genfs_io.c revision 1.46 1 /* $NetBSD: genfs_io.c,v 1.46 2010/12/06 10:22:43 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.46 2010/12/06 10:22:43 uebayasi Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static void genfs_rel_pages(struct vm_page **, int);
66 static void genfs_markdirty(struct vnode *);
67
68 int genfs_maxdio = MAXPHYS;
69
70 static void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 int i;
74
75 for (i = 0; i < npages; i++) {
76 struct vm_page *pg = pgs[i];
77
78 if (pg == NULL || pg == PGO_DONTCARE)
79 continue;
80 if (pg->flags & PG_FAKE) {
81 pg->flags |= PG_RELEASED;
82 }
83 }
84 mutex_enter(&uvm_pageqlock);
85 uvm_page_unbusy(pgs, npages);
86 mutex_exit(&uvm_pageqlock);
87 }
88
89 static void
90 genfs_markdirty(struct vnode *vp)
91 {
92 struct genfs_node * const gp = VTOG(vp);
93
94 KASSERT(mutex_owned(&vp->v_interlock));
95 gp->g_dirtygen++;
96 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
97 vn_syncer_add_to_worklist(vp, filedelay);
98 }
99 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
100 vp->v_iflag |= VI_WRMAPDIRTY;
101 }
102 }
103
104 /*
105 * generic VM getpages routine.
106 * Return PG_BUSY pages for the given range,
107 * reading from backing store if necessary.
108 */
109
110 int
111 genfs_getpages(void *v)
112 {
113 struct vop_getpages_args /* {
114 struct vnode *a_vp;
115 voff_t a_offset;
116 struct vm_page **a_m;
117 int *a_count;
118 int a_centeridx;
119 vm_prot_t a_access_type;
120 int a_advice;
121 int a_flags;
122 } */ * const ap = v;
123
124 off_t diskeof, memeof;
125 int i, error, npages;
126 const int flags = ap->a_flags;
127 struct vnode * const vp = ap->a_vp;
128 struct uvm_object * const uobj = &vp->v_uobj;
129 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
130 const bool async = (flags & PGO_SYNCIO) == 0;
131 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
132 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
133 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
134 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
135 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
136 bool has_trans_wapbl = false;
137 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
138
139 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
140 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
141
142 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
143 vp->v_type == VLNK || vp->v_type == VBLK);
144
145 startover:
146 error = 0;
147 const voff_t origvsize = vp->v_size;
148 const off_t origoffset = ap->a_offset;
149 const int orignpages = *ap->a_count;
150
151 GOP_SIZE(vp, origvsize, &diskeof, 0);
152 if (flags & PGO_PASTEOF) {
153 off_t newsize;
154 #if defined(DIAGNOSTIC)
155 off_t writeeof;
156 #endif /* defined(DIAGNOSTIC) */
157
158 newsize = MAX(origvsize,
159 origoffset + (orignpages << PAGE_SHIFT));
160 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
161 #if defined(DIAGNOSTIC)
162 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
163 if (newsize > round_page(writeeof)) {
164 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
165 __func__, newsize, round_page(writeeof));
166 }
167 #endif /* defined(DIAGNOSTIC) */
168 } else {
169 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
170 }
171 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
172 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
173 KASSERT(orignpages > 0);
174
175 /*
176 * Bounds-check the request.
177 */
178
179 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
180 if ((flags & PGO_LOCKED) == 0) {
181 mutex_exit(&uobj->vmobjlock);
182 }
183 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
184 origoffset, *ap->a_count, memeof,0);
185 error = EINVAL;
186 goto out_err;
187 }
188
189 /* uobj is locked */
190
191 if ((flags & PGO_NOTIMESTAMP) == 0 &&
192 (vp->v_type != VBLK ||
193 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
194 int updflags = 0;
195
196 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
197 updflags = GOP_UPDATE_ACCESSED;
198 }
199 if (memwrite) {
200 updflags |= GOP_UPDATE_MODIFIED;
201 }
202 if (updflags != 0) {
203 GOP_MARKUPDATE(vp, updflags);
204 }
205 }
206
207 /*
208 * For PGO_LOCKED requests, just return whatever's in memory.
209 */
210
211 if (flags & PGO_LOCKED) {
212 int nfound;
213 struct vm_page *pg;
214
215 KASSERT(!glocked);
216 npages = *ap->a_count;
217 #if defined(DEBUG)
218 for (i = 0; i < npages; i++) {
219 pg = ap->a_m[i];
220 KASSERT(pg == NULL || pg == PGO_DONTCARE);
221 }
222 #endif /* defined(DEBUG) */
223 nfound = uvn_findpages(uobj, origoffset, &npages,
224 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
225 KASSERT(npages == *ap->a_count);
226 if (nfound == 0) {
227 error = EBUSY;
228 goto out_err;
229 }
230 if (!genfs_node_rdtrylock(vp)) {
231 genfs_rel_pages(ap->a_m, npages);
232
233 /*
234 * restore the array.
235 */
236
237 for (i = 0; i < npages; i++) {
238 pg = ap->a_m[i];
239
240 if (pg != NULL && pg != PGO_DONTCARE) {
241 ap->a_m[i] = NULL;
242 }
243 KASSERT(ap->a_m[i] == NULL ||
244 ap->a_m[i] == PGO_DONTCARE);
245 }
246 } else {
247 genfs_node_unlock(vp);
248 }
249 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
250 if (error == 0 && memwrite) {
251 genfs_markdirty(vp);
252 }
253 goto out_err;
254 }
255 mutex_exit(&uobj->vmobjlock);
256
257 /*
258 * find the requested pages and make some simple checks.
259 * leave space in the page array for a whole block.
260 */
261
262 const int fs_bshift = (vp->v_type != VBLK) ?
263 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
264 const int dev_bshift = (vp->v_type != VBLK) ?
