Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.46
      1 /*	$NetBSD: genfs_io.c,v 1.46 2010/12/06 10:22:43 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.46 2010/12/06 10:22:43 uebayasi Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 #include <sys/buf.h>
     51 
     52 #include <miscfs/genfs/genfs.h>
     53 #include <miscfs/genfs/genfs_node.h>
     54 #include <miscfs/specfs/specdev.h>
     55 
     56 #include <uvm/uvm.h>
     57 #include <uvm/uvm_pager.h>
     58 
     59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     60     off_t, enum uio_rw);
     61 static void genfs_dio_iodone(struct buf *);
     62 
     63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     64     void (*)(struct buf *));
     65 static void genfs_rel_pages(struct vm_page **, int);
     66 static void genfs_markdirty(struct vnode *);
     67 
     68 int genfs_maxdio = MAXPHYS;
     69 
     70 static void
     71 genfs_rel_pages(struct vm_page **pgs, int npages)
     72 {
     73 	int i;
     74 
     75 	for (i = 0; i < npages; i++) {
     76 		struct vm_page *pg = pgs[i];
     77 
     78 		if (pg == NULL || pg == PGO_DONTCARE)
     79 			continue;
     80 		if (pg->flags & PG_FAKE) {
     81 			pg->flags |= PG_RELEASED;
     82 		}
     83 	}
     84 	mutex_enter(&uvm_pageqlock);
     85 	uvm_page_unbusy(pgs, npages);
     86 	mutex_exit(&uvm_pageqlock);
     87 }
     88 
     89 static void
     90 genfs_markdirty(struct vnode *vp)
     91 {
     92 	struct genfs_node * const gp = VTOG(vp);
     93 
     94 	KASSERT(mutex_owned(&vp->v_interlock));
     95 	gp->g_dirtygen++;
     96 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     97 		vn_syncer_add_to_worklist(vp, filedelay);
     98 	}
     99 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    100 		vp->v_iflag |= VI_WRMAPDIRTY;
    101 	}
    102 }
    103 
    104 /*
    105  * generic VM getpages routine.
    106  * Return PG_BUSY pages for the given range,
    107  * reading from backing store if necessary.
    108  */
    109 
    110 int
    111 genfs_getpages(void *v)
    112 {
    113 	struct vop_getpages_args /* {
    114 		struct vnode *a_vp;
    115 		voff_t a_offset;
    116 		struct vm_page **a_m;
    117 		int *a_count;
    118 		int a_centeridx;
    119 		vm_prot_t a_access_type;
    120 		int a_advice;
    121 		int a_flags;
    122 	} */ * const ap = v;
    123 
    124 	off_t diskeof, memeof;
    125 	int i, error, npages;
    126 	const int flags = ap->a_flags;
    127 	struct vnode * const vp = ap->a_vp;
    128 	struct uvm_object * const uobj = &vp->v_uobj;
    129 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    130 	const bool async = (flags & PGO_SYNCIO) == 0;
    131 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    132 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    133 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    134 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    135 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
    136 	bool has_trans_wapbl = false;
    137 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    138 
    139 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    140 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    141 
    142 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    143 	    vp->v_type == VLNK || vp->v_type == VBLK);
    144 
    145 startover:
    146 	error = 0;
    147 	const voff_t origvsize = vp->v_size;
    148 	const off_t origoffset = ap->a_offset;
    149 	const int orignpages = *ap->a_count;
    150 
    151 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    152 	if (flags & PGO_PASTEOF) {
    153 		off_t newsize;
    154 #if defined(DIAGNOSTIC)
    155 		off_t writeeof;
    156 #endif /* defined(DIAGNOSTIC) */
    157 
    158 		newsize = MAX(origvsize,
    159 		    origoffset + (orignpages << PAGE_SHIFT));
    160 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    161 #if defined(DIAGNOSTIC)
    162 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    163 		if (newsize > round_page(writeeof)) {
    164 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    165 			    __func__, newsize, round_page(writeeof));
    166 		}
    167 #endif /* defined(DIAGNOSTIC) */
    168 	} else {
    169 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    170 	}
    171 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    172 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    173 	KASSERT(orignpages > 0);
    174 
    175 	/*
    176 	 * Bounds-check the request.
    177 	 */
    178 
    179 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    180 		if ((flags & PGO_LOCKED) == 0) {
    181 			mutex_exit(&uobj->vmobjlock);
    182 		}
    183 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    184 		    origoffset, *ap->a_count, memeof,0);
    185 		error = EINVAL;
    186 		goto out_err;
    187 	}
    188 
    189 	/* uobj is locked */
    190 
    191 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    192 	    (vp->v_type != VBLK ||
    193 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    194 		int updflags = 0;
    195 
    196 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    197 			updflags = GOP_UPDATE_ACCESSED;
    198 		}
    199 		if (memwrite) {
    200 			updflags |= GOP_UPDATE_MODIFIED;
    201 		}
    202 		if (updflags != 0) {
    203 			GOP_MARKUPDATE(vp, updflags);
    204 		}
    205 	}
    206 
    207 	/*
    208 	 * For PGO_LOCKED requests, just return whatever's in memory.
    209 	 */
    210 
    211 	if (flags & PGO_LOCKED) {
    212 		int nfound;
    213 		struct vm_page *pg;
    214 
    215 		KASSERT(!glocked);
    216 		npages = *ap->a_count;
    217 #if defined(DEBUG)
    218 		for (i = 0; i < npages; i++) {
    219 			pg = ap->a_m[i];
    220 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    221 		}
    222 #endif /* defined(DEBUG) */
    223 		nfound = uvn_findpages(uobj, origoffset, &npages,
    224 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    225 		KASSERT(npages == *ap->a_count);
    226 		if (nfound == 0) {
    227 			error = EBUSY;
    228 			goto out_err;
    229 		}
    230 		if (!genfs_node_rdtrylock(vp)) {
    231 			genfs_rel_pages(ap->a_m, npages);
    232 
    233 			/*
    234 			 * restore the array.
    235 			 */
    236 
    237 			for (i = 0; i < npages; i++) {
    238 				pg = ap->a_m[i];
    239 
    240 				if (pg != NULL && pg != PGO_DONTCARE) {
    241 					ap->a_m[i] = NULL;
    242 				}
    243 				KASSERT(ap->a_m[i] == NULL ||
    244 				    ap->a_m[i] == PGO_DONTCARE);
    245 			}
    246 		} else {
    247 			genfs_node_unlock(vp);
    248 		}
    249 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    250 		if (error == 0 && memwrite) {
    251 			genfs_markdirty(vp);
    252 		}
    253 		goto out_err;
    254 	}
    255 	mutex_exit(&uobj->vmobjlock);
    256 
    257 	/*
    258 	 * find the requested pages and make some simple checks.
    259 	 * leave space in the page array for a whole block.
    260 	 */
    261 
    262 	const int fs_bshift = (vp->v_type != VBLK) ?
    263 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    264 	const int dev_bshift = (vp->v_type != VBLK) ?
