genfs_io.c revision 1.43 1 /* $NetBSD: genfs_io.c,v 1.43 2010/11/19 05:38:10 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.43 2010/11/19 05:38:10 uebayasi Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static void genfs_rel_pages(struct vm_page **, int);
66 static void genfs_markdirty(struct vnode *);
67
68 int genfs_maxdio = MAXPHYS;
69
70 static void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 int i;
74
75 for (i = 0; i < npages; i++) {
76 struct vm_page *pg = pgs[i];
77
78 if (pg == NULL || pg == PGO_DONTCARE)
79 continue;
80 if (pg->flags & PG_FAKE) {
81 pg->flags |= PG_RELEASED;
82 }
83 }
84 mutex_enter(&uvm_pageqlock);
85 uvm_page_unbusy(pgs, npages);
86 mutex_exit(&uvm_pageqlock);
87 }
88
89 static void
90 genfs_markdirty(struct vnode *vp)
91 {
92 struct genfs_node * const gp = VTOG(vp);
93
94 KASSERT(mutex_owned(&vp->v_interlock));
95 gp->g_dirtygen++;
96 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
97 vn_syncer_add_to_worklist(vp, filedelay);
98 }
99 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
100 vp->v_iflag |= VI_WRMAPDIRTY;
101 }
102 }
103
104 /*
105 * generic VM getpages routine.
106 * Return PG_BUSY pages for the given range,
107 * reading from backing store if necessary.
108 */
109
110 int
111 genfs_getpages(void *v)
112 {
113 struct vop_getpages_args /* {
114 struct vnode *a_vp;
115 voff_t a_offset;
116 struct vm_page **a_m;
117 int *a_count;
118 int a_centeridx;
119 vm_prot_t a_access_type;
120 int a_advice;
121 int a_flags;
122 } */ * const ap = v;
123
124 off_t diskeof, memeof;
125 int i, error, npages;
126 const int flags = ap->a_flags;
127 struct vnode * const vp = ap->a_vp;
128 struct uvm_object * const uobj = &vp->v_uobj;
129 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
130 const bool async = (flags & PGO_SYNCIO) == 0;
131 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
132 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
133 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
134 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
135 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
136 bool has_trans_wapbl = false;
137 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
138
139 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
140 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
141
142 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
143 vp->v_type == VLNK || vp->v_type == VBLK);
144
145 startover:
146 error = 0;
147 const voff_t origvsize = vp->v_size;
148 const off_t origoffset = ap->a_offset;
149 const int orignpages = *ap->a_count;
150
151 GOP_SIZE(vp, origvsize, &diskeof, 0);
152 if (flags & PGO_PASTEOF) {
153 off_t newsize;
154 #if defined(DIAGNOSTIC)
155 off_t writeeof;
156 #endif /* defined(DIAGNOSTIC) */
157
158 newsize = MAX(origvsize,
159 origoffset + (orignpages << PAGE_SHIFT));
160 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
161 #if defined(DIAGNOSTIC)
162 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
163 if (newsize > round_page(writeeof)) {
164 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
165 __func__, newsize, round_page(writeeof));
166 }
167 #endif /* defined(DIAGNOSTIC) */
168 } else {
169 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
170 }
171 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
172 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
173 KASSERT(orignpages > 0);
174
175 /*
176 * Bounds-check the request.
177 */
178
179 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
180 if ((flags & PGO_LOCKED) == 0) {
181 mutex_exit(&uobj->vmobjlock);
182 }
183 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
184 origoffset, *ap->a_count, memeof,0);
185 error = EINVAL;
186 goto out_err;
187 }
188
189 /* uobj is locked */
190
191 if ((flags & PGO_NOTIMESTAMP) == 0 &&
192 (vp->v_type != VBLK ||
193 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
194 int updflags = 0;
195
196 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
197 updflags = GOP_UPDATE_ACCESSED;
198 }
199 if (memwrite) {
200 updflags |= GOP_UPDATE_MODIFIED;
201 }
202 if (updflags != 0) {
203 GOP_MARKUPDATE(vp, updflags);
204 }
205 }
206
207 /*
208 * For PGO_LOCKED requests, just return whatever's in memory.
209 */
210
211 if (flags & PGO_LOCKED) {
212 int nfound;
213 struct vm_page *pg;
214
215 KASSERT(!glocked);
216 npages = *ap->a_count;
217 #if defined(DEBUG)
218 for (i = 0; i < npages; i++) {
219 pg = ap->a_m[i];
220 KASSERT(pg == NULL || pg == PGO_DONTCARE);
221 }
222 #endif /* defined(DEBUG) */
223 nfound = uvn_findpages(uobj, origoffset, &npages,
224 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
225 KASSERT(npages == *ap->a_count);
226 if (nfound == 0) {
227 error = EBUSY;
228 goto out_err;
229 }
230 if (!genfs_node_rdtrylock(vp)) {
231 genfs_rel_pages(ap->a_m, npages);
232
233 /*
234 * restore the array.
235 */
236
237 for (i = 0; i < npages; i++) {
238 pg = ap->a_m[i];
239
240 if (pg != NULL && pg != PGO_DONTCARE) {
241 ap->a_m[i] = NULL;
242 }
243 KASSERT(pg == NULL || pg == PGO_DONTCARE);
244 }
245 } else {
246 genfs_node_unlock(vp);
247 }
248 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
249 if (error == 0 && memwrite) {
250 genfs_markdirty(vp);
251 }
252 goto out_err;
253 }
254 mutex_exit(&uobj->vmobjlock);
255
256 /*
257 * find the requested pages and make some simple checks.
258 * leave space in the page array for a whole block.
259 */
260
261 const int fs_bshift = (vp->v_type != VBLK) ?
262 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
263 const int dev_bshift = (vp->v_type != VBLK) ?
