genfs_io.c revision 1.36.2.63 1 /* $NetBSD: genfs_io.c,v 1.36.2.63 2010/11/21 17:07:38 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.63 2010/11/21 17:07:38 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53
54 #include <miscfs/genfs/genfs.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <miscfs/specfs/specdev.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_pager.h>
60
61 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
62 off_t, enum uio_rw);
63 static void genfs_dio_iodone(struct buf *);
64
65 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
66 void (*)(struct buf *));
67 static void genfs_rel_pages(struct vm_page **, int);
68 static void genfs_markdirty(struct vnode *);
69
70 int genfs_maxdio = MAXPHYS;
71
72 static void
73 genfs_rel_pages(struct vm_page **pgs, int npages)
74 {
75 int i;
76
77 for (i = 0; i < npages; i++) {
78 struct vm_page *pg = pgs[i];
79
80 if (pg == NULL || pg == PGO_DONTCARE)
81 continue;
82 if (pg->flags & PG_FAKE) {
83 pg->flags |= PG_RELEASED;
84 }
85 }
86 mutex_enter(&uvm_pageqlock);
87 uvm_page_unbusy(pgs, npages);
88 mutex_exit(&uvm_pageqlock);
89 }
90
91 static void
92 genfs_markdirty(struct vnode *vp)
93 {
94 struct genfs_node * const gp = VTOG(vp);
95
96 KASSERT(mutex_owned(&vp->v_interlock));
97 gp->g_dirtygen++;
98 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
99 vn_syncer_add_to_worklist(vp, filedelay);
100 }
101 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
102 vp->v_iflag |= VI_WRMAPDIRTY;
103 }
104 }
105
106 /*
107 * generic VM getpages routine.
108 * Return PG_BUSY pages for the given range,
109 * reading from backing store if necessary.
110 */
111
112 int
113 genfs_getpages(void *v)
114 {
115 struct vop_getpages_args /* {
116 struct vnode *a_vp;
117 voff_t a_offset;
118 struct vm_page **a_m;
119 int *a_count;
120 int a_centeridx;
121 vm_prot_t a_access_type;
122 int a_advice;
123 int a_flags;
124 } */ * const ap = v;
125
126 off_t diskeof, memeof;
127 int i, error, npages;
128 const int flags = ap->a_flags;
129 struct vnode * const vp = ap->a_vp;
130 struct uvm_object * const uobj = &vp->v_uobj;
131 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
132 const bool async = (flags & PGO_SYNCIO) == 0;
133 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
134 bool has_trans = false;
135 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
136 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
137 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
138 #ifdef XIP
139 const bool xip = (ap->a_vp->v_vflag & VV_XIP) != 0;
140 #else
141 #define xip 0
142 #endif
143 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
144
145 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
146 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
147
148 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
149 vp->v_type == VLNK || vp->v_type == VBLK);
150
151 startover:
152 error = 0;
153 const voff_t origvsize = vp->v_size;
154 const off_t origoffset = ap->a_offset;
155 const int orignpages = *ap->a_count;
156
157 GOP_SIZE(vp, origvsize, &diskeof, 0);
158 if (flags & PGO_PASTEOF) {
159 off_t newsize;
160 #if defined(DIAGNOSTIC)
161 off_t writeeof;
162 #endif /* defined(DIAGNOSTIC) */
163
164 newsize = MAX(origvsize,
165 origoffset + (orignpages << PAGE_SHIFT));
166 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
167 #if defined(DIAGNOSTIC)
168 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
169 if (newsize > round_page(writeeof)) {
170 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
171 __func__, newsize, round_page(writeeof));
172 }
173 #endif /* defined(DIAGNOSTIC) */
174 } else {
175 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
176 }
177 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
178 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
179 KASSERT(orignpages > 0);
180
181 /*
182 * Bounds-check the request.
183 */
184
185 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
186 if ((flags & PGO_LOCKED) == 0) {
187 mutex_exit(&uobj->vmobjlock);
188 }
189 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
190 origoffset, *ap->a_count, memeof,0);
191 error = EINVAL;
192 goto out_err;
193 }
194
195 /* uobj is locked */
196
197 if ((flags & PGO_NOTIMESTAMP) == 0 &&
198 (vp->v_type != VBLK ||
199 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
200 int updflags = 0;
201
202 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
203 updflags = GOP_UPDATE_ACCESSED;
204 }
205 if (memwrite) {
206 updflags |= GOP_UPDATE_MODIFIED;
207 }
208 if (updflags != 0) {
209 GOP_MARKUPDATE(vp, updflags);
210 }
211 }
212
213 /*
214 * For PGO_LOCKED requests, just return whatever's in memory.
215 */
216
217 if (flags & PGO_LOCKED) {
218 #if 0
219 genfs_getpages_mem();
220 } else {
221 genfs_getpages_io();
222 }
223 }
224
225 int
226 genfs_getpages_mem()
227 {
228 #endif
229 int nfound;
230 struct vm_page *pg;
231
232 if (xip) {
233 *ap->a_count = 0;
234 return 0;
235 }
236
237 KASSERT(!glocked);
238 npages = *ap->a_count;
239 #if defined(DEBUG)
240 for (i = 0; i < npages; i++) {
241 pg = ap->a_m[i];
242 KASSERT(pg == NULL || pg == PGO_DONTCARE);
243 }
244 #endif /* defined(DEBUG) */
245 nfound = uvn_findpages(uobj, origoffset, &npages,
246 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
247 KASSERT(npages == *ap->a_count);
248 if (nfound == 0) {
249 error = EBUSY;
250 goto out_err;
251 }
252 if (!genfs_node_rdtrylock(vp)) {
253 genfs_rel_pages(ap->a_m, npages);
254
255 /*
256 * restore the array.
257 */
258
259 for (i = 0; i < npages; i++) {
260 pg = ap->a_m[i];
261
262 if (pg != NULL && pg != PGO_DONTCARE) {
263 ap->a_m[i] = NULL;
264 }
265 KASSERT(pg == NULL || pg == PGO_DONTCARE);
266 }
267 } else {
268 genfs_node_unlock(vp);
269 }
270 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
271 if (error == 0 && memwrite) {
272 genfs_markdirty(vp);
273 }
274 goto out_err;
275 }
276 mutex_exit(&uobj->vmobjlock);
277 #if 0
278 }
279
280 int
281 genfs_getpages_io()
282 {
283 #endif
284 /*
285 * find the requested pages and make some simple checks.
286 * leave space in the page array for a whole block.
287 */
288
289 #define vp2fs_bshift(vp) \
290 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
291 #define vp2dev_bshift(vp) \
292 (((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
293
294 const int fs_bshift = vp2fs_bshift(vp);
295 const int dev_bshift = vp2dev_bshift(vp);
296 const int fs_bsize = 1 << fs_bshift;
297 #define blk_mask (fs_bsize - 1)
298 #define trunc_blk(x) ((x) & ~blk_mask)
299 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
300
301 const int orignmempages = MIN(orignpages,
302 round_page(memeof - origoffset) >> PAGE_SHIFT);
303 npages = orignmempages;
304 const off_t startoffset = trunc_blk(origoffset);
305 const off_t endoffset = MIN(
306 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
307 round_page(memeof));
308 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
309
310 const int pgs_size = sizeof(struct vm_page *) *
311 ((endoffset - startoffset) >> PAGE_SHIFT);
312 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
313
314 if (pgs_size > sizeof(pgs_onstack)) {
315 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
316 if (pgs == NULL) {
317 pgs = pgs_onstack;
318 error = ENOMEM;
319 goto out_err;
320 }
321 } else {
322 pgs = pgs_onstack;
323 (void)memset(pgs, 0, pgs_size);
324 }
325
326 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
327 ridx, npages, startoffset, endoffset);
328 #if 0
329 }
330
331 int
332 genfs_getpages_io_relock()
333 {
334 #endif
335 if (!has_trans) {
336 fstrans_start(vp->v_mount, FSTRANS_SHARED);
337 has_trans = true;
338 }
339
340 /*
341 * hold g_glock to prevent a race with truncate.
