest.
   1298 			 */
   1299 
   1300 			pgs[nback] = pg;
   1301 
   1302 			/*
   1303 			 * then look forward to fill in the remaining space in
   1304 			 * the array of pages.
   1305 			 */
   1306 
   1307 			npages = maxpages - nback - 1;
   1308 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1309 			    &pgs[nback + 1],
   1310 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1311 			npages += nback + 1;
   1312 		} else {
   1313 			pgs[0] = pg;
   1314 			npages = 1;
   1315 			nback = 0;
   1316 		}
   1317 
   1318 		/*
   1319 		 * apply FREE or DEACTIVATE options if requested.
   1320 		 */
   1321 
   1322 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1323 			mutex_enter(&uvm_pageqlock);
   1324 		}
   1325 		for (i = 0; i < npages; i++) {
   1326 			tpg = pgs[i];
   1327 			KASSERT(tpg->uobject == uobj);
   1328 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1329 				pg = tpg;
   1330 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1331 				continue;
   1332 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1333 				uvm_pagedeactivate(tpg);
   1334 			} else if (flags & PGO_FREE) {
   1335 				pmap_page_protect(tpg, VM_PROT_NONE);
   1336 				if (tpg->flags & PG_BUSY) {
   1337 					tpg->flags |= freeflag;
   1338 					if (pagedaemon) {
   1339 						uvm_pageout_start(1);
   1340 						uvm_pagedequeue(tpg);
   1341 					}
   1342 				} else {
   1343 
   1344 					/*
   1345 					 * ``page is not busy''
   1346 					 * implies that npages is 1
   1347 					 * and needs_clean is false.
   1348 					 */
   1349 
   1350 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1351 					uvm_pagefree(tpg);
   1352 					if (pagedaemon)
   1353 						uvmexp.pdfreed++;
   1354 				}
   1355 			}
   1356 		}
   1357 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1358 			mutex_exit(&uvm_pageqlock);
   1359 		}
   1360 		if (needs_clean) {
   1361 			modified = true;
   1362 
   1363 			/*
   1364 			 * start the i/o.  if we're traversing by list,
   1365 			 * keep our place in the list with a marker page.
   1366 			 */
   1367 
   1368 			if (by_list) {
   1369 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1370 				    listq.queue);
   1371 			}
   1372 			mutex_exit(slock);
   1373 			error = GOP_WRITE(vp, pgs, npages, flags);
   1374 			mutex_enter(slock);
   1375 			if (by_list) {
   1376 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1377 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1378 			}
   1379 			if (error) {
   1380 				break;
   1381 			}
   1382 			if (by_list) {
   1383 				continue;
   1384 			}
   1385 		}
   1386 
   1387 		/*
   1388 		 * find the next page and continue if there was no error.
   1389 		 */
   1390 
   1391 		if (by_list) {
   1392 			if (nextpg) {
   1393 				pg = nextpg;
   1394 				nextpg = NULL;
   1395 			} else {
   1396 				pg = TAILQ_NEXT(pg, listq.queue);
   1397 			}
   1398 		} else {
   1399 			off += (npages - nback) << PAGE_SHIFT;
   1400 			if (off < endoff) {
   1401 				pg = uvm_pagelookup(uobj, off);
   1402 			}
   1403 		}
   1404 	}
   1405 	if (by_list) {
   1406 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1407 	}
   1408 
   1409 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1410 	    (vp->v_type != VBLK ||
   1411 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1412 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1413 	}
   1414 
   1415 	/*
   1416 	 * if we're cleaning and there was nothing to clean,
   1417 	 * take us off the syncer list.  if we started any i/o
   1418 	 * and we're doing sync i/o, wait for all writes to finish.
