genfs_io.c revision 1.36.2.7 1 /* $NetBSD: genfs_io.c,v 1.36.2.7 2010/04/28 16:33:47 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.7 2010/04/28 16:33:47 uebayasi Exp $");
35
36 #include "opt_device_page.h"
37 #include "opt_xip.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/kernel.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/fcntl.h>
47 #include <sys/kmem.h>
48 #include <sys/poll.h>
49 #include <sys/mman.h>
50 #include <sys/file.h>
51 #include <sys/kauth.h>
52 #include <sys/fstrans.h>
53 #include <sys/buf.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 static int genfs_do_getpages(void *);
63 #ifdef XIP
64 static int genfs_do_getpages_xip(void *);
65 #endif
66 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
67 off_t, enum uio_rw);
68 static void genfs_dio_iodone(struct buf *);
69
70 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
71 void (*)(struct buf *));
72 static inline void genfs_rel_pages(struct vm_page **, int);
73
74 int genfs_maxdio = MAXPHYS;
75
76 static inline void
77 genfs_rel_pages(struct vm_page **pgs, int npages)
78 {
79 int i;
80
81 for (i = 0; i < npages; i++) {
82 struct vm_page *pg = pgs[i];
83
84 if (pg == NULL || pg == PGO_DONTCARE)
85 continue;
86 if (pg->flags & PG_FAKE) {
87 pg->flags |= PG_RELEASED;
88 }
89 }
90 mutex_enter(&uvm_pageqlock);
91 uvm_page_unbusy(pgs, npages);
92 mutex_exit(&uvm_pageqlock);
93 }
94
95 /*
96 * generic VM getpages routine.
97 * Return PG_BUSY pages for the given range,
98 * reading from backing store if necessary.
99 */
100
101 int
102 genfs_getpages(void *v)
103 {
104 #ifdef XIP
105 struct vop_getpages_args /* {
106 struct vnode *a_vp;
107 voff_t a_offset;
108 struct vm_page **a_m;
109 int *a_count;
110 int a_centeridx;
111 vm_prot_t a_access_type;
112 int a_advice;
113 int a_flags;
114 } */ * const ap = v;
115 struct vnode * const vp = ap->a_vp;
116
117 /* XXX should be merged into genfs_do_getpages() */
118 if ((vp->v_vflag & VV_XIP) != 0)
119 return genfs_do_getpages_xip(v);
120 else
121 #endif
122 return genfs_do_getpages(v);
123 }
124
125 static int
126 genfs_do_getpages(void *v)
127 {
128 struct vop_getpages_args /* {
129 struct vnode *a_vp;
130 voff_t a_offset;
131 struct vm_page **a_m;
132 int *a_count;
133 int a_centeridx;
134 vm_prot_t a_access_type;
135 int a_advice;
136 int a_flags;
137 } */ * const ap = v;
138
139 off_t diskeof, memeof;
140 int i, error, npages;
141 const int flags = ap->a_flags;
142 struct vnode * const vp = ap->a_vp;
143 struct genfs_node * const gp = VTOG(vp);
144 struct uvm_object * const uobj = &vp->v_uobj;
145 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
146 const bool async = (flags & PGO_SYNCIO) == 0;
147 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
148 bool has_trans = false;
149 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
150 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
151 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
152
153 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
154 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
155
156 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
157 vp->v_type == VLNK || vp->v_type == VBLK);
158
159 startover:
160 error = 0;
161 const voff_t origvsize = vp->v_size;
162 const off_t origoffset = ap->a_offset;
163 const int orignpages = *ap->a_count;
164
165 GOP_SIZE(vp, origvsize, &diskeof, 0);
166 if (flags & PGO_PASTEOF) {
167 off_t newsize;
168 #if defined(DIAGNOSTIC)
169 off_t writeeof;
170 #endif /* defined(DIAGNOSTIC) */
171
172 newsize = MAX(origvsize,
173 origoffset + (orignpages << PAGE_SHIFT));
174 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
175 #if defined(DIAGNOSTIC)
176 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
177 if (newsize > round_page(writeeof)) {
178 panic("%s: past eof", __func__);
179 }
180 #endif /* defined(DIAGNOSTIC) */
181 } else {
182 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
183 }
184 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
185 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
186 KASSERT(orignpages > 0);
187
188 /*
189 * Bounds-check the request.
190 */
191
192 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
193 if ((flags & PGO_LOCKED) == 0) {
194 mutex_exit(&uobj->vmobjlock);
195 }
196 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
197 origoffset, *ap->a_count, memeof,0);
198 error = EINVAL;
199 goto out_err;
200 }
201
202 /* uobj is locked */
203
204 if ((flags & PGO_NOTIMESTAMP) == 0 &&
205 (vp->v_type != VBLK ||
206 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
207 int updflags = 0;
208
209 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
210 updflags = GOP_UPDATE_ACCESSED;
211 }
212 if (memwrite) {
213 updflags |= GOP_UPDATE_MODIFIED;
214 }
215 if (updflags != 0) {
216 GOP_MARKUPDATE(vp, updflags);
217 }
218 }
219
220 if (memwrite) {
221 gp->g_dirtygen++;
222 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
223 vn_syncer_add_to_worklist(vp, filedelay);
224 }
225 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
226 vp->v_iflag |= VI_WRMAPDIRTY;
227 }
228 }
229
230 /*
231 * For PGO_LOCKED requests, just return whatever's in memory.
232 */
233
234 if (flags & PGO_LOCKED) {
235 int nfound;
236 struct vm_page *pg;
237
238 npages = *ap->a_count;
239 #if defined(DEBUG)
240 for (i = 0; i < npages; i++) {
241 pg = ap->a_m[i];
242 KASSERT(pg == NULL || pg == PGO_DONTCARE);
243 }
244 #endif /* defined(DEBUG) */
245 nfound = uvn_findpages(uobj, origoffset, &npages,
246 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
247 KASSERT(npages == *ap->a_count);
248 if (nfound == 0) {
249 error = EBUSY;
250 goto out_err;
251 }
252 if (!genfs_node_rdtrylock(vp)) {
253 genfs_rel_pages(ap->a_m, npages);
254
255 /*
256 * restore the array.
257 */
258
259 for (i = 0; i < npages; i++) {
260 pg = ap->a_m[i];
261
262 if (pg != NULL || pg != PGO_DONTCARE) {
263 ap->a_m[i] = NULL;
264 }
265 }
266 } else {
267 genfs_node_unlock(vp);
268 }
269 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
270 goto out_err;
271 }
272 mutex_exit(&uobj->vmobjlock);
273
274 /*
275 * find the requested pages and make some simple checks.
276 * leave space in the page array for a whole block.
277 */
278
279 const int fs_bshift = (vp->v_type != VBLK) ?
280 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
281 const int dev_bshift = (vp->v_type != VBLK) ?