342 *
343 * check if our idea of v_size is still valid.
344 */
345
346 KASSERT(!glocked || genfs_node_wrlocked(vp));
347 if (!glocked) {
348 if (blockalloc) {
349 genfs_node_wrlock(vp);
350 } else {
351 genfs_node_rdlock(vp);
352 }
353 }
354 mutex_enter(&uobj->vmobjlock);
355 if (vp->v_size < origvsize) {
356 if (!glocked) {
357 genfs_node_unlock(vp);
358 }
359 if (pgs != pgs_onstack)
360 kmem_free(pgs, pgs_size);
361 goto startover;
362 }
363 #if 0
364 }
365
366 int
367 genfs_getpages_io_findpages()
368 {
369 #endif
370 if (!xip) {
371 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
372 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
373 if (!glocked) {
374 genfs_node_unlock(vp);
375 }
376 KASSERT(async != 0);
377 genfs_rel_pages(&pgs[ridx], orignmempages);
378 mutex_exit(&uobj->vmobjlock);
379 error = EBUSY;
380 goto out_err_free;
381 }
382
383 /*
384 * if the pages are already resident, just return them.
385 */
386
387 for (i = 0; i < npages; i++) {
388 struct vm_page *pg = pgs[ridx + i];
389
390 if ((pg->flags & PG_FAKE) ||
391 (blockalloc && (pg->flags & PG_RDONLY))) {
392 break;
393 }
394 }
395 if (i == npages) {
396 if (!glocked) {
397 genfs_node_unlock(vp);
398 }
399 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
400 npages += ridx;
401 goto out;
402 }
403 }
404
405 /*
406 * if PGO_OVERWRITE is set, don't bother reading the pages.
407 */
408
409 if (overwrite) {
410 #if 0
411 genfs_getpages_io_overwrite();
412 } else {
413 genfs_getpages_io_read();
414 }
415 }
416
417 int
418 genfs_getpages_io_overwrite()
419 {
420 {
421 #endif
422 KASSERT(!xip);
423
424 if (!glocked) {
425 genfs_node_unlock(vp);
426 }
427 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
428
429 for (i = 0; i < npages; i++) {
430 struct vm_page *pg = pgs[ridx + i];
431
432 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
433 }
434 npages += ridx;
435 goto out;
436 }
437 #if 0
438 }
439
440 int
441 genfs_getpages_io_read()
442 {
443 #endif
444 /*
445 * the page wasn't resident and we're not overwriting,
446 * so we're going to have to do some i/o.
447 * find any additional pages needed to cover the expanded range.
448 */
449 #if 0
450 }
451
452 int
453 genfs_getpages_io_read_allocpages()
454 {
455 #endif
456 if (!xip) {
457 npages = (endoffset - startoffset) >> PAGE_SHIFT;
458 if (startoffset != origoffset || npages != orignmempages) {
459 int npgs;
460
461 /*
462 * we need to avoid deadlocks caused by locking
463 * additional pages at lower offsets than pages we
464 * already have locked. unlock them all and start over.
465 */
466
467 genfs_rel_pages(&pgs[ridx], orignmempages);
468 memset(pgs, 0, pgs_size);
469
470 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
471 startoffset, endoffset, 0,0);
472 npgs = npages;
473 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
474 async ? UFP_NOWAIT : UFP_ALL) != npages) {
475 if (!glocked) {
476 genfs_node_unlock(vp);
477 }
478 KASSERT(async != 0);
479 genfs_rel_pages(pgs, npages);
480 mutex_exit(&uobj->vmobjlock);
481 error = EBUSY;
482 goto out_err_free;
483 }
484 }
485 }
486 #if 0
487 }
488
489 int
490 genfs_getpages_io_read_bio()
491 {
492 #endif
493 mutex_exit(&uobj->vmobjlock);
494
495 {
496 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
497 vaddr_t kva = 0;
498 struct buf *bp = NULL, *mbp = NULL;
499 bool sawhole = false;
500
501 /*
502 * read the desired page(s).
503 */
504
505 totalbytes = npages << PAGE_SHIFT;
506 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
507 tailbytes = totalbytes - bytes;
508 skipbytes = 0;
509 #if 0
510 }
511
512 int
513 genfs_getpages_io_read_bio_prepare()
514 {
515 #endif
516 if (!xip) {
517 kva = uvm_pagermapin(pgs, npages,
518 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
519
520 mbp = getiobuf(vp, true);
521 mbp->b_bufsize = totalbytes;
522 mbp->b_data = (void *)kva;
523 mbp->b_resid = mbp->b_bcount = bytes;
524 mbp->b_cflags = BC_BUSY;
525 if (async) {
526 mbp->b_flags = B_READ | B_ASYNC;
527 mbp->b_iodone = uvm_aio_biodone;
528 } else {
529 mbp->b_flags = B_READ;
530 mbp->b_iodone = NULL;
531 }
532 if (async)
533 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
534 else
535 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
536 }
537 #if 0
538 }
539
540 #endif
541 /*
542 * if EOF is in the middle of the range, zero the part past EOF.
543 * skip over pages which are not PG_FAKE since in that case they have
544 * valid data that we need to preserve.
545 */
546
547 tailstart = bytes;
548 while (tailbytes > 0) {
549 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
550
551 KASSERT(len <= tailbytes);
552 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
553 memset((void *)(kva + tailstart), 0, len);
554 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
555 kva, tailstart, len, 0);
556 }
557 tailstart += len;
558 tailbytes -= len;
559 }
560 #if 0
561 }
562
563 int
564 genfs_getpages_io_read_bio_loop()
565 {
566 #endif
567 /*
568 * now loop over the pages, reading as needed.
569 */
570
571 bp = NULL;
572 off_t offset;
573 for (offset = startoffset;
574 bytes > 0;
575 offset += iobytes, bytes -= iobytes) {
576 int run;
577 daddr_t lbn, blkno;
578 int pidx;
579 struct vnode *devvp;
580
581 /*
582 * skip pages which don't need to be read.
583 */
584
585 pidx = (offset - startoffset) >> PAGE_SHIFT;
586 if (!xip) {
587 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
588 size_t b;
589
590 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
591 if ((pgs[pidx]->flags & PG_RDONLY)) {
592 sawhole = true;
593 }
594 b = MIN(PAGE_SIZE, bytes);
595 offset += b;
596 bytes -= b;
597 skipbytes += b;
598 pidx++;
599 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
600 offset, 0,0,0);
601 if (bytes == 0) {
602 goto loopdone;
603 }
604 }
605 }
606
607 /*
608 * bmap the file to find out the blkno to read from and
609 * how much we can read in one i/o. if bmap returns an error,
610 * skip the rest of the top-level i/o.
611 */
612
613 lbn = offset >> fs_bshift;
614 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
615 if (error) {
616 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
617 lbn,error,0,0);
618 skipbytes += bytes;
619 bytes = 0;
620 goto loopdone;
621 }
622
623 /*
624 * see how many pages can be read with this i/o.
625 * reduce the i/o size if necessary to avoid
626 * overwriting pages with valid data.