    265 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    266 	const int fs_bsize = 1 << fs_bshift;
    267 #define	blk_mask	(fs_bsize - 1)
    268 #define	trunc_blk(x)	((x) & ~blk_mask)
    269 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    270 
    271 	const int orignmempages = MIN(orignpages,
    272 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    273 	npages = orignmempages;
    274 	const off_t startoffset = trunc_blk(origoffset);
    275 	const off_t endoffset = MIN(
    276 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    277 	    round_page(memeof));
    278 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    279 
    280 	const int pgs_size = sizeof(struct vm_page *) *
    281 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    282 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    283 
    284 	if (pgs_size > sizeof(pgs_onstack)) {
    285 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    286 		if (pgs == NULL) {
    287 			pgs = pgs_onstack;
    288 			error = ENOMEM;
    289 			goto out_err;
    290 		}
    291 	} else {
    292 		pgs = pgs_onstack;
    293 		(void)memset(pgs, 0, pgs_size);
    294 	}
    295 
    296 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    297 	    ridx, npages, startoffset, endoffset);
    298 
    299 	if (!has_trans_wapbl) {
    300 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    301 		/*
    302 		 * XXX: This assumes that we come here only via
    303 		 * the mmio path
    304 		 */
    305 		if (need_wapbl) {
    306 			error = WAPBL_BEGIN(vp->v_mount);
    307 			if (error) {
    308 				fstrans_done(vp->v_mount);
    309 				goto out_err_free;
    310 			}
    311 		}
    312 		has_trans_wapbl = true;
    313 	}
    314 
    315 	/*
    316 	 * hold g_glock to prevent a race with truncate.
    317 	 *
    318 	 * check if our idea of v_size is still valid.
    319 	 */
    320 
    321 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    322 	if (!glocked) {
    323 		if (blockalloc) {
    324 			genfs_node_wrlock(vp);
    325 		} else {
    326 			genfs_node_rdlock(vp);
    327 		}
    328 	}
    329 	mutex_enter(&uobj->vmobjlock);
    330 	if (vp->v_size < origvsize) {
    331 		if (!glocked) {
    332 			genfs_node_unlock(vp);
    333 		}
    334 		if (pgs != pgs_onstack)
    335 			kmem_free(pgs, pgs_size);
    336 		goto startover;
    337 	}
    338 
    339 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    340 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    341 		if (!glocked) {
    342 			genfs_node_unlock(vp);
    343 		}
    344 		KASSERT(async != 0);
    345 		genfs_rel_pages(&pgs[ridx], orignmempages);
    346 		mutex_exit(&uobj->vmobjlock);
    347 		error = EBUSY;
    348 		goto out_err_free;
    349 	}
    350 
    351 	/*
    352 	 * if the pages are already resident, just return them.
    353 	 */
    354 
    355 	for (i = 0; i < npages; i++) {
    356 		struct vm_page *pg = pgs[ridx + i];
    357 
    358 		if ((pg->flags & PG_FAKE) ||
    359 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    360 			break;
    361 		}
    362 	}
    363 	if (i == npages) {
    364 		if (!glocked) {
    365 			genfs_node_unlock(vp);
    366 		}
    367 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    368 		npages += ridx;
    369 		goto out;
    370 	}
    371 
    372 	/*
    373 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    374 	 */
    375 
    376 	if (overwrite) {
    377 		if (!glocked) {
    378 			genfs_node_unlock(vp);
    379 		}
    380 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    381 
    382 		for (i = 0; i < npages; i++) {
    383 			struct vm_page *pg = pgs[ridx + i];
    384 
    385 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    386 		}
    387 		npages += ridx;
    388 		goto out;
    389 	}
    390 
    391 	/*
    392 	 * the page wasn't resident and we're not overwriting,
    393 	 * so we're going to have to do some i/o.
    394 	 * find any additional pages needed to cover the expanded range.
    395 	 */
    396 
    397 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    398 	if (startoffset != origoffset || npages != orignmempages) {
    399 		int npgs;
    400 
    401 		/*
    402 		 * we need to avoid deadlocks caused by locking
    403 		 * additional pages at lower offsets than pages we
    404 		 * already have locked.  unlock them all and start over.
    405 		 */
    406 
    407 		genfs_rel_pages(&pgs[ridx], orignmempages);
    408 		memset(pgs, 0, pgs_size);
    409 
    410 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    411 		    startoffset, endoffset, 0,0);
    412 		npgs = npages;
    413 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    414 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    415 			if (!glocked) {
    416 				genfs_node_unlock(vp);
    417 			}
    418 			KASSERT(async != 0);
    419 			genfs_rel_pages(pgs, npages);
    420 			mutex_exit(&uobj->vmobjlock);
    421 			error = EBUSY;
    422 			goto out_err_free;
    423 		}
    424 	}
    425 
    426 	mutex_exit(&uobj->vmobjlock);
    427 
    428     {
    429 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    430 	vaddr_t kva;
    431 	struct buf *bp, *mbp;
    432 	bool sawhole = false;
    433 
    434 	/*
    435 	 * read the desired page(s).
    436 	 */
    437 
    438 	totalbytes = npages << PAGE_SHIFT;
    439 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    440 	tailbytes = totalbytes - bytes;
    441 	skipbytes = 0;
    442 
    443 	kva = uvm_pagermapin(pgs, npages,
    444 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    445 
    446 	mbp = getiobuf(vp, true);
    447 	mbp->b_bufsize = totalbytes;
    448 	mbp->b_data = (void *)kva;
    449 	mbp->b_resid = mbp->b_bcount = bytes;
    450 	mbp->b_cflags = BC_BUSY;
    451 	if (async) {
    452 		mbp->b_flags = B_READ | B_ASYNC;
    453 		mbp->b_iodone = uvm_aio_biodone;
    454 	} else {
    455 		mbp->b_flags = B_READ;
    456 		mbp->b_iodone = NULL;
    457 	}
    458 	if (async)
    459 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    460 	else
    461 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    462 
    463 	/*
    464 	 * if EOF is in the middle of the range, zero the part past EOF.
    465 	 * skip over pages which are not PG_FAKE since in that case they have
    466 	 * valid data that we need to preserve.
    467 	 */
    468 
    469 	tailstart = bytes;
    470 	while (tailbytes > 0) {
    471 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    472 
    473 		KASSERT(len <= tailbytes);
    474 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    475 			memset((void *)(kva + tailstart), 0, len);
    476 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    477 			    kva, tailstart, len, 0);
    478 		}
    479 		tailstart += len;
    480 		tailbytes -= len;
    481 	}
    482 
    483 	/*
    484 	 * now loop over the pages, reading as needed.
    485 	 */
    486 
    487 	bp = NULL;
    488 	off_t offset;
    489 	for (offset = startoffset;
    490 	    bytes > 0;
    491 	    offset += iobytes, bytes -= iobytes) {
    492 		int run;
    493 		daddr_t lbn, blkno;
    494 		int pidx;
    495 		struct vnode *devvp;
    496 
    497 		/*
    498 		 * skip pages which don't need to be read.