265 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
266 const int fs_bsize = 1 << fs_bshift;
267 #define blk_mask (fs_bsize - 1)
268 #define trunc_blk(x) ((x) & ~blk_mask)
269 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
270
271 const int orignmempages = MIN(orignpages,
272 round_page(memeof - origoffset) >> PAGE_SHIFT);
273 npages = orignmempages;
274 const off_t startoffset = trunc_blk(origoffset);
275 const off_t endoffset = MIN(
276 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
277 round_page(memeof));
278 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
279
280 const int pgs_size = sizeof(struct vm_page *) *
281 ((endoffset - startoffset) >> PAGE_SHIFT);
282 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
283
284 if (pgs_size > sizeof(pgs_onstack)) {
285 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
286 if (pgs == NULL) {
287 pgs = pgs_onstack;
288 error = ENOMEM;
289 goto out_err;
290 }
291 } else {
292 pgs = pgs_onstack;
293 (void)memset(pgs, 0, pgs_size);
294 }
295
296 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
297 ridx, npages, startoffset, endoffset);
298
299 if (!has_trans_wapbl) {
300 fstrans_start(vp->v_mount, FSTRANS_SHARED);
301 /*
302 * XXX: This assumes that we come here only via
303 * the mmio path
304 */
305 if (need_wapbl) {
306 error = WAPBL_BEGIN(vp->v_mount);
307 if (error) {
308 fstrans_done(vp->v_mount);
309 goto out_err_free;
310 }
311 }
312 has_trans_wapbl = true;
313 }
314
315 /*
316 * hold g_glock to prevent a race with truncate.
317 *
318 * check if our idea of v_size is still valid.
319 */
320
321 KASSERT(!glocked || genfs_node_wrlocked(vp));
322 if (!glocked) {
323 if (blockalloc) {
324 genfs_node_wrlock(vp);
325 } else {
326 genfs_node_rdlock(vp);
327 }
328 }
329 mutex_enter(&uobj->vmobjlock);
330 if (vp->v_size < origvsize) {
331 if (!glocked) {
332 genfs_node_unlock(vp);
333 }
334 if (pgs != pgs_onstack)
335 kmem_free(pgs, pgs_size);
336 goto startover;
337 }
338
339 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
340 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
341 if (!glocked) {
342 genfs_node_unlock(vp);
343 }
344 KASSERT(async != 0);
345 genfs_rel_pages(&pgs[ridx], orignmempages);
346 mutex_exit(&uobj->vmobjlock);
347 error = EBUSY;
348 goto out_err_free;
349 }
350
351 /*
352 * if the pages are already resident, just return them.
353 */
354
355 for (i = 0; i < npages; i++) {
356 struct vm_page *pg = pgs[ridx + i];
357
358 if ((pg->flags & PG_FAKE) ||
359 (blockalloc && (pg->flags & PG_RDONLY))) {
360 break;
361 }
362 }
363 if (i == npages) {
364 if (!glocked) {
365 genfs_node_unlock(vp);
366 }
367 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
368 npages += ridx;
369 goto out;
370 }
371
372 /*
373 * if PGO_OVERWRITE is set, don't bother reading the pages.
374 */
375
376 if (overwrite) {
377 if (!glocked) {
378 genfs_node_unlock(vp);
379 }
380 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
381
382 for (i = 0; i < npages; i++) {
383 struct vm_page *pg = pgs[ridx + i];
384
385 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
386 }
387 npages += ridx;
388 goto out;
389 }
390
391 /*
392 * the page wasn't resident and we're not overwriting,
393 * so we're going to have to do some i/o.
394 * find any additional pages needed to cover the expanded range.
395 */
396
397 npages = (endoffset - startoffset) >> PAGE_SHIFT;
398 if (startoffset != origoffset || npages != orignmempages) {
399 int npgs;
400
401 /*
402 * we need to avoid deadlocks caused by locking
403 * additional pages at lower offsets than pages we
404 * already have locked. unlock them all and start over.
405 */
406
407 genfs_rel_pages(&pgs[ridx], orignmempages);
408 memset(pgs, 0, pgs_size);
409
410 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
411 startoffset, endoffset, 0,0);
412 npgs = npages;
413 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
414 async ? UFP_NOWAIT : UFP_ALL) != npages) {
415 if (!glocked) {
416 genfs_node_unlock(vp);
417 }
418 KASSERT(async != 0);
419 genfs_rel_pages(pgs, npages);
420 mutex_exit(&uobj->vmobjlock);
421 error = EBUSY;
422 goto out_err_free;
423 }
424 }
425
426 mutex_exit(&uobj->vmobjlock);
427
428 {
429 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
430 vaddr_t kva;
431 struct buf *bp, *mbp;
432 bool sawhole = false;
433
434 /*
435 * read the desired page(s).
436 */
437
438 totalbytes = npages << PAGE_SHIFT;
439 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
440 tailbytes = totalbytes - bytes;
441 skipbytes = 0;
442
443 kva = uvm_pagermapin(pgs, npages,
444 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
445
446 mbp = getiobuf(vp, true);
447 mbp->b_bufsize = totalbytes;
448 mbp->b_data = (void *)kva;
449 mbp->b_resid = mbp->b_bcount = bytes;
450 mbp->b_cflags = BC_BUSY;
451 if (async) {
452 mbp->b_flags = B_READ | B_ASYNC;
453 mbp->b_iodone = uvm_aio_biodone;
454 } else {
455 mbp->b_flags = B_READ;
456 mbp->b_iodone = NULL;
457 }
458 if (async)
459 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
460 else
461 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
462
463 /*
464 * if EOF is in the middle of the range, zero the part past EOF.
465 * skip over pages which are not PG_FAKE since in that case they have
466 * valid data that we need to preserve.
467 */
468
469 tailstart = bytes;
470 while (tailbytes > 0) {
471 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
472
473 KASSERT(len <= tailbytes);
474 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
475 memset((void *)(kva + tailstart), 0, len);
476 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
477 kva, tailstart, len, 0);
478 }
479 tailstart += len;
480 tailbytes -= len;
481 }
482
483 /*
484 * now loop over the pages, reading as needed.
485 */
486
487 bp = NULL;
488 off_t offset;
489 for (offset = startoffset;
490 bytes > 0;
491 offset += iobytes, bytes -= iobytes) {
492 int run;
493 daddr_t lbn, blkno;
494 int pidx;
495 struct vnode *devvp;
496
497 /*
498 * skip pages which don't need to be read.
499 */
500
501 pidx = (offset - startoffset) >> PAGE_SHIFT;
502 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
503 size_t b;
504
505 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
506 if ((pgs[pidx]->flags & PG_RDONLY)) {
507 sawhole = true;
508 }
509 b = MIN(PAGE_SIZE, bytes);
510 offset += b;
511 bytes -= b;
512 skipbytes += b;
513 pidx++;
514 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
515 offset, 0,0,0);
516 if (bytes == 0) {
517 goto loopdone;
518 }
519 }
520
521 /*
522 * bmap the file to find out the blkno to read from and
523 * how much we can read in one i/o. if bmap returns an error,
524 * skip the rest of the top-level i/o.