282 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
283 const int fs_bsize = 1 << fs_bshift;
284 #define blk_mask (fs_bsize - 1)
285 #define trunc_blk(x) ((x) & ~blk_mask)
286 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
287
288 const int orignmempages = MIN(orignpages,
289 round_page(memeof - origoffset) >> PAGE_SHIFT);
290 npages = orignmempages;
291 const off_t startoffset = trunc_blk(origoffset);
292 const off_t endoffset = MIN(
293 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
294 round_page(memeof));
295 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
296
297 const int pgs_size = sizeof(struct vm_page *) *
298 ((endoffset - startoffset) >> PAGE_SHIFT);
299 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
300
301 if (pgs_size > sizeof(pgs_onstack)) {
302 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
303 if (pgs == NULL) {
304 pgs = pgs_onstack;
305 error = ENOMEM;
306 goto out_err;
307 }
308 } else {
309 pgs = pgs_onstack;
310 (void)memset(pgs, 0, pgs_size);
311 }
312
313 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
314 ridx, npages, startoffset, endoffset);
315
316 if (!has_trans) {
317 fstrans_start(vp->v_mount, FSTRANS_SHARED);
318 has_trans = true;
319 }
320
321 /*
322 * hold g_glock to prevent a race with truncate.
323 *
324 * check if our idea of v_size is still valid.
325 */
326
327 if (blockalloc) {
328 rw_enter(&gp->g_glock, RW_WRITER);
329 } else {
330 rw_enter(&gp->g_glock, RW_READER);
331 }
332 mutex_enter(&uobj->vmobjlock);
333 if (vp->v_size < origvsize) {
334 genfs_node_unlock(vp);
335 if (pgs != pgs_onstack)
336 kmem_free(pgs, pgs_size);
337 goto startover;
338 }
339
340 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
341 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
342 genfs_node_unlock(vp);
343 KASSERT(async != 0);
344 genfs_rel_pages(&pgs[ridx], orignmempages);
345 mutex_exit(&uobj->vmobjlock);
346 error = EBUSY;
347 goto out_err_free;
348 }
349
350 /*
351 * if the pages are already resident, just return them.
352 */
353
354 for (i = 0; i < npages; i++) {
355 struct vm_page *pg = pgs[ridx + i];
356
357 if ((pg->flags & PG_FAKE) ||
358 (blockalloc && (pg->flags & PG_RDONLY))) {
359 break;
360 }
361 }
362 if (i == npages) {
363 genfs_node_unlock(vp);
364 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
365 npages += ridx;
366 goto out;
367 }
368
369 /*
370 * if PGO_OVERWRITE is set, don't bother reading the pages.
371 */
372
373 if (overwrite) {
374 genfs_node_unlock(vp);
375 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
376
377 for (i = 0; i < npages; i++) {
378 struct vm_page *pg = pgs[ridx + i];
379
380 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
381 }
382 npages += ridx;
383 goto out;
384 }
385
386 /*
387 * the page wasn't resident and we're not overwriting,
388 * so we're going to have to do some i/o.
389 * find any additional pages needed to cover the expanded range.
390 */
391
392 npages = (endoffset - startoffset) >> PAGE_SHIFT;
393 if (startoffset != origoffset || npages != orignmempages) {
394 int npgs;
395
396 /*
397 * we need to avoid deadlocks caused by locking
398 * additional pages at lower offsets than pages we
399 * already have locked. unlock them all and start over.
400 */
401
402 genfs_rel_pages(&pgs[ridx], orignmempages);
403 memset(pgs, 0, pgs_size);
404
405 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
406 startoffset, endoffset, 0,0);
407 npgs = npages;
408 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
409 async ? UFP_NOWAIT : UFP_ALL) != npages) {
410 genfs_node_unlock(vp);
411 KASSERT(async != 0);
412 genfs_rel_pages(pgs, npages);
413 mutex_exit(&uobj->vmobjlock);
414 error = EBUSY;
415 goto out_err_free;
416 }
417 }
418
419 mutex_exit(&uobj->vmobjlock);
420
421 {
422 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
423 vaddr_t kva;
424 struct buf *bp, *mbp;
425 bool sawhole = false;
426
427 /*
428 * read the desired page(s).
429 */
430
431 totalbytes = npages << PAGE_SHIFT;
432 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
433 tailbytes = totalbytes - bytes;
434 skipbytes = 0;
435
436 kva = uvm_pagermapin(pgs, npages,
437 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
438
439 mbp = getiobuf(vp, true);
440 mbp->b_bufsize = totalbytes;
441 mbp->b_data = (void *)kva;
442 mbp->b_resid = mbp->b_bcount = bytes;
443 mbp->b_cflags = BC_BUSY;
444 if (async) {
445 mbp->b_flags = B_READ | B_ASYNC;
446 mbp->b_iodone = uvm_aio_biodone;
447 } else {
448 mbp->b_flags = B_READ;
449 mbp->b_iodone = NULL;
450 }
451 if (async)
452 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
453 else
454 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
455
456 /*
457 * if EOF is in the middle of the range, zero the part past EOF.
458 * skip over pages which are not PG_FAKE since in that case they have
459 * valid data that we need to preserve.
460 */
461
462 tailstart = bytes;
463 while (tailbytes > 0) {
464 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
465
466 KASSERT(len <= tailbytes);
467 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
468 memset((void *)(kva + tailstart), 0, len);
469 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
470 kva, tailstart, len, 0);
471 }
472 tailstart += len;
473 tailbytes -= len;
474 }
475
476 /*
477 * now loop over the pages, reading as needed.
478 */
479
480 bp = NULL;
481 off_t offset;
482 for (offset = startoffset;
483 bytes > 0;
484 offset += iobytes, bytes -= iobytes) {
485 int run;
486 daddr_t lbn, blkno;
487 int pidx;
488 struct vnode *devvp;
489
490 /*
491 * skip pages which don't need to be read.
492 */
493
494 pidx = (offset - startoffset) >> PAGE_SHIFT;
495 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
496 size_t b;
497
498 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
499 if ((pgs[pidx]->flags & PG_RDONLY)) {
500 sawhole = true;
501 }
502 b = MIN(PAGE_SIZE, bytes);
503 offset += b;
504 bytes -= b;
505 skipbytes += b;
506 pidx++;
507 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
508 offset, 0,0,0);
509 if (bytes == 0) {
510 goto loopdone;
511 }
512 }
513
514 /*
515 * bmap the file to find out the blkno to read from and
516 * how much we can read in one i/o. if bmap returns an error,
517 * skip the rest of the top-level i/o.
518 */
519
520 lbn = offset >> fs_bshift;
521 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
522 if (error) {
523 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
524 lbn,error,0,0);
525 skipbytes += bytes;
526 bytes = 0;
527 goto loopdone;
528 }
529
530 /*
531 * see how many pages can be read with this i/o.
532 * reduce the i/o size if necessary to avoid
533 * overwriting pages with valid data.
