genfs_io.c revision 1.53.2.14 1 /* $NetBSD: genfs_io.c,v 1.53.2.14 2012/05/23 10:08:14 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53.2.14 2012/05/23 10:08:14 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 #include <sys/radixtree.h>
47
48 #include <miscfs/genfs/genfs.h>
49 #include <miscfs/genfs/genfs_node.h>
50 #include <miscfs/specfs/specdev.h>
51 #include <miscfs/syncfs/syncfs.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55 #include <uvm/uvm_page_array.h>
56
57 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
58 off_t, enum uio_rw);
59 static void genfs_dio_iodone(struct buf *);
60
61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 void (*)(struct buf *));
63 static void genfs_rel_pages(struct vm_page **, unsigned int);
64 static void genfs_markdirty(struct vnode *);
65
66 int genfs_maxdio = MAXPHYS;
67
68 static void
69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70 {
71 unsigned int i;
72
73 for (i = 0; i < npages; i++) {
74 struct vm_page *pg = pgs[i];
75
76 if (pg == NULL || pg == PGO_DONTCARE)
77 continue;
78 KASSERT(uvm_page_locked_p(pg));
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 mutex_enter(&uvm_pageqlock);
84 uvm_page_unbusy(pgs, npages);
85 mutex_exit(&uvm_pageqlock);
86 }
87
88 static void
89 genfs_markdirty(struct vnode *vp)
90 {
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
94 vn_syncer_add_to_worklist(vp, filedelay);
95 }
96 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
97 vp->v_iflag |= VI_WRMAPDIRTY;
98 }
99 }
100
101 /*
102 * generic VM getpages routine.
103 * Return PG_BUSY pages for the given range,
104 * reading from backing store if necessary.
105 */
106
107 int
108 genfs_getpages(void *v)
109 {
110 struct vop_getpages_args /* {
111 struct vnode *a_vp;
112 voff_t a_offset;
113 struct vm_page **a_m;
114 int *a_count;
115 int a_centeridx;
116 vm_prot_t a_access_type;
117 int a_advice;
118 int a_flags;
119 } */ * const ap = v;
120
121 off_t diskeof, memeof;
122 int i, error, npages;
123 const int flags = ap->a_flags;
124 struct vnode * const vp = ap->a_vp;
125 struct uvm_object * const uobj = &vp->v_uobj;
126 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
133 bool has_trans_wapbl = false;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 startover:
143 error = 0;
144 const voff_t origvsize = vp->v_size;
145 const off_t origoffset = ap->a_offset;
146 const int orignpages = *ap->a_count;
147
148 GOP_SIZE(vp, origvsize, &diskeof, 0);
149 if (flags & PGO_PASTEOF) {
150 off_t newsize;
151 #if defined(DIAGNOSTIC)
152 off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154
155 newsize = MAX(origvsize,
156 origoffset + (orignpages << PAGE_SHIFT));
157 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 if (newsize > round_page(writeeof)) {
161 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 __func__, newsize, round_page(writeeof));
163 }
164 #endif /* defined(DIAGNOSTIC) */
165 } else {
166 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 }
168 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 KASSERT(orignpages > 0);
171
172 /*
173 * Bounds-check the request.
174 */
175
176 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 if ((flags & PGO_LOCKED) == 0) {
178 mutex_exit(uobj->vmobjlock);
179 }
180 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 origoffset, *ap->a_count, memeof,0);
182 error = EINVAL;
183 goto out_err;
184 }
185
186 /* uobj is locked */
187
188 if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 (vp->v_type != VBLK ||
190 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 int updflags = 0;
192
193 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 updflags = GOP_UPDATE_ACCESSED;
195 }
196 if (memwrite) {
197 updflags |= GOP_UPDATE_MODIFIED;
198 }
199 if (updflags != 0) {
200 GOP_MARKUPDATE(vp, updflags);
201 }
202 }
203
204 /*
205 * For PGO_LOCKED requests, just return whatever's in memory.