627 */
628
629 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
630 bytes);
631 if (offset + iobytes > round_page(offset)) {
632 int pcount;
633
634 pcount = 1;
635 while ((pidx + pcount < npages) && (
636 /*
637 * in XIP case, we don't know what page to read
638 * at this point!
639 */
640 xip ||
641 (pgs[pidx + pcount]->flags & PG_FAKE))) {
642 pcount++;
643 }
644 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
645 (offset - trunc_page(offset)));
646 }
647
648 /*
649 * if this block isn't allocated, zero it instead of
650 * reading it. unless we are going to allocate blocks,
651 * mark the pages we zeroed PG_RDONLY.
652 */
653
654 if (blkno == (daddr_t)-1) {
655 int holepages = (round_page(offset + iobytes) -
656 trunc_page(offset)) >> PAGE_SHIFT;
657 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
658
659 if (!xip) {
660 sawhole = true;
661 memset((char *)kva + (offset - startoffset), 0,
662 iobytes);
663 skipbytes += iobytes;
664
665 for (i = 0; i < holepages; i++) {
666 if (memwrite) {
667 pgs[pidx + i]->flags &= ~PG_CLEAN;
668 }
669 if (!blockalloc) {
670 pgs[pidx + i]->flags |= PG_RDONLY;
671 }
672 }
673 } else {
674 for (i = 0; i < holepages; i++) {
675 pgs[ridx + pidx + i] = PGO_HOLE;
676 }
677 UVMHIST_LOG(ubchist, "xip HOLE pgs %d .. %d",
678 pidx, pidx + holepages - 1, 0, 0);
679 }
680 continue;
681 }
682
683 if (!xip) {
684 /*
685 * allocate a sub-buf for this piece of the i/o
686 * (or just use mbp if there's only 1 piece),
687 * and start it going.
688 */
689
690 if (offset == startoffset && iobytes == bytes) {
691 bp = mbp;
692 } else {
693 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
694 vp, bp, vp->v_numoutput, 0);
695 bp = getiobuf(vp, true);
696 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
697 }
698 bp->b_lblkno = 0;
699
700 /* adjust physical blkno for partial blocks */
701 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
702 dev_bshift);
703
704 UVMHIST_LOG(ubchist,
705 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
706 bp, offset, bp->b_bcount, bp->b_blkno);
707
708 VOP_STRATEGY(devvp, bp);
709 } else {
710 #ifdef XIP
711 /*
712 * XIP page metadata assignment
713 * - Unallocated block is redirected to the dedicated zero'ed
714 * page.
715 */
716 const daddr_t blk_off = blkno << dev_bshift;
717 const daddr_t fs_off = origoffset - startoffset;
718
719 int npgs = iobytes >> PAGE_SHIFT;
720 UVMHIST_LOG(ubchist,
721 "xip iobytes=0x%lx ridx=%d pidx=%d npgs=%d",
722 (long)iobytes, ridx, pidx, npgs);
723
724 /* XXX optimize */
725 for (i = 0; i < npgs; i++) {
726 const daddr_t pg_off = i << PAGE_SHIFT;
727 struct vm_page *pg;
728
729 UVMHIST_LOG(ubchist,
730 "xip blk_off=0x%lx fs_off=0x%lx pg_off=%lx",
731 (long)blk_off, (long)fs_off, (long)pg_off, 0);
732
733 pg = uvn_findpage_xip(devvp, &vp->v_uobj,
734 blk_off + fs_off + pg_off);
735 KASSERT(pg != NULL);
736 UVMHIST_LOG(ubchist,
737 "xip pg %d => phys_addr=0x%lx (%p)",
738 ridx + pidx + i, (long)pg->phys_addr, pg, 0);
739 pgs[ridx + pidx + i] = pg;
740 }
741 #endif
742 }
743 }
744
745 loopdone:
746 #if 0
747
748 int
749 genfs_getpages_biodone()
750 {
751 #endif
752 if (!xip) {
753 nestiobuf_done(mbp, skipbytes, error);
754 if (async) {
755 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
756 if (!glocked) {
757 genfs_node_unlock(vp);
758 }
759 error = 0;
760 goto out_err_free;
761 }
762 if (bp != NULL) {
763 error = biowait(mbp);
764 }
765
766 /* Remove the mapping (make KVA available as soon as possible) */
767 uvm_pagermapout(kva, npages);
768
769 /*
770 * if this we encountered a hole then we have to do a little more work.
771 * for read faults, we marked the page PG_RDONLY so that future
772 * write accesses to the page will fault again.
773 * for write faults, we must make sure that the backing store for
774 * the page is completely allocated while the pages are locked.
775 */
776
777 if (!error && sawhole && blockalloc) {
778 /*
779 * XXX: This assumes that we come here only via
780 * the mmio path
781 */
782 if (vp->v_mount->mnt_wapbl) {
783 error = WAPBL_BEGIN(vp->v_mount);
784 }
785
786 if (!error) {
787 error = GOP_ALLOC(vp, startoffset,
788 npages << PAGE_SHIFT, 0, cred);
789 if (vp->v_mount->mnt_wapbl) {
790 WAPBL_END(vp->v_mount);
791 }
792 }
793
794 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
795 startoffset, npages << PAGE_SHIFT, error,0);
796 if (!error) {
797 for (i = 0; i < npages; i++) {
798 struct vm_page *pg = pgs[i];
799
800 if (pg == NULL) {
801 continue;
802 }
803 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
804 UVMHIST_LOG(ubchist, "mark dirty pg %p",
805 pg,0,0,0);
806 }
807 }
808 }
809
810 putiobuf(mbp);
811 }
812 #if 0
813 }
814
815 #endif
816 }
817
818 if (!glocked) {
819 genfs_node_unlock(vp);
820 }
821
822 mutex_enter(&uobj->vmobjlock);
823 #if 0
824 }
825
826 int
827 genfs_getpages_generic_io_done()
828 {
829 #endif
830 /*
831 * we're almost done! release the pages...
832 * for errors, we free the pages.
833 * otherwise we activate them and mark them as valid and clean.
834 * also, unbusy pages that were not actually requested.
835 */
836
837 if (error) {
838 for (i = 0; i < npages; i++) {
839 struct vm_page *pg = pgs[i];
840
841 if (pg == NULL) {
842 continue;
843 }
844 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
845 pg, pg->flags, 0,0);
846 if (pg->flags & PG_FAKE) {
847 pg->flags |= PG_RELEASED;
848 }
849 }
850 mutex_enter(&uvm_pageqlock);
851 uvm_page_unbusy(pgs, npages);
852 mutex_exit(&uvm_pageqlock);
853 mutex_exit(&uobj->vmobjlock);
854 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
855 goto out_err_free;
856 }
857
858 out:
859 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
860 error = 0;
861
862 if (!xip) {
863 mutex_enter(&uvm_pageqlock);
864 for (i = 0; i < npages; i++) {
865 struct vm_page *pg = pgs[i];
866 if (pg == NULL) {
867 continue;
868 }
869 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
870 pg, pg->flags, 0,0);
871 if (pg->flags & PG_FAKE && !overwrite) {
872 pg->flags &= ~(PG_FAKE);
873 pmap_clear_modify(pgs[i]);
874 }
875 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
876 if (i < ridx || i >= ridx + orignmempages || async) {
877 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
878 pg, pg->offset,0,0);
879 if (pg->flags & PG_WANTED) {
880 wakeup(pg);
881 }
882 if (pg->flags & PG_FAKE) {
883 KASSERT(overwrite);
884 uvm_pagezero(pg);
885 }
886 if (pg->flags & PG_RELEASED) {
887 uvm_pagefree(pg);
888 continue;
889 }
890 uvm_pageenqueue(pg);
891 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
892 UVM_PAGE_OWN(pg, NULL);
893 }
894 }
895 mutex_exit(&uvm_pageqlock);
896 if (memwrite) {
897 genfs_markdirty(vp);
898 }
899 } else {
900 KASSERT(npages == orignmempages);
901 for (i = ridx; i < ridx + npages; i++) {
902 struct vm_page *pg = pgs[i];
903
904 if (pg != PGO_HOLE) {
905 KASSERT(pg != NULL);
906 KASSERT((pg->flags & PG_RDONLY) != 0);
907 KASSERT((pg->flags & PG_BUSY) != 0);
908 KASSERT((pg->flags & PG_CLEAN) != 0);
909 KASSERT((pg->flags & PG_DEVICE) != 0);
910 KASSERT((pg->flags & PG_FAKE) == 0);
911
912 /*
913 * XXXUEBS
914 * Actually this is not necessary, because device
915 * pages are "stateless", and they have no owner.