534 */
535
536 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
537 bytes);
538 if (offset + iobytes > round_page(offset)) {
539 int pcount;
540
541 pcount = 1;
542 while (pidx + pcount < npages &&
543 pgs[pidx + pcount]->flags & PG_FAKE) {
544 pcount++;
545 }
546 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
547 (offset - trunc_page(offset)));
548 }
549
550 /*
551 * if this block isn't allocated, zero it instead of
552 * reading it. unless we are going to allocate blocks,
553 * mark the pages we zeroed PG_RDONLY.
554 */
555
556 if (blkno == (daddr_t)-1) {
557 int holepages = (round_page(offset + iobytes) -
558 trunc_page(offset)) >> PAGE_SHIFT;
559 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
560
561 sawhole = true;
562 memset((char *)kva + (offset - startoffset), 0,
563 iobytes);
564 skipbytes += iobytes;
565
566 for (i = 0; i < holepages; i++) {
567 if (memwrite) {
568 pgs[pidx + i]->flags &= ~PG_CLEAN;
569 }
570 if (!blockalloc) {
571 pgs[pidx + i]->flags |= PG_RDONLY;
572 }
573 }
574 continue;
575 }
576
577 /*
578 * allocate a sub-buf for this piece of the i/o
579 * (or just use mbp if there's only 1 piece),
580 * and start it going.
581 */
582
583 if (offset == startoffset && iobytes == bytes) {
584 bp = mbp;
585 } else {
586 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
587 vp, bp, vp->v_numoutput, 0);
588 bp = getiobuf(vp, true);
589 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
590 }
591 bp->b_lblkno = 0;
592
593 /* adjust physical blkno for partial blocks */
594 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
595 dev_bshift);
596
597 UVMHIST_LOG(ubchist,
598 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
599 bp, offset, bp->b_bcount, bp->b_blkno);
600
601 VOP_STRATEGY(devvp, bp);
602 }
603
604 loopdone:
605 nestiobuf_done(mbp, skipbytes, error);
606 if (async) {
607 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
608 genfs_node_unlock(vp);
609 error = 0;
610 goto out_err_free;
611 }
612 if (bp != NULL) {
613 error = biowait(mbp);
614 }
615
616 /* Remove the mapping (make KVA available as soon as possible) */
617 uvm_pagermapout(kva, npages);
618
619 /*
620 * if this we encountered a hole then we have to do a little more work.
621 * for read faults, we marked the page PG_RDONLY so that future
622 * write accesses to the page will fault again.
623 * for write faults, we must make sure that the backing store for
624 * the page is completely allocated while the pages are locked.
625 */
626
627 if (!error && sawhole && blockalloc) {
628 /*
629 * XXX: This assumes that we come here only via
630 * the mmio path
631 */
632 if (vp->v_mount->mnt_wapbl) {
633 error = WAPBL_BEGIN(vp->v_mount);
634 }
635
636 if (!error) {
637 error = GOP_ALLOC(vp, startoffset,
638 npages << PAGE_SHIFT, 0, cred);
639 if (vp->v_mount->mnt_wapbl) {
640 WAPBL_END(vp->v_mount);
641 }
642 }
643
644 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
645 startoffset, npages << PAGE_SHIFT, error,0);
646 if (!error) {
647 for (i = 0; i < npages; i++) {
648 struct vm_page *pg = pgs[i];
649
650 if (pg == NULL) {
651 continue;
652 }
653 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
654 UVMHIST_LOG(ubchist, "mark dirty pg %p",
655 pg,0,0,0);
656 }
657 }
658 }
659 genfs_node_unlock(vp);
660
661 putiobuf(mbp);
662 }
663
664 mutex_enter(&uobj->vmobjlock);
665
666 /*
667 * we're almost done! release the pages...
668 * for errors, we free the pages.
669 * otherwise we activate them and mark them as valid and clean.
670 * also, unbusy pages that were not actually requested.
671 */
672
673 if (error) {
674 for (i = 0; i < npages; i++) {
675 struct vm_page *pg = pgs[i];
676
677 if (pg == NULL) {
678 continue;
679 }
680 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
681 pg, pg->flags, 0,0);
682 if (pg->flags & PG_FAKE) {
683 pg->flags |= PG_RELEASED;
684 }
685 }
686 mutex_enter(&uvm_pageqlock);
687 uvm_page_unbusy(pgs, npages);
688 mutex_exit(&uvm_pageqlock);
689 mutex_exit(&uobj->vmobjlock);
690 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
691 goto out_err_free;
692 }
693
694 out:
695 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
696 error = 0;
697 mutex_enter(&uvm_pageqlock);
698 for (i = 0; i < npages; i++) {
699 struct vm_page *pg = pgs[i];
700 if (pg == NULL) {
701 continue;
702 }
703 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
704 pg, pg->flags, 0,0);
705 if (pg->flags & PG_FAKE && !overwrite) {
706 pg->flags &= ~(PG_FAKE);
707 pmap_clear_modify(pgs[i]);
708 }
709 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
710 if (i < ridx || i >= ridx + orignmempages || async) {
711 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
712 pg, pg->offset,0,0);
713 if (pg->flags & PG_WANTED) {
714 wakeup(pg);
715 }
716 if (pg->flags & PG_FAKE) {
717 KASSERT(overwrite);
718 uvm_pagezero(pg);
719 }
720 if (pg->flags & PG_RELEASED) {
721 uvm_pagefree(pg);
722 continue;
723 }
724 uvm_pageenqueue(pg);
725 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
726 UVM_PAGE_OWN(pg, NULL);
727 }
728 }
729 mutex_exit(&uvm_pageqlock);
730 mutex_exit(&uobj->vmobjlock);
731 if (ap->a_m != NULL) {
732 memcpy(ap->a_m, &pgs[ridx],
733 orignmempages * sizeof(struct vm_page *));
734 }
735
736 out_err_free:
737 if (pgs != NULL && pgs != pgs_onstack)
738 kmem_free(pgs, pgs_size);
739 out_err:
740 if (has_trans)
741 fstrans_done(vp->v_mount);
742 return (error);
743 }
744
745 #ifdef XIP
746 /* XXX should be merged into genfs_do_getpages() */
747 static int
748 genfs_do_getpages_xip(void *v)
749 {
750 struct vop_getpages_args /* {
751 struct vnode *a_vp;
752 voff_t a_offset;
753 struct vm_page **a_m;
754 int *a_count;
755 int a_centeridx;
756 vm_prot_t a_access_type;
757 int a_advice;
758 int a_flags;
759 } */ * const ap = v;
760
761 struct vnode * const vp = ap->a_vp;
762 int *npagesp = ap->a_count;
763 const off_t offset = ap->a_offset;
764 struct vm_page **pps = ap->a_m;
765 struct uvm_object * const uobj = &vp->v_uobj;
766 const int flags = ap->a_flags;
767
768 int error;
769 off_t eof, sbkoff, ebkoff, off;
770 int npages;
771 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
772 int i;
773 paddr_t phys_addr;
774
775 UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
776
777 KASSERT((vp->v_vflag & VV_XIP) != 0);
778
779 /* XXXUEBS should we care about PGO_LOCKED? */
780
781 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
782 npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
783
784 fs_bshift = vp->v_mount->mnt_fs_bshift;
785 fs_bsize = 1 << fs_bshift;
786 dev_bshift = vp->v_mount->mnt_dev_bshift;
787 dev_bsize = 1 << dev_bshift;
788
789 sbkoff = offset & ~(fs_bsize - 1);
790 ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) & ~(fs_bsize - 1);
791
792 UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx", npages, (long)sbkoff, (long)ebkoff, 0);