264 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
265 const int fs_bsize = 1 << fs_bshift;
266 #define blk_mask (fs_bsize - 1)
267 #define trunc_blk(x) ((x) & ~blk_mask)
268 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
269
270 const int orignmempages = MIN(orignpages,
271 round_page(memeof - origoffset) >> PAGE_SHIFT);
272 npages = orignmempages;
273 const off_t startoffset = trunc_blk(origoffset);
274 const off_t endoffset = MIN(
275 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
276 round_page(memeof));
277 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
278
279 const int pgs_size = sizeof(struct vm_page *) *
280 ((endoffset - startoffset) >> PAGE_SHIFT);
281 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
282
283 if (pgs_size > sizeof(pgs_onstack)) {
284 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
285 if (pgs == NULL) {
286 pgs = pgs_onstack;
287 error = ENOMEM;
288 goto out_err;
289 }
290 } else {
291 pgs = pgs_onstack;
292 (void)memset(pgs, 0, pgs_size);
293 }
294
295 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
296 ridx, npages, startoffset, endoffset);
297
298 if (!has_trans_wapbl) {
299 fstrans_start(vp->v_mount, FSTRANS_SHARED);
300 /*
301 * XXX: This assumes that we come here only via
302 * the mmio path
303 */
304 if (need_wapbl) {
305 error = WAPBL_BEGIN(vp->v_mount);
306 if (error) {
307 fstrans_done(vp->v_mount);
308 goto out_err_free;
309 }
310 }
311 has_trans_wapbl = true;
312 }
313
314 /*
315 * hold g_glock to prevent a race with truncate.
316 *
317 * check if our idea of v_size is still valid.
318 */
319
320 KASSERT(!glocked || genfs_node_wrlocked(vp));
321 if (!glocked) {
322 if (blockalloc) {
323 genfs_node_wrlock(vp);
324 } else {
325 genfs_node_rdlock(vp);
326 }
327 }
328 mutex_enter(&uobj->vmobjlock);
329 if (vp->v_size < origvsize) {
330 if (!glocked) {
331 genfs_node_unlock(vp);
332 }
333 if (pgs != pgs_onstack)
334 kmem_free(pgs, pgs_size);
335 goto startover;
336 }
337
338 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
339 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
340 if (!glocked) {
341 genfs_node_unlock(vp);
342 }
343 KASSERT(async != 0);
344 genfs_rel_pages(&pgs[ridx], orignmempages);
345 mutex_exit(&uobj->vmobjlock);
346 error = EBUSY;
347 goto out_err_free;
348 }
349
350 /*
351 * if the pages are already resident, just return them.
352 */
353
354 for (i = 0; i < npages; i++) {
355 struct vm_page *pg = pgs[ridx + i];
356
357 if ((pg->flags & PG_FAKE) ||
358 (blockalloc && (pg->flags & PG_RDONLY))) {
359 break;
360 }
361 }
362 if (i == npages) {
363 if (!glocked) {
364 genfs_node_unlock(vp);
365 }
366 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
367 npages += ridx;
368 goto out;
369 }
370
371 /*
372 * if PGO_OVERWRITE is set, don't bother reading the pages.
373 */
374
375 if (overwrite) {
376 if (!glocked) {
377 genfs_node_unlock(vp);
378 }
379 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
380
381 for (i = 0; i < npages; i++) {
382 struct vm_page *pg = pgs[ridx + i];
383
384 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
385 }
386 npages += ridx;
387 goto out;
388 }
389
390 /*
391 * the page wasn't resident and we're not overwriting,
392 * so we're going to have to do some i/o.
393 * find any additional pages needed to cover the expanded range.
394 */
395
396 npages = (endoffset - startoffset) >> PAGE_SHIFT;
397 if (startoffset != origoffset || npages != orignmempages) {
398 int npgs;
399
400 /*
401 * we need to avoid deadlocks caused by locking
402 * additional pages at lower offsets than pages we
403 * already have locked. unlock them all and start over.
404 */
405
406 genfs_rel_pages(&pgs[ridx], orignmempages);
407 memset(pgs, 0, pgs_size);
408
409 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
410 startoffset, endoffset, 0,0);
411 npgs = npages;
412 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
413 async ? UFP_NOWAIT : UFP_ALL) != npages) {
414 if (!glocked) {
415 genfs_node_unlock(vp);
416 }
417 KASSERT(async != 0);
418 genfs_rel_pages(pgs, npages);
419 mutex_exit(&uobj->vmobjlock);
420 error = EBUSY;
421 goto out_err_free;
422 }
423 }
424
425 mutex_exit(&uobj->vmobjlock);
426
427 {
428 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
429 vaddr_t kva;
430 struct buf *bp, *mbp;
431 bool sawhole = false;
432
433 /*
434 * read the desired page(s).
435 */
436
437 totalbytes = npages << PAGE_SHIFT;
438 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
439 tailbytes = totalbytes - bytes;
440 skipbytes = 0;
441
442 kva = uvm_pagermapin(pgs, npages,
443 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
444
445 mbp = getiobuf(vp, true);
446 mbp->b_bufsize = totalbytes;
447 mbp->b_data = (void *)kva;
448 mbp->b_resid = mbp->b_bcount = bytes;
449 mbp->b_cflags = BC_BUSY;
450 if (async) {
451 mbp->b_flags = B_READ | B_ASYNC;
452 mbp->b_iodone = uvm_aio_biodone;
453 } else {
454 mbp->b_flags = B_READ;
455 mbp->b_iodone = NULL;
456 }
457 if (async)
458 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
459 else
460 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
461
462 /*
463 * if EOF is in the middle of the range, zero the part past EOF.
464 * skip over pages which are not PG_FAKE since in that case they have
465 * valid data that we need to preserve.
466 */
467
468 tailstart = bytes;
469 while (tailbytes > 0) {
470 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
471
472 KASSERT(len <= tailbytes);
473 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
474 memset((void *)(kva + tailstart), 0, len);
475 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
476 kva, tailstart, len, 0);
477 }
478 tailstart += len;
479 tailbytes -= len;
480 }
481
482 /*
483 * now loop over the pages, reading as needed.
484 */
485
486 bp = NULL;
487 off_t offset;
488 for (offset = startoffset;
489 bytes > 0;
490 offset += iobytes, bytes -= iobytes) {
491 int run;
492 daddr_t lbn, blkno;
493 int pidx;
494 struct vnode *devvp;
495
496 /*
497 * skip pages which don't need to be read.
498 */
499
500 pidx = (offset - startoffset) >> PAGE_SHIFT;
501 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
502 size_t b;
503
504 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
505 if ((pgs[pidx]->flags & PG_RDONLY)) {
506 sawhole = true;
507 }
508 b = MIN(PAGE_SIZE, bytes);
509 offset += b;
510 bytes -= b;
511 skipbytes += b;
512 pidx++;
513 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
514 offset, 0,0,0);
515 if (bytes == 0) {
516 goto loopdone;
517 }
518 }
519
520 /*
521 * bmap the file to find out the blkno to read from and
522 * how much we can read in one i/o. if bmap returns an error,
523 * skip the rest of the top-level i/o.