525 */
526
527 lbn = offset >> fs_bshift;
528 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
529 if (error) {
530 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
531 lbn,error,0,0);
532 skipbytes += bytes;
533 bytes = 0;
534 goto loopdone;
535 }
536
537 /*
538 * see how many pages can be read with this i/o.
539 * reduce the i/o size if necessary to avoid
540 * overwriting pages with valid data.
541 */
542
543 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
544 bytes);
545 if (offset + iobytes > round_page(offset)) {
546 int pcount;
547
548 pcount = 1;
549 while (pidx + pcount < npages &&
550 pgs[pidx + pcount]->flags & PG_FAKE) {
551 pcount++;
552 }
553 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
554 (offset - trunc_page(offset)));
555 }
556
557 /*
558 * if this block isn't allocated, zero it instead of
559 * reading it. unless we are going to allocate blocks,
560 * mark the pages we zeroed PG_RDONLY.
561 */
562
563 if (blkno == (daddr_t)-1) {
564 int holepages = (round_page(offset + iobytes) -
565 trunc_page(offset)) >> PAGE_SHIFT;
566 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
567
568 sawhole = true;
569 memset((char *)kva + (offset - startoffset), 0,
570 iobytes);
571 skipbytes += iobytes;
572
573 mutex_enter(&uobj->vmobjlock);
574 for (i = 0; i < holepages; i++) {
575 if (memwrite) {
576 pgs[pidx + i]->flags &= ~PG_CLEAN;
577 }
578 if (!blockalloc) {
579 pgs[pidx + i]->flags |= PG_RDONLY;
580 }
581 }
582 mutex_exit(&uobj->vmobjlock);
583 continue;
584 }
585
586 /*
587 * allocate a sub-buf for this piece of the i/o
588 * (or just use mbp if there's only 1 piece),
589 * and start it going.
590 */
591
592 if (offset == startoffset && iobytes == bytes) {
593 bp = mbp;
594 } else {
595 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
596 vp, bp, vp->v_numoutput, 0);
597 bp = getiobuf(vp, true);
598 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
599 }
600 bp->b_lblkno = 0;
601
602 /* adjust physical blkno for partial blocks */
603 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
604 dev_bshift);
605
606 UVMHIST_LOG(ubchist,
607 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
608 bp, offset, bp->b_bcount, bp->b_blkno);
609
610 VOP_STRATEGY(devvp, bp);
611 }
612
613 loopdone:
614 nestiobuf_done(mbp, skipbytes, error);
615 if (async) {
616 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
617 if (!glocked) {
618 genfs_node_unlock(vp);
619 }
620 error = 0;
621 goto out_err_free;
622 }
623 if (bp != NULL) {
624 error = biowait(mbp);
625 }
626
627 /* Remove the mapping (make KVA available as soon as possible) */
628 uvm_pagermapout(kva, npages);
629
630 /*
631 * if this we encountered a hole then we have to do a little more work.
632 * for read faults, we marked the page PG_RDONLY so that future
633 * write accesses to the page will fault again.
634 * for write faults, we must make sure that the backing store for
635 * the page is completely allocated while the pages are locked.
636 */
637
638 if (!error && sawhole && blockalloc) {
639 error = GOP_ALLOC(vp, startoffset,
640 npages << PAGE_SHIFT, 0, cred);
641 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
642 startoffset, npages << PAGE_SHIFT, error,0);
643 if (!error) {
644 mutex_enter(&uobj->vmobjlock);
645 for (i = 0; i < npages; i++) {
646 struct vm_page *pg = pgs[i];
647
648 if (pg == NULL) {
649 continue;
650 }
651 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
652 UVMHIST_LOG(ubchist, "mark dirty pg %p",
653 pg,0,0,0);
654 }
655 mutex_exit(&uobj->vmobjlock);
656 }
657 }
658 if (!glocked) {
659 genfs_node_unlock(vp);
660 }
661
662 putiobuf(mbp);
663 }
664
665 mutex_enter(&uobj->vmobjlock);
666
667 /*
668 * we're almost done! release the pages...
669 * for errors, we free the pages.
670 * otherwise we activate them and mark them as valid and clean.
671 * also, unbusy pages that were not actually requested.
672 */
673
674 if (error) {
675 for (i = 0; i < npages; i++) {
676 struct vm_page *pg = pgs[i];
677
678 if (pg == NULL) {
679 continue;
680 }
681 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
682 pg, pg->flags, 0,0);
683 if (pg->flags & PG_FAKE) {
684 pg->flags |= PG_RELEASED;
685 }
686 }
687 mutex_enter(&uvm_pageqlock);
688 uvm_page_unbusy(pgs, npages);
689 mutex_exit(&uvm_pageqlock);
690 mutex_exit(&uobj->vmobjlock);
691 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
692 goto out_err_free;
693 }
694
695 out:
696 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
697 error = 0;
698 mutex_enter(&uvm_pageqlock);
699 for (i = 0; i < npages; i++) {
700 struct vm_page *pg = pgs[i];
701 if (pg == NULL) {
702 continue;
703 }
704 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
705 pg, pg->flags, 0,0);
706 if (pg->flags & PG_FAKE && !overwrite) {
707 pg->flags &= ~(PG_FAKE);
708 pmap_clear_modify(pgs[i]);
709 }
710 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
711 if (i < ridx || i >= ridx + orignmempages || async) {
712 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
713 pg, pg->offset,0,0);
714 if (pg->flags & PG_WANTED) {
715 wakeup(pg);
716 }
717 if (pg->flags & PG_FAKE) {
718 KASSERT(overwrite);
719 uvm_pagezero(pg);
720 }
721 if (pg->flags & PG_RELEASED) {
722 uvm_pagefree(pg);
723 continue;
724 }
725 uvm_pageenqueue(pg);
726 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
727 UVM_PAGE_OWN(pg, NULL);
728 }
729 }
730 mutex_exit(&uvm_pageqlock);
731 if (memwrite) {
732 genfs_markdirty(vp);
733 }
734 mutex_exit(&uobj->vmobjlock);
735 if (ap->a_m != NULL) {
736 memcpy(ap->a_m, &pgs[ridx],
737 orignmempages * sizeof(struct vm_page *));
738 }
739
740 out_err_free:
741 if (pgs != NULL && pgs != pgs_onstack)
742 kmem_free(pgs, pgs_size);
743 out_err:
744 if (has_trans_wapbl) {
745 if (need_wapbl)
746 WAPBL_END(vp->v_mount);
747 fstrans_done(vp->v_mount);
748 }
749 return error;
750 }
751
752 /*
753 * generic VM putpages routine.