   1419 	 */
   1420 
   1421 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1422 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1423 #if defined(DEBUG)
   1424 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1425 			if ((pg->flags & PG_MARKER) != 0) {
   1426 				continue;
   1427 			}
   1428 			if ((pg->flags & PG_CLEAN) == 0) {
   1429 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1430 			}
   1431 			if (pmap_is_modified(pg)) {
   1432 				printf("%s: %p: modified\n", __func__, pg);
   1433 			}
   1434 		}
   1435 #endif /* defined(DEBUG) */
   1436 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1437 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1438 			vn_syncer_remove_from_worklist(vp);
   1439 	}
   1440 
   1441 #if !defined(DEBUG)
   1442 skip_scan:
   1443 #endif /* !defined(DEBUG) */
   1444 
   1445 	/* Wait for output to complete. */
   1446 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1447 		while (vp->v_numoutput != 0)
   1448 			cv_wait(&vp->v_cv, slock);
   1449 	}
   1450 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1451 	mutex_exit(slock);
   1452 
   1453 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1454 		/*
   1455 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1456 		 * retrying is not a big deal because, in many cases,
   1457 		 * uobj->uo_npages is already 0 here.
   1458 		 */
   1459 		mutex_enter(slock);
   1460 		goto retry;
   1461 	}
   1462 
   1463 	if (has_trans) {
   1464 		if (need_wapbl)
   1465 			WAPBL_END(vp->v_mount);
   1466 		fstrans_done(vp->v_mount);
   1467 	}
   1468 
   1469 	return (error);
   1470 }
   1471 
   1472 int
   1473 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1474 {
   1475 	off_t off;
   1476 	vaddr_t kva;
   1477 	size_t len;
   1478 	int error;
   1479 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1480 
   1481 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1482 	    vp, pgs, npages, flags);
   1483 
   1484 	off = pgs[0]->offset;
   1485 	kva = uvm_pagermapin(pgs, npages,
   1486 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1487 	len = npages << PAGE_SHIFT;
   1488 
   1489 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1490 			    uvm_aio_biodone);
   1491 
   1492 	return error;
   1493 }
   1494 
   1495 int
   1496 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1497 {
   1498 	off_t off;
   1499 	vaddr_t kva;
   1500 	size_t len;
   1501 	int error;
   1502 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1503 
   1504 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1505 	    vp, pgs, npages, flags);
   1506 
   1507 	off = pgs[0]->offset;
   1508 	kva = uvm_pagermapin(pgs, npages,
   1509 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1510 	len = npages << PAGE_SHIFT;
   1511 
   1512 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1513 			    uvm_aio_biodone);
   1514 
   1515 	return error;
   1516 }
   1517 
   1518 /*
   1519  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1520  * and mapped into kernel memory.  Here we just look up the underlying
   1521  * device block addresses and call the strategy routine.
   1522  */
   1523 
   1524 static int
   1525 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1526     enum uio_rw rw, void (*iodone)(struct buf *))
   1527 {
   1528 	int s, error;
   1529 	int fs_bshift, dev_bshift;
   1530 	off_t eof, offset, startoffset;
   1531 	size_t bytes, iobytes, skipbytes;
   1532 	struct buf *mbp, *bp;
   1533 	const bool async = (flags & PGO_SYNCIO) == 0;
   1534 	const bool iowrite = rw == UIO_WRITE;
   1535 	const int brw = iowrite ? B_WRITE : B_READ;
   1536 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1537 
   1538 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1539 	    vp, kva, len, flags);
   1540 
   1541 	KASSERT(vp->v_size <= vp->v_writesize);