    499 		 */
    500 
    501 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    502 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    503 			size_t b;
    504 
    505 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    506 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    507 				sawhole = true;
    508 			}
    509 			b = MIN(PAGE_SIZE, bytes);
    510 			offset += b;
    511 			bytes -= b;
    512 			skipbytes += b;
    513 			pidx++;
    514 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    515 			    offset, 0,0,0);
    516 			if (bytes == 0) {
    517 				goto loopdone;
    518 			}
    519 		}
    520 
    521 		/*
    522 		 * bmap the file to find out the blkno to read from and
    523 		 * how much we can read in one i/o.  if bmap returns an error,
    524 		 * skip the rest of the top-level i/o.
    525 		 */
    526 
    527 		lbn = offset >> fs_bshift;
    528 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    529 		if (error) {
    530 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    531 			    lbn,error,0,0);
    532 			skipbytes += bytes;
    533 			bytes = 0;
    534 			goto loopdone;
    535 		}
    536 
    537 		/*
    538 		 * see how many pages can be read with this i/o.
    539 		 * reduce the i/o size if necessary to avoid
    540 		 * overwriting pages with valid data.
    541 		 */
    542 
    543 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    544 		    bytes);
    545 		if (offset + iobytes > round_page(offset)) {
    546 			int pcount;
    547 
    548 			pcount = 1;
    549 			while (pidx + pcount < npages &&
    550 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    551 				pcount++;
    552 			}
    553 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    554 			    (offset - trunc_page(offset)));
    555 		}
    556 
    557 		/*
    558 		 * if this block isn't allocated, zero it instead of
    559 		 * reading it.  unless we are going to allocate blocks,
    560 		 * mark the pages we zeroed PG_RDONLY.
    561 		 */
    562 
    563 		if (blkno == (daddr_t)-1) {
    564 			int holepages = (round_page(offset + iobytes) -
    565 			    trunc_page(offset)) >> PAGE_SHIFT;
    566 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    567 
    568 			sawhole = true;
    569 			memset((char *)kva + (offset - startoffset), 0,
    570 			    iobytes);
    571 			skipbytes += iobytes;
    572 
    573 			mutex_enter(&uobj->vmobjlock);
    574 			for (i = 0; i < holepages; i++) {
    575 				if (memwrite) {
    576 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    577 				}
    578 				if (!blockalloc) {
    579 					pgs[pidx + i]->flags |= PG_RDONLY;
    580 				}
    581 			}
    582 			mutex_exit(&uobj->vmobjlock);
    583 			continue;
    584 		}
    585 
    586 		/*
    587 		 * allocate a sub-buf for this piece of the i/o
    588 		 * (or just use mbp if there's only 1 piece),
    589 		 * and start it going.
    590 		 */
    591 
    592 		if (offset == startoffset && iobytes == bytes) {
    593 			bp = mbp;
    594 		} else {
    595 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    596 			    vp, bp, vp->v_numoutput, 0);
    597 			bp = getiobuf(vp, true);
    598 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    599 		}
    600 		bp->b_lblkno = 0;
    601 
    602 		/* adjust physical blkno for partial blocks */
    603 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    604 		    dev_bshift);
    605 
    606 		UVMHIST_LOG(ubchist,
    607 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    608 		    bp, offset, bp->b_bcount, bp->b_blkno);
    609 
    610 		VOP_STRATEGY(devvp, bp);
    611 	}
    612 
    613 loopdone:
    614 	nestiobuf_done(mbp, skipbytes, error);
    615 	if (async) {
    616 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    617 		if (!glocked) {
    618 			genfs_node_unlock(vp);
    619 		}
    620 		error = 0;
    621 		goto out_err_free;
    622 	}
    623 	if (bp != NULL) {
    624 		error = biowait(mbp);
    625 	}
    626 
    627 	/* Remove the mapping (make KVA available as soon as possible) */
    628 	uvm_pagermapout(kva, npages);
    629 
    630 	/*
    631 	 * if this we encountered a hole then we have to do a little more work.
    632 	 * for read faults, we marked the page PG_RDONLY so that future
    633 	 * write accesses to the page will fault again.
    634 	 * for write faults, we must make sure that the backing store for
    635 	 * the page is completely allocated while the pages are locked.
    636 	 */
    637 
    638 	if (!error && sawhole && blockalloc) {
    639 		error = GOP_ALLOC(vp, startoffset,
    640 		    npages << PAGE_SHIFT, 0, cred);
    641 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    642 		    startoffset, npages << PAGE_SHIFT, error,0);
    643 		if (!error) {
    644 			mutex_enter(&uobj->vmobjlock);
    645 			for (i = 0; i < npages; i++) {
    646 				struct vm_page *pg = pgs[i];
    647 
    648 				if (pg == NULL) {
    649 					continue;
    650 				}
    651 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    652 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    653 				    pg,0,0,0);
    654 			}
    655 			mutex_exit(&uobj->vmobjlock);
    656 		}
    657 	}
    658 	if (!glocked) {
    659 		genfs_node_unlock(vp);
    660 	}
    661 
    662 	putiobuf(mbp);
    663     }
    664 
    665 	mutex_enter(&uobj->vmobjlock);
    666 
    667 	/*
    668 	 * we're almost done!  release the pages...
    669 	 * for errors, we free the pages.
    670 	 * otherwise we activate them and mark them as valid and clean.
    671 	 * also, unbusy pages that were not actually requested.
    672 	 */
    673 
    674 	if (error) {
    675 		for (i = 0; i < npages; i++) {
    676 			struct vm_page *pg = pgs[i];
    677 
    678 			if (pg == NULL) {
    679 				continue;
    680 			}
    681 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    682 			    pg, pg->flags, 0,0);
    683 			if (pg->flags & PG_FAKE) {
    684 				pg->flags |= PG_RELEASED;
    685 			}
    686 		}
    687 		mutex_enter(&uvm_pageqlock);
    688 		uvm_page_unbusy(pgs, npages);
    689 		mutex_exit(&uvm_pageqlock);
    690 		mutex_exit(&uobj->vmobjlock);
    691 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    692 		goto out_err_free;
    693 	}
    694 
    695 out:
    696 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    697 	error = 0;
    698 	mutex_enter(&uvm_pageqlock);
    699 	for (i = 0; i < npages; i++) {
    700 		struct vm_page *pg = pgs[i];
    701 		if (pg == NULL) {
    702 			continue;
    703 		}
    704 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    705 		    pg, pg->flags, 0,0);
    706 		if (pg->flags & PG_FAKE && !overwrite) {
    707 			pg->flags &= ~(PG_FAKE);
    708 			pmap_clear_modify(pgs[i]);
    709 		}
    710 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    711 		if (i < ridx || i >= ridx + orignmempages || async) {
    712 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    713 			    pg, pg->offset,0,0);
    714 			if (pg->flags & PG_WANTED) {
    715 				wakeup(pg);
    716 			}
    717 			if (pg->flags & PG_FAKE) {
    718 				KASSERT(overwrite);
    719 				uvm_pagezero(pg);
    720 			}
    721 			if (pg->flags & PG_RELEASED) {
    722 				uvm_pagefree(pg);
    723 				continue;
    724 			}
    725 			uvm_pageenqueue(pg);
    726 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    727 			UVM_PAGE_OWN(pg, NULL);
    728 		}
    729 	}
    730 	mutex_exit(&uvm_pageqlock);
    731 	if (memwrite) {
    732 		genfs_markdirty(vp);
    733 	}
    734 	mutex_exit(&uobj->vmobjlock);
    735 	if (ap->a_m != NULL) {
    736 		memcpy(ap->a_m, &pgs[ridx],
    737 		    orignmempages * sizeof(struct vm_page *));
    738 	}
    739 
    740 out_err_free:
    741 	if (pgs != NULL && pgs != pgs_onstack)
    742 		kmem_free(pgs, pgs_size);
    743 out_err:
    744 	if (has_trans_wapbl) {
    745 		if (need_wapbl)
    746 			WAPBL_END(vp->v_mount);
    747 		fstrans_done(vp->v_mount);
    748 	}
    749 	return error;
    750 }
    751 
    752 /*
    753  * generic VM putpages routine.