754 * Write the given range of pages to backing store.
755 *
756 * => "offhi == 0" means flush all pages at or after "offlo".
757 * => object should be locked by caller. we return with the
758 * object unlocked.
759 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
760 * thus, a caller might want to unlock higher level resources
761 * (e.g. vm_map) before calling flush.
762 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
763 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
764 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
765 * that new pages are inserted on the tail end of the list. thus,
766 * we can make a complete pass through the object in one go by starting
767 * at the head and working towards the tail (new pages are put in
768 * front of us).
769 * => NOTE: we are allowed to lock the page queues, so the caller
770 * must not be holding the page queue lock.
771 *
772 * note on "cleaning" object and PG_BUSY pages:
773 * this routine is holding the lock on the object. the only time
774 * that it can run into a PG_BUSY page that it does not own is if
775 * some other process has started I/O on the page (e.g. either
776 * a pagein, or a pageout). if the PG_BUSY page is being paged
777 * in, then it can not be dirty (!PG_CLEAN) because no one has
778 * had a chance to modify it yet. if the PG_BUSY page is being
779 * paged out then it means that someone else has already started
780 * cleaning the page for us (how nice!). in this case, if we
781 * have syncio specified, then after we make our pass through the
782 * object we need to wait for the other PG_BUSY pages to clear
783 * off (i.e. we need to do an iosync). also note that once a
784 * page is PG_BUSY it must stay in its object until it is un-busyed.
785 *
786 * note on page traversal:
787 * we can traverse the pages in an object either by going down the
788 * linked list in "uobj->memq", or we can go over the address range
789 * by page doing hash table lookups for each address. depending
790 * on how many pages are in the object it may be cheaper to do one
791 * or the other. we set "by_list" to true if we are using memq.
792 * if the cost of a hash lookup was equal to the cost of the list
793 * traversal we could compare the number of pages in the start->stop
794 * range to the total number of pages in the object. however, it
795 * seems that a hash table lookup is more expensive than the linked
796 * list traversal, so we multiply the number of pages in the
797 * range by an estimate of the relatively higher cost of the hash lookup.
798 */
799
800 int
801 genfs_putpages(void *v)
802 {
803 struct vop_putpages_args /* {
804 struct vnode *a_vp;
805 voff_t a_offlo;
806 voff_t a_offhi;
807 int a_flags;
808 } */ * const ap = v;
809
810 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
811 ap->a_flags, NULL);
812 }
813
814 int
815 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
816 int origflags, struct vm_page **busypg)
817 {
818 struct uvm_object * const uobj = &vp->v_uobj;
819 kmutex_t * const slock = &uobj->vmobjlock;
820 off_t off;
821 /* Even for strange MAXPHYS, the shift rounds down to a page */
822 #define maxpages (MAXPHYS >> PAGE_SHIFT)
823 int i, error, npages, nback;
824 int freeflag;
825 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
826 bool wasclean, by_list, needs_clean, yld;
827 bool async = (origflags & PGO_SYNCIO) == 0;
828 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
829 struct lwp * const l = curlwp ? curlwp : &lwp0;
830 struct genfs_node * const gp = VTOG(vp);
831 int flags;
832 int dirtygen;
833 bool modified;
834 bool need_wapbl;
835 bool has_trans;
836 bool cleanall;
837 bool onworklst;
838
839 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
840
841 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
842 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
843 KASSERT(startoff < endoff || endoff == 0);
844
845 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
846 vp, uobj->uo_npages, startoff, endoff - startoff);
847
848 has_trans = false;
849 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
850 (origflags & PGO_JOURNALLOCKED) == 0);
851
852 retry:
853 modified = false;
854 flags = origflags;
855 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
856 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
857 if (uobj->uo_npages == 0) {
858 if (vp->v_iflag & VI_ONWORKLST) {
859 vp->v_iflag &= ~VI_WRMAPDIRTY;
860 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
861 vn_syncer_remove_from_worklist(vp);
862 }
863 if (has_trans) {
864 if (need_wapbl)
865 WAPBL_END(vp->v_mount);
866 fstrans_done(vp->v_mount);
867 }
868 mutex_exit(slock);
869 return (0);
870 }
871
872 /*
873 * the vnode has pages, set up to process the request.
874 */
875
876 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
877 mutex_exit(slock);
878 if (pagedaemon) {
879 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
880 if (error)
881 return error;
882 } else
883 fstrans_start(vp->v_mount, FSTRANS_LAZY);
884 if (need_wapbl) {
885 error = WAPBL_BEGIN(vp->v_mount);
886 if (error) {
887 fstrans_done(vp->v_mount);
888 return error;
889 }
890 }
891 has_trans = true;
892 mutex_enter(slock);
893 goto retry;
894 }
895
896 error = 0;
897 wasclean = (vp->v_numoutput == 0);
898 off = startoff;
899 if (endoff == 0 || flags & PGO_ALLPAGES) {
900 endoff = trunc_page(LLONG_MAX);
901 }
902 by_list = (uobj->uo_npages <=
903 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
904
905 #if !defined(DEBUG)
906 /*
907 * if this vnode is known not to have dirty pages,
908 * don't bother to clean it out.
909 */
910
911 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
912 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
913 goto skip_scan;
914 }
915 flags &= ~PGO_CLEANIT;
916 }
917 #endif /* !defined(DEBUG) */
918
919 /*
920 * start the loop. when scanning by list, hold the last page
921 * in the list before we start. pages allocated after we start
922 * will be added to the end of the list, so we can stop at the
923 * current last page.
924 */
925
926 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
927 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
928 (vp->v_iflag & VI_ONWORKLST) != 0;
929 dirtygen = gp->g_dirtygen;
930 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
931 if (by_list) {
932 curmp.flags = PG_MARKER;
933 endmp.flags = PG_MARKER;
934 pg = TAILQ_FIRST(&uobj->memq);
935 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
936 } else {
937 pg = uvm_pagelookup(uobj, off);
938 }
939 nextpg = NULL;
940 while (by_list || off < endoff) {
941
942 /*
943 * if the current page is not interesting, move on to the next.