206 */
207
208 if (flags & PGO_LOCKED) {
209 int nfound;
210 struct vm_page *pg;
211
212 KASSERT(!glocked);
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, NULL,
222 UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
223 KASSERT(npages == *ap->a_count);
224 if (nfound == 0) {
225 error = EBUSY;
226 goto out_err;
227 }
228 /*
229 * lock and unlock g_glock to ensure that no one is truncating
230 * the file behind us.
231 */
232 if (!genfs_node_rdtrylock(vp)) {
233 genfs_rel_pages(ap->a_m, npages);
234
235 /*
236 * restore the array.
237 */
238
239 for (i = 0; i < npages; i++) {
240 pg = ap->a_m[i];
241
242 if (pg != NULL && pg != PGO_DONTCARE) {
243 ap->a_m[i] = NULL;
244 }
245 KASSERT(ap->a_m[i] == NULL ||
246 ap->a_m[i] == PGO_DONTCARE);
247 }
248 } else {
249 genfs_node_unlock(vp);
250 }
251 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
252 if (error == 0 && memwrite) {
253 for (i = 0; i < npages; i++) {
254 pg = ap->a_m[i];
255 if (pg == NULL || pg == PGO_DONTCARE) {
256 continue;
257 }
258 if (uvm_pagegetdirty(pg) ==
259 UVM_PAGE_STATUS_CLEAN) {
260 uvm_pagemarkdirty(pg,
261 UVM_PAGE_STATUS_UNKNOWN);
262 }
263 }
264 genfs_markdirty(vp);
265 }
266 goto out_err;
267 }
268 mutex_exit(uobj->vmobjlock);
269
270 /*
271 * find the requested pages and make some simple checks.
272 * leave space in the page array for a whole block.
273 */
274
275 const int fs_bshift = (vp->v_type != VBLK) ?
276 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
277 const int dev_bshift = (vp->v_type != VBLK) ?
278 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
279 const int fs_bsize = 1 << fs_bshift;
280 #define blk_mask (fs_bsize - 1)
281 #define trunc_blk(x) ((x) & ~blk_mask)
282 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
283
284 const int orignmempages = MIN(orignpages,
285 round_page(memeof - origoffset) >> PAGE_SHIFT);
286 npages = orignmempages;
287 const off_t startoffset = trunc_blk(origoffset);
288 const off_t endoffset = MIN(
289 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
290 round_page(memeof));
291 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
292
293 const int pgs_size = sizeof(struct vm_page *) *
294 ((endoffset - startoffset) >> PAGE_SHIFT);
295 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
296
297 if (pgs_size > sizeof(pgs_onstack)) {
298 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
299 if (pgs == NULL) {
300 pgs = pgs_onstack;
301 error = ENOMEM;
302 goto out_err;
303 }
304 } else {
305 pgs = pgs_onstack;
306 (void)memset(pgs, 0, pgs_size);
307 }
308
309 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
310 ridx, npages, startoffset, endoffset);
311
312 if (!has_trans_wapbl) {
313 fstrans_start(vp->v_mount, FSTRANS_SHARED);
314 /*
315 * XXX: This assumes that we come here only via
316 * the mmio path
317 */
318 if (need_wapbl) {
319 error = WAPBL_BEGIN(vp->v_mount);
320 if (error) {
321 fstrans_done(vp->v_mount);
322 goto out_err_free;
323 }
324 }
325 has_trans_wapbl = true;
326 }
327
328 /*
329 * hold g_glock to prevent a race with truncate.
330 *
331 * check if our idea of v_size is still valid.