    754  * Write the given range of pages to backing store.
    755  *
    756  * => "offhi == 0" means flush all pages at or after "offlo".
    757  * => object should be locked by caller.  we return with the
    758  *      object unlocked.
    759  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    760  *	thus, a caller might want to unlock higher level resources
    761  *	(e.g. vm_map) before calling flush.
    762  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    763  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    764  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    765  *	that new pages are inserted on the tail end of the list.   thus,
    766  *	we can make a complete pass through the object in one go by starting
    767  *	at the head and working towards the tail (new pages are put in
    768  *	front of us).
    769  * => NOTE: we are allowed to lock the page queues, so the caller
    770  *	must not be holding the page queue lock.
    771  *
    772  * note on "cleaning" object and PG_BUSY pages:
    773  *	this routine is holding the lock on the object.   the only time
    774  *	that it can run into a PG_BUSY page that it does not own is if
    775  *	some other process has started I/O on the page (e.g. either
    776  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    777  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    778  *	had a chance to modify it yet.    if the PG_BUSY page is being
    779  *	paged out then it means that someone else has already started
    780  *	cleaning the page for us (how nice!).    in this case, if we
    781  *	have syncio specified, then after we make our pass through the
    782  *	object we need to wait for the other PG_BUSY pages to clear
    783  *	off (i.e. we need to do an iosync).   also note that once a
    784  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    785  *
    786  * note on page traversal:
    787  *	we can traverse the pages in an object either by going down the
    788  *	linked list in "uobj->memq", or we can go over the address range
    789  *	by page doing hash table lookups for each address.    depending
    790  *	on how many pages are in the object it may be cheaper to do one
    791  *	or the other.   we set "by_list" to true if we are using memq.
    792  *	if the cost of a hash lookup was equal to the cost of the list
    793  *	traversal we could compare the number of pages in the start->stop
    794  *	range to the total number of pages in the object.   however, it
    795  *	seems that a hash table lookup is more expensive than the linked
    796  *	list traversal, so we multiply the number of pages in the
    797  *	range by an estimate of the relatively higher cost of the hash lookup.
    798  */
    799 
    800 int
    801 genfs_putpages(void *v)
    802 {
    803 	struct vop_putpages_args /* {
    804 		struct vnode *a_vp;
    805 		voff_t a_offlo;
    806 		voff_t a_offhi;
    807 		int a_flags;
    808 	} */ * const ap = v;
    809 
    810 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    811 	    ap->a_flags, NULL);
    812 }
    813 
    814 int
    815 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    816     int origflags, struct vm_page **busypg)
    817 {
    818 	struct uvm_object * const uobj = &vp->v_uobj;
    819 	kmutex_t * const slock = &uobj->vmobjlock;
    820 	off_t off;
    821 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    822 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    823 	int i, error, npages, nback;
    824 	int freeflag;
    825 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    826 	bool wasclean, by_list, needs_clean, yld;
    827 	bool async = (origflags & PGO_SYNCIO) == 0;
    828 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    829 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    830 	struct genfs_node * const gp = VTOG(vp);
    831 	int flags;
    832 	int dirtygen;
    833 	bool modified;
    834 	bool need_wapbl;
    835 	bool has_trans;
    836 	bool cleanall;
    837 	bool onworklst;
    838 
    839 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    840 
    841 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    842 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    843 	KASSERT(startoff < endoff || endoff == 0);
    844 
    845 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    846 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    847 
    848 	has_trans = false;
    849 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    850 	    (origflags & PGO_JOURNALLOCKED) == 0);
    851 
    852 retry:
    853 	modified = false;
    854 	flags = origflags;
    855 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    856 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    857 	if (uobj->uo_npages == 0) {
    858 		if (vp->v_iflag & VI_ONWORKLST) {
    859 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    860 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    861 				vn_syncer_remove_from_worklist(vp);
    862 		}
    863 		if (has_trans) {
    864 			if (need_wapbl)
    865 				WAPBL_END(vp->v_mount);
    866 			fstrans_done(vp->v_mount);
    867 		}
    868 		mutex_exit(slock);
    869 		return (0);
    870 	}
    871 
    872 	/*
    873 	 * the vnode has pages, set up to process the request.
    874 	 */
    875 
    876 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    877 		mutex_exit(slock);
    878 		if (pagedaemon) {
    879 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    880 			if (error)
    881 				return error;
    882 		} else
    883 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    884 		if (need_wapbl) {
    885 			error = WAPBL_BEGIN(vp->v_mount);
    886 			if (error) {
    887 				fstrans_done(vp->v_mount);
    888 				return error;
    889 			}
    890 		}
    891 		has_trans = true;
    892 		mutex_enter(slock);
    893 		goto retry;
    894 	}
    895 
    896 	error = 0;
    897 	wasclean = (vp->v_numoutput == 0);
    898 	off = startoff;
    899 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    900 		endoff = trunc_page(LLONG_MAX);
    901 	}
    902 	by_list = (uobj->uo_npages <=
    903 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    904 
    905 #if !defined(DEBUG)
    906 	/*
    907 	 * if this vnode is known not to have dirty pages,
    908 	 * don't bother to clean it out.
    909 	 */
    910 
    911 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    912 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    913 			goto skip_scan;
    914 		}
    915 		flags &= ~PGO_CLEANIT;
    916 	}
    917 #endif /* !defined(DEBUG) */
    918 
    919 	/*
    920 	 * start the loop.  when scanning by list, hold the last page
    921 	 * in the list before we start.  pages allocated after we start
    922 	 * will be added to the end of the list, so we can stop at the
    923 	 * current last page.
    924 	 */
    925 
    926 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    927 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    928 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    929 	dirtygen = gp->g_dirtygen;
    930 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    931 	if (by_list) {
    932 		curmp.flags = PG_MARKER;
    933 		endmp.flags = PG_MARKER;
    934 		pg = TAILQ_FIRST(&uobj->memq);
    935 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    936 	} else {
    937 		pg = uvm_pagelookup(uobj, off);
    938 	}
    939 	nextpg = NULL;
    940 	while (by_list || off < endoff) {
    941 
    942 		/*
    943 		 * if the current page is not interesting, move on to the next.