   1542 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1543 	if (vp->v_type != VBLK) {
   1544 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1545 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1546 	} else {
   1547 		fs_bshift = DEV_BSHIFT;
   1548 		dev_bshift = DEV_BSHIFT;
   1549 	}
   1550 	error = 0;
   1551 	startoffset = off;
   1552 	bytes = MIN(len, eof - startoffset);
   1553 	skipbytes = 0;
   1554 	KASSERT(bytes != 0);
   1555 
   1556 	if (iowrite) {
   1557 		mutex_enter(&vp->v_interlock);
   1558 		vp->v_numoutput += 2;
   1559 		mutex_exit(&vp->v_interlock);
   1560 	}
   1561 	mbp = getiobuf(vp, true);
   1562 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1563 	    vp, mbp, vp->v_numoutput, bytes);
   1564 	mbp->b_bufsize = len;
   1565 	mbp->b_data = (void *)kva;
   1566 	mbp->b_resid = mbp->b_bcount = bytes;
   1567 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1568 	if (async) {
   1569 		mbp->b_flags = brw | B_ASYNC;
   1570 		mbp->b_iodone = iodone;
   1571 	} else {
   1572 		mbp->b_flags = brw;
   1573 		mbp->b_iodone = NULL;
   1574 	}
   1575 	if (curlwp == uvm.pagedaemon_lwp)
   1576 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1577 	else if (async)
   1578 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1579 	else
   1580 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1581 
   1582 	bp = NULL;
   1583 	for (offset = startoffset;
   1584 	    bytes > 0;
   1585 	    offset += iobytes, bytes -= iobytes) {
   1586 		int run;
   1587 		daddr_t lbn, blkno;
   1588 		struct vnode *devvp;
   1589 
   1590 		/*
   1591 		 * bmap the file to find out the blkno to read from and
   1592 		 * how much we can read in one i/o.  if bmap returns an error,
   1593 		 * skip the rest of the top-level i/o.
   1594 		 */
   1595 
   1596 		lbn = offset >> fs_bshift;
   1597 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1598 		if (error) {
   1599 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1600 			    lbn,error,0,0);
   1601 			skipbytes += bytes;
   1602 			bytes = 0;
   1603 			goto loopdone;
   1604 		}
   1605 
   1606 		/*
   1607 		 * see how many pages can be read with this i/o.
   1608 		 * reduce the i/o size if necessary to avoid
   1609 		 * overwriting pages with valid data.
   1610 		 */
   1611 
   1612 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1613 		    bytes);
   1614 
   1615 		/*
   1616 		 * if this block isn't allocated, zero it instead of
   1617 		 * reading it.  unless we are going to allocate blocks,
   1618 		 * mark the pages we zeroed PG_RDONLY.
   1619 		 */
   1620 
   1621 		if (blkno == (daddr_t)-1) {
   1622 			if (!iowrite) {
   1623 				memset((char *)kva + (offset - startoffset), 0,
   1624 				    iobytes);
   1625 			}
   1626 			skipbytes += iobytes;
   1627 			continue;
   1628 		}
   1629 
   1630 		/*
   1631 		 * allocate a sub-buf for this piece of the i/o
   1632 		 * (or just use mbp if there's only 1 piece),
   1633 		 * and start it going.
   1634 		 */
   1635 
   1636 		if (offset == startoffset && iobytes == bytes) {
   1637 			bp = mbp;
   1638 		} else {
   1639 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1640 			    vp, bp, vp->v_numoutput, 0);
   1641 			bp = getiobuf(vp, true);
   1642 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1643 		}
   1644 		bp->b_lblkno = 0;
   1645 
   1646 		/* adjust physical blkno for partial blocks */
   1647 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1648 		    dev_bshift);
   1649 
   1650 		UVMHIST_LOG(ubchist,
   1651 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1652 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1653 
   1654 		VOP_STRATEGY(devvp, bp);
   1655 	}
   1656 
   1657 loopdone:
   1658 	if (skipbytes) {
   1659 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1660 	}
   1661 	nestiobuf_done(mbp, skipbytes, error);
   1662 	if (async) {