524 */
525
526 lbn = offset >> fs_bshift;
527 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
528 if (error) {
529 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
530 lbn,error,0,0);
531 skipbytes += bytes;
532 bytes = 0;
533 goto loopdone;
534 }
535
536 /*
537 * see how many pages can be read with this i/o.
538 * reduce the i/o size if necessary to avoid
539 * overwriting pages with valid data.
540 */
541
542 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
543 bytes);
544 if (offset + iobytes > round_page(offset)) {
545 int pcount;
546
547 pcount = 1;
548 while (pidx + pcount < npages &&
549 pgs[pidx + pcount]->flags & PG_FAKE) {
550 pcount++;
551 }
552 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
553 (offset - trunc_page(offset)));
554 }
555
556 /*
557 * if this block isn't allocated, zero it instead of
558 * reading it. unless we are going to allocate blocks,
559 * mark the pages we zeroed PG_RDONLY.
560 */
561
562 if (blkno == (daddr_t)-1) {
563 int holepages = (round_page(offset + iobytes) -
564 trunc_page(offset)) >> PAGE_SHIFT;
565 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
566
567 sawhole = true;
568 memset((char *)kva + (offset - startoffset), 0,
569 iobytes);
570 skipbytes += iobytes;
571
572 for (i = 0; i < holepages; i++) {
573 if (memwrite) {
574 pgs[pidx + i]->flags &= ~PG_CLEAN;
575 }
576 if (!blockalloc) {
577 pgs[pidx + i]->flags |= PG_RDONLY;
578 }
579 }
580 continue;
581 }
582
583 /*
584 * allocate a sub-buf for this piece of the i/o
585 * (or just use mbp if there's only 1 piece),
586 * and start it going.
587 */
588
589 if (offset == startoffset && iobytes == bytes) {
590 bp = mbp;
591 } else {
592 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
593 vp, bp, vp->v_numoutput, 0);
594 bp = getiobuf(vp, true);
595 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
596 }
597 bp->b_lblkno = 0;
598
599 /* adjust physical blkno for partial blocks */
600 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
601 dev_bshift);
602
603 UVMHIST_LOG(ubchist,
604 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
605 bp, offset, bp->b_bcount, bp->b_blkno);
606
607 VOP_STRATEGY(devvp, bp);
608 }
609
610 loopdone:
611 nestiobuf_done(mbp, skipbytes, error);
612 if (async) {
613 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
614 if (!glocked) {
615 genfs_node_unlock(vp);
616 }
617 error = 0;
618 goto out_err_free;
619 }
620 if (bp != NULL) {
621 error = biowait(mbp);
622 }
623
624 /* Remove the mapping (make KVA available as soon as possible) */
625 uvm_pagermapout(kva, npages);
626
627 /*
628 * if this we encountered a hole then we have to do a little more work.
629 * for read faults, we marked the page PG_RDONLY so that future
630 * write accesses to the page will fault again.
631 * for write faults, we must make sure that the backing store for
632 * the page is completely allocated while the pages are locked.
633 */
634
635 if (!error && sawhole && blockalloc) {
636 error = GOP_ALLOC(vp, startoffset,
637 npages << PAGE_SHIFT, 0, cred);
638 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
639 startoffset, npages << PAGE_SHIFT, error,0);
640 if (!error) {
641 for (i = 0; i < npages; i++) {
642 struct vm_page *pg = pgs[i];
643
644 if (pg == NULL) {
645 continue;
646 }
647 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
648 UVMHIST_LOG(ubchist, "mark dirty pg %p",
649 pg,0,0,0);
650 }
651 }
652 }
653 if (!glocked) {
654 genfs_node_unlock(vp);
655 }
656
657 putiobuf(mbp);
658 }
659
660 mutex_enter(&uobj->vmobjlock);
661
662 /*
663 * we're almost done! release the pages...
664 * for errors, we free the pages.
665 * otherwise we activate them and mark them as valid and clean.
666 * also, unbusy pages that were not actually requested.
667 */
668
669 if (error) {
670 for (i = 0; i < npages; i++) {
671 struct vm_page *pg = pgs[i];
672
673 if (pg == NULL) {
674 continue;
675 }
676 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
677 pg, pg->flags, 0,0);
678 if (pg->flags & PG_FAKE) {
679 pg->flags |= PG_RELEASED;
680 }
681 }
682 mutex_enter(&uvm_pageqlock);
683 uvm_page_unbusy(pgs, npages);
684 mutex_exit(&uvm_pageqlock);
685 mutex_exit(&uobj->vmobjlock);
686 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
687 goto out_err_free;
688 }
689
690 out:
691 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
692 error = 0;
693 mutex_enter(&uvm_pageqlock);
694 for (i = 0; i < npages; i++) {
695 struct vm_page *pg = pgs[i];
696 if (pg == NULL) {
697 continue;
698 }
699 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
700 pg, pg->flags, 0,0);
701 if (pg->flags & PG_FAKE && !overwrite) {
702 pg->flags &= ~(PG_FAKE);
703 pmap_clear_modify(pgs[i]);
704 }
705 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
706 if (i < ridx || i >= ridx + orignmempages || async) {
707 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
708 pg, pg->offset,0,0);
709 if (pg->flags & PG_WANTED) {
710 wakeup(pg);
711 }
712 if (pg->flags & PG_FAKE) {
713 KASSERT(overwrite);
714 uvm_pagezero(pg);
715 }
716 if (pg->flags & PG_RELEASED) {
717 uvm_pagefree(pg);
718 continue;
719 }
720 uvm_pageenqueue(pg);
721 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
722 UVM_PAGE_OWN(pg, NULL);
723 }
724 }
725 mutex_exit(&uvm_pageqlock);
726 if (memwrite) {
727 genfs_markdirty(vp);
728 }
729 mutex_exit(&uobj->vmobjlock);
730 if (ap->a_m != NULL) {
731 memcpy(ap->a_m, &pgs[ridx],
732 orignmempages * sizeof(struct vm_page *));
733 }
734
735 out_err_free:
736 if (pgs != NULL && pgs != pgs_onstack)
737 kmem_free(pgs, pgs_size);
738 out_err:
739 if (has_trans_wapbl) {
740 if (need_wapbl)
741 WAPBL_END(vp->v_mount);
742 fstrans_done(vp->v_mount);
743 }
744 return error;
745 }
746
747 /*
748 * generic VM putpages routine.