793
794 if ((flags & PGO_LOCKED) == 0)
795 mutex_exit(&uobj->vmobjlock);
796
797 /* XXX optimize */
798 off = offset;
799 i = 0;
800 while (i < npages) {
801 daddr_t lbn, blkno;
802 int run;
803 struct vnode *devvp;
804
805 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
806
807 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
808 KASSERT(error == 0);
809 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d", (long)lbn, (long)blkno, run, 0);
810
811 if (blkno < 0) {
812 /* unallocated page is redirected to read-only zero-filled page */
813 phys_addr = uvm_pageofzero_xip_phys_addr();
814 } else {
815 struct vm_physseg *seg;
816
817 seg = devvp->v_physseg;
818 KASSERT(seg != NULL);
819 /* bus_space_mmap cookie -> paddr_t */
820 phys_addr = pmap_phys_address(seg->start) +
821 (blkno << dev_bshift) +
822 (off - (lbn << fs_bshift));
823 }
824
825 pps[i] = uvm_phys_to_vm_page_device(phys_addr);
826
827 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
828 i,
829 (long)phys_addr,
830 pps[i],
831 0);
832
833 off += PAGE_SIZE;
834 i++;
835 }
836
837 *npagesp = i;
838
839 return 0;
840 }
841 #endif
842
843 /*
844 * generic VM putpages routine.
845 * Write the given range of pages to backing store.
846 *
847 * => "offhi == 0" means flush all pages at or after "offlo".
848 * => object should be locked by caller. we return with the
849 * object unlocked.
850 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
851 * thus, a caller might want to unlock higher level resources
852 * (e.g. vm_map) before calling flush.
853 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
854 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
855 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
856 * that new pages are inserted on the tail end of the list. thus,
857 * we can make a complete pass through the object in one go by starting
858 * at the head and working towards the tail (new pages are put in
859 * front of us).
860 * => NOTE: we are allowed to lock the page queues, so the caller
861 * must not be holding the page queue lock.
862 *
863 * note on "cleaning" object and PG_BUSY pages:
864 * this routine is holding the lock on the object. the only time
865 * that it can run into a PG_BUSY page that it does not own is if
866 * some other process has started I/O on the page (e.g. either
867 * a pagein, or a pageout). if the PG_BUSY page is being paged
868 * in, then it can not be dirty (!PG_CLEAN) because no one has
869 * had a chance to modify it yet. if the PG_BUSY page is being
870 * paged out then it means that someone else has already started
871 * cleaning the page for us (how nice!). in this case, if we
872 * have syncio specified, then after we make our pass through the
873 * object we need to wait for the other PG_BUSY pages to clear
874 * off (i.e. we need to do an iosync). also note that once a
875 * page is PG_BUSY it must stay in its object until it is un-busyed.
876 *
877 * note on page traversal:
878 * we can traverse the pages in an object either by going down the
879 * linked list in "uobj->memq", or we can go over the address range
880 * by page doing hash table lookups for each address. depending
881 * on how many pages are in the object it may be cheaper to do one
882 * or the other. we set "by_list" to true if we are using memq.
883 * if the cost of a hash lookup was equal to the cost of the list
884 * traversal we could compare the number of pages in the start->stop
885 * range to the total number of pages in the object. however, it
886 * seems that a hash table lookup is more expensive than the linked
887 * list traversal, so we multiply the number of pages in the
888 * range by an estimate of the relatively higher cost of the hash lookup.
889 */
890
891 int
892 genfs_putpages(void *v)
893 {
894 struct vop_putpages_args /* {
895 struct vnode *a_vp;
896 voff_t a_offlo;
897 voff_t a_offhi;
898 int a_flags;
899 } */ * const ap = v;
900
901 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
902 ap->a_flags, NULL);
903 }
904
905 int
906 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
907 int origflags, struct vm_page **busypg)
908 {
909 struct uvm_object * const uobj = &vp->v_uobj;
910 kmutex_t * const slock = &uobj->vmobjlock;
911 off_t off;
912 /* Even for strange MAXPHYS, the shift rounds down to a page */
913 #define maxpages (MAXPHYS >> PAGE_SHIFT)
914 int i, error, npages, nback;
915 int freeflag;
916 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
917 bool wasclean, by_list, needs_clean, yld;
918 bool async = (origflags & PGO_SYNCIO) == 0;
919 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
920 struct lwp * const l = curlwp ? curlwp : &lwp0;
921 struct genfs_node * const gp = VTOG(vp);
922 int flags;
923 int dirtygen;
924 bool modified;
925 bool need_wapbl;
926 bool has_trans;
927 bool cleanall;
928 bool onworklst;
929
930 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
931
932 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
933 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
934 KASSERT(startoff < endoff || endoff == 0);
935
936 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
937 vp, uobj->uo_npages, startoff, endoff - startoff);
938
939 has_trans = false;
940 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
941 (origflags & PGO_JOURNALLOCKED) == 0);
942
943 retry:
944 modified = false;
945 flags = origflags;
946 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
947 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
948 if (uobj->uo_npages == 0) {
949 if (vp->v_iflag & VI_ONWORKLST) {
950 vp->v_iflag &= ~VI_WRMAPDIRTY;
951 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
952 vn_syncer_remove_from_worklist(vp);
953 }
954 if (has_trans) {
955 if (need_wapbl)
956 WAPBL_END(vp->v_mount);
957 fstrans_done(vp->v_mount);
958 }
959 mutex_exit(slock);
960 return (0);
961 }
962
963 /*
964 * the vnode has pages, set up to process the request.
965 */
966
967 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
968 mutex_exit(slock);
969 if (pagedaemon) {
970 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
971 if (error)
972 return error;
973 } else
974 fstrans_start(vp->v_mount, FSTRANS_LAZY);
975 if (need_wapbl) {
976 error = WAPBL_BEGIN(vp->v_mount);
977 if (error) {
978 fstrans_done(vp->v_mount);
979 return error;
980 }
981 }
982 has_trans = true;
983 mutex_enter(slock);
984 goto retry;
985 }
986
987 error = 0;
988 wasclean = (vp->v_numoutput == 0);
989 off = startoff;
990 if (endoff == 0 || flags & PGO_ALLPAGES) {
991 endoff = trunc_page(LLONG_MAX);
992 }
993 by_list = (uobj->uo_npages <=
994 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
995
996 #if !defined(DEBUG)
997 /*
998 * if this vnode is known not to have dirty pages,
999 * don't bother to clean it out.