944 */
945
946 KASSERT(pg == NULL || pg->uobject == uobj ||
947 (pg->flags & PG_MARKER) != 0);
948 KASSERT(pg == NULL ||
949 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
950 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
951 if (by_list) {
952 if (pg == &endmp) {
953 break;
954 }
955 if (pg->flags & PG_MARKER) {
956 pg = TAILQ_NEXT(pg, listq.queue);
957 continue;
958 }
959 if (pg->offset < startoff || pg->offset >= endoff ||
960 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
961 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
962 wasclean = false;
963 }
964 pg = TAILQ_NEXT(pg, listq.queue);
965 continue;
966 }
967 off = pg->offset;
968 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
969 if (pg != NULL) {
970 wasclean = false;
971 }
972 off += PAGE_SIZE;
973 if (off < endoff) {
974 pg = uvm_pagelookup(uobj, off);
975 }
976 continue;
977 }
978
979 /*
980 * if the current page needs to be cleaned and it's busy,
981 * wait for it to become unbusy.
982 */
983
984 yld = (l->l_cpu->ci_schedstate.spc_flags &
985 SPCF_SHOULDYIELD) && !pagedaemon;
986 if (pg->flags & PG_BUSY || yld) {
987 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
988 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
989 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
990 error = EDEADLK;
991 if (busypg != NULL)
992 *busypg = pg;
993 break;
994 }
995 if (pagedaemon) {
996 /*
997 * someone has taken the page while we
998 * dropped the lock for fstrans_start.
999 */
1000 break;
1001 }
1002 if (by_list) {
1003 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1004 UVMHIST_LOG(ubchist, "curmp next %p",
1005 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1006 }
1007 if (yld) {
1008 mutex_exit(slock);
1009 preempt();
1010 mutex_enter(slock);
1011 } else {
1012 pg->flags |= PG_WANTED;
1013 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1014 mutex_enter(slock);
1015 }
1016 if (by_list) {
1017 UVMHIST_LOG(ubchist, "after next %p",
1018 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1019 pg = TAILQ_NEXT(&curmp, listq.queue);
1020 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1021 } else {
1022 pg = uvm_pagelookup(uobj, off);
1023 }
1024 continue;
1025 }
1026
1027 /*
1028 * if we're freeing, remove all mappings of the page now.
1029 * if we're cleaning, check if the page is needs to be cleaned.
1030 */
1031
1032 if (flags & PGO_FREE) {
1033 pmap_page_protect(pg, VM_PROT_NONE);
1034 } else if (flags & PGO_CLEANIT) {
1035
1036 /*
1037 * if we still have some hope to pull this vnode off
1038 * from the syncer queue, write-protect the page.
1039 */
1040
1041 if (cleanall && wasclean &&
1042 gp->g_dirtygen == dirtygen) {
1043
1044 /*
1045 * uobj pages get wired only by uvm_fault
1046 * where uobj is locked.
1047 */
1048
1049 if (pg->wire_count == 0) {
1050 pmap_page_protect(pg,
1051 VM_PROT_READ|VM_PROT_EXECUTE);
1052 } else {
1053 cleanall = false;
1054 }
1055 }
1056 }
1057
1058 if (flags & PGO_CLEANIT) {
1059 needs_clean = pmap_clear_modify(pg) ||
1060 (pg->flags & PG_CLEAN) == 0;
1061 pg->flags |= PG_CLEAN;
1062 } else {
1063 needs_clean = false;
1064 }
1065
1066 /*
1067 * if we're cleaning, build a cluster.
1068 * the cluster will consist of pages which are currently dirty,
1069 * but they will be returned to us marked clean.
1070 * if not cleaning, just operate on the one page.
1071 */
1072
1073 if (needs_clean) {
1074 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1075 wasclean = false;
1076 memset(pgs, 0, sizeof(pgs));
1077 pg->flags |= PG_BUSY;
1078 UVM_PAGE_OWN(pg, "genfs_putpages");
1079
1080 /*
1081 * first look backward.
1082 */
1083
1084 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1085 nback = npages;
1086 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1087 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1088 if (nback) {
1089 memmove(&pgs[0], &pgs[npages - nback],
1090 nback * sizeof(pgs[0]));
1091 if (npages - nback < nback)
1092 memset(&pgs[nback], 0,
1093 (npages - nback) * sizeof(pgs[0]));
1094 else
1095 memset(&pgs[npages - nback], 0,
1096 nback * sizeof(pgs[0]));
1097 }
1098
1099 /*
1100 * then plug in our page of interest.
1101 */
1102
1103 pgs[nback] = pg;
1104
1105 /*
1106 * then look forward to fill in the remaining space in
1107 * the array of pages.
1108 */
1109
1110 npages = maxpages - nback - 1;
1111 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1112 &pgs[nback + 1],
1113 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1114 npages += nback + 1;
1115 } else {
1116 pgs[0] = pg;
1117 npages = 1;
1118 nback = 0;
1119 }
1120
1121 /*
1122 * apply FREE or DEACTIVATE options if requested.
1123 */
1124
1125 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1126 mutex_enter(&uvm_pageqlock);
1127 }
1128 for (i = 0; i < npages; i++) {
1129 tpg = pgs[i];
1130 KASSERT(tpg->uobject == uobj);
1131 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1132 pg = tpg;
1133 if (tpg->offset < startoff || tpg->offset >= endoff)
1134 continue;
1135 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1136 uvm_pagedeactivate(tpg);
1137 } else if (flags & PGO_FREE) {
1138 pmap_page_protect(tpg, VM_PROT_NONE);
1139 if (tpg->flags & PG_BUSY) {
1140 tpg->flags |= freeflag;
1141 if (pagedaemon) {
1142 uvm_pageout_start(1);
1143 uvm_pagedequeue(tpg);
1144 }
1145 } else {
1146
1147 /*
1148 * ``page is not busy''
1149 * implies that npages is 1
1150 * and needs_clean is false.
1151 */
1152
1153 nextpg = TAILQ_NEXT(tpg, listq.queue);
1154 uvm_pagefree(tpg);
1155 if (pagedaemon)
1156 uvmexp.pdfreed++;
1157 }
1158 }
1159 }
1160 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1161 mutex_exit(&uvm_pageqlock);
1162 }
1163 if (needs_clean) {
1164 modified = true;
1165
1166 /*
1167 * start the i/o. if we're traversing by list,
1168 * keep our place in the list with a marker page.