916 */
917 pg->uobject = &vp->v_uobj;
918 } else {
919 /*
920 * XIP hole pages are passed as a magic pointer
921 * back to fault handlers. Fault handlers are
922 * respoinsible to check it and redirect the VA to
923 * a single zero'ed "hole page".
924 */
925 }
926 }
927 } /* xip */
928 mutex_exit(&uobj->vmobjlock);
929 if (ap->a_m != NULL) {
930 memcpy(ap->a_m, &pgs[ridx],
931 orignmempages * sizeof(struct vm_page *));
932 KASSERT(error != 0 || ap->a_m[ap->a_centeridx] != NULL);
933 }
934 #if 0
935 }
936
937 #endif
938
939 out_err_free:
940 if (pgs != NULL && pgs != pgs_onstack)
941 kmem_free(pgs, pgs_size);
942 out_err:
943 if (has_trans)
944 fstrans_done(vp->v_mount);
945 return error;
946 }
947
948 /*
949 * generic VM putpages routine.
950 * Write the given range of pages to backing store.
951 *
952 * => "offhi == 0" means flush all pages at or after "offlo".
953 * => object should be locked by caller. we return with the
954 * object unlocked.
955 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
956 * thus, a caller might want to unlock higher level resources
957 * (e.g. vm_map) before calling flush.
958 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
959 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
960 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
961 * that new pages are inserted on the tail end of the list. thus,
962 * we can make a complete pass through the object in one go by starting
963 * at the head and working towards the tail (new pages are put in
964 * front of us).
965 * => NOTE: we are allowed to lock the page queues, so the caller
966 * must not be holding the page queue lock.
967 *
968 * note on "cleaning" object and PG_BUSY pages:
969 * this routine is holding the lock on the object. the only time
970 * that it can run into a PG_BUSY page that it does not own is if
971 * some other process has started I/O on the page (e.g. either
972 * a pagein, or a pageout). if the PG_BUSY page is being paged
973 * in, then it can not be dirty (!PG_CLEAN) because no one has
974 * had a chance to modify it yet. if the PG_BUSY page is being
975 * paged out then it means that someone else has already started
976 * cleaning the page for us (how nice!). in this case, if we
977 * have syncio specified, then after we make our pass through the
978 * object we need to wait for the other PG_BUSY pages to clear
979 * off (i.e. we need to do an iosync). also note that once a
980 * page is PG_BUSY it must stay in its object until it is un-busyed.
981 *
982 * note on page traversal:
983 * we can traverse the pages in an object either by going down the
984 * linked list in "uobj->memq", or we can go over the address range
985 * by page doing hash table lookups for each address. depending
986 * on how many pages are in the object it may be cheaper to do one
987 * or the other. we set "by_list" to true if we are using memq.
988 * if the cost of a hash lookup was equal to the cost of the list
989 * traversal we could compare the number of pages in the start->stop
990 * range to the total number of pages in the object. however, it
991 * seems that a hash table lookup is more expensive than the linked
992 * list traversal, so we multiply the number of pages in the
993 * range by an estimate of the relatively higher cost of the hash lookup.
994 */
995
996 #ifdef XIP
997 static int
998 genfs_do_putpages_xip_free(struct vnode *vp, off_t startoff, off_t endoff,
999 int origflags);
1000 #endif
1001
1002 int
1003 genfs_putpages(void *v)
1004 {
1005 struct vop_putpages_args /* {
1006 struct vnode *a_vp;
1007 voff_t a_offlo;
1008 voff_t a_offhi;
1009 int a_flags;
1010 } */ * const ap = v;
1011
1012 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1013 ap->a_flags, NULL);
1014 }
1015
1016 int
1017 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1018 int origflags, struct vm_page **busypg)
1019 {
1020 struct uvm_object * const uobj = &vp->v_uobj;
1021 kmutex_t * const slock = &uobj->vmobjlock;
1022 off_t off;
1023 /* Even for strange MAXPHYS, the shift rounds down to a page */
1024 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1025 int i, error, npages, nback;
1026 int freeflag;
1027 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1028 bool wasclean, by_list, needs_clean, yld;
1029 bool async = (origflags & PGO_SYNCIO) == 0;
1030 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1031 struct lwp * const l = curlwp ? curlwp : &lwp0;
1032 struct genfs_node * const gp = VTOG(vp);
1033 int flags;
1034 int dirtygen;
1035 bool modified;
1036 bool need_wapbl;
1037 bool has_trans;
1038 bool cleanall;
1039 bool onworklst;
1040
1041 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1042
1043 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1044 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1045 KASSERT(startoff < endoff || endoff == 0);
1046
1047 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1048 vp, uobj->uo_npages, startoff, endoff - startoff);
1049
1050 has_trans = false;
1051 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1052 (origflags & PGO_JOURNALLOCKED) == 0);
1053
1054 retry:
1055 modified = false;
1056 flags = origflags;
1057 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1058 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1059 KASSERT((vp->v_vflag & VV_XIP) == 0 || uobj->uo_npages == 0);
1060 if (uobj->uo_npages == 0) {
1061 if (vp->v_iflag & VI_ONWORKLST) {
1062 vp->v_iflag &= ~VI_WRMAPDIRTY;
1063 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1064 vn_syncer_remove_from_worklist(vp);
1065 }
1066 if (has_trans) {
1067 if (need_wapbl)
1068 WAPBL_END(vp->v_mount);
1069 fstrans_done(vp->v_mount);
1070 }
1071 #ifdef XIP
1072 if ((vp->v_vflag & VV_XIP) != 0) {
1073 if (flags & PGO_FREE) {
1074 error = genfs_do_putpages_xip_free(vp,
1075 startoff, endoff, origflags);
1076 KASSERT(error == 0);
1077 }
1078 }
1079 #endif
1080 mutex_exit(slock);
1081 return (0);
1082 }
1083
1084 /*
1085 * the vnode has pages, set up to process the request.
1086 */
1087
1088 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1089 mutex_exit(slock);
1090 if (pagedaemon) {
1091 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1092 if (error)
1093 return error;
1094 } else
1095 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1096 if (need_wapbl) {
1097 error = WAPBL_BEGIN(vp->v_mount);
1098 if (error) {
1099 fstrans_done(vp->v_mount);
1100 return error;
1101 }
1102 }
1103 has_trans = true;
1104 mutex_enter(slock);
1105 goto retry;
1106 }
1107
1108 error = 0;
1109 wasclean = (vp->v_numoutput == 0);
1110 off = startoff;
1111 if (endoff == 0 || flags & PGO_ALLPAGES) {
1112 endoff = trunc_page(LLONG_MAX);
1113 }
1114 by_list = (uobj->uo_npages <=
1115 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1116
1117 #if !defined(DEBUG)
1118 /*
1119 * if this vnode is known not to have dirty pages,
1120 * don't bother to clean it out.