1000 */
1001
1002 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1003 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1004 goto skip_scan;
1005 }
1006 flags &= ~PGO_CLEANIT;
1007 }
1008 #endif /* !defined(DEBUG) */
1009
1010 /*
1011 * start the loop. when scanning by list, hold the last page
1012 * in the list before we start. pages allocated after we start
1013 * will be added to the end of the list, so we can stop at the
1014 * current last page.
1015 */
1016
1017 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1018 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1019 (vp->v_iflag & VI_ONWORKLST) != 0;
1020 dirtygen = gp->g_dirtygen;
1021 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1022 if (by_list) {
1023 curmp.uobject = uobj;
1024 curmp.offset = (voff_t)-1;
1025 curmp.flags = PG_BUSY;
1026 endmp.uobject = uobj;
1027 endmp.offset = (voff_t)-1;
1028 endmp.flags = PG_BUSY;
1029 pg = TAILQ_FIRST(&uobj->memq);
1030 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1031 } else {
1032 pg = uvm_pagelookup(uobj, off);
1033 }
1034 nextpg = NULL;
1035 while (by_list || off < endoff) {
1036
1037 /*
1038 * if the current page is not interesting, move on to the next.
1039 */
1040
1041 KASSERT(pg == NULL || pg->uobject == uobj);
1042 KASSERT(pg == NULL ||
1043 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1044 (pg->flags & PG_BUSY) != 0);
1045 if (by_list) {
1046 if (pg == &endmp) {
1047 break;
1048 }
1049 if (pg->offset < startoff || pg->offset >= endoff ||
1050 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1051 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1052 wasclean = false;
1053 }
1054 pg = TAILQ_NEXT(pg, listq.queue);
1055 continue;
1056 }
1057 off = pg->offset;
1058 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1059 if (pg != NULL) {
1060 wasclean = false;
1061 }
1062 off += PAGE_SIZE;
1063 if (off < endoff) {
1064 pg = uvm_pagelookup(uobj, off);
1065 }
1066 continue;
1067 }
1068
1069 /*
1070 * if the current page needs to be cleaned and it's busy,
1071 * wait for it to become unbusy.
1072 */
1073
1074 yld = (l->l_cpu->ci_schedstate.spc_flags &
1075 SPCF_SHOULDYIELD) && !pagedaemon;
1076 if (pg->flags & PG_BUSY || yld) {
1077 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1078 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1079 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1080 error = EDEADLK;
1081 if (busypg != NULL)
1082 *busypg = pg;
1083 break;
1084 }
1085 if (pagedaemon) {
1086 /*
1087 * someone has taken the page while we
1088 * dropped the lock for fstrans_start.
1089 */
1090 break;
1091 }
1092 if (by_list) {
1093 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1094 UVMHIST_LOG(ubchist, "curmp next %p",
1095 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1096 }
1097 if (yld) {
1098 mutex_exit(slock);
1099 preempt();
1100 mutex_enter(slock);
1101 } else {
1102 pg->flags |= PG_WANTED;
1103 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1104 mutex_enter(slock);
1105 }
1106 if (by_list) {
1107 UVMHIST_LOG(ubchist, "after next %p",
1108 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1109 pg = TAILQ_NEXT(&curmp, listq.queue);
1110 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1111 } else {
1112 pg = uvm_pagelookup(uobj, off);
1113 }
1114 continue;
1115 }
1116
1117 /*
1118 * if we're freeing, remove all mappings of the page now.
1119 * if we're cleaning, check if the page is needs to be cleaned.
1120 */
1121
1122 if (flags & PGO_FREE) {
1123 pmap_page_protect(pg, VM_PROT_NONE);
1124 } else if (flags & PGO_CLEANIT) {
1125
1126 /*
1127 * if we still have some hope to pull this vnode off
1128 * from the syncer queue, write-protect the page.
1129 */
1130
1131 if (cleanall && wasclean &&
1132 gp->g_dirtygen == dirtygen) {
1133
1134 /*
1135 * uobj pages get wired only by uvm_fault
1136 * where uobj is locked.
1137 */
1138
1139 if (pg->wire_count == 0) {
1140 pmap_page_protect(pg,
1141 VM_PROT_READ|VM_PROT_EXECUTE);
1142 } else {
1143 cleanall = false;
1144 }
1145 }
1146 }
1147
1148 if (flags & PGO_CLEANIT) {
1149 needs_clean = pmap_clear_modify(pg) ||
1150 (pg->flags & PG_CLEAN) == 0;
1151 pg->flags |= PG_CLEAN;
1152 } else {
1153 needs_clean = false;
1154 }
1155
1156 /*
1157 * if we're cleaning, build a cluster.
1158 * the cluster will consist of pages which are currently dirty,
1159 * but they will be returned to us marked clean.
1160 * if not cleaning, just operate on the one page.
1161 */
1162
1163 if (needs_clean) {
1164 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1165 wasclean = false;
1166 memset(pgs, 0, sizeof(pgs));
1167 pg->flags |= PG_BUSY;
1168 UVM_PAGE_OWN(pg, "genfs_putpages");
1169
1170 /*
1171 * first look backward.
1172 */
1173
1174 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1175 nback = npages;
1176 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1177 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1178 if (nback) {
1179 memmove(&pgs[0], &pgs[npages - nback],
1180 nback * sizeof(pgs[0]));
1181 if (npages - nback < nback)
1182 memset(&pgs[nback], 0,
1183 (npages - nback) * sizeof(pgs[0]));
1184 else
1185 memset(&pgs[npages - nback], 0,
1186 nback * sizeof(pgs[0]));
1187 }
1188
1189 /*
1190 * then plug in our page of interest.
1191 */
1192
1193 pgs[nback] = pg;
1194
1195 /*
1196 * then look forward to fill in the remaining space in
1197 * the array of pages.
1198 */
1199
1200 npages = maxpages - nback - 1;
1201 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1202 &pgs[nback + 1],
1203 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1204 npages += nback + 1;
1205 } else {
1206 pgs[0] = pg;
1207 npages = 1;
1208 nback = 0;
1209 }
1210
1211 /*
1212 * apply FREE or DEACTIVATE options if requested.