1169 */
1170
1171 if (by_list) {
1172 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1173 listq.queue);
1174 }
1175 mutex_exit(slock);
1176 error = GOP_WRITE(vp, pgs, npages, flags);
1177 mutex_enter(slock);
1178 if (by_list) {
1179 pg = TAILQ_NEXT(&curmp, listq.queue);
1180 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1181 }
1182 if (error) {
1183 break;
1184 }
1185 if (by_list) {
1186 continue;
1187 }
1188 }
1189
1190 /*
1191 * find the next page and continue if there was no error.
1192 */
1193
1194 if (by_list) {
1195 if (nextpg) {
1196 pg = nextpg;
1197 nextpg = NULL;
1198 } else {
1199 pg = TAILQ_NEXT(pg, listq.queue);
1200 }
1201 } else {
1202 off += (npages - nback) << PAGE_SHIFT;
1203 if (off < endoff) {
1204 pg = uvm_pagelookup(uobj, off);
1205 }
1206 }
1207 }
1208 if (by_list) {
1209 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1210 }
1211
1212 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1213 (vp->v_type != VBLK ||
1214 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1215 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1216 }
1217
1218 /*
1219 * if we're cleaning and there was nothing to clean,
1220 * take us off the syncer list. if we started any i/o
1221 * and we're doing sync i/o, wait for all writes to finish.
1222 */
1223
1224 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1225 (vp->v_iflag & VI_ONWORKLST) != 0) {
1226 #if defined(DEBUG)
1227 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1228 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1229 continue;
1230 }
1231 if ((pg->flags & PG_CLEAN) == 0) {
1232 printf("%s: %p: !CLEAN\n", __func__, pg);
1233 }
1234 if (pmap_is_modified(pg)) {
1235 printf("%s: %p: modified\n", __func__, pg);
1236 }
1237 }
1238 #endif /* defined(DEBUG) */
1239 vp->v_iflag &= ~VI_WRMAPDIRTY;
1240 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1241 vn_syncer_remove_from_worklist(vp);
1242 }
1243
1244 #if !defined(DEBUG)
1245 skip_scan:
1246 #endif /* !defined(DEBUG) */
1247
1248 /* Wait for output to complete. */
1249 if (!wasclean && !async && vp->v_numoutput != 0) {
1250 while (vp->v_numoutput != 0)
1251 cv_wait(&vp->v_cv, slock);
1252 }
1253 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1254 mutex_exit(slock);
1255
1256 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1257 /*
1258 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1259 * retrying is not a big deal because, in many cases,
1260 * uobj->uo_npages is already 0 here.
1261 */
1262 mutex_enter(slock);
1263 goto retry;
1264 }
1265
1266 if (has_trans) {
1267 if (need_wapbl)
1268 WAPBL_END(vp->v_mount);
1269 fstrans_done(vp->v_mount);
1270 }
1271
1272 return (error);
1273 }
1274
1275 int
1276 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1277 {
1278 off_t off;
1279 vaddr_t kva;
1280 size_t len;
1281 int error;
1282 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1283
1284 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1285 vp, pgs, npages, flags);
1286
1287 off = pgs[0]->offset;
1288 kva = uvm_pagermapin(pgs, npages,
1289 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1290 len = npages << PAGE_SHIFT;
1291
1292 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1293 uvm_aio_biodone);
1294
1295 return error;
1296 }
1297
1298 int
1299 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1300 {
1301 off_t off;
1302 vaddr_t kva;
1303 size_t len;
1304 int error;
1305 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1306
1307 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1308 vp, pgs, npages, flags);
1309
1310 off = pgs[0]->offset;
1311 kva = uvm_pagermapin(pgs, npages,
1312 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1313 len = npages << PAGE_SHIFT;
1314
1315 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1316 uvm_aio_biodone);
1317
1318 return error;
1319 }
1320
1321 /*
1322 * Backend routine for doing I/O to vnode pages. Pages are already locked
1323 * and mapped into kernel memory. Here we just look up the underlying
1324 * device block addresses and call the strategy routine.
1325 */
1326
1327 static int
1328 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1329 enum uio_rw rw, void (*iodone)(struct buf *))
1330 {
1331 int s, error;
1332 int fs_bshift, dev_bshift;
1333 off_t eof, offset, startoffset;
1334 size_t bytes, iobytes, skipbytes;
1335 struct buf *mbp, *bp;
1336 const bool async = (flags & PGO_SYNCIO) == 0;
1337 const bool iowrite = rw == UIO_WRITE;
1338 const int brw = iowrite ? B_WRITE : B_READ;
1339 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1340
1341 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1342 vp, kva, len, flags);
1343
1344 KASSERT(vp->v_size <= vp->v_writesize);
1345 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1346 if (vp->v_type != VBLK) {
1347 fs_bshift = vp->v_mount->mnt_fs_bshift;
1348 dev_bshift = vp->v_mount->mnt_dev_bshift;
1349 } else {
1350 fs_bshift = DEV_BSHIFT;
1351 dev_bshift = DEV_BSHIFT;
1352 }
1353 error = 0;
1354 startoffset = off;
1355 bytes = MIN(len, eof - startoffset);
1356 skipbytes = 0;
1357 KASSERT(bytes != 0);
1358
1359 if (iowrite) {
1360 mutex_enter(&vp->v_interlock);
1361 vp->v_numoutput += 2;
1362 mutex_exit(&vp->v_interlock);
1363 }
1364 mbp = getiobuf(vp, true);
1365 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1366 vp, mbp, vp->v_numoutput, bytes);
1367 mbp->b_bufsize = len;
1368 mbp->b_data = (void *)kva;
1369 mbp->b_resid = mbp->b_bcount = bytes;
1370 mbp->b_cflags = BC_BUSY | BC_AGE;
1371 if (async) {
1372 mbp->b_flags = brw | B_ASYNC;
1373 mbp->b_iodone = iodone;
1374 } else {
1375 mbp->b_flags = brw;
1376 mbp->b_iodone = NULL;
1377 }
1378 if (curlwp == uvm.pagedaemon_lwp)
1379 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1380 else if (async)
1381 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1382 else
1383 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1384
1385 bp = NULL;
1386 for (offset = startoffset;
1387 bytes > 0;
1388 offset += iobytes, bytes -= iobytes) {
1389 int run;
1390 daddr_t lbn, blkno;
1391 struct vnode *devvp;
1392
1393 /*
1394 * bmap the file to find out the blkno to read from and
1395 * how much we can read in one i/o. if bmap returns an error,
1396 * skip the rest of the top-level i/o.
1397 */
1398
1399 lbn = offset >> fs_bshift;
1400 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1401 if (error) {
1402 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1403 lbn,error,0,0);
1404 skipbytes += bytes;
1405 bytes = 0;
1406 goto loopdone;
1407 }
1408
1409 /*
1410 * see how many pages can be read with this i/o.