749 * Write the given range of pages to backing store.
750 *
751 * => "offhi == 0" means flush all pages at or after "offlo".
752 * => object should be locked by caller. we return with the
753 * object unlocked.
754 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
755 * thus, a caller might want to unlock higher level resources
756 * (e.g. vm_map) before calling flush.
757 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
758 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
759 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
760 * that new pages are inserted on the tail end of the list. thus,
761 * we can make a complete pass through the object in one go by starting
762 * at the head and working towards the tail (new pages are put in
763 * front of us).
764 * => NOTE: we are allowed to lock the page queues, so the caller
765 * must not be holding the page queue lock.
766 *
767 * note on "cleaning" object and PG_BUSY pages:
768 * this routine is holding the lock on the object. the only time
769 * that it can run into a PG_BUSY page that it does not own is if
770 * some other process has started I/O on the page (e.g. either
771 * a pagein, or a pageout). if the PG_BUSY page is being paged
772 * in, then it can not be dirty (!PG_CLEAN) because no one has
773 * had a chance to modify it yet. if the PG_BUSY page is being
774 * paged out then it means that someone else has already started
775 * cleaning the page for us (how nice!). in this case, if we
776 * have syncio specified, then after we make our pass through the
777 * object we need to wait for the other PG_BUSY pages to clear
778 * off (i.e. we need to do an iosync). also note that once a
779 * page is PG_BUSY it must stay in its object until it is un-busyed.
780 *
781 * note on page traversal:
782 * we can traverse the pages in an object either by going down the
783 * linked list in "uobj->memq", or we can go over the address range
784 * by page doing hash table lookups for each address. depending
785 * on how many pages are in the object it may be cheaper to do one
786 * or the other. we set "by_list" to true if we are using memq.
787 * if the cost of a hash lookup was equal to the cost of the list
788 * traversal we could compare the number of pages in the start->stop
789 * range to the total number of pages in the object. however, it
790 * seems that a hash table lookup is more expensive than the linked
791 * list traversal, so we multiply the number of pages in the
792 * range by an estimate of the relatively higher cost of the hash lookup.
793 */
794
795 int
796 genfs_putpages(void *v)
797 {
798 struct vop_putpages_args /* {
799 struct vnode *a_vp;
800 voff_t a_offlo;
801 voff_t a_offhi;
802 int a_flags;
803 } */ * const ap = v;
804
805 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
806 ap->a_flags, NULL);
807 }
808
809 int
810 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
811 int origflags, struct vm_page **busypg)
812 {
813 struct uvm_object * const uobj = &vp->v_uobj;
814 kmutex_t * const slock = &uobj->vmobjlock;
815 off_t off;
816 /* Even for strange MAXPHYS, the shift rounds down to a page */
817 #define maxpages (MAXPHYS >> PAGE_SHIFT)
818 int i, error, npages, nback;
819 int freeflag;
820 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
821 bool wasclean, by_list, needs_clean, yld;
822 bool async = (origflags & PGO_SYNCIO) == 0;
823 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
824 struct lwp * const l = curlwp ? curlwp : &lwp0;
825 struct genfs_node * const gp = VTOG(vp);
826 int flags;
827 int dirtygen;
828 bool modified;
829 bool need_wapbl;
830 bool has_trans;
831 bool cleanall;
832 bool onworklst;
833
834 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
835
836 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
837 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
838 KASSERT(startoff < endoff || endoff == 0);
839
840 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
841 vp, uobj->uo_npages, startoff, endoff - startoff);
842
843 has_trans = false;
844 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
845 (origflags & PGO_JOURNALLOCKED) == 0);
846
847 retry:
848 modified = false;
849 flags = origflags;
850 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
851 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
852 if (uobj->uo_npages == 0) {
853 if (vp->v_iflag & VI_ONWORKLST) {
854 vp->v_iflag &= ~VI_WRMAPDIRTY;
855 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
856 vn_syncer_remove_from_worklist(vp);
857 }
858 if (has_trans) {
859 if (need_wapbl)
860 WAPBL_END(vp->v_mount);
861 fstrans_done(vp->v_mount);
862 }
863 mutex_exit(slock);
864 return (0);
865 }
866
867 /*
868 * the vnode has pages, set up to process the request.
869 */
870
871 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
872 mutex_exit(slock);
873 if (pagedaemon) {
874 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
875 if (error)
876 return error;
877 } else
878 fstrans_start(vp->v_mount, FSTRANS_LAZY);
879 if (need_wapbl) {
880 error = WAPBL_BEGIN(vp->v_mount);
881 if (error) {
882 fstrans_done(vp->v_mount);
883 return error;
884 }
885 }
886 has_trans = true;
887 mutex_enter(slock);
888 goto retry;
889 }
890
891 error = 0;
892 wasclean = (vp->v_numoutput == 0);
893 off = startoff;
894 if (endoff == 0 || flags & PGO_ALLPAGES) {
895 endoff = trunc_page(LLONG_MAX);
896 }
897 by_list = (uobj->uo_npages <=
898 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
899
900 #if !defined(DEBUG)
901 /*
902 * if this vnode is known not to have dirty pages,
903 * don't bother to clean it out.
904 */
905
906 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
907 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
908 goto skip_scan;
909 }
910 flags &= ~PGO_CLEANIT;
911 }
912 #endif /* !defined(DEBUG) */
913
914 /*
915 * start the loop. when scanning by list, hold the last page
916 * in the list before we start. pages allocated after we start
917 * will be added to the end of the list, so we can stop at the
918 * current last page.
919 */
920
921 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
922 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
923 (vp->v_iflag & VI_ONWORKLST) != 0;
924 dirtygen = gp->g_dirtygen;
925 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
926 if (by_list) {
927 curmp.flags = PG_MARKER;
928 endmp.flags = PG_MARKER;
929 pg = TAILQ_FIRST(&uobj->memq);
930 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
931 } else {
932 pg = uvm_pagelookup(uobj, off);
933 }
934 nextpg = NULL;
935 while (by_list || off < endoff) {
936
937 /*
938 * if the current page is not interesting, move on to the next.