1213 */
1214
1215 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1216 mutex_enter(&uvm_pageqlock);
1217 }
1218 for (i = 0; i < npages; i++) {
1219 tpg = pgs[i];
1220 KASSERT(tpg->uobject == uobj);
1221 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1222 pg = tpg;
1223 if (tpg->offset < startoff || tpg->offset >= endoff)
1224 continue;
1225 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1226 uvm_pagedeactivate(tpg);
1227 } else if (flags & PGO_FREE) {
1228 pmap_page_protect(tpg, VM_PROT_NONE);
1229 if (tpg->flags & PG_BUSY) {
1230 tpg->flags |= freeflag;
1231 if (pagedaemon) {
1232 uvm_pageout_start(1);
1233 uvm_pagedequeue(tpg);
1234 }
1235 } else {
1236
1237 /*
1238 * ``page is not busy''
1239 * implies that npages is 1
1240 * and needs_clean is false.
1241 */
1242
1243 nextpg = TAILQ_NEXT(tpg, listq.queue);
1244 uvm_pagefree(tpg);
1245 if (pagedaemon)
1246 uvmexp.pdfreed++;
1247 }
1248 }
1249 }
1250 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1251 mutex_exit(&uvm_pageqlock);
1252 }
1253 if (needs_clean) {
1254 modified = true;
1255
1256 /*
1257 * start the i/o. if we're traversing by list,
1258 * keep our place in the list with a marker page.
1259 */
1260
1261 if (by_list) {
1262 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1263 listq.queue);
1264 }
1265 mutex_exit(slock);
1266 error = GOP_WRITE(vp, pgs, npages, flags);
1267 mutex_enter(slock);
1268 if (by_list) {
1269 pg = TAILQ_NEXT(&curmp, listq.queue);
1270 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1271 }
1272 if (error) {
1273 break;
1274 }
1275 if (by_list) {
1276 continue;
1277 }
1278 }
1279
1280 /*
1281 * find the next page and continue if there was no error.
1282 */
1283
1284 if (by_list) {
1285 if (nextpg) {
1286 pg = nextpg;
1287 nextpg = NULL;
1288 } else {
1289 pg = TAILQ_NEXT(pg, listq.queue);
1290 }
1291 } else {
1292 off += (npages - nback) << PAGE_SHIFT;
1293 if (off < endoff) {
1294 pg = uvm_pagelookup(uobj, off);
1295 }
1296 }
1297 }
1298 if (by_list) {
1299 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1300 }
1301
1302 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1303 (vp->v_type != VBLK ||
1304 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1305 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1306 }
1307
1308 /*
1309 * if we're cleaning and there was nothing to clean,
1310 * take us off the syncer list. if we started any i/o
1311 * and we're doing sync i/o, wait for all writes to finish.
1312 */
1313
1314 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1315 (vp->v_iflag & VI_ONWORKLST) != 0) {
1316 #if defined(DEBUG)
1317 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1318 if ((pg->flags & PG_CLEAN) == 0) {
1319 printf("%s: %p: !CLEAN\n", __func__, pg);
1320 }
1321 if (pmap_is_modified(pg)) {
1322 printf("%s: %p: modified\n", __func__, pg);
1323 }
1324 }
1325 #endif /* defined(DEBUG) */
1326 vp->v_iflag &= ~VI_WRMAPDIRTY;
1327 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1328 vn_syncer_remove_from_worklist(vp);
1329 }
1330
1331 #if !defined(DEBUG)
1332 skip_scan:
1333 #endif /* !defined(DEBUG) */
1334
1335 /* Wait for output to complete. */
1336 if (!wasclean && !async && vp->v_numoutput != 0) {
1337 while (vp->v_numoutput != 0)
1338 cv_wait(&vp->v_cv, slock);
1339 }
1340 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1341 mutex_exit(slock);
1342
1343 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1344 /*
1345 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1346 * retrying is not a big deal because, in many cases,
1347 * uobj->uo_npages is already 0 here.
1348 */
1349 mutex_enter(slock);
1350 goto retry;
1351 }
1352
1353 if (has_trans) {
1354 if (need_wapbl)
1355 WAPBL_END(vp->v_mount);
1356 fstrans_done(vp->v_mount);
1357 }
1358
1359 return (error);
1360 }
1361
1362 int
1363 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1364 {
1365 off_t off;
1366 vaddr_t kva;
1367 size_t len;
1368 int error;
1369 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1370
1371 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1372 vp, pgs, npages, flags);
1373
1374 off = pgs[0]->offset;
1375 kva = uvm_pagermapin(pgs, npages,
1376 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1377 len = npages << PAGE_SHIFT;
1378
1379 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1380 uvm_aio_biodone);
1381
1382 return error;
1383 }
1384
1385 int
1386 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1387 {
1388 off_t off;
1389 vaddr_t kva;
1390 size_t len;
1391 int error;
1392 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1393
1394 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1395 vp, pgs, npages, flags);
1396
1397 off = pgs[0]->offset;
1398 kva = uvm_pagermapin(pgs, npages,
1399 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1400 len = npages << PAGE_SHIFT;
1401
1402 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1403 uvm_aio_biodone);
1404
1405 return error;
1406 }
1407
1408 /*
1409 * Backend routine for doing I/O to vnode pages. Pages are already locked
1410 * and mapped into kernel memory. Here we just look up the underlying
1411 * device block addresses and call the strategy routine.
1412 */
1413
1414 static int
1415 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1416 enum uio_rw rw, void (*iodone)(struct buf *))
1417 {
1418 int s, error;
1419 int fs_bshift, dev_bshift;
1420 off_t eof, offset, startoffset;
1421 size_t bytes, iobytes, skipbytes;
1422 struct buf *mbp, *bp;
1423 const bool async = (flags & PGO_SYNCIO) == 0;
1424 const bool iowrite = rw == UIO_WRITE;
1425 const int brw = iowrite ? B_WRITE : B_READ;
1426 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1427
1428 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1429 vp, kva, len, flags);
1430
1431 KASSERT(vp->v_size <= vp->v_writesize);
1432 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1433 if (vp->v_type != VBLK) {
1434 fs_bshift = vp->v_mount->mnt_fs_bshift;
1435 dev_bshift = vp->v_mount->mnt_dev_bshift;
1436 } else {
1437 fs_bshift = DEV_BSHIFT;
1438 dev_bshift = DEV_BSHIFT;
1439 }
1440 error = 0;
1441 startoffset = off;
1442 bytes = MIN(len, eof - startoffset);
1443 skipbytes = 0;
1444 KASSERT(bytes != 0);
1445
1446 if (iowrite) {
1447 mutex_enter(&vp->v_interlock);
1448 vp->v_numoutput += 2;
1449 mutex_exit(&vp->v_interlock);
1450 }
1451 mbp = getiobuf(vp, true);
1452 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1453 vp, mbp, vp->v_numoutput, bytes);
1454 mbp->b_bufsize = len;
1455 mbp->b_data = (void *)kva;
1456 mbp->b_resid = mbp->b_bcount = bytes;
1457 mbp->b_cflags = BC_BUSY | BC_AGE;
1458 if (async) {
1459 mbp->b_flags = brw | B_ASYNC;
1460 mbp->b_iodone = iodone;
1461 } else {
1462 mbp->b_flags = brw;
1463 mbp->b_iodone = NULL;
1464 }
1465 if (curlwp == uvm.pagedaemon_lwp)
1466 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1467 else if (async)
1468 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1469 else
1470 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1471
1472 bp = NULL;
1473 for (offset = startoffset;
1474 bytes > 0;
1475 offset += iobytes, bytes -= iobytes) {
1476 int run;
1477 daddr_t lbn, blkno;
1478 struct vnode *devvp;
1479
1480 /*
1481 * bmap the file to find out the blkno to read from and
1482 * how much we can read in one i/o. if bmap returns an error,
1483 * skip the rest of the top-level i/o.