1121 */
1122
1123 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1124 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1125 goto skip_scan;
1126 }
1127 flags &= ~PGO_CLEANIT;
1128 }
1129 #endif /* !defined(DEBUG) */
1130
1131 /*
1132 * start the loop. when scanning by list, hold the last page
1133 * in the list before we start. pages allocated after we start
1134 * will be added to the end of the list, so we can stop at the
1135 * current last page.
1136 */
1137
1138 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1139 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1140 (vp->v_iflag & VI_ONWORKLST) != 0;
1141 dirtygen = gp->g_dirtygen;
1142 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1143 if (by_list) {
1144 curmp.flags = PG_MARKER;
1145 endmp.flags = PG_MARKER;
1146 pg = TAILQ_FIRST(&uobj->memq);
1147 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1148 } else {
1149 pg = uvm_pagelookup(uobj, off);
1150 }
1151 nextpg = NULL;
1152 while (by_list || off < endoff) {
1153
1154 /*
1155 * if the current page is not interesting, move on to the next.
1156 */
1157
1158 KASSERT(pg == NULL || pg->uobject == uobj ||
1159 (pg->flags & PG_MARKER) != 0);
1160 KASSERT(pg == NULL ||
1161 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1162 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1163 if (by_list) {
1164 if (pg == &endmp) {
1165 break;
1166 }
1167 if (pg->flags & PG_MARKER) {
1168 pg = TAILQ_NEXT(pg, listq.queue);
1169 continue;
1170 }
1171 if (pg->offset < startoff || pg->offset >= endoff ||
1172 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1173 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1174 wasclean = false;
1175 }
1176 pg = TAILQ_NEXT(pg, listq.queue);
1177 continue;
1178 }
1179 off = pg->offset;
1180 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1181 if (pg != NULL) {
1182 wasclean = false;
1183 }
1184 off += PAGE_SIZE;
1185 if (off < endoff) {
1186 pg = uvm_pagelookup(uobj, off);
1187 }
1188 continue;
1189 }
1190
1191 /*
1192 * if the current page needs to be cleaned and it's busy,
1193 * wait for it to become unbusy.
1194 */
1195
1196 yld = (l->l_cpu->ci_schedstate.spc_flags &
1197 SPCF_SHOULDYIELD) && !pagedaemon;
1198 if (pg->flags & PG_BUSY || yld) {
1199 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1200 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1201 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1202 error = EDEADLK;
1203 if (busypg != NULL)
1204 *busypg = pg;
1205 break;
1206 }
1207 if (pagedaemon) {
1208 /*
1209 * someone has taken the page while we
1210 * dropped the lock for fstrans_start.
1211 */
1212 break;
1213 }
1214 if (by_list) {
1215 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1216 UVMHIST_LOG(ubchist, "curmp next %p",
1217 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1218 }
1219 if (yld) {
1220 mutex_exit(slock);
1221 preempt();
1222 mutex_enter(slock);
1223 } else {
1224 pg->flags |= PG_WANTED;
1225 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1226 mutex_enter(slock);
1227 }
1228 if (by_list) {
1229 UVMHIST_LOG(ubchist, "after next %p",
1230 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1231 pg = TAILQ_NEXT(&curmp, listq.queue);
1232 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1233 } else {
1234 pg = uvm_pagelookup(uobj, off);
1235 }
1236 continue;
1237 }
1238
1239 /*
1240 * if we're freeing, remove all mappings of the page now.
1241 * if we're cleaning, check if the page is needs to be cleaned.
1242 */
1243
1244 if (flags & PGO_FREE) {
1245 pmap_page_protect(pg, VM_PROT_NONE);
1246 } else if (flags & PGO_CLEANIT) {
1247
1248 /*
1249 * if we still have some hope to pull this vnode off
1250 * from the syncer queue, write-protect the page.
1251 */
1252
1253 if (cleanall && wasclean &&
1254 gp->g_dirtygen == dirtygen) {
1255
1256 /*
1257 * uobj pages get wired only by uvm_fault
1258 * where uobj is locked.
1259 */
1260
1261 if (pg->wire_count == 0) {
1262 pmap_page_protect(pg,
1263 VM_PROT_READ|VM_PROT_EXECUTE);
1264 } else {
1265 cleanall = false;
1266 }
1267 }
1268 }
1269
1270 if (flags & PGO_CLEANIT) {
1271 needs_clean = pmap_clear_modify(pg) ||
1272 (pg->flags & PG_CLEAN) == 0;
1273 pg->flags |= PG_CLEAN;
1274 } else {
1275 needs_clean = false;
1276 }
1277
1278 /*
1279 * if we're cleaning, build a cluster.
1280 * the cluster will consist of pages which are currently dirty,
1281 * but they will be returned to us marked clean.
1282 * if not cleaning, just operate on the one page.
1283 */
1284
1285 if (needs_clean) {
1286 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1287 wasclean = false;
1288 memset(pgs, 0, sizeof(pgs));
1289 pg->flags |= PG_BUSY;
1290 UVM_PAGE_OWN(pg, "genfs_putpages");
1291
1292 /*
1293 * first look backward.
1294 */
1295
1296 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1297 nback = npages;
1298 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1299 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1300 if (nback) {
1301 memmove(&pgs[0], &pgs[npages - nback],
1302 nback * sizeof(pgs[0]));
1303 if (npages - nback < nback)
1304 memset(&pgs[nback], 0,
1305 (npages - nback) * sizeof(pgs[0]));
1306 else
1307 memset(&pgs[npages - nback], 0,
1308 nback * sizeof(pgs[0]));
1309 }
1310
1311 /*
1312 * then plug in our page of interest.
1313 */
1314
1315 pgs[nback] = pg;
1316
1317 /*
1318 * then look forward to fill in the remaining space in
1319 * the array of pages.
1320 */
1321
1322 npages = maxpages - nback - 1;
1323 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1324 &pgs[nback + 1],
1325 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1326 npages += nback + 1;
1327 } else {
1328 pgs[0] = pg;
1329 npages = 1;
1330 nback = 0;
1331 }
1332
1333 /*
1334 * apply FREE or DEACTIVATE options if requested.
1335 */
1336
1337 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1338 mutex_enter(&uvm_pageqlock);
1339 }
1340 for (i = 0; i < npages; i++) {
1341 tpg = pgs[i];
1342 KASSERT(tpg->uobject == uobj);
1343 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1344 pg = tpg;
1345 if (tpg->offset < startoff || tpg->offset >= endoff)
1346 continue;
1347 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1348 uvm_pagedeactivate(tpg);
1349 } else if (flags & PGO_FREE) {
1350 pmap_page_protect(tpg, VM_PROT_NONE);
1351 if (tpg->flags & PG_BUSY) {
1352 tpg->flags |= freeflag;
1353 if (pagedaemon) {
1354 uvm_pageout_start(1);
1355 uvm_pagedequeue(tpg);
1356 }
1357 } else {
1358
1359 /*
1360 * ``page is not busy''
1361 * implies that npages is 1
1362 * and needs_clean is false.
1363 */
1364
1365 nextpg = TAILQ_NEXT(tpg, listq.queue);
1366 uvm_pagefree(tpg);
1367 if (pagedaemon)
1368 uvmexp.pdfreed++;
1369 }
1370 }
1371 }
1372 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1373 mutex_exit(&uvm_pageqlock);
1374 }
1375 if (needs_clean) {
1376 modified = true;
1377
1378 /*
1379 * start the i/o. if we're traversing by list,
1380 * keep our place in the list with a marker page.