332 */
333
334 KASSERT(!glocked || genfs_node_wrlocked(vp));
335 if (!glocked) {
336 if (blockalloc) {
337 genfs_node_wrlock(vp);
338 } else {
339 genfs_node_rdlock(vp);
340 }
341 }
342 mutex_enter(uobj->vmobjlock);
343 if (vp->v_size < origvsize) {
344 if (!glocked) {
345 genfs_node_unlock(vp);
346 }
347 if (pgs != pgs_onstack)
348 kmem_free(pgs, pgs_size);
349 goto startover;
350 }
351
352 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
353 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
354 if (!glocked) {
355 genfs_node_unlock(vp);
356 }
357 KASSERT(async != 0);
358 genfs_rel_pages(&pgs[ridx], orignmempages);
359 mutex_exit(uobj->vmobjlock);
360 error = EBUSY;
361 goto out_err_free;
362 }
363
364 /*
365 * if PGO_OVERWRITE is set, don't bother reading the pages.
366 */
367
368 if (overwrite) {
369 if (!glocked) {
370 genfs_node_unlock(vp);
371 }
372 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
373
374 for (i = 0; i < npages; i++) {
375 struct vm_page *pg = pgs[ridx + i];
376
377 /*
378 * it's caller's responsibility to allocate blocks
379 * beforehand for the overwrite case.
380 */
381 pg->flags &= ~PG_RDONLY;
382 /*
383 * mark the page DIRTY.
384 * otherwise another thread can do putpages and pull
385 * our vnode from syncer's queue before our caller does
386 * ubc_release. note that putpages won't see CLEAN
387 * pages even if they are BUSY.
388 */
389 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
390 }
391 npages += ridx;
392 goto out;
393 }
394
395 /*
396 * if the pages are already resident, just return them.
397 */
398
399 for (i = 0; i < npages; i++) {
400 struct vm_page *pg = pgs[ridx + i];
401
402 if ((pg->flags & PG_FAKE) ||
403 (memwrite && (pg->flags & PG_RDONLY) != 0)) {
404 break;
405 }
406 }
407 if (i == npages) {
408 if (!glocked) {
409 genfs_node_unlock(vp);
410 }
411 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
412 npages += ridx;
413 goto out;
414 }
415
416 /*
417 * the page wasn't resident and we're not overwriting,
418 * so we're going to have to do some i/o.
419 * find any additional pages needed to cover the expanded range.
420 */
421
422 npages = (endoffset - startoffset) >> PAGE_SHIFT;
423 if (startoffset != origoffset || npages != orignmempages) {
424 int npgs;
425
426 /*
427 * we need to avoid deadlocks caused by locking
428 * additional pages at lower offsets than pages we
429 * already have locked. unlock them all and start over.
430 */
431
432 genfs_rel_pages(&pgs[ridx], orignmempages);
433 memset(pgs, 0, pgs_size);
434
435 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
436 startoffset, endoffset, 0,0);
437 npgs = npages;
438 if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
439 async ? UFP_NOWAIT : UFP_ALL) != npages) {
440 if (!glocked) {
441 genfs_node_unlock(vp);
442 }
443 KASSERT(async != 0);
444 genfs_rel_pages(pgs, npages);
445 mutex_exit(uobj->vmobjlock);
446 error = EBUSY;
447 goto out_err_free;
448 }
449 }
450
451 mutex_exit(uobj->vmobjlock);
452
453 {
454 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
455 vaddr_t kva;
456 struct buf *bp, *mbp;
457 bool sawhole = false;
458
459 /*
460 * read the desired page(s).
461 */
462
463 totalbytes = npages << PAGE_SHIFT;
464 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
465 tailbytes = totalbytes - bytes;
466 skipbytes = 0;
467
468 kva = uvm_pagermapin(pgs, npages,
469 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
470 if (kva == 0) {
471 error = EBUSY;
472 goto mapin_fail;
473 }
474
475 mbp = getiobuf(vp, true);
476 mbp->b_bufsize = totalbytes;
477 mbp->b_data = (void *)kva;
478 mbp->b_resid = mbp->b_bcount = bytes;
479 mbp->b_cflags = BC_BUSY;
480 if (async) {
481 mbp->b_flags = B_READ | B_ASYNC;
482 mbp->b_iodone = uvm_aio_biodone;
483 } else {
484 mbp->b_flags = B_READ;
485 mbp->b_iodone = NULL;
486 }
487 if (async)
488 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
489 else
490 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
491
492 /*
493 * if EOF is in the middle of the range, zero the part past EOF.