1484 */
1485
1486 lbn = offset >> fs_bshift;
1487 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1488 if (error) {
1489 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1490 lbn,error,0,0);
1491 skipbytes += bytes;
1492 bytes = 0;
1493 goto loopdone;
1494 }
1495
1496 /*
1497 * see how many pages can be read with this i/o.
1498 * reduce the i/o size if necessary to avoid
1499 * overwriting pages with valid data.
1500 */
1501
1502 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1503 bytes);
1504
1505 /*
1506 * if this block isn't allocated, zero it instead of
1507 * reading it. unless we are going to allocate blocks,
1508 * mark the pages we zeroed PG_RDONLY.
1509 */
1510
1511 if (blkno == (daddr_t)-1) {
1512 if (!iowrite) {
1513 memset((char *)kva + (offset - startoffset), 0,
1514 iobytes);
1515 }
1516 skipbytes += iobytes;
1517 continue;
1518 }
1519
1520 /*
1521 * allocate a sub-buf for this piece of the i/o
1522 * (or just use mbp if there's only 1 piece),
1523 * and start it going.
1524 */
1525
1526 if (offset == startoffset && iobytes == bytes) {
1527 bp = mbp;
1528 } else {
1529 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1530 vp, bp, vp->v_numoutput, 0);
1531 bp = getiobuf(vp, true);
1532 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1533 }
1534 bp->b_lblkno = 0;
1535
1536 /* adjust physical blkno for partial blocks */
1537 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1538 dev_bshift);
1539
1540 UVMHIST_LOG(ubchist,
1541 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1542 bp, offset, bp->b_bcount, bp->b_blkno);
1543
1544 VOP_STRATEGY(devvp, bp);
1545 }
1546
1547 loopdone:
1548 if (skipbytes) {
1549 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1550 }
1551 nestiobuf_done(mbp, skipbytes, error);
1552 if (async) {
1553 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1554 return (0);
1555 }
1556 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1557 error = biowait(mbp);
1558 s = splbio();
1559 (*iodone)(mbp);
1560 splx(s);
1561 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1562 return (error);
1563 }
1564
1565 int
1566 genfs_compat_getpages(void *v)
1567 {
1568 struct vop_getpages_args /* {
1569 struct vnode *a_vp;
1570 voff_t a_offset;
1571 struct vm_page **a_m;
1572 int *a_count;
1573 int a_centeridx;
1574 vm_prot_t a_access_type;
1575 int a_advice;
1576 int a_flags;
1577 } */ *ap = v;
1578
1579 off_t origoffset;
1580 struct vnode *vp = ap->a_vp;
1581 struct uvm_object *uobj = &vp->v_uobj;
1582 struct vm_page *pg, **pgs;
1583 vaddr_t kva;
1584 int i, error, orignpages, npages;
1585 struct iovec iov;
1586 struct uio uio;
1587 kauth_cred_t cred = curlwp->l_cred;
1588 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1589
1590 error = 0;
1591 origoffset = ap->a_offset;
1592 orignpages = *ap->a_count;
1593 pgs = ap->a_m;
1594
1595 if (memwrite && (vp->v_iflag & VI_ONWORKLST) == 0) {
1596 vn_syncer_add_to_worklist(vp, filedelay);
1597 }
1598 if (ap->a_flags & PGO_LOCKED) {
1599 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1600 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1601
1602 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1603 }
1604 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1605 mutex_exit(&uobj->vmobjlock);
1606 return (EINVAL);
1607 }
1608 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1609 mutex_exit(&uobj->vmobjlock);
1610 return 0;
1611 }
1612 npages = orignpages;
1613 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1614 mutex_exit(&uobj->vmobjlock);
1615 kva = uvm_pagermapin(pgs, npages,
1616 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1617 for (i = 0; i < npages; i++) {
1618 pg = pgs[i];
1619 if ((pg->flags & PG_FAKE) == 0) {
1620 continue;
1621 }
1622 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1623 iov.iov_len = PAGE_SIZE;
1624 uio.uio_iov = &iov;
1625 uio.uio_iovcnt = 1;
1626 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1627 uio.uio_rw = UIO_READ;
1628 uio.uio_resid = PAGE_SIZE;
1629 UIO_SETUP_SYSSPACE(&uio);
1630 /* XXX vn_lock */
1631 error = VOP_READ(vp, &uio, 0, cred);
1632 if (error) {
1633 break;
1634 }
1635 if (uio.uio_resid) {
1636 memset(iov.iov_base, 0, uio.uio_resid);
1637 }
1638 }
1639 uvm_pagermapout(kva, npages);
1640 mutex_enter(&uobj->vmobjlock);
1641 mutex_enter(&uvm_pageqlock);
1642 for (i = 0; i < npages; i++) {
1643 pg = pgs[i];
1644 if (error && (pg->flags & PG_FAKE) != 0) {
1645 pg->flags |= PG_RELEASED;
1646 } else {
1647 pmap_clear_modify(pg);
1648 uvm_pageactivate(pg);
1649 }
1650 }
1651 if (error) {
1652 uvm_page_unbusy(pgs, npages);
1653 }
1654 mutex_exit(&uvm_pageqlock);
1655 mutex_exit(&uobj->vmobjlock);
1656 return (error);
1657 }
1658
1659 int
1660 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1661 int flags)
1662 {
1663 off_t offset;
1664 struct iovec iov;
1665 struct uio uio;
1666 kauth_cred_t cred = curlwp->l_cred;
1667 struct buf *bp;
1668 vaddr_t kva;
1669 int error;
1670
1671 offset = pgs[0]->offset;
1672 kva = uvm_pagermapin(pgs, npages,
1673 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1674
1675 iov.iov_base = (void *)kva;
1676 iov.iov_len = npages << PAGE_SHIFT;
1677 uio.uio_iov = &iov;
1678 uio.uio_iovcnt = 1;
1679 uio.uio_offset = offset;
1680 uio.uio_rw = UIO_WRITE;
1681 uio.uio_resid = npages << PAGE_SHIFT;
1682 UIO_SETUP_SYSSPACE(&uio);
1683 /* XXX vn_lock */
1684 error = VOP_WRITE(vp, &uio, 0, cred);
1685
1686 mutex_enter(&vp->v_interlock);
1687 vp->v_numoutput++;
1688 mutex_exit(&vp->v_interlock);
1689
1690 bp = getiobuf(vp, true);
1691 bp->b_cflags = BC_BUSY | BC_AGE;
1692 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1693 bp->b_data = (char *)kva;
1694 bp->b_bcount = npages << PAGE_SHIFT;
1695 bp->b_bufsize = npages << PAGE_SHIFT;
1696 bp->b_resid = 0;
1697 bp->b_error = error;
1698 uvm_aio_aiodone(bp);
1699 return (error);
1700 }
1701
1702 /*
1703 * Process a uio using direct I/O. If we reach a part of the request
1704 * which cannot be processed in this fashion for some reason, just return.