1411 * reduce the i/o size if necessary to avoid
1412 * overwriting pages with valid data.
1413 */
1414
1415 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1416 bytes);
1417
1418 /*
1419 * if this block isn't allocated, zero it instead of
1420 * reading it. unless we are going to allocate blocks,
1421 * mark the pages we zeroed PG_RDONLY.
1422 */
1423
1424 if (blkno == (daddr_t)-1) {
1425 if (!iowrite) {
1426 memset((char *)kva + (offset - startoffset), 0,
1427 iobytes);
1428 }
1429 skipbytes += iobytes;
1430 continue;
1431 }
1432
1433 /*
1434 * allocate a sub-buf for this piece of the i/o
1435 * (or just use mbp if there's only 1 piece),
1436 * and start it going.
1437 */
1438
1439 if (offset == startoffset && iobytes == bytes) {
1440 bp = mbp;
1441 } else {
1442 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1443 vp, bp, vp->v_numoutput, 0);
1444 bp = getiobuf(vp, true);
1445 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1446 }
1447 bp->b_lblkno = 0;
1448
1449 /* adjust physical blkno for partial blocks */
1450 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1451 dev_bshift);
1452
1453 UVMHIST_LOG(ubchist,
1454 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1455 bp, offset, bp->b_bcount, bp->b_blkno);
1456
1457 VOP_STRATEGY(devvp, bp);
1458 }
1459
1460 loopdone:
1461 if (skipbytes) {
1462 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1463 }
1464 nestiobuf_done(mbp, skipbytes, error);
1465 if (async) {
1466 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1467 return (0);
1468 }
1469 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1470 error = biowait(mbp);
1471 s = splbio();
1472 (*iodone)(mbp);
1473 splx(s);
1474 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1475 return (error);
1476 }
1477
1478 int
1479 genfs_compat_getpages(void *v)
1480 {
1481 struct vop_getpages_args /* {
1482 struct vnode *a_vp;
1483 voff_t a_offset;
1484 struct vm_page **a_m;
1485 int *a_count;
1486 int a_centeridx;
1487 vm_prot_t a_access_type;
1488 int a_advice;
1489 int a_flags;
1490 } */ *ap = v;
1491
1492 off_t origoffset;
1493 struct vnode *vp = ap->a_vp;
1494 struct uvm_object *uobj = &vp->v_uobj;
1495 struct vm_page *pg, **pgs;
1496 vaddr_t kva;
1497 int i, error, orignpages, npages;
1498 struct iovec iov;
1499 struct uio uio;
1500 kauth_cred_t cred = curlwp->l_cred;
1501 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1502
1503 error = 0;
1504 origoffset = ap->a_offset;
1505 orignpages = *ap->a_count;
1506 pgs = ap->a_m;
1507
1508 if (ap->a_flags & PGO_LOCKED) {
1509 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1510 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1511
1512 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1513 if (error == 0 && memwrite) {
1514 genfs_markdirty(vp);
1515 }
1516 return error;
1517 }
1518 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1519 mutex_exit(&uobj->vmobjlock);
1520 return EINVAL;
1521 }
1522 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1523 mutex_exit(&uobj->vmobjlock);
1524 return 0;
1525 }
1526 npages = orignpages;
1527 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1528 mutex_exit(&uobj->vmobjlock);
1529 kva = uvm_pagermapin(pgs, npages,
1530 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1531 for (i = 0; i < npages; i++) {
1532 pg = pgs[i];
1533 if ((pg->flags & PG_FAKE) == 0) {
1534 continue;
1535 }
1536 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1537 iov.iov_len = PAGE_SIZE;
1538 uio.uio_iov = &iov;
1539 uio.uio_iovcnt = 1;
1540 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1541 uio.uio_rw = UIO_READ;
1542 uio.uio_resid = PAGE_SIZE;
1543 UIO_SETUP_SYSSPACE(&uio);
1544 /* XXX vn_lock */
1545 error = VOP_READ(vp, &uio, 0, cred);
1546 if (error) {
1547 break;
1548 }
1549 if (uio.uio_resid) {
1550 memset(iov.iov_base, 0, uio.uio_resid);
1551 }
1552 }
1553 uvm_pagermapout(kva, npages);
1554 mutex_enter(&uobj->vmobjlock);
1555 mutex_enter(&uvm_pageqlock);
1556 for (i = 0; i < npages; i++) {
1557 pg = pgs[i];
1558 if (error && (pg->flags & PG_FAKE) != 0) {
1559 pg->flags |= PG_RELEASED;
1560 } else {
1561 pmap_clear_modify(pg);
1562 uvm_pageactivate(pg);
1563 }
1564 }
1565 if (error) {
1566 uvm_page_unbusy(pgs, npages);
1567 }
1568 mutex_exit(&uvm_pageqlock);
1569 if (error == 0 && memwrite) {
1570 genfs_markdirty(vp);
1571 }
1572 mutex_exit(&uobj->vmobjlock);
1573 return error;
1574 }
1575
1576 int
1577 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1578 int flags)
1579 {
1580 off_t offset;
1581 struct iovec iov;
1582 struct uio uio;
1583 kauth_cred_t cred = curlwp->l_cred;
1584 struct buf *bp;
1585 vaddr_t kva;
1586 int error;
1587
1588 offset = pgs[0]->offset;
1589 kva = uvm_pagermapin(pgs, npages,
1590 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1591
1592 iov.iov_base = (void *)kva;
1593 iov.iov_len = npages << PAGE_SHIFT;
1594 uio.uio_iov = &iov;
1595 uio.uio_iovcnt = 1;
1596 uio.uio_offset = offset;
1597 uio.uio_rw = UIO_WRITE;
1598 uio.uio_resid = npages << PAGE_SHIFT;
1599 UIO_SETUP_SYSSPACE(&uio);
1600 /* XXX vn_lock */
1601 error = VOP_WRITE(vp, &uio, 0, cred);
1602
1603 mutex_enter(&vp->v_interlock);
1604 vp->v_numoutput++;
1605 mutex_exit(&vp->v_interlock);
1606
1607 bp = getiobuf(vp, true);
1608 bp->b_cflags = BC_BUSY | BC_AGE;
1609 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1610 bp->b_data = (char *)kva;
1611 bp->b_bcount = npages << PAGE_SHIFT;
1612 bp->b_bufsize = npages << PAGE_SHIFT;
1613 bp->b_resid = 0;
1614 bp->b_error = error;
1615 uvm_aio_aiodone(bp);
1616 return (error);
1617 }
1618
1619 /*
1620 * Process a uio using direct I/O. If we reach a part of the request
1621 * which cannot be processed in this fashion for some reason, just return.