494 * skip over pages which are not PG_FAKE since in that case they have
495 * valid data that we need to preserve.
496 */
497
498 tailstart = bytes;
499 while (tailbytes > 0) {
500 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
501
502 KASSERT(len <= tailbytes);
503 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
504 memset((void *)(kva + tailstart), 0, len);
505 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
506 kva, tailstart, len, 0);
507 }
508 tailstart += len;
509 tailbytes -= len;
510 }
511
512 /*
513 * now loop over the pages, reading as needed.
514 */
515
516 bp = NULL;
517 off_t offset;
518 for (offset = startoffset;
519 bytes > 0;
520 offset += iobytes, bytes -= iobytes) {
521 int run;
522 daddr_t lbn, blkno;
523 int pidx;
524 struct vnode *devvp;
525
526 /*
527 * skip pages which don't need to be read.
528 */
529
530 pidx = (offset - startoffset) >> PAGE_SHIFT;
531 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
532 size_t b;
533
534 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
535 if ((pgs[pidx]->flags & PG_RDONLY)) {
536 sawhole = true;
537 }
538 b = MIN(PAGE_SIZE, bytes);
539 offset += b;
540 bytes -= b;
541 skipbytes += b;
542 pidx++;
543 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
544 offset, 0,0,0);
545 if (bytes == 0) {
546 goto loopdone;
547 }
548 }
549
550 /*
551 * bmap the file to find out the blkno to read from and
552 * how much we can read in one i/o. if bmap returns an error,
553 * skip the rest of the top-level i/o.
554 */
555
556 lbn = offset >> fs_bshift;
557 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
558 if (error) {
559 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
560 lbn,error,0,0);
561 skipbytes += bytes;
562 bytes = 0;
563 goto loopdone;
564 }
565
566 /*
567 * see how many pages can be read with this i/o.
568 * reduce the i/o size if necessary to avoid
569 * overwriting pages with valid data.
570 */
571
572 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
573 bytes);
574 if (offset + iobytes > round_page(offset)) {
575 int pcount;
576
577 pcount = 1;
578 while (pidx + pcount < npages &&
579 pgs[pidx + pcount]->flags & PG_FAKE) {
580 pcount++;
581 }
582 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
583 (offset - trunc_page(offset)));
584 }
585
586 /*
587 * if this block isn't allocated, zero it instead of
588 * reading it. unless we are going to allocate blocks,
589 * mark the pages we zeroed PG_RDONLY.
590 */
591
592 if (blkno == (daddr_t)-1) {
593 int holepages = (round_page(offset + iobytes) -
594 trunc_page(offset)) >> PAGE_SHIFT;
595 UVMHIST_LOG(ubchist, "lbn 0x%x -> RDONLY", lbn,0,0,0);
596
597 sawhole = true;
598 memset((char *)kva + (offset - startoffset), 0,
599 iobytes);
600 skipbytes += iobytes;
601
602 if (!blockalloc) {
603 mutex_enter(uobj->vmobjlock);
604 for (i = 0; i < holepages; i++) {
605 pgs[pidx + i]->flags |= PG_RDONLY;
606 }
607 mutex_exit(uobj->vmobjlock);
608 }
609 continue;
610 }
611
612 /*
613 * allocate a sub-buf for this piece of the i/o
614 * (or just use mbp if there's only 1 piece),
615 * and start it going.