1705 * The caller must handle some additional part of the request using
1706 * buffered I/O before trying direct I/O again.
1707 */
1708
1709 void
1710 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1711 {
1712 struct vmspace *vs;
1713 struct iovec *iov;
1714 vaddr_t va;
1715 size_t len;
1716 const int mask = DEV_BSIZE - 1;
1717 int error;
1718 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1719 (ioflag & IO_JOURNALLOCKED) == 0);
1720
1721 /*
1722 * We only support direct I/O to user space for now.
1723 */
1724
1725 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1726 return;
1727 }
1728
1729 /*
1730 * If the vnode is mapped, we would need to get the getpages lock
1731 * to stabilize the bmap, but then we would get into trouble whil e
1732 * locking the pages if the pages belong to this same vnode (or a
1733 * multi-vnode cascade to the same effect). Just fall back to
1734 * buffered I/O if the vnode is mapped to avoid this mess.
1735 */
1736
1737 if (vp->v_vflag & VV_MAPPED) {
1738 return;
1739 }
1740
1741 if (need_wapbl) {
1742 error = WAPBL_BEGIN(vp->v_mount);
1743 if (error)
1744 return;
1745 }
1746
1747 /*
1748 * Do as much of the uio as possible with direct I/O.
1749 */
1750
1751 vs = uio->uio_vmspace;
1752 while (uio->uio_resid) {
1753 iov = uio->uio_iov;
1754 if (iov->iov_len == 0) {
1755 uio->uio_iov++;
1756 uio->uio_iovcnt--;
1757 continue;
1758 }
1759 va = (vaddr_t)iov->iov_base;
1760 len = MIN(iov->iov_len, genfs_maxdio);
1761 len &= ~mask;
1762
1763 /*
1764 * If the next chunk is smaller than DEV_BSIZE or extends past
1765 * the current EOF, then fall back to buffered I/O.
1766 */
1767
1768 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1769 break;
1770 }
1771
1772 /*
1773 * Check alignment. The file offset must be at least
1774 * sector-aligned. The exact constraint on memory alignment
1775 * is very hardware-dependent, but requiring sector-aligned
1776 * addresses there too is safe.
1777 */
1778
1779 if (uio->uio_offset & mask || va & mask) {
1780 break;
1781 }
1782 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1783 uio->uio_rw);
1784 if (error) {
1785 break;
1786 }
1787 iov->iov_base = (char *)iov->iov_base + len;
1788 iov->iov_len -= len;
1789 uio->uio_offset += len;
1790 uio->uio_resid -= len;
1791 }
1792
1793 if (need_wapbl)
1794 WAPBL_END(vp->v_mount);
1795 }
1796
1797 /*
1798 * Iodone routine for direct I/O. We don't do much here since the request is
1799 * always synchronous, so the caller will do most of the work after biowait().
1800 */
1801
1802 static void
1803 genfs_dio_iodone(struct buf *bp)
1804 {
1805
1806 KASSERT((bp->b_flags & B_ASYNC) == 0);
1807 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1808 mutex_enter(bp->b_objlock);
1809 vwakeup(bp);
1810 mutex_exit(bp->b_objlock);
1811 }
1812 putiobuf(bp);
1813 }
1814
1815 /*
1816 * Process one chunk of a direct I/O request.
1817 */
1818
1819 static int
1820 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1821 off_t off, enum uio_rw rw)
1822 {
1823 struct vm_map *map;
1824 struct pmap *upm, *kpm;
1825 size_t klen = round_page(uva + len) - trunc_page(uva);
1826 off_t spoff, epoff;
1827 vaddr_t kva, puva;
1828 paddr_t pa;
1829 vm_prot_t prot;
1830 int error, rv, poff, koff;
1831 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1832 (rw == UIO_WRITE ? PGO_FREE : 0);
1833
1834 /*
1835 * For writes, verify that this range of the file already has fully
1836 * allocated backing store. If there are any holes, just punt and
1837 * make the caller take the buffered write path.
1838 */
1839
1840 if (rw == UIO_WRITE) {
1841 daddr_t lbn, elbn, blkno;
1842 int bsize, bshift, run;
1843
1844 bshift = vp->v_mount->mnt_fs_bshift;
1845 bsize = 1 << bshift;
1846 lbn = off >> bshift;
1847 elbn = (off + len + bsize - 1) >> bshift;
1848 while (lbn < elbn) {
1849 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1850 if (error) {
1851 return error;
1852 }
1853 if (blkno == (daddr_t)-1) {
1854 return ENOSPC;
1855 }
1856 lbn += 1 + run;
1857 }
1858 }
1859
1860 /*
1861 * Flush any cached pages for parts of the file that we're about to
1862 * access. If we're writing, invalidate pages as well.
1863 */
1864
1865 spoff = trunc_page(off);
1866 epoff = round_page(off + len);
1867 mutex_enter(&vp->v_interlock);
1868 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1869 if (error) {
1870 return error;
1871 }
1872
1873 /*
1874 * Wire the user pages and remap them into kernel memory.
1875 */
1876
1877 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1878 error = uvm_vslock(vs, (void *)uva, len, prot);
1879 if (error) {
1880 return error;
1881 }
1882
1883 map = &vs->vm_map;
1884 upm = vm_map_pmap(map);
1885 kpm = vm_map_pmap(kernel_map);
1886 kva = uvm_km_alloc(kernel_map, klen, 0,
1887 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1888 puva = trunc_page(uva);
1889 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1890 rv = pmap_extract(upm, puva + poff, &pa);
1891 KASSERT(rv);
1892 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1893 }
1894 pmap_update(kpm);
1895
1896 /*
1897 * Do the I/O.
1898 */
1899
1900 koff = uva - trunc_page(uva);
1901 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1902 genfs_dio_iodone);
1903
1904 /*
1905 * Tear down the kernel mapping.
1906 */
1907
1908 pmap_remove(kpm, kva, kva + klen);
1909 pmap_update(kpm);
1910 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1911
1912 /*
1913 * Unwire the user pages.
1914 */
1915
1916 uvm_vsunlock(vs, (void *)uva, len);
1917 return error;
1918 }
1919
1920