   1663 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1664 		return (0);
   1665 	}
   1666 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1667 	error = biowait(mbp);
   1668 	s = splbio();
   1669 	(*iodone)(mbp);
   1670 	splx(s);
   1671 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1672 	return (error);
   1673 }
   1674 
   1675 int
   1676 genfs_compat_getpages(void *v)
   1677 {
   1678 	struct vop_getpages_args /* {
   1679 		struct vnode *a_vp;
   1680 		voff_t a_offset;
   1681 		struct vm_page **a_m;
   1682 		int *a_count;
   1683 		int a_centeridx;
   1684 		vm_prot_t a_access_type;
   1685 		int a_advice;
   1686 		int a_flags;
   1687 	} */ *ap = v;
   1688 
   1689 	off_t origoffset;
   1690 	struct vnode *vp = ap->a_vp;
   1691 	struct uvm_object *uobj = &vp->v_uobj;
   1692 	struct vm_page *pg, **pgs;
   1693 	vaddr_t kva;
   1694 	int i, error, orignpages, npages;
   1695 	struct iovec iov;
   1696 	struct uio uio;
   1697 	kauth_cred_t cred = curlwp->l_cred;
   1698 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1699 
   1700 	error = 0;
   1701 	origoffset = ap->a_offset;
   1702 	orignpages = *ap->a_count;
   1703 	pgs = ap->a_m;
   1704 
   1705 	if (ap->a_flags & PGO_LOCKED) {
   1706 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1707 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1708 
   1709 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1710 		if (error == 0 && memwrite) {
   1711 			genfs_markdirty(vp);
   1712 		}
   1713 		return error;
   1714 	}
   1715 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1716 		mutex_exit(&uobj->vmobjlock);
   1717 		return EINVAL;
   1718 	}
   1719 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1720 		mutex_exit(&uobj->vmobjlock);
   1721 		return 0;
   1722 	}
   1723 	npages = orignpages;
   1724 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1725 	mutex_exit(&uobj->vmobjlock);
   1726 	kva = uvm_pagermapin(pgs, npages,
   1727 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1728 	for (i = 0; i < npages; i++) {
   1729 		pg = pgs[i];
   1730 		if ((pg->flags & PG_FAKE) == 0) {
   1731 			continue;
   1732 		}
   1733 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1734 		iov.iov_len = PAGE_SIZE;
   1735 		uio.uio_iov = &iov;
   1736 		uio.uio_iovcnt = 1;
   1737 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1738 		uio.uio_rw = UIO_READ;
   1739 		uio.uio_resid = PAGE_SIZE;
   1740 		UIO_SETUP_SYSSPACE(&uio);
   1741 		/* XXX vn_lock */
   1742 		error = VOP_READ(vp, &uio, 0, cred);
   1743 		if (error) {
   1744 			break;
   1745 		}
   1746 		if (uio.uio_resid) {
   1747 			memset(iov.iov_base, 0, uio.uio_resid);
   1748 		}
   1749 	}
   1750 	uvm_pagermapout(kva, npages);
   1751 	mutex_enter(&uobj->vmobjlock);
   1752 	mutex_enter(&uvm_pageqlock);
   1753 	for (i = 0; i < npages; i++) {
   1754 		pg = pgs[i];
   1755 		if (error && (pg->flags & PG_FAKE) != 0) {
   1756 			pg->flags |= PG_RELEASED;
   1757 		} else {
   1758 			pmap_clear_modify(pg);
   1759 			uvm_pageactivate(pg);
   1760 		}
   1761 	}
   1762 	if (error) {
   1763 		uvm_page_unbusy(pgs, npages);
   1764 	}
   1765 	mutex_exit(&uvm_pageqlock);
   1766 	if (error == 0 && memwrite) {
   1767 		genfs_markdirty(vp);
   1768 	}
   1769 	mutex_exit(&uobj->vmobjlock);
   1770 	return error;
   1771 }
   1772 
   1773 int
   1774 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1775     int flags)
   1776 {
   1777 	off_t offset;
   1778 	struct iovec iov;
   1779 	struct uio uio;
   1780 	kauth_cred_t cred = curlwp->l_cred;
   1781 	struct buf *bp;
   1782 	vaddr_t kva;
   1783 	int error;
   1784 
   1785 	offset = pgs[0]->offset;
   1786 	kva = uvm_pagermapin(pgs, npages,
   1787 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1788 
   1789 	iov.iov_base = (void *)kva;
   1790 	iov.iov_len = npages << PAGE_SHIFT;