616 */
617
618 if (offset == startoffset && iobytes == bytes) {
619 bp = mbp;
620 } else {
621 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
622 vp, bp, vp->v_numoutput, 0);
623 bp = getiobuf(vp, true);
624 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
625 }
626 bp->b_lblkno = 0;
627
628 /* adjust physical blkno for partial blocks */
629 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
630 dev_bshift);
631
632 UVMHIST_LOG(ubchist,
633 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
634 bp, offset, bp->b_bcount, bp->b_blkno);
635
636 VOP_STRATEGY(devvp, bp);
637 }
638
639 loopdone:
640 nestiobuf_done(mbp, skipbytes, error);
641 if (async) {
642 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
643 if (!glocked) {
644 genfs_node_unlock(vp);
645 }
646 error = 0;
647 goto out_err_free;
648 }
649 if (bp != NULL) {
650 error = biowait(mbp);
651 }
652
653 /* Remove the mapping (make KVA available as soon as possible) */
654 uvm_pagermapout(kva, npages);
655
656 /*
657 * if this we encountered a hole then we have to do a little more work.
658 * if blockalloc is false, we marked the page PG_RDONLY so that future
659 * write accesses to the page will fault again.
660 * if blockalloc is true, we must make sure that the backing store for
661 * the page is completely allocated while the pages are locked.
662 */
663
664 if (!error && sawhole && blockalloc) {
665 error = GOP_ALLOC(vp, startoffset,
666 npages << PAGE_SHIFT, 0, cred);
667 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
668 startoffset, npages << PAGE_SHIFT, error,0);
669 if (!error) {
670 mutex_enter(uobj->vmobjlock);
671 for (i = 0; i < npages; i++) {
672 struct vm_page *pg = pgs[i];
673
674 if (pg == NULL) {
675 continue;
676 }
677 pg->flags &= ~PG_RDONLY;
678 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
679 UVMHIST_LOG(ubchist, "mark dirty pg %p",
680 pg,0,0,0);
681 }
682 mutex_exit(uobj->vmobjlock);
683 }
684 }
685
686 putiobuf(mbp);
687 }
688
689 mapin_fail:
690 if (!glocked) {
691 genfs_node_unlock(vp);
692 }
693 mutex_enter(uobj->vmobjlock);
694
695 /*
696 * we're almost done! release the pages...
697 * for errors, we free the pages.
698 * otherwise we activate them and mark them as valid and clean.
699 * also, unbusy pages that were not actually requested.
700 */
701
702 if (error) {
703 genfs_rel_pages(pgs, npages);
704 mutex_exit(uobj->vmobjlock);
705 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
706 goto out_err_free;
707 }
708
709 out:
710 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
711 error = 0;
712 mutex_enter(&uvm_pageqlock);
713 for (i = 0; i < npages; i++) {
714 struct vm_page *pg = pgs[i];
715 if (pg == NULL) {
716 continue;
717 }
718 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
719 pg, pg->flags, 0,0);
720 if (pg->flags & PG_FAKE && !overwrite) {
721 /*
722 * we've read page's contents from the backing storage.
723 *
724 * for a read fault, we keep them CLEAN.
725 */
726 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
727 pg->flags &= ~PG_FAKE;
728 }
729 KASSERT(!blockalloc || (pg->flags & PG_RDONLY) == 0);
730 if (i < ridx || i >= ridx + orignmempages || async) {
731 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
732 pg, pg->offset,0,0);
733 KASSERT(!overwrite);
734 if (pg->flags & PG_WANTED) {
735 wakeup(pg);
736 }
737 if (pg->flags & PG_FAKE && overwrite) {
738 uvm_pagezero(pg);
739 }
740 if (pg->flags & PG_RELEASED) {
741 uvm_pagefree(pg);
742 continue;
743 }
744 uvm_pageenqueue(pg);
745 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
746 UVM_PAGE_OWN(pg, NULL);
747 } else if (memwrite && !overwrite &&
748 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
749 /*
750 * for a write fault, start dirtiness tracking of
751 * requested pages.