    944 		 */
    945 
    946 		KASSERT(pg == NULL || pg->uobject == uobj ||
    947 		    (pg->flags & PG_MARKER) != 0);
    948 		KASSERT(pg == NULL ||
    949 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    950 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
    951 		if (by_list) {
    952 			if (pg == &endmp) {
    953 				break;
    954 			}
    955 			if (pg->flags & PG_MARKER) {
    956 				pg = TAILQ_NEXT(pg, listq.queue);
    957 				continue;
    958 			}
    959 			if (pg->offset < startoff || pg->offset >= endoff ||
    960 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    961 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    962 					wasclean = false;
    963 				}
    964 				pg = TAILQ_NEXT(pg, listq.queue);
    965 				continue;
    966 			}
    967 			off = pg->offset;
    968 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    969 			if (pg != NULL) {
    970 				wasclean = false;
    971 			}
    972 			off += PAGE_SIZE;
    973 			if (off < endoff) {
    974 				pg = uvm_pagelookup(uobj, off);
    975 			}
    976 			continue;
    977 		}
    978 
    979 		/*
    980 		 * if the current page needs to be cleaned and it's busy,
    981 		 * wait for it to become unbusy.
    982 		 */
    983 
    984 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    985 		    SPCF_SHOULDYIELD) && !pagedaemon;
    986 		if (pg->flags & PG_BUSY || yld) {
    987 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    988 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    989 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    990 				error = EDEADLK;
    991 				if (busypg != NULL)
    992 					*busypg = pg;
    993 				break;
    994 			}
    995 			if (pagedaemon) {
    996 				/*
    997 				 * someone has taken the page while we
    998 				 * dropped the lock for fstrans_start.
    999 				 */
   1000 				break;
   1001 			}
   1002 			if (by_list) {
   1003 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1004 				UVMHIST_LOG(ubchist, "curmp next %p",
   1005 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1006 			}
   1007 			if (yld) {
   1008 				mutex_exit(slock);
   1009 				preempt();
   1010 				mutex_enter(slock);
   1011 			} else {
   1012 				pg->flags |= PG_WANTED;
   1013 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1014 				mutex_enter(slock);
   1015 			}
   1016 			if (by_list) {
   1017 				UVMHIST_LOG(ubchist, "after next %p",
   1018 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1019 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1020 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1021 			} else {
   1022 				pg = uvm_pagelookup(uobj, off);
   1023 			}
   1024 			continue;
   1025 		}
   1026 
   1027 		/*
   1028 		 * if we're freeing, remove all mappings of the page now.
   1029 		 * if we're cleaning, check if the page is needs to be cleaned.
   1030 		 */
   1031 
   1032 		if (flags & PGO_FREE) {
   1033 			pmap_page_protect(pg, VM_PROT_NONE);
   1034 		} else if (flags & PGO_CLEANIT) {
   1035 
   1036 			/*
   1037 			 * if we still have some hope to pull this vnode off
   1038 			 * from the syncer queue, write-protect the page.
   1039 			 */
   1040 
   1041 			if (cleanall && wasclean &&
   1042 			    gp->g_dirtygen == dirtygen) {
   1043 
   1044 				/*
   1045 				 * uobj pages get wired only by uvm_fault
   1046 				 * where uobj is locked.
   1047 				 */
   1048 
   1049 				if (pg->wire_count == 0) {
   1050 					pmap_page_protect(pg,
   1051 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1052 				} else {
   1053 					cleanall = false;
   1054 				}
   1055 			}
   1056 		}
   1057 
   1058 		if (flags & PGO_CLEANIT) {
   1059 			needs_clean = pmap_clear_modify(pg) ||
   1060 			    (pg->flags & PG_CLEAN) == 0;
   1061 			pg->flags |= PG_CLEAN;
   1062 		} else {
   1063 			needs_clean = false;
   1064 		}
   1065 
   1066 		/*
   1067 		 * if we're cleaning, build a cluster.
   1068 		 * the cluster will consist of pages which are currently dirty,
   1069 		 * but they will be returned to us marked clean.
   1070 		 * if not cleaning, just operate on the one page.
   1071 		 */
   1072 
   1073 		if (needs_clean) {
   1074 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1075 			wasclean = false;
   1076 			memset(pgs, 0, sizeof(pgs));
   1077 			pg->flags |= PG_BUSY;
   1078 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1079 
   1080 			/*
   1081 			 * first look backward.
   1082 			 */
   1083 
   1084 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1085 			nback = npages;
   1086 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1087 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1088 			if (nback) {
   1089 				memmove(&pgs[0], &pgs[npages - nback],
   1090 				    nback * sizeof(pgs[0]));
   1091 				if (npages - nback < nback)
   1092 					memset(&pgs[nback], 0,
   1093 					    (npages - nback) * sizeof(pgs[0]));
   1094 				else
   1095 					memset(&pgs[npages - nback], 0,
   1096 					    nback * sizeof(pgs[0]));
   1097 			}
   1098 
   1099 			/*
   1100 			 * then plug in our page of interest.
   1101 			 */
   1102 
   1103 			pgs[nback] = pg;
   1104 
   1105 			/*
   1106 			 * then look forward to fill in the remaining space in
   1107 			 * the array of pages.
   1108 			 */
   1109 
   1110 			npages = maxpages - nback - 1;
   1111 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1112 			    &pgs[nback + 1],
   1113 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1114 			npages += nback + 1;
   1115 		} else {
   1116 			pgs[0] = pg;
   1117 			npages = 1;
   1118 			nback = 0;
   1119 		}
   1120 
   1121 		/*
   1122 		 * apply FREE or DEACTIVATE options if requested.
   1123 		 */
   1124 
   1125 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1126 			mutex_enter(&uvm_pageqlock);
   1127 		}
   1128 		for (i = 0; i < npages; i++) {
   1129 			tpg = pgs[i];
   1130 			KASSERT(tpg->uobject == uobj);
   1131 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1132 				pg = tpg;
   1133 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1134 				continue;
   1135 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1136 				uvm_pagedeactivate(tpg);
   1137 			} else if (flags & PGO_FREE) {
   1138 				pmap_page_protect(tpg, VM_PROT_NONE);
   1139 				if (tpg->flags & PG_BUSY) {
   1140 					tpg->flags |= freeflag;
   1141 					if (pagedaemon) {
   1142 						uvm_pageout_start(1);
   1143 						uvm_pagedequeue(tpg);
   1144 					}
   1145 				} else {
   1146 
   1147 					/*
   1148 					 * ``page is not busy''
   1149 					 * implies that npages is 1
   1150 					 * and needs_clean is false.
   1151 					 */
   1152 
   1153 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1154 					uvm_pagefree(tpg);
   1155 					if (pagedaemon)
   1156 						uvmexp.pdfreed++;
   1157 				}
   1158 			}
   1159 		}
   1160 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1161 			mutex_exit(&uvm_pageqlock);
   1162 		}
   1163 		if (needs_clean) {
   1164 			modified = true;
   1165 
   1166 			/*
   1167 			 * start the i/o.  if we're traversing by list,
   1168 			 * keep our place in the list with a marker page.