939 */
940
941 KASSERT(pg == NULL || pg->uobject == uobj ||
942 (pg->flags & PG_MARKER) != 0);
943 KASSERT(pg == NULL ||
944 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
945 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
946 if (by_list) {
947 if (pg == &endmp) {
948 break;
949 }
950 if (pg->flags & PG_MARKER) {
951 pg = TAILQ_NEXT(pg, listq.queue);
952 continue;
953 }
954 if (pg->offset < startoff || pg->offset >= endoff ||
955 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
956 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
957 wasclean = false;
958 }
959 pg = TAILQ_NEXT(pg, listq.queue);
960 continue;
961 }
962 off = pg->offset;
963 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
964 if (pg != NULL) {
965 wasclean = false;
966 }
967 off += PAGE_SIZE;
968 if (off < endoff) {
969 pg = uvm_pagelookup(uobj, off);
970 }
971 continue;
972 }
973
974 /*
975 * if the current page needs to be cleaned and it's busy,
976 * wait for it to become unbusy.
977 */
978
979 yld = (l->l_cpu->ci_schedstate.spc_flags &
980 SPCF_SHOULDYIELD) && !pagedaemon;
981 if (pg->flags & PG_BUSY || yld) {
982 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
983 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
984 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
985 error = EDEADLK;
986 if (busypg != NULL)
987 *busypg = pg;
988 break;
989 }
990 if (pagedaemon) {
991 /*
992 * someone has taken the page while we
993 * dropped the lock for fstrans_start.
994 */
995 break;
996 }
997 if (by_list) {
998 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
999 UVMHIST_LOG(ubchist, "curmp next %p",
1000 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1001 }
1002 if (yld) {
1003 mutex_exit(slock);
1004 preempt();
1005 mutex_enter(slock);
1006 } else {
1007 pg->flags |= PG_WANTED;
1008 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1009 mutex_enter(slock);
1010 }
1011 if (by_list) {
1012 UVMHIST_LOG(ubchist, "after next %p",
1013 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1014 pg = TAILQ_NEXT(&curmp, listq.queue);
1015 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1016 } else {
1017 pg = uvm_pagelookup(uobj, off);
1018 }
1019 continue;
1020 }
1021
1022 /*
1023 * if we're freeing, remove all mappings of the page now.
1024 * if we're cleaning, check if the page is needs to be cleaned.
1025 */
1026
1027 if (flags & PGO_FREE) {
1028 pmap_page_protect(pg, VM_PROT_NONE);
1029 } else if (flags & PGO_CLEANIT) {
1030
1031 /*
1032 * if we still have some hope to pull this vnode off
1033 * from the syncer queue, write-protect the page.
1034 */
1035
1036 if (cleanall && wasclean &&
1037 gp->g_dirtygen == dirtygen) {
1038
1039 /*
1040 * uobj pages get wired only by uvm_fault
1041 * where uobj is locked.
1042 */
1043
1044 if (pg->wire_count == 0) {
1045 pmap_page_protect(pg,
1046 VM_PROT_READ|VM_PROT_EXECUTE);
1047 } else {
1048 cleanall = false;
1049 }
1050 }
1051 }
1052
1053 if (flags & PGO_CLEANIT) {
1054 needs_clean = pmap_clear_modify(pg) ||
1055 (pg->flags & PG_CLEAN) == 0;
1056 pg->flags |= PG_CLEAN;
1057 } else {
1058 needs_clean = false;
1059 }
1060
1061 /*
1062 * if we're cleaning, build a cluster.
1063 * the cluster will consist of pages which are currently dirty,
1064 * but they will be returned to us marked clean.
1065 * if not cleaning, just operate on the one page.
1066 */
1067
1068 if (needs_clean) {
1069 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1070 wasclean = false;
1071 memset(pgs, 0, sizeof(pgs));
1072 pg->flags |= PG_BUSY;
1073 UVM_PAGE_OWN(pg, "genfs_putpages");
1074
1075 /*
1076 * first look backward.
1077 */
1078
1079 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1080 nback = npages;
1081 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1082 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1083 if (nback) {
1084 memmove(&pgs[0], &pgs[npages - nback],
1085 nback * sizeof(pgs[0]));
1086 if (npages - nback < nback)
1087 memset(&pgs[nback], 0,
1088 (npages - nback) * sizeof(pgs[0]));
1089 else
1090 memset(&pgs[npages - nback], 0,
1091 nback * sizeof(pgs[0]));
1092 }
1093
1094 /*
1095 * then plug in our page of interest.
1096 */
1097
1098 pgs[nback] = pg;
1099
1100 /*
1101 * then look forward to fill in the remaining space in
1102 * the array of pages.
1103 */
1104
1105 npages = maxpages - nback - 1;
1106 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1107 &pgs[nback + 1],
1108 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1109 npages += nback + 1;
1110 } else {
1111 pgs[0] = pg;
1112 npages = 1;
1113 nback = 0;
1114 }
1115
1116 /*
1117 * apply FREE or DEACTIVATE options if requested.
1118 */
1119
1120 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1121 mutex_enter(&uvm_pageqlock);
1122 }
1123 for (i = 0; i < npages; i++) {
1124 tpg = pgs[i];
1125 KASSERT(tpg->uobject == uobj);
1126 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1127 pg = tpg;
1128 if (tpg->offset < startoff || tpg->offset >= endoff)
1129 continue;
1130 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1131 uvm_pagedeactivate(tpg);
1132 } else if (flags & PGO_FREE) {
1133 pmap_page_protect(tpg, VM_PROT_NONE);
1134 if (tpg->flags & PG_BUSY) {
1135 tpg->flags |= freeflag;
1136 if (pagedaemon) {
1137 uvm_pageout_start(1);
1138 uvm_pagedequeue(tpg);
1139 }
1140 } else {
1141
1142 /*
1143 * ``page is not busy''
1144 * implies that npages is 1
1145 * and needs_clean is false.
1146 */
1147
1148 nextpg = TAILQ_NEXT(tpg, listq.queue);
1149 uvm_pagefree(tpg);
1150 if (pagedaemon)
1151 uvmexp.pdfreed++;
1152 }
1153 }
1154 }
1155 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1156 mutex_exit(&uvm_pageqlock);
1157 }
1158 if (needs_clean) {
1159 modified = true;
1160
1161 /*
1162 * start the i/o. if we're traversing by list,
1163 * keep our place in the list with a marker page.
1164 */
1165
1166 if (by_list) {
1167 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1168 listq.queue);
1169 }
1170 mutex_exit(slock);
1171 error = GOP_WRITE(vp, pgs, npages, flags);
1172 mutex_enter(slock);
1173 if (by_list) {
1174 pg = TAILQ_NEXT(&curmp, listq.queue);
1175 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1176 }
1177 if (error) {
1178 break;
1179 }
1180 if (by_list) {
1181 continue;
1182 }
1183 }
1184
1185 /*
1186 * find the next page and continue if there was no error.