   1791 	uio.uio_iov = &iov;
   1792 	uio.uio_iovcnt = 1;
   1793 	uio.uio_offset = offset;
   1794 	uio.uio_rw = UIO_WRITE;
   1795 	uio.uio_resid = npages << PAGE_SHIFT;
   1796 	UIO_SETUP_SYSSPACE(&uio);
   1797 	/* XXX vn_lock */
   1798 	error = VOP_WRITE(vp, &uio, 0, cred);
   1799 
   1800 	mutex_enter(&vp->v_interlock);
   1801 	vp->v_numoutput++;
   1802 	mutex_exit(&vp->v_interlock);
   1803 
   1804 	bp = getiobuf(vp, true);
   1805 	bp->b_cflags = BC_BUSY | BC_AGE;
   1806 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1807 	bp->b_data = (char *)kva;
   1808 	bp->b_bcount = npages << PAGE_SHIFT;
   1809 	bp->b_bufsize = npages << PAGE_SHIFT;
   1810 	bp->b_resid = 0;
   1811 	bp->b_error = error;
   1812 	uvm_aio_aiodone(bp);
   1813 	return (error);
   1814 }
   1815 
   1816 /*
   1817  * Process a uio using direct I/O.  If we reach a part of the request
   1818  * which cannot be processed in this fashion for some reason, just return.
   1819  * The caller must handle some additional part of the request using
   1820  * buffered I/O before trying direct I/O again.
   1821  */
   1822 
   1823 void
   1824 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1825 {
   1826 	struct vmspace *vs;
   1827 	struct iovec *iov;
   1828 	vaddr_t va;
   1829 	size_t len;
   1830 	const int mask = DEV_BSIZE - 1;
   1831 	int error;
   1832 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1833 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1834 
   1835 	/*
   1836 	 * We only support direct I/O to user space for now.
   1837 	 */
   1838 
   1839 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1840 		return;
   1841 	}
   1842 
   1843 	/*
   1844 	 * If the vnode is mapped, we would need to get the getpages lock
   1845 	 * to stabilize the bmap, but then we would get into trouble whil e
   1846 	 * locking the pages if the pages belong to this same vnode (or a
   1847 	 * multi-vnode cascade to the same effect).  Just fall back to
   1848 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1849 	 */
   1850 
   1851 	if (vp->v_vflag & VV_MAPPED) {
   1852 		return;
   1853 	}
   1854 
   1855 	if (need_wapbl) {
   1856 		error = WAPBL_BEGIN(vp->v_mount);
   1857 		if (error)
   1858 			return;
   1859 	}
   1860 
   1861 	/*
   1862 	 * Do as much of the uio as possible with direct I/O.
   1863 	 */
   1864 
   1865 	vs = uio->uio_vmspace;
   1866 	while (uio->uio_resid) {
   1867 		iov = uio->uio_iov;
   1868 		if (iov->iov_len == 0) {
   1869 			uio->uio_iov++;
   1870 			uio->uio_iovcnt--;
   1871 			continue;
   1872 		}
   1873 		va = (vaddr_t)iov->iov_base;
   1874 		len = MIN(iov->iov_len, genfs_maxdio);
   1875 		len &= ~mask;
   1876 
   1877 		/*
   1878 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1879 		 * the current EOF, then fall back to buffered I/O.
   1880 		 */
   1881 
   1882 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1883 			break;
   1884 		}
   1885 
   1886 		/*
   1887 		 * Check alignment.  The file offset must be at least
   1888 		 * sector-aligned.  The exact constraint on memory alignment
   1889 		 * is very hardware-dependent, but requiring sector-aligned
   1890 		 * addresses there too is safe.
   1891 		 */
   1892 
   1893 		if (uio->uio_offset & mask || va & mask) {
   1894 			break;
   1895 		}
   1896 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1897 					  uio->uio_rw);
   1898 		if (error) {
   1899 			break;
   1900 		}
   1901 		iov->iov_base = (char *)iov->iov_base + len;
   1902 		iov->iov_len -= len;
   1903 		uio->uio_offset += len;
   1904 		uio->uio_resid -= len;
   1905 	}
   1906 
   1907 	if (need_wapbl)
   1908 		WAPBL_END(vp->v_mount);
   1909 }
   1910 
   1911 /*
   1912  * Iodone routine for direct I/O.  We don't do much here since the request is
   1913  * always synchronous, so the caller will do most of the work after biowait().