   1169 			 */
   1170 
   1171 			if (by_list) {
   1172 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1173 				    listq.queue);
   1174 			}
   1175 			mutex_exit(slock);
   1176 			error = GOP_WRITE(vp, pgs, npages, flags);
   1177 			mutex_enter(slock);
   1178 			if (by_list) {
   1179 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1180 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1181 			}
   1182 			if (error) {
   1183 				break;
   1184 			}
   1185 			if (by_list) {
   1186 				continue;
   1187 			}
   1188 		}
   1189 
   1190 		/*
   1191 		 * find the next page and continue if there was no error.
   1192 		 */
   1193 
   1194 		if (by_list) {
   1195 			if (nextpg) {
   1196 				pg = nextpg;
   1197 				nextpg = NULL;
   1198 			} else {
   1199 				pg = TAILQ_NEXT(pg, listq.queue);
   1200 			}
   1201 		} else {
   1202 			off += (npages - nback) << PAGE_SHIFT;
   1203 			if (off < endoff) {
   1204 				pg = uvm_pagelookup(uobj, off);
   1205 			}
   1206 		}
   1207 	}
   1208 	if (by_list) {
   1209 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1210 	}
   1211 
   1212 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1213 	    (vp->v_type != VBLK ||
   1214 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1215 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1216 	}
   1217 
   1218 	/*
   1219 	 * if we're cleaning and there was nothing to clean,
   1220 	 * take us off the syncer list.  if we started any i/o
   1221 	 * and we're doing sync i/o, wait for all writes to finish.
   1222 	 */
   1223 
   1224 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1225 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1226 #if defined(DEBUG)
   1227 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1228 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
   1229 				continue;
   1230 			}
   1231 			if ((pg->flags & PG_CLEAN) == 0) {
   1232 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1233 			}
   1234 			if (pmap_is_modified(pg)) {
   1235 				printf("%s: %p: modified\n", __func__, pg);
   1236 			}
   1237 		}
   1238 #endif /* defined(DEBUG) */
   1239 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1240 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1241 			vn_syncer_remove_from_worklist(vp);
   1242 	}
   1243 
   1244 #if !defined(DEBUG)
   1245 skip_scan:
   1246 #endif /* !defined(DEBUG) */
   1247 
   1248 	/* Wait for output to complete. */
   1249 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1250 		while (vp->v_numoutput != 0)
   1251 			cv_wait(&vp->v_cv, slock);
   1252 	}
   1253 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1254 	mutex_exit(slock);
   1255 
   1256 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1257 		/*
   1258 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1259 		 * retrying is not a big deal because, in many cases,
   1260 		 * uobj->uo_npages is already 0 here.
   1261 		 */
   1262 		mutex_enter(slock);
   1263 		goto retry;
   1264 	}
   1265 
   1266 	if (has_trans) {
   1267 		if (need_wapbl)
   1268 			WAPBL_END(vp->v_mount);
   1269 		fstrans_done(vp->v_mount);
   1270 	}
   1271 
   1272 	return (error);
   1273 }
   1274 
   1275 int
   1276 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1277 {
   1278 	off_t off;
   1279 	vaddr_t kva;
   1280 	size_t len;
   1281 	int error;
   1282 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1283 
   1284 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1285 	    vp, pgs, npages, flags);
   1286 
   1287 	off = pgs[0]->offset;
   1288 	kva = uvm_pagermapin(pgs, npages,
   1289 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1290 	len = npages << PAGE_SHIFT;
   1291 
   1292 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1293 			    uvm_aio_biodone);
   1294 
   1295 	return error;
   1296 }
   1297 
   1298 int
   1299 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1300 {
   1301 	off_t off;
   1302 	vaddr_t kva;
   1303 	size_t len;
   1304 	int error;
   1305 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1306 
   1307 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1308 	    vp, pgs, npages, flags);
   1309 
   1310 	off = pgs[0]->offset;
   1311 	kva = uvm_pagermapin(pgs, npages,
   1312 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1313 	len = npages << PAGE_SHIFT;
   1314 
   1315 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1316 			    uvm_aio_biodone);
   1317 
   1318 	return error;
   1319 }
   1320 
   1321 /*
   1322  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1323  * and mapped into kernel memory.  Here we just look up the underlying
   1324  * device block addresses and call the strategy routine.
   1325  */
   1326 
   1327 static int
   1328 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1329     enum uio_rw rw, void (*iodone)(struct buf *))
   1330 {
   1331 	int s, error;
   1332 	int fs_bshift, dev_bshift;
   1333 	off_t eof, offset, startoffset;
   1334 	size_t bytes, iobytes, skipbytes;
   1335 	struct buf *mbp, *bp;
   1336 	const bool async = (flags & PGO_SYNCIO) == 0;
   1337 	const bool iowrite = rw == UIO_WRITE;
   1338 	const int brw = iowrite ? B_WRITE : B_READ;
   1339 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1340 
   1341 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1342 	    vp, kva, len, flags);
   1343 
   1344 	KASSERT(vp->v_size <= vp->v_writesize);
   1345 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1346 	if (vp->v_type != VBLK) {
   1347 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1348 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1349 	} else {
   1350 		fs_bshift = DEV_BSHIFT;
   1351 		dev_bshift = DEV_BSHIFT;
   1352 	}
   1353 	error = 0;
   1354 	startoffset = off;
   1355 	bytes = MIN(len, eof - startoffset);
   1356 	skipbytes = 0;
   1357 	KASSERT(bytes != 0);
   1358 
   1359 	if (iowrite) {
   1360 		mutex_enter(&vp->v_interlock);
   1361 		vp->v_numoutput += 2;
   1362 		mutex_exit(&vp->v_interlock);
   1363 	}
   1364 	mbp = getiobuf(vp, true);
   1365 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1366 	    vp, mbp, vp->v_numoutput, bytes);
   1367 	mbp->b_bufsize = len;
   1368 	mbp->b_data = (void *)kva;
   1369 	mbp->b_resid = mbp->b_bcount = bytes;
   1370 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1371 	if (async) {
   1372 		mbp->b_flags = brw | B_ASYNC;
   1373 		mbp->b_iodone = iodone;
   1374 	} else {
   1375 		mbp->b_flags = brw;
   1376 		mbp->b_iodone = NULL;
   1377 	}
   1378 	if (curlwp == uvm.pagedaemon_lwp)
   1379 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1380 	else if (async)
   1381 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1382 	else
   1383 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1384 
   1385 	bp = NULL;
   1386 	for (offset = startoffset;
   1387 	    bytes > 0;
   1388 	    offset += iobytes, bytes -= iobytes) {
   1389 		int run;
   1390 		daddr_t lbn, blkno;
   1391 		struct vnode *devvp;
   1392 
   1393 		/*
   1394 		 * bmap the file to find out the blkno to read from and
   1395 		 * how much we can read in one i/o.  if bmap returns an error,
   1396 		 * skip the rest of the top-level i/o.
   1397 		 */
   1398 
   1399 		lbn = offset >> fs_bshift;
   1400 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1401 		if (error) {
   1402 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1403 			    lbn,error,0,0);
   1404 			skipbytes += bytes;
   1405 			bytes = 0;
   1406 			goto loopdone;
   1407 		}
   1408 
   1409 		/*
   1410 		 * see how many pages can be read with this i/o.