1187 */
1188
1189 if (by_list) {
1190 if (nextpg) {
1191 pg = nextpg;
1192 nextpg = NULL;
1193 } else {
1194 pg = TAILQ_NEXT(pg, listq.queue);
1195 }
1196 } else {
1197 off += (npages - nback) << PAGE_SHIFT;
1198 if (off < endoff) {
1199 pg = uvm_pagelookup(uobj, off);
1200 }
1201 }
1202 }
1203 if (by_list) {
1204 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1205 }
1206
1207 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1208 (vp->v_type != VBLK ||
1209 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1210 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1211 }
1212
1213 /*
1214 * if we're cleaning and there was nothing to clean,
1215 * take us off the syncer list. if we started any i/o
1216 * and we're doing sync i/o, wait for all writes to finish.
1217 */
1218
1219 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1220 (vp->v_iflag & VI_ONWORKLST) != 0) {
1221 #if defined(DEBUG)
1222 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1223 if ((pg->flags & PG_MARKER) != 0) {
1224 continue;
1225 }
1226 if ((pg->flags & PG_CLEAN) == 0) {
1227 printf("%s: %p: !CLEAN\n", __func__, pg);
1228 }
1229 if (pmap_is_modified(pg)) {
1230 printf("%s: %p: modified\n", __func__, pg);
1231 }
1232 }
1233 #endif /* defined(DEBUG) */
1234 vp->v_iflag &= ~VI_WRMAPDIRTY;
1235 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1236 vn_syncer_remove_from_worklist(vp);
1237 }
1238
1239 #if !defined(DEBUG)
1240 skip_scan:
1241 #endif /* !defined(DEBUG) */
1242
1243 /* Wait for output to complete. */
1244 if (!wasclean && !async && vp->v_numoutput != 0) {
1245 while (vp->v_numoutput != 0)
1246 cv_wait(&vp->v_cv, slock);
1247 }
1248 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1249 mutex_exit(slock);
1250
1251 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1252 /*
1253 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1254 * retrying is not a big deal because, in many cases,
1255 * uobj->uo_npages is already 0 here.
1256 */
1257 mutex_enter(slock);
1258 goto retry;
1259 }
1260
1261 if (has_trans) {
1262 if (need_wapbl)
1263 WAPBL_END(vp->v_mount);
1264 fstrans_done(vp->v_mount);
1265 }
1266
1267 return (error);
1268 }
1269
1270 int
1271 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1272 {
1273 off_t off;
1274 vaddr_t kva;
1275 size_t len;
1276 int error;
1277 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1278
1279 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1280 vp, pgs, npages, flags);
1281
1282 off = pgs[0]->offset;
1283 kva = uvm_pagermapin(pgs, npages,
1284 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1285 len = npages << PAGE_SHIFT;
1286
1287 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1288 uvm_aio_biodone);
1289
1290 return error;
1291 }
1292
1293 int
1294 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1295 {
1296 off_t off;
1297 vaddr_t kva;
1298 size_t len;
1299 int error;
1300 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1301
1302 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1303 vp, pgs, npages, flags);
1304
1305 off = pgs[0]->offset;
1306 kva = uvm_pagermapin(pgs, npages,
1307 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1308 len = npages << PAGE_SHIFT;
1309
1310 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1311 uvm_aio_biodone);
1312
1313 return error;
1314 }
1315
1316 /*
1317 * Backend routine for doing I/O to vnode pages. Pages are already locked
1318 * and mapped into kernel memory. Here we just look up the underlying
1319 * device block addresses and call the strategy routine.
1320 */
1321
1322 static int
1323 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1324 enum uio_rw rw, void (*iodone)(struct buf *))
1325 {
1326 int s, error;
1327 int fs_bshift, dev_bshift;
1328 off_t eof, offset, startoffset;
1329 size_t bytes, iobytes, skipbytes;
1330 struct buf *mbp, *bp;
1331 const bool async = (flags & PGO_SYNCIO) == 0;
1332 const bool iowrite = rw == UIO_WRITE;
1333 const int brw = iowrite ? B_WRITE : B_READ;
1334 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1335
1336 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1337 vp, kva, len, flags);
1338
1339 KASSERT(vp->v_size <= vp->v_writesize);
1340 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1341 if (vp->v_type != VBLK) {
1342 fs_bshift = vp->v_mount->mnt_fs_bshift;
1343 dev_bshift = vp->v_mount->mnt_dev_bshift;
1344 } else {
1345 fs_bshift = DEV_BSHIFT;
1346 dev_bshift = DEV_BSHIFT;
1347 }
1348 error = 0;
1349 startoffset = off;
1350 bytes = MIN(len, eof - startoffset);
1351 skipbytes = 0;
1352 KASSERT(bytes != 0);
1353
1354 if (iowrite) {
1355 mutex_enter(&vp->v_interlock);
1356 vp->v_numoutput += 2;
1357 mutex_exit(&vp->v_interlock);
1358 }
1359 mbp = getiobuf(vp, true);
1360 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1361 vp, mbp, vp->v_numoutput, bytes);
1362 mbp->b_bufsize = len;
1363 mbp->b_data = (void *)kva;
1364 mbp->b_resid = mbp->b_bcount = bytes;
1365 mbp->b_cflags = BC_BUSY | BC_AGE;
1366 if (async) {
1367 mbp->b_flags = brw | B_ASYNC;
1368 mbp->b_iodone = iodone;
1369 } else {
1370 mbp->b_flags = brw;
1371 mbp->b_iodone = NULL;
1372 }
1373 if (curlwp == uvm.pagedaemon_lwp)
1374 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1375 else if (async)
1376 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1377 else
1378 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1379
1380 bp = NULL;
1381 for (offset = startoffset;
1382 bytes > 0;
1383 offset += iobytes, bytes -= iobytes) {
1384 int run;
1385 daddr_t lbn, blkno;
1386 struct vnode *devvp;
1387
1388 /*
1389 * bmap the file to find out the blkno to read from and
1390 * how much we can read in one i/o. if bmap returns an error,
1391 * skip the rest of the top-level i/o.
1392 */
1393
1394 lbn = offset >> fs_bshift;
1395 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1396 if (error) {
1397 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1398 lbn,error,0,0);
1399 skipbytes += bytes;
1400 bytes = 0;
1401 goto loopdone;
1402 }
1403
1404 /*
1405 * see how many pages can be read with this i/o.