1381 */
1382
1383 if (by_list) {
1384 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1385 listq.queue);
1386 }
1387 mutex_exit(slock);
1388 error = GOP_WRITE(vp, pgs, npages, flags);
1389 mutex_enter(slock);
1390 if (by_list) {
1391 pg = TAILQ_NEXT(&curmp, listq.queue);
1392 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1393 }
1394 if (error) {
1395 break;
1396 }
1397 if (by_list) {
1398 continue;
1399 }
1400 }
1401
1402 /*
1403 * find the next page and continue if there was no error.
1404 */
1405
1406 if (by_list) {
1407 if (nextpg) {
1408 pg = nextpg;
1409 nextpg = NULL;
1410 } else {
1411 pg = TAILQ_NEXT(pg, listq.queue);
1412 }
1413 } else {
1414 off += (npages - nback) << PAGE_SHIFT;
1415 if (off < endoff) {
1416 pg = uvm_pagelookup(uobj, off);
1417 }
1418 }
1419 }
1420 if (by_list) {
1421 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1422 }
1423
1424 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1425 (vp->v_type != VBLK ||
1426 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1427 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1428 }
1429
1430 /*
1431 * if we're cleaning and there was nothing to clean,
1432 * take us off the syncer list. if we started any i/o
1433 * and we're doing sync i/o, wait for all writes to finish.
1434 */
1435
1436 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1437 (vp->v_iflag & VI_ONWORKLST) != 0) {
1438 #if defined(DEBUG)
1439 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1440 if ((pg->flags & PG_MARKER) != 0) {
1441 continue;
1442 }
1443 if ((pg->flags & PG_CLEAN) == 0) {
1444 printf("%s: %p: !CLEAN\n", __func__, pg);
1445 }
1446 if (pmap_is_modified(pg)) {
1447 printf("%s: %p: modified\n", __func__, pg);
1448 }
1449 }
1450 #endif /* defined(DEBUG) */
1451 vp->v_iflag &= ~VI_WRMAPDIRTY;
1452 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1453 vn_syncer_remove_from_worklist(vp);
1454 }
1455
1456 #if !defined(DEBUG)
1457 skip_scan:
1458 #endif /* !defined(DEBUG) */
1459
1460 /* Wait for output to complete. */
1461 if (!wasclean && !async && vp->v_numoutput != 0) {
1462 while (vp->v_numoutput != 0)
1463 cv_wait(&vp->v_cv, slock);
1464 }
1465 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1466 mutex_exit(slock);
1467
1468 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1469 /*
1470 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1471 * retrying is not a big deal because, in many cases,
1472 * uobj->uo_npages is already 0 here.
1473 */
1474 mutex_enter(slock);
1475 goto retry;
1476 }
1477
1478 if (has_trans) {
1479 if (need_wapbl)
1480 WAPBL_END(vp->v_mount);
1481 fstrans_done(vp->v_mount);
1482 }
1483
1484 return (error);
1485 }
1486
1487 #ifdef XIP
1488 static int
1489 genfs_do_putpages_xip_free(struct vnode *vp, off_t startoff, off_t endoff,
1490 int origflags)
1491 {
1492 struct uvm_object * const uobj = &vp->v_uobj;
1493
1494 KASSERT(uobj->uo_npages == 0);
1495
1496 /*
1497 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1498 * mappings of both XIP pages and XIP zero pages.
1499 *
1500 * Hole page is freed when one of its mapped offset is freed, even if
1501 * one file (vnode) has many holes and mapping its zero page to all
1502 * of those hole pages.
1503 *
1504 * We don't know which pages are currently mapped in the given vnode,
1505 * because XIP pages are not added to vnode. What we can do is to
1506 * locate pages by querying the filesystem as done in getpages. Call
1507 * genfs_do_getpages_xip_io().
1508 */
1509
1510 off_t off, eof;
1511
1512 off = trunc_page(startoff);
1513 if (endoff == 0 || (origflags & PGO_ALLPAGES))
1514 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1515 else
1516 eof = endoff;
1517
1518 while (off < eof) {
1519 int npages, orignpages, error, i;
1520 struct vm_page *pgs[maxpages], *pg;
1521
1522 npages = round_page(eof - off) >> PAGE_SHIFT;
1523 if (npages > maxpages)
1524 npages = maxpages;
1525
1526 orignpages = npages;
1527 KASSERT(mutex_owned(&uobj->vmobjlock));
1528 error = (*uobj->pgops->pgo_get)(uobj, off, pgs, &npages, 0,
1529 VM_PROT_ALL, 0, PGO_SYNCIO);
1530 KASSERT(error == 0);
1531 KASSERT(npages == orignpages);
1532 mutex_enter(&uobj->vmobjlock);
1533 for (i = 0; i < npages; i++) {
1534 pg = pgs[i];
1535 if (pg == NULL || pg == PGO_DONTCARE)
1536 continue;
1537 if (pg == PGO_HOLE) {
1538 pg = uvm_page_holepage;
1539 KASSERT(pg != NULL);
1540 /*
1541 * XXXUEBS
1542 * Invalidating hole pages may be unnecessary,
1543 * but just for safety.
1544 */
1545 } else {
1546 /*
1547 * Freeing normal XIP pages; nothing to do.
1548 */
1549 KASSERT((pg->flags & PG_RDONLY) != 0);
1550 KASSERT((pg->flags & PG_CLEAN) != 0);
1551 KASSERT((pg->flags & PG_FAKE) == 0);
1552 KASSERT((pg->flags & PG_DEVICE) != 0);
1553 pg->flags &= ~PG_BUSY;
1554 }
1555 pmap_page_protect(pg, VM_PROT_NONE);
1556 }
1557 off += npages << PAGE_SHIFT;
1558 }
1559
1560 return 0;
1561 }
1562 #endif
1563
1564 int
1565 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1566 {
1567 off_t off;
1568 vaddr_t kva;
1569 size_t len;
1570 int error;
1571 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1572
1573 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1574 vp, pgs, npages, flags);
1575
1576 off = pgs[0]->offset;
1577 kva = uvm_pagermapin(pgs, npages,
1578 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1579 len = npages << PAGE_SHIFT;
1580
1581 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1582 uvm_aio_biodone);
1583
1584 return error;
1585 }
1586
1587 int
1588 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1589 {
1590 off_t off;
1591 vaddr_t kva;
1592 size_t len;
1593 int error;
1594 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1595
1596 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1597 vp, pgs, npages, flags);
1598
1599 off = pgs[0]->offset;
1600 kva = uvm_pagermapin(pgs, npages,
1601 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1602 len = npages << PAGE_SHIFT;
1603
1604 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1605 uvm_aio_biodone);
1606
1607 return error;
1608 }
1609
1610 /*
1611 * Backend routine for doing I/O to vnode pages. Pages are already locked
1612 * and mapped into kernel memory. Here we just look up the underlying
1613 * device block addresses and call the strategy routine.