   1411 		 * reduce the i/o size if necessary to avoid
   1412 		 * overwriting pages with valid data.
   1413 		 */
   1414 
   1415 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1416 		    bytes);
   1417 
   1418 		/*
   1419 		 * if this block isn't allocated, zero it instead of
   1420 		 * reading it.  unless we are going to allocate blocks,
   1421 		 * mark the pages we zeroed PG_RDONLY.
   1422 		 */
   1423 
   1424 		if (blkno == (daddr_t)-1) {
   1425 			if (!iowrite) {
   1426 				memset((char *)kva + (offset - startoffset), 0,
   1427 				    iobytes);
   1428 			}
   1429 			skipbytes += iobytes;
   1430 			continue;
   1431 		}
   1432 
   1433 		/*
   1434 		 * allocate a sub-buf for this piece of the i/o
   1435 		 * (or just use mbp if there's only 1 piece),
   1436 		 * and start it going.
   1437 		 */
   1438 
   1439 		if (offset == startoffset && iobytes == bytes) {
   1440 			bp = mbp;
   1441 		} else {
   1442 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1443 			    vp, bp, vp->v_numoutput, 0);
   1444 			bp = getiobuf(vp, true);
   1445 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1446 		}
   1447 		bp->b_lblkno = 0;
   1448 
   1449 		/* adjust physical blkno for partial blocks */
   1450 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1451 		    dev_bshift);
   1452 
   1453 		UVMHIST_LOG(ubchist,
   1454 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1455 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1456 
   1457 		VOP_STRATEGY(devvp, bp);
   1458 	}
   1459 
   1460 loopdone:
   1461 	if (skipbytes) {
   1462 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1463 	}
   1464 	nestiobuf_done(mbp, skipbytes, error);
   1465 	if (async) {
   1466 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1467 		return (0);
   1468 	}
   1469 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1470 	error = biowait(mbp);
   1471 	s = splbio();
   1472 	(*iodone)(mbp);
   1473 	splx(s);
   1474 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1475 	return (error);
   1476 }
   1477 
   1478 int
   1479 genfs_compat_getpages(void *v)
   1480 {
   1481 	struct vop_getpages_args /* {
   1482 		struct vnode *a_vp;
   1483 		voff_t a_offset;
   1484 		struct vm_page **a_m;
   1485 		int *a_count;
   1486 		int a_centeridx;
   1487 		vm_prot_t a_access_type;
   1488 		int a_advice;
   1489 		int a_flags;
   1490 	} */ *ap = v;
   1491 
   1492 	off_t origoffset;
   1493 	struct vnode *vp = ap->a_vp;
   1494 	struct uvm_object *uobj = &vp->v_uobj;
   1495 	struct vm_page *pg, **pgs;
   1496 	vaddr_t kva;
   1497 	int i, error, orignpages, npages;
   1498 	struct iovec iov;
   1499 	struct uio uio;
   1500 	kauth_cred_t cred = curlwp->l_cred;
   1501 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1502 
   1503 	error = 0;
   1504 	origoffset = ap->a_offset;
   1505 	orignpages = *ap->a_count;
   1506 	pgs = ap->a_m;
   1507 
   1508 	if (ap->a_flags & PGO_LOCKED) {
   1509 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1510 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1511 
   1512 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1513 		if (error == 0 && memwrite) {
   1514 			genfs_markdirty(vp);
   1515 		}
   1516 		return error;
   1517 	}
   1518 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1519 		mutex_exit(&uobj->vmobjlock);
   1520 		return EINVAL;
   1521 	}
   1522 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1523 		mutex_exit(&uobj->vmobjlock);
   1524 		return 0;
   1525 	}
   1526 	npages = orignpages;
   1527 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1528 	mutex_exit(&uobj->vmobjlock);
   1529 	kva = uvm_pagermapin(pgs, npages,
   1530 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1531 	for (i = 0; i < npages; i++) {
   1532 		pg = pgs[i];
   1533 		if ((pg->flags & PG_FAKE) == 0) {
   1534 			continue;
   1535 		}
   1536 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1537 		iov.iov_len = PAGE_SIZE;
   1538 		uio.uio_iov = &iov;
   1539 		uio.uio_iovcnt = 1;
   1540 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1541 		uio.uio_rw = UIO_READ;
   1542 		uio.uio_resid = PAGE_SIZE;
   1543 		UIO_SETUP_SYSSPACE(&uio);
   1544 		/* XXX vn_lock */
   1545 		error = VOP_READ(vp, &uio, 0, cred);
   1546 		if (error) {
   1547 			break;
   1548 		}
   1549 		if (uio.uio_resid) {
   1550 			memset(iov.iov_base, 0, uio.uio_resid);
   1551 		}
   1552 	}
   1553 	uvm_pagermapout(kva, npages);
   1554 	mutex_enter(&uobj->vmobjlock);
   1555 	mutex_enter(&uvm_pageqlock);
   1556 	for (i = 0; i < npages; i++) {
   1557 		pg = pgs[i];
   1558 		if (error && (pg->flags & PG_FAKE) != 0) {
   1559 			pg->flags |= PG_RELEASED;
   1560 		} else {
   1561 			pmap_clear_modify(pg);
   1562 			uvm_pageactivate(pg);
   1563 		}
   1564 	}
   1565 	if (error) {
   1566 		uvm_page_unbusy(pgs, npages);
   1567 	}
   1568 	mutex_exit(&uvm_pageqlock);
   1569 	if (error == 0 && memwrite) {
   1570 		genfs_markdirty(vp);
   1571 	}
   1572 	mutex_exit(&uobj->vmobjlock);
   1573 	return error;
   1574 }
   1575 
   1576 int
   1577 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1578     int flags)
   1579 {
   1580 	off_t offset;
   1581 	struct iovec iov;
   1582 	struct uio uio;
   1583 	kauth_cred_t cred = curlwp->l_cred;
   1584 	struct buf *bp;
   1585 	vaddr_t kva;
   1586 	int error;
   1587 
   1588 	offset = pgs[0]->offset;
   1589 	kva = uvm_pagermapin(pgs, npages,
   1590 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1591 
   1592 	iov.iov_base = (void *)kva;
   1593 	iov.iov_len = npages << PAGE_SHIFT;
   1594 	uio.uio_iov = &iov;
   1595 	uio.uio_iovcnt = 1;
   1596 	uio.uio_offset = offset;
   1597 	uio.uio_rw = UIO_WRITE;
   1598 	uio.uio_resid = npages << PAGE_SHIFT;
   1599 	UIO_SETUP_SYSSPACE(&uio);
   1600 	/* XXX vn_lock */
   1601 	error = VOP_WRITE(vp, &uio, 0, cred);
   1602 
   1603 	mutex_enter(&vp->v_interlock);
   1604 	vp->v_numoutput++;
   1605 	mutex_exit(&vp->v_interlock);
   1606 
   1607 	bp = getiobuf(vp, true);
   1608 	bp->b_cflags = BC_BUSY | BC_AGE;
   1609 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1610 	bp->b_data = (char *)kva;
   1611 	bp->b_bcount = npages << PAGE_SHIFT;
   1612 	bp->b_bufsize = npages << PAGE_SHIFT;
   1613 	bp->b_resid = 0;
   1614 	bp->b_error = error;
   1615 	uvm_aio_aiodone(bp);
   1616 	return (error);
   1617 }
   1618 
   1619 /*
   1620  * Process a uio using direct I/O.  If we reach a part of the request
   1621  * which cannot be processed in this fashion for some reason, just return.