1622 * The caller must handle some additional part of the request using
1623 * buffered I/O before trying direct I/O again.
1624 */
1625
1626 void
1627 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1628 {
1629 struct vmspace *vs;
1630 struct iovec *iov;
1631 vaddr_t va;
1632 size_t len;
1633 const int mask = DEV_BSIZE - 1;
1634 int error;
1635 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1636 (ioflag & IO_JOURNALLOCKED) == 0);
1637
1638 /*
1639 * We only support direct I/O to user space for now.
1640 */
1641
1642 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1643 return;
1644 }
1645
1646 /*
1647 * If the vnode is mapped, we would need to get the getpages lock
1648 * to stabilize the bmap, but then we would get into trouble whil e
1649 * locking the pages if the pages belong to this same vnode (or a
1650 * multi-vnode cascade to the same effect). Just fall back to
1651 * buffered I/O if the vnode is mapped to avoid this mess.
1652 */
1653
1654 if (vp->v_vflag & VV_MAPPED) {
1655 return;
1656 }
1657
1658 if (need_wapbl) {
1659 error = WAPBL_BEGIN(vp->v_mount);
1660 if (error)
1661 return;
1662 }
1663
1664 /*
1665 * Do as much of the uio as possible with direct I/O.
1666 */
1667
1668 vs = uio->uio_vmspace;
1669 while (uio->uio_resid) {
1670 iov = uio->uio_iov;
1671 if (iov->iov_len == 0) {
1672 uio->uio_iov++;
1673 uio->uio_iovcnt--;
1674 continue;
1675 }
1676 va = (vaddr_t)iov->iov_base;
1677 len = MIN(iov->iov_len, genfs_maxdio);
1678 len &= ~mask;
1679
1680 /*
1681 * If the next chunk is smaller than DEV_BSIZE or extends past
1682 * the current EOF, then fall back to buffered I/O.
1683 */
1684
1685 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1686 break;
1687 }
1688
1689 /*
1690 * Check alignment. The file offset must be at least
1691 * sector-aligned. The exact constraint on memory alignment
1692 * is very hardware-dependent, but requiring sector-aligned
1693 * addresses there too is safe.
1694 */
1695
1696 if (uio->uio_offset & mask || va & mask) {
1697 break;
1698 }
1699 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1700 uio->uio_rw);
1701 if (error) {
1702 break;
1703 }
1704 iov->iov_base = (char *)iov->iov_base + len;
1705 iov->iov_len -= len;
1706 uio->uio_offset += len;
1707 uio->uio_resid -= len;
1708 }
1709
1710 if (need_wapbl)
1711 WAPBL_END(vp->v_mount);
1712 }
1713
1714 /*
1715 * Iodone routine for direct I/O. We don't do much here since the request is
1716 * always synchronous, so the caller will do most of the work after biowait().
1717 */
1718
1719 static void
1720 genfs_dio_iodone(struct buf *bp)
1721 {
1722
1723 KASSERT((bp->b_flags & B_ASYNC) == 0);
1724 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1725 mutex_enter(bp->b_objlock);
1726 vwakeup(bp);
1727 mutex_exit(bp->b_objlock);
1728 }
1729 putiobuf(bp);
1730 }
1731
1732 /*
1733 * Process one chunk of a direct I/O request.
1734 */
1735
1736 static int
1737 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1738 off_t off, enum uio_rw rw)
1739 {
1740 struct vm_map *map;
1741 struct pmap *upm, *kpm;
1742 size_t klen = round_page(uva + len) - trunc_page(uva);
1743 off_t spoff, epoff;
1744 vaddr_t kva, puva;
1745 paddr_t pa;
1746 vm_prot_t prot;
1747 int error, rv, poff, koff;
1748 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1749 (rw == UIO_WRITE ? PGO_FREE : 0);
1750
1751 /*
1752 * For writes, verify that this range of the file already has fully
1753 * allocated backing store. If there are any holes, just punt and
1754 * make the caller take the buffered write path.
1755 */
1756
1757 if (rw == UIO_WRITE) {
1758 daddr_t lbn, elbn, blkno;
1759 int bsize, bshift, run;
1760
1761 bshift = vp->v_mount->mnt_fs_bshift;
1762 bsize = 1 << bshift;
1763 lbn = off >> bshift;
1764 elbn = (off + len + bsize - 1) >> bshift;
1765 while (lbn < elbn) {
1766 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1767 if (error) {
1768 return error;
1769 }
1770 if (blkno == (daddr_t)-1) {
1771 return ENOSPC;
1772 }
1773 lbn += 1 + run;
1774 }
1775 }
1776
1777 /*
1778 * Flush any cached pages for parts of the file that we're about to
1779 * access. If we're writing, invalidate pages as well.
1780 */
1781
1782 spoff = trunc_page(off);
1783 epoff = round_page(off + len);
1784 mutex_enter(&vp->v_interlock);
1785 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1786 if (error) {
1787 return error;
1788 }
1789
1790 /*
1791 * Wire the user pages and remap them into kernel memory.
1792 */
1793
1794 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1795 error = uvm_vslock(vs, (void *)uva, len, prot);
1796 if (error) {
1797 return error;
1798 }
1799
1800 map = &vs->vm_map;
1801 upm = vm_map_pmap(map);
1802 kpm = vm_map_pmap(kernel_map);
1803 kva = uvm_km_alloc(kernel_map, klen, 0,
1804 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1805 puva = trunc_page(uva);
1806 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1807 rv = pmap_extract(upm, puva + poff, &pa);
1808 KASSERT(rv);
1809 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1810 }
1811 pmap_update(kpm);
1812
1813 /*
1814 * Do the I/O.
1815 */
1816
1817 koff = uva - trunc_page(uva);
1818 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1819 genfs_dio_iodone);
1820
1821 /*
1822 * Tear down the kernel mapping.
1823 */
1824
1825 pmap_remove(kpm, kva, kva + klen);
1826 pmap_update(kpm);
1827 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1828
1829 /*
1830 * Unwire the user pages.
1831 */
1832
1833 uvm_vsunlock(vs, (void *)uva, len);
1834 return error;
1835 }
1836
1837