1406 * reduce the i/o size if necessary to avoid
1407 * overwriting pages with valid data.
1408 */
1409
1410 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1411 bytes);
1412
1413 /*
1414 * if this block isn't allocated, zero it instead of
1415 * reading it. unless we are going to allocate blocks,
1416 * mark the pages we zeroed PG_RDONLY.
1417 */
1418
1419 if (blkno == (daddr_t)-1) {
1420 if (!iowrite) {
1421 memset((char *)kva + (offset - startoffset), 0,
1422 iobytes);
1423 }
1424 skipbytes += iobytes;
1425 continue;
1426 }
1427
1428 /*
1429 * allocate a sub-buf for this piece of the i/o
1430 * (or just use mbp if there's only 1 piece),
1431 * and start it going.
1432 */
1433
1434 if (offset == startoffset && iobytes == bytes) {
1435 bp = mbp;
1436 } else {
1437 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1438 vp, bp, vp->v_numoutput, 0);
1439 bp = getiobuf(vp, true);
1440 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1441 }
1442 bp->b_lblkno = 0;
1443
1444 /* adjust physical blkno for partial blocks */
1445 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1446 dev_bshift);
1447
1448 UVMHIST_LOG(ubchist,
1449 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1450 bp, offset, bp->b_bcount, bp->b_blkno);
1451
1452 VOP_STRATEGY(devvp, bp);
1453 }
1454
1455 loopdone:
1456 if (skipbytes) {
1457 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1458 }
1459 nestiobuf_done(mbp, skipbytes, error);
1460 if (async) {
1461 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1462 return (0);
1463 }
1464 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1465 error = biowait(mbp);
1466 s = splbio();
1467 (*iodone)(mbp);
1468 splx(s);
1469 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1470 return (error);
1471 }
1472
1473 int
1474 genfs_compat_getpages(void *v)
1475 {
1476 struct vop_getpages_args /* {
1477 struct vnode *a_vp;
1478 voff_t a_offset;
1479 struct vm_page **a_m;
1480 int *a_count;
1481 int a_centeridx;
1482 vm_prot_t a_access_type;
1483 int a_advice;
1484 int a_flags;
1485 } */ *ap = v;
1486
1487 off_t origoffset;
1488 struct vnode *vp = ap->a_vp;
1489 struct uvm_object *uobj = &vp->v_uobj;
1490 struct vm_page *pg, **pgs;
1491 vaddr_t kva;
1492 int i, error, orignpages, npages;
1493 struct iovec iov;
1494 struct uio uio;
1495 kauth_cred_t cred = curlwp->l_cred;
1496 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1497
1498 error = 0;
1499 origoffset = ap->a_offset;
1500 orignpages = *ap->a_count;
1501 pgs = ap->a_m;
1502
1503 if (ap->a_flags & PGO_LOCKED) {
1504 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1505 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1506
1507 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1508 if (error == 0 && memwrite) {
1509 genfs_markdirty(vp);
1510 }
1511 return error;
1512 }
1513 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1514 mutex_exit(&uobj->vmobjlock);
1515 return EINVAL;
1516 }
1517 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1518 mutex_exit(&uobj->vmobjlock);
1519 return 0;
1520 }
1521 npages = orignpages;
1522 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1523 mutex_exit(&uobj->vmobjlock);
1524 kva = uvm_pagermapin(pgs, npages,
1525 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1526 for (i = 0; i < npages; i++) {
1527 pg = pgs[i];
1528 if ((pg->flags & PG_FAKE) == 0) {
1529 continue;
1530 }
1531 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1532 iov.iov_len = PAGE_SIZE;
1533 uio.uio_iov = &iov;
1534 uio.uio_iovcnt = 1;
1535 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1536 uio.uio_rw = UIO_READ;
1537 uio.uio_resid = PAGE_SIZE;
1538 UIO_SETUP_SYSSPACE(&uio);
1539 /* XXX vn_lock */
1540 error = VOP_READ(vp, &uio, 0, cred);
1541 if (error) {
1542 break;
1543 }
1544 if (uio.uio_resid) {
1545 memset(iov.iov_base, 0, uio.uio_resid);
1546 }
1547 }
1548 uvm_pagermapout(kva, npages);
1549 mutex_enter(&uobj->vmobjlock);
1550 mutex_enter(&uvm_pageqlock);
1551 for (i = 0; i < npages; i++) {
1552 pg = pgs[i];
1553 if (error && (pg->flags & PG_FAKE) != 0) {
1554 pg->flags |= PG_RELEASED;
1555 } else {
1556 pmap_clear_modify(pg);
1557 uvm_pageactivate(pg);
1558 }
1559 }
1560 if (error) {
1561 uvm_page_unbusy(pgs, npages);
1562 }
1563 mutex_exit(&uvm_pageqlock);
1564 if (error == 0 && memwrite) {
1565 genfs_markdirty(vp);
1566 }
1567 mutex_exit(&uobj->vmobjlock);
1568 return error;
1569 }
1570
1571 int
1572 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1573 int flags)
1574 {
1575 off_t offset;
1576 struct iovec iov;
1577 struct uio uio;
1578 kauth_cred_t cred = curlwp->l_cred;
1579 struct buf *bp;
1580 vaddr_t kva;
1581 int error;
1582
1583 offset = pgs[0]->offset;
1584 kva = uvm_pagermapin(pgs, npages,
1585 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1586
1587 iov.iov_base = (void *)kva;
1588 iov.iov_len = npages << PAGE_SHIFT;
1589 uio.uio_iov = &iov;
1590 uio.uio_iovcnt = 1;
1591 uio.uio_offset = offset;
1592 uio.uio_rw = UIO_WRITE;
1593 uio.uio_resid = npages << PAGE_SHIFT;
1594 UIO_SETUP_SYSSPACE(&uio);
1595 /* XXX vn_lock */
1596 error = VOP_WRITE(vp, &uio, 0, cred);
1597
1598 mutex_enter(&vp->v_interlock);
1599 vp->v_numoutput++;
1600 mutex_exit(&vp->v_interlock);
1601
1602 bp = getiobuf(vp, true);
1603 bp->b_cflags = BC_BUSY | BC_AGE;
1604 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1605 bp->b_data = (char *)kva;
1606 bp->b_bcount = npages << PAGE_SHIFT;
1607 bp->b_bufsize = npages << PAGE_SHIFT;
1608 bp->b_resid = 0;
1609 bp->b_error = error;
1610 uvm_aio_aiodone(bp);
1611 return (error);
1612 }
1613
1614 /*
1615 * Process a uio using direct I/O. If we reach a part of the request
1616 * which cannot be processed in this fashion for some reason, just return.