   1622  * The caller must handle some additional part of the request using
   1623  * buffered I/O before trying direct I/O again.
   1624  */
   1625 
   1626 void
   1627 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1628 {
   1629 	struct vmspace *vs;
   1630 	struct iovec *iov;
   1631 	vaddr_t va;
   1632 	size_t len;
   1633 	const int mask = DEV_BSIZE - 1;
   1634 	int error;
   1635 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1636 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1637 
   1638 	/*
   1639 	 * We only support direct I/O to user space for now.
   1640 	 */
   1641 
   1642 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1643 		return;
   1644 	}
   1645 
   1646 	/*
   1647 	 * If the vnode is mapped, we would need to get the getpages lock
   1648 	 * to stabilize the bmap, but then we would get into trouble whil e
   1649 	 * locking the pages if the pages belong to this same vnode (or a
   1650 	 * multi-vnode cascade to the same effect).  Just fall back to
   1651 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1652 	 */
   1653 
   1654 	if (vp->v_vflag & VV_MAPPED) {
   1655 		return;
   1656 	}
   1657 
   1658 	if (need_wapbl) {
   1659 		error = WAPBL_BEGIN(vp->v_mount);
   1660 		if (error)
   1661 			return;
   1662 	}
   1663 
   1664 	/*
   1665 	 * Do as much of the uio as possible with direct I/O.
   1666 	 */
   1667 
   1668 	vs = uio->uio_vmspace;
   1669 	while (uio->uio_resid) {
   1670 		iov = uio->uio_iov;
   1671 		if (iov->iov_len == 0) {
   1672 			uio->uio_iov++;
   1673 			uio->uio_iovcnt--;
   1674 			continue;
   1675 		}
   1676 		va = (vaddr_t)iov->iov_base;
   1677 		len = MIN(iov->iov_len, genfs_maxdio);
   1678 		len &= ~mask;
   1679 
   1680 		/*
   1681 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1682 		 * the current EOF, then fall back to buffered I/O.
   1683 		 */
   1684 
   1685 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1686 			break;
   1687 		}
   1688 
   1689 		/*
   1690 		 * Check alignment.  The file offset must be at least
   1691 		 * sector-aligned.  The exact constraint on memory alignment
   1692 		 * is very hardware-dependent, but requiring sector-aligned
   1693 		 * addresses there too is safe.
   1694 		 */
   1695 
   1696 		if (uio->uio_offset & mask || va & mask) {
   1697 			break;
   1698 		}
   1699 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1700 					  uio->uio_rw);
   1701 		if (error) {
   1702 			break;
   1703 		}
   1704 		iov->iov_base = (char *)iov->iov_base + len;
   1705 		iov->iov_len -= len;
   1706 		uio->uio_offset += len;
   1707 		uio->uio_resid -= len;
   1708 	}
   1709 
   1710 	if (need_wapbl)
   1711 		WAPBL_END(vp->v_mount);
   1712 }
   1713 
   1714 /*
   1715  * Iodone routine for direct I/O.  We don't do much here since the request is
   1716  * always synchronous, so the caller will do most of the work after biowait().
   1717  */
   1718 
   1719 static void
   1720 genfs_dio_iodone(struct buf *bp)
   1721 {
   1722 
   1723 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1724 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1725 		mutex_enter(bp->b_objlock);
   1726 		vwakeup(bp);
   1727 		mutex_exit(bp->b_objlock);
   1728 	}
   1729 	putiobuf(bp);
   1730 }
   1731 
   1732 /*
   1733  * Process one chunk of a direct I/O request.
   1734  */
   1735 
   1736 static int
   1737 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1738     off_t off, enum uio_rw rw)
   1739 {
   1740 	struct vm_map *map;
   1741 	struct pmap *upm, *kpm;
   1742 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1743 	off_t spoff, epoff;
   1744 	vaddr_t kva, puva;
   1745 	paddr_t pa;
   1746 	vm_prot_t prot;
   1747 	int error, rv, poff, koff;
   1748 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1749 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1750 
   1751 	/*
   1752 	 * For writes, verify that this range of the file already has fully
   1753 	 * allocated backing store.  If there are any holes, just punt and
   1754 	 * make the caller take the buffered write path.
   1755 	 */
   1756 
   1757 	if (rw == UIO_WRITE) {
   1758 		daddr_t lbn, elbn, blkno;
   1759 		int bsize, bshift, run;
   1760 
   1761 		bshift = vp->v_mount->mnt_fs_bshift;
   1762 		bsize = 1 << bshift;
   1763 		lbn = off >> bshift;
   1764 		elbn = (off + len + bsize - 1) >> bshift;
   1765 		while (lbn < elbn) {
   1766 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1767 			if (error) {
   1768 				return error;
   1769 			}
   1770 			if (blkno == (daddr_t)-1) {
   1771 				return ENOSPC;
   1772 			}
   1773 			lbn += 1 + run;
   1774 		}
   1775 	}
   1776 
   1777 	/*
   1778 	 * Flush any cached pages for parts of the file that we're about to
   1779 	 * access.  If we're writing, invalidate pages as well.
   1780 	 */
   1781 
   1782 	spoff = trunc_page(off);
   1783 	epoff = round_page(off + len);
   1784 	mutex_enter(&vp->v_interlock);
   1785 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1786 	if (error) {
   1787 		return error;
   1788 	}
   1789 
   1790 	/*
   1791 	 * Wire the user pages and remap them into kernel memory.
   1792 	 */
   1793 
   1794 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1795 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1796 	if (error) {
   1797 		return error;
   1798 	}
   1799 
   1800 	map = &vs->vm_map;
   1801 	upm = vm_map_pmap(map);
   1802 	kpm = vm_map_pmap(kernel_map);
   1803 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1804 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1805 	puva = trunc_page(uva);
   1806 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1807 		rv = pmap_extract(upm, puva + poff, &pa);
   1808 		KASSERT(rv);
   1809 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1810 	}
   1811 	pmap_update(kpm);
   1812 
   1813 	/*
   1814 	 * Do the I/O.
   1815 	 */
   1816 
   1817 	koff = uva - trunc_page(uva);
   1818 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1819 			    genfs_dio_iodone);
   1820 
   1821 	/*
   1822 	 * Tear down the kernel mapping.
   1823 	 */
   1824 
   1825 	pmap_remove(kpm, kva, kva + klen);
   1826 	pmap_update(kpm);
   1827 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1828 
   1829 	/*
   1830 	 * Unwire the user pages.
   1831 	 */
   1832 
   1833 	uvm_vsunlock(vs, (void *)uva, len);
   1834 	return error;
   1835 }
   1836 
   1837