1614 */
1615
1616 static int
1617 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1618 enum uio_rw rw, void (*iodone)(struct buf *))
1619 {
1620 int s, error;
1621 int fs_bshift, dev_bshift;
1622 off_t eof, offset, startoffset;
1623 size_t bytes, iobytes, skipbytes;
1624 struct buf *mbp, *bp;
1625 const bool async = (flags & PGO_SYNCIO) == 0;
1626 const bool iowrite = rw == UIO_WRITE;
1627 const int brw = iowrite ? B_WRITE : B_READ;
1628 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1629
1630 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1631 vp, kva, len, flags);
1632
1633 KASSERT(vp->v_size <= vp->v_writesize);
1634 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1635 if (vp->v_type != VBLK) {
1636 fs_bshift = vp->v_mount->mnt_fs_bshift;
1637 dev_bshift = vp->v_mount->mnt_dev_bshift;
1638 } else {
1639 fs_bshift = DEV_BSHIFT;
1640 dev_bshift = DEV_BSHIFT;
1641 }
1642 error = 0;
1643 startoffset = off;
1644 bytes = MIN(len, eof - startoffset);
1645 skipbytes = 0;
1646 KASSERT(bytes != 0);
1647
1648 if (iowrite) {
1649 mutex_enter(&vp->v_interlock);
1650 vp->v_numoutput += 2;
1651 mutex_exit(&vp->v_interlock);
1652 }
1653 mbp = getiobuf(vp, true);
1654 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1655 vp, mbp, vp->v_numoutput, bytes);
1656 mbp->b_bufsize = len;
1657 mbp->b_data = (void *)kva;
1658 mbp->b_resid = mbp->b_bcount = bytes;
1659 mbp->b_cflags = BC_BUSY | BC_AGE;
1660 if (async) {
1661 mbp->b_flags = brw | B_ASYNC;
1662 mbp->b_iodone = iodone;
1663 } else {
1664 mbp->b_flags = brw;
1665 mbp->b_iodone = NULL;
1666 }
1667 if (curlwp == uvm.pagedaemon_lwp)
1668 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1669 else if (async)
1670 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1671 else
1672 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1673
1674 bp = NULL;
1675 for (offset = startoffset;
1676 bytes > 0;
1677 offset += iobytes, bytes -= iobytes) {
1678 int run;
1679 daddr_t lbn, blkno;
1680 struct vnode *devvp;
1681
1682 /*
1683 * bmap the file to find out the blkno to read from and
1684 * how much we can read in one i/o. if bmap returns an error,
1685 * skip the rest of the top-level i/o.
1686 */
1687
1688 lbn = offset >> fs_bshift;
1689 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1690 if (error) {
1691 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1692 lbn,error,0,0);
1693 skipbytes += bytes;
1694 bytes = 0;
1695 goto loopdone;
1696 }
1697
1698 /*
1699 * see how many pages can be read with this i/o.
1700 * reduce the i/o size if necessary to avoid
1701 * overwriting pages with valid data.
1702 */
1703
1704 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1705 bytes);
1706
1707 /*
1708 * if this block isn't allocated, zero it instead of
1709 * reading it. unless we are going to allocate blocks,
1710 * mark the pages we zeroed PG_RDONLY.
1711 */
1712
1713 if (blkno == (daddr_t)-1) {
1714 if (!iowrite) {
1715 memset((char *)kva + (offset - startoffset), 0,
1716 iobytes);
1717 }
1718 skipbytes += iobytes;
1719 continue;
1720 }
1721
1722 /*
1723 * allocate a sub-buf for this piece of the i/o
1724 * (or just use mbp if there's only 1 piece),
1725 * and start it going.
1726 */
1727
1728 if (offset == startoffset && iobytes == bytes) {
1729 bp = mbp;
1730 } else {
1731 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1732 vp, bp, vp->v_numoutput, 0);
1733 bp = getiobuf(vp, true);
1734 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1735 }
1736 bp->b_lblkno = 0;
1737
1738 /* adjust physical blkno for partial blocks */
1739 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1740 dev_bshift);
1741
1742 UVMHIST_LOG(ubchist,
1743 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1744 bp, offset, bp->b_bcount, bp->b_blkno);
1745
1746 VOP_STRATEGY(devvp, bp);
1747 }
1748
1749 loopdone:
1750 if (skipbytes) {
1751 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1752 }
1753 nestiobuf_done(mbp, skipbytes, error);
1754 if (async) {
1755 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1756 return (0);
1757 }
1758 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1759 error = biowait(mbp);
1760 s = splbio();
1761 (*iodone)(mbp);
1762 splx(s);
1763 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1764 return (error);
1765 }
1766
1767 int
1768 genfs_compat_getpages(void *v)
1769 {
1770 struct vop_getpages_args /* {
1771 struct vnode *a_vp;
1772 voff_t a_offset;
1773 struct vm_page **a_m;
1774 int *a_count;
1775 int a_centeridx;
1776 vm_prot_t a_access_type;
1777 int a_advice;
1778 int a_flags;
1779 } */ *ap = v;
1780
1781 off_t origoffset;
1782 struct vnode *vp = ap->a_vp;
1783 struct uvm_object *uobj = &vp->v_uobj;
1784 struct vm_page *pg, **pgs;
1785 vaddr_t kva;
1786 int i, error, orignpages, npages;
1787 struct iovec iov;
1788 struct uio uio;
1789 kauth_cred_t cred = curlwp->l_cred;
1790 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1791
1792 error = 0;
1793 origoffset = ap->a_offset;
1794 orignpages = *ap->a_count;
1795 pgs = ap->a_m;
1796
1797 if (ap->a_flags & PGO_LOCKED) {
1798 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1799 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1800
1801 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1802 if (error == 0 && memwrite) {
1803 genfs_markdirty(vp);
1804 }
1805 return error;
1806 }
1807 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1808 mutex_exit(&uobj->vmobjlock);
1809 return EINVAL;
1810 }
1811 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1812 mutex_exit(&uobj->vmobjlock);
1813 return 0;
1814 }
1815 npages = orignpages;
1816 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1817 mutex_exit(&uobj->vmobjlock);
1818 kva = uvm_pagermapin(pgs, npages,
1819 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1820 for (i = 0; i < npages; i++) {
1821 pg = pgs[i];
1822 if ((pg->flags & PG_FAKE) == 0) {
1823 continue;
1824 }
1825 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1826 iov.iov_len = PAGE_SIZE;
1827 uio.uio_iov = &iov;
1828 uio.uio_iovcnt = 1;
1829 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1830 uio.uio_rw = UIO_READ;
1831 uio.uio_resid = PAGE_SIZE;
1832 UIO_SETUP_SYSSPACE(&uio);
1833 /* XXX vn_lock */
1834 error = VOP_READ(vp, &uio, 0, cred);
1835 if (error) {
1836 break;
1837 }
1838 if (uio.uio_resid) {
1839 memset(iov.iov_base, 0, uio.uio_resid);
1840 }
1841 }
1842 uvm_pagermapout(kva, npages);
1843 mutex_enter(&uobj->vmobjlock);
1844 mutex_enter(&uvm_pageqlock);
1845 for (i = 0; i < npages; i++) {
1846 pg = pgs[i];
1847 if (error && (pg->flags & PG_FAKE) != 0) {
1848 pg->flags |= PG_RELEASED;
1849 } else {
1850 pmap_clear_modify(pg);
1851 uvm_pageactivate(pg);
1852 }
1853 }
1854 if (error) {
1855 uvm_page_unbusy(pgs, npages);
1856 }
1857 mutex_exit(&uvm_pageqlock);
1858 if (error == 0 && memwrite) {
1859 genfs_markdirty(vp);
1860 }
1861 mutex_exit(&uobj->vmobjlock);
1862 return error;
1863 }
1864
1865 int
1866 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1867 int flags)
1868 {
1869 off_t offset;
1870 struct iovec iov;
1871 struct uio uio;
1872 kauth_cred_t cred = curlwp->l_cred;
1873 struct buf *bp;
1874 vaddr_t kva;
1875 int error;
1876
1877 offset = pgs[0]->offset;
1878 kva = uvm_pagermapin(pgs, npages,
1879 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1880
1881 iov.iov_base = (void *)kva;
1882 iov.iov_len = npages << PAGE_SHIFT;
1883 uio.uio_iov = &iov;
1884 uio.uio_iovcnt = 1;
1885 uio.uio_offset = offset;
1886 uio.uio_rw = UIO_WRITE;
1887 uio.uio_resid = npages << PAGE_SHIFT;
1888 UIO_SETUP_SYSSPACE(&uio);
1889 /* XXX vn_lock */
1890 error = VOP_WRITE(vp, &uio, 0, cred);
1891
1892 mutex_enter(&vp->v_interlock);
1893 vp->v_numoutput++;
1894 mutex_exit(&vp->v_interlock);
1895
1896 bp = getiobuf(vp, true);
1897 bp->b_cflags = BC_BUSY | BC_AGE;
1898 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1899 bp->b_data = (char *)kva;
1900 bp->b_bcount = npages << PAGE_SHIFT;
1901 bp->b_bufsize = npages << PAGE_SHIFT;
1902 bp->b_resid = 0;
1903 bp->b_error = error;
1904 uvm_aio_aiodone(bp);
1905 return (error);
1906 }
1907
1908 /*
1909 * Process a uio using direct I/O. If we reach a part of the request
1910 * which cannot be processed in this fashion for some reason, just return.