752 */
753 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
754 }
755 }
756 mutex_exit(&uvm_pageqlock);
757 if (memwrite) {
758 genfs_markdirty(vp);
759 }
760 mutex_exit(uobj->vmobjlock);
761 if (ap->a_m != NULL) {
762 memcpy(ap->a_m, &pgs[ridx],
763 orignmempages * sizeof(struct vm_page *));
764 }
765
766 out_err_free:
767 if (pgs != NULL && pgs != pgs_onstack)
768 kmem_free(pgs, pgs_size);
769 out_err:
770 if (has_trans_wapbl) {
771 if (need_wapbl)
772 WAPBL_END(vp->v_mount);
773 fstrans_done(vp->v_mount);
774 }
775 return error;
776 }
777
778 /*
779 * generic VM putpages routine.
780 * Write the given range of pages to backing store.
781 *
782 * => "offhi == 0" means flush all pages at or after "offlo".
783 * => object should be locked by caller. we return with the
784 * object unlocked.
785 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
786 * thus, a caller might want to unlock higher level resources
787 * (e.g. vm_map) before calling flush.
788 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
789 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
790 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
791 * that new pages are inserted on the tail end of the list. thus,
792 * we can make a complete pass through the object in one go by starting
793 * at the head and working towards the tail (new pages are put in
794 * front of us).
795 * => NOTE: we are allowed to lock the page queues, so the caller
796 * must not be holding the page queue lock.
797 *
798 * note on "cleaning" object and PG_BUSY pages:
799 * this routine is holding the lock on the object. the only time
800 * that it can run into a PG_BUSY page that it does not own is if
801 * some other process has started I/O on the page (e.g. either
802 * a pagein, or a pageout). if the PG_BUSY page is being paged
803 * in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
804 * one has had a chance to modify it yet. if the PG_BUSY page is
805 * being paged out then it means that someone else has already started
806 * cleaning the page for us (how nice!). in this case, if we
807 * have syncio specified, then after we make our pass through the
808 * object we need to wait for the other PG_BUSY pages to clear
809 * off (i.e. we need to do an iosync). also note that once a
810 * page is PG_BUSY it must stay in its object until it is un-busyed.
811 *
812 * note on page traversal:
813 * we can traverse the pages in an object either by going down the
814 * linked list in "uobj->memq", or we can go over the address range
815 * by page doing hash table lookups for each address. depending
816 * on how many pages are in the object it may be cheaper to do one
817 * or the other. we set "by_list" to true if we are using memq.
818 * if the cost of a hash lookup was equal to the cost of the list
819 * traversal we could compare the number of pages in the start->stop
820 * range to the total number of pages in the object. however, it
821 * seems that a hash table lookup is more expensive than the linked
822 * list traversal, so we multiply the number of pages in the
823 * range by an estimate of the relatively higher cost of the hash lookup.
824 */
825
826 int
827 genfs_putpages(void *v)
828 {
829 struct vop_putpages_args /* {
830 struct vnode *a_vp;
831 voff_t a_offlo;
832 voff_t a_offhi;
833 int a_flags;
834 } */ * const ap = v;
835
836 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
837 ap->a_flags, NULL);
838 }
839
840 int
841 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
842 int origflags, struct vm_page **busypg)
843 {
844 struct uvm_object * const uobj = &vp->v_uobj;
845 kmutex_t * const slock = uobj->vmobjlock;
846 off_t nextoff;
847 /* Even for strange MAXPHYS, the shift rounds down to a page */
848 #define maxpages (MAXPHYS >> PAGE_SHIFT)
849 unsigned int i;
850 unsigned int npages, nback;
851 unsigned int freeflag;
852 int error;
853 struct vm_page *pgs[maxpages], *pg;
854 struct uvm_page_array a;
855 bool wasclean, needs_clean, yld;
856 bool async = (origflags & PGO_SYNCIO) == 0;
857 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
858 struct lwp * const l = curlwp ? curlwp : &lwp0;
859 int flags;
860 bool written; /* if we write out any pages */
861 bool need_wapbl;
862 bool has_trans;
863 bool tryclean; /* try to pull off from the syncer's list */
864 bool onworklst;
865 const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
866
867 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
868
869 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
870 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
871 KASSERT(startoff < endoff || endoff == 0);
872
873 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
874 vp, uobj->uo_npages, startoff, endoff - startoff);
875
876 has_trans = false;
877 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
878 (origflags & PGO_JOURNALLOCKED) == 0);
879
880 retry:
881 flags = origflags;
882 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
883 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
884
885 /*
886 * shortcut if we have no pages to process.