   1914  */
   1915 
   1916 static void
   1917 genfs_dio_iodone(struct buf *bp)
   1918 {
   1919 
   1920 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1921 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1922 		mutex_enter(bp->b_objlock);
   1923 		vwakeup(bp);
   1924 		mutex_exit(bp->b_objlock);
   1925 	}
   1926 	putiobuf(bp);
   1927 }
   1928 
   1929 /*
   1930  * Process one chunk of a direct I/O request.
   1931  */
   1932 
   1933 static int
   1934 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1935     off_t off, enum uio_rw rw)
   1936 {
   1937 	struct vm_map *map;
   1938 	struct pmap *upm, *kpm;
   1939 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1940 	off_t spoff, epoff;
   1941 	vaddr_t kva, puva;
   1942 	paddr_t pa;
   1943 	vm_prot_t prot;
   1944 	int error, rv, poff, koff;
   1945 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1946 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1947 
   1948 	/*
   1949 	 * For writes, verify that this range of the file already has fully
   1950 	 * allocated backing store.  If there are any holes, just punt and
   1951 	 * make the caller take the buffered write path.
   1952 	 */
   1953 
   1954 	if (rw == UIO_WRITE) {
   1955 		daddr_t lbn, elbn, blkno;
   1956 		int bsize, bshift, run;
   1957 
   1958 		bshift = vp->v_mount->mnt_fs_bshift;
   1959 		bsize = 1 << bshift;
   1960 		lbn = off >> bshift;
   1961 		elbn = (off + len + bsize - 1) >> bshift;
   1962 		while (lbn < elbn) {
   1963 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1964 			if (error) {
   1965 				return error;
   1966 			}
   1967 			if (blkno == (daddr_t)-1) {
   1968 				return ENOSPC;
   1969 			}
   1970 			lbn += 1 + run;
   1971 		}
   1972 	}
   1973 
   1974 	/*
   1975 	 * Flush any cached pages for parts of the file that we're about to
   1976 	 * access.  If we're writing, invalidate pages as well.
   1977 	 */
   1978 
   1979 	spoff = trunc_page(off);
   1980 	epoff = round_page(off + len);
   1981 	mutex_enter(&vp->v_interlock);
   1982 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1983 	if (error) {
   1984 		return error;
   1985 	}
   1986 
   1987 	/*
   1988 	 * Wire the user pages and remap them into kernel memory.
   1989 	 */
   1990 
   1991 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1992 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1993 	if (error) {
   1994 		return error;
   1995 	}
   1996 
   1997 	map = &vs->vm_map;
   1998 	upm = vm_map_pmap(map);
   1999 	kpm = vm_map_pmap(kernel_map);
   2000 	kva = uvm_km_alloc(kernel_map, klen, 0,
   2001 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   2002 	puva = trunc_page(uva);
   2003 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   2004 		rv = pmap_extract(upm, puva + poff, &pa);
   2005 		KASSERT(rv);
   2006 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   2007 	}
   2008 	pmap_update(kpm);
   2009 
   2010 	/*
   2011 	 * Do the I/O.
   2012 	 */
   2013 
   2014 	koff = uva - trunc_page(uva);
   2015 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   2016 			    genfs_dio_iodone);
   2017 
   2018 	/*
   2019 	 * Tear down the kernel mapping.
   2020 	 */
   2021 
   2022 	pmap_remove(kpm, kva, kva + klen);
   2023 	pmap_update(kpm);
   2024 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   2025 
   2026 	/*
   2027 	 * Unwire the user pages.
   2028 	 */
   2029 
   2030 	uvm_vsunlock(vs, (void *)uva, len);
   2031 	return error;
   2032 }
   2033 
   2034