1911 * The caller must handle some additional part of the request using
1912 * buffered I/O before trying direct I/O again.
1913 */
1914
1915 void
1916 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1917 {
1918 struct vmspace *vs;
1919 struct iovec *iov;
1920 vaddr_t va;
1921 size_t len;
1922 const int mask = DEV_BSIZE - 1;
1923 int error;
1924 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1925 (ioflag & IO_JOURNALLOCKED) == 0);
1926
1927 /*
1928 * We only support direct I/O to user space for now.
1929 */
1930
1931 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1932 return;
1933 }
1934
1935 /*
1936 * If the vnode is mapped, we would need to get the getpages lock
1937 * to stabilize the bmap, but then we would get into trouble whil e
1938 * locking the pages if the pages belong to this same vnode (or a
1939 * multi-vnode cascade to the same effect). Just fall back to
1940 * buffered I/O if the vnode is mapped to avoid this mess.
1941 */
1942
1943 if (vp->v_vflag & VV_MAPPED) {
1944 return;
1945 }
1946
1947 if (need_wapbl) {
1948 error = WAPBL_BEGIN(vp->v_mount);
1949 if (error)
1950 return;
1951 }
1952
1953 /*
1954 * Do as much of the uio as possible with direct I/O.
1955 */
1956
1957 vs = uio->uio_vmspace;
1958 while (uio->uio_resid) {
1959 iov = uio->uio_iov;
1960 if (iov->iov_len == 0) {
1961 uio->uio_iov++;
1962 uio->uio_iovcnt--;
1963 continue;
1964 }
1965 va = (vaddr_t)iov->iov_base;
1966 len = MIN(iov->iov_len, genfs_maxdio);
1967 len &= ~mask;
1968
1969 /*
1970 * If the next chunk is smaller than DEV_BSIZE or extends past
1971 * the current EOF, then fall back to buffered I/O.
1972 */
1973
1974 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1975 break;
1976 }
1977
1978 /*
1979 * Check alignment. The file offset must be at least
1980 * sector-aligned. The exact constraint on memory alignment
1981 * is very hardware-dependent, but requiring sector-aligned
1982 * addresses there too is safe.
1983 */
1984
1985 if (uio->uio_offset & mask || va & mask) {
1986 break;
1987 }
1988 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1989 uio->uio_rw);
1990 if (error) {
1991 break;
1992 }
1993 iov->iov_base = (char *)iov->iov_base + len;
1994 iov->iov_len -= len;
1995 uio->uio_offset += len;
1996 uio->uio_resid -= len;
1997 }
1998
1999 if (need_wapbl)
2000 WAPBL_END(vp->v_mount);
2001 }
2002
2003 /*
2004 * Iodone routine for direct I/O. We don't do much here since the request is
2005 * always synchronous, so the caller will do most of the work after biowait().
2006 */
2007
2008 static void
2009 genfs_dio_iodone(struct buf *bp)
2010 {
2011
2012 KASSERT((bp->b_flags & B_ASYNC) == 0);
2013 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2014 mutex_enter(bp->b_objlock);
2015 vwakeup(bp);
2016 mutex_exit(bp->b_objlock);
2017 }
2018 putiobuf(bp);
2019 }
2020
2021 /*
2022 * Process one chunk of a direct I/O request.
2023 */
2024
2025 static int
2026 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2027 off_t off, enum uio_rw rw)
2028 {
2029 struct vm_map *map;
2030 struct pmap *upm, *kpm;
2031 size_t klen = round_page(uva + len) - trunc_page(uva);
2032 off_t spoff, epoff;
2033 vaddr_t kva, puva;
2034 paddr_t pa;
2035 vm_prot_t prot;
2036 int error, rv, poff, koff;
2037 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2038 (rw == UIO_WRITE ? PGO_FREE : 0);
2039
2040 /*
2041 * For writes, verify that this range of the file already has fully
2042 * allocated backing store. If there are any holes, just punt and
2043 * make the caller take the buffered write path.
2044 */
2045
2046 if (rw == UIO_WRITE) {
2047 daddr_t lbn, elbn, blkno;
2048 int bsize, bshift, run;
2049
2050 bshift = vp->v_mount->mnt_fs_bshift;
2051 bsize = 1 << bshift;
2052 lbn = off >> bshift;
2053 elbn = (off + len + bsize - 1) >> bshift;
2054 while (lbn < elbn) {
2055 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2056 if (error) {
2057 return error;
2058 }
2059 if (blkno == (daddr_t)-1) {
2060 return ENOSPC;
2061 }
2062 lbn += 1 + run;
2063 }
2064 }
2065
2066 /*
2067 * Flush any cached pages for parts of the file that we're about to
2068 * access. If we're writing, invalidate pages as well.
2069 */
2070
2071 spoff = trunc_page(off);
2072 epoff = round_page(off + len);
2073 mutex_enter(&vp->v_interlock);
2074 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2075 if (error) {
2076 return error;
2077 }
2078
2079 /*
2080 * Wire the user pages and remap them into kernel memory.
2081 */
2082
2083 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2084 error = uvm_vslock(vs, (void *)uva, len, prot);
2085 if (error) {
2086 return error;
2087 }
2088
2089 map = &vs->vm_map;
2090 upm = vm_map_pmap(map);
2091 kpm = vm_map_pmap(kernel_map);
2092 kva = uvm_km_alloc(kernel_map, klen, 0,
2093 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2094 puva = trunc_page(uva);
2095 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2096 rv = pmap_extract(upm, puva + poff, &pa);
2097 KASSERT(rv);
2098 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2099 }
2100 pmap_update(kpm);
2101
2102 /*
2103 * Do the I/O.
2104 */
2105
2106 koff = uva - trunc_page(uva);
2107 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2108 genfs_dio_iodone);
2109
2110 /*
2111 * Tear down the kernel mapping.
2112 */
2113
2114 pmap_remove(kpm, kva, kva + klen);
2115 pmap_update(kpm);
2116 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2117
2118 /*
2119 * Unwire the user pages.
2120 */
2121
2122 uvm_vsunlock(vs, (void *)uva, len);
2123 return error;
2124 }
2125
2126