1617 * The caller must handle some additional part of the request using
1618 * buffered I/O before trying direct I/O again.
1619 */
1620
1621 void
1622 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1623 {
1624 struct vmspace *vs;
1625 struct iovec *iov;
1626 vaddr_t va;
1627 size_t len;
1628 const int mask = DEV_BSIZE - 1;
1629 int error;
1630 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1631 (ioflag & IO_JOURNALLOCKED) == 0);
1632
1633 /*
1634 * We only support direct I/O to user space for now.
1635 */
1636
1637 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1638 return;
1639 }
1640
1641 /*
1642 * If the vnode is mapped, we would need to get the getpages lock
1643 * to stabilize the bmap, but then we would get into trouble whil e
1644 * locking the pages if the pages belong to this same vnode (or a
1645 * multi-vnode cascade to the same effect). Just fall back to
1646 * buffered I/O if the vnode is mapped to avoid this mess.
1647 */
1648
1649 if (vp->v_vflag & VV_MAPPED) {
1650 return;
1651 }
1652
1653 if (need_wapbl) {
1654 error = WAPBL_BEGIN(vp->v_mount);
1655 if (error)
1656 return;
1657 }
1658
1659 /*
1660 * Do as much of the uio as possible with direct I/O.
1661 */
1662
1663 vs = uio->uio_vmspace;
1664 while (uio->uio_resid) {
1665 iov = uio->uio_iov;
1666 if (iov->iov_len == 0) {
1667 uio->uio_iov++;
1668 uio->uio_iovcnt--;
1669 continue;
1670 }
1671 va = (vaddr_t)iov->iov_base;
1672 len = MIN(iov->iov_len, genfs_maxdio);
1673 len &= ~mask;
1674
1675 /*
1676 * If the next chunk is smaller than DEV_BSIZE or extends past
1677 * the current EOF, then fall back to buffered I/O.
1678 */
1679
1680 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1681 break;
1682 }
1683
1684 /*
1685 * Check alignment. The file offset must be at least
1686 * sector-aligned. The exact constraint on memory alignment
1687 * is very hardware-dependent, but requiring sector-aligned
1688 * addresses there too is safe.
1689 */
1690
1691 if (uio->uio_offset & mask || va & mask) {
1692 break;
1693 }
1694 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1695 uio->uio_rw);
1696 if (error) {
1697 break;
1698 }
1699 iov->iov_base = (char *)iov->iov_base + len;
1700 iov->iov_len -= len;
1701 uio->uio_offset += len;
1702 uio->uio_resid -= len;
1703 }
1704
1705 if (need_wapbl)
1706 WAPBL_END(vp->v_mount);
1707 }
1708
1709 /*
1710 * Iodone routine for direct I/O. We don't do much here since the request is
1711 * always synchronous, so the caller will do most of the work after biowait().
1712 */
1713
1714 static void
1715 genfs_dio_iodone(struct buf *bp)
1716 {
1717
1718 KASSERT((bp->b_flags & B_ASYNC) == 0);
1719 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1720 mutex_enter(bp->b_objlock);
1721 vwakeup(bp);
1722 mutex_exit(bp->b_objlock);
1723 }
1724 putiobuf(bp);
1725 }
1726
1727 /*
1728 * Process one chunk of a direct I/O request.
1729 */
1730
1731 static int
1732 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1733 off_t off, enum uio_rw rw)
1734 {
1735 struct vm_map *map;
1736 struct pmap *upm, *kpm;
1737 size_t klen = round_page(uva + len) - trunc_page(uva);
1738 off_t spoff, epoff;
1739 vaddr_t kva, puva;
1740 paddr_t pa;
1741 vm_prot_t prot;
1742 int error, rv, poff, koff;
1743 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1744 (rw == UIO_WRITE ? PGO_FREE : 0);
1745
1746 /*
1747 * For writes, verify that this range of the file already has fully
1748 * allocated backing store. If there are any holes, just punt and
1749 * make the caller take the buffered write path.
1750 */
1751
1752 if (rw == UIO_WRITE) {
1753 daddr_t lbn, elbn, blkno;
1754 int bsize, bshift, run;
1755
1756 bshift = vp->v_mount->mnt_fs_bshift;
1757 bsize = 1 << bshift;
1758 lbn = off >> bshift;
1759 elbn = (off + len + bsize - 1) >> bshift;
1760 while (lbn < elbn) {
1761 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1762 if (error) {
1763 return error;
1764 }
1765 if (blkno == (daddr_t)-1) {
1766 return ENOSPC;
1767 }
1768 lbn += 1 + run;
1769 }
1770 }
1771
1772 /*
1773 * Flush any cached pages for parts of the file that we're about to
1774 * access. If we're writing, invalidate pages as well.
1775 */
1776
1777 spoff = trunc_page(off);
1778 epoff = round_page(off + len);
1779 mutex_enter(&vp->v_interlock);
1780 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1781 if (error) {
1782 return error;
1783 }
1784
1785 /*
1786 * Wire the user pages and remap them into kernel memory.
1787 */
1788
1789 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1790 error = uvm_vslock(vs, (void *)uva, len, prot);
1791 if (error) {
1792 return error;
1793 }
1794
1795 map = &vs->vm_map;
1796 upm = vm_map_pmap(map);
1797 kpm = vm_map_pmap(kernel_map);
1798 kva = uvm_km_alloc(kernel_map, klen, 0,
1799 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1800 puva = trunc_page(uva);
1801 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1802 rv = pmap_extract(upm, puva + poff, &pa);
1803 KASSERT(rv);
1804 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1805 }
1806 pmap_update(kpm);
1807
1808 /*
1809 * Do the I/O.
1810 */
1811
1812 koff = uva - trunc_page(uva);
1813 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1814 genfs_dio_iodone);
1815
1816 /*
1817 * Tear down the kernel mapping.
1818 */
1819
1820 pmap_remove(kpm, kva, kva + klen);
1821 pmap_update(kpm);
1822 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1823
1824 /*
1825 * Unwire the user pages.
1826 */
1827
1828 uvm_vsunlock(vs, (void *)uva, len);
1829 return error;
1830 }
1831
1832