887 */
888
889 if (uobj->uo_npages == 0 || (dirtyonly &&
890 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
891 UVM_PAGE_DIRTY_TAG))) {
892 if (vp->v_iflag & VI_ONWORKLST) {
893 vp->v_iflag &= ~VI_WRMAPDIRTY;
894 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
895 vn_syncer_remove_from_worklist(vp);
896 }
897 if (has_trans) {
898 if (need_wapbl)
899 WAPBL_END(vp->v_mount);
900 fstrans_done(vp->v_mount);
901 }
902 mutex_exit(slock);
903 return (0);
904 }
905
906 /*
907 * the vnode has pages, set up to process the request.
908 */
909
910 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
911 mutex_exit(slock);
912 if (pagedaemon) {
913 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
914 if (error)
915 return error;
916 } else
917 fstrans_start(vp->v_mount, FSTRANS_LAZY);
918 if (need_wapbl) {
919 error = WAPBL_BEGIN(vp->v_mount);
920 if (error) {
921 fstrans_done(vp->v_mount);
922 return error;
923 }
924 }
925 has_trans = true;
926 mutex_enter(slock);
927 goto retry;
928 }
929
930 error = 0;
931 wasclean = (vp->v_numoutput == 0);
932
933 /*
934 * if this vnode is known not to have dirty pages,
935 * don't bother to clean it out.
936 */
937
938 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
939 #if !defined(DEBUG)
940 if (dirtyonly) {
941 goto skip_scan;
942 }
943 #endif /* !defined(DEBUG) */
944 flags &= ~PGO_CLEANIT;
945 }
946
947 /*
948 * start the loop to scan pages.
949 */
950
951 written = false;
952 nextoff = startoff;
953 if (endoff == 0 || flags & PGO_ALLPAGES) {
954 endoff = trunc_page(LLONG_MAX);
955 }
956 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
957 tryclean = true;
958 uvm_page_array_init(&a);
959 for (;;) {
960 bool protected;
961
962 pg = uvm_page_array_fill_and_peek(&a, uobj, nextoff, 0,
963 dirtyonly ? UVM_PAGE_ARRAY_FILL_DIRTYONLY : 0);
964 if (pg == NULL) {
965 break;
966 }
967
968 /*
969 * if the current page is not interesting, move on to the next.
970 */
971
972 KASSERT(pg->uobject == uobj);
973 KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
974 (pg->flags & (PG_BUSY)) != 0);
975 KASSERT(pg->offset >= startoff);
976 KASSERT(pg->offset >= nextoff);
977 KASSERT(!dirtyonly ||
978 uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
979 if (pg->offset >= endoff) {
980 break;
981 }
982 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
983 KASSERT((pg->flags & PG_BUSY) != 0);
984 wasclean = false;
985 nextoff = pg->offset + PAGE_SIZE;
986 uvm_page_array_advance(&a);
987 continue;
988 }
989
990 /*
991 * if the current page needs to be cleaned and it's busy,
992 * wait for it to become unbusy.
993 */
994
995 yld = (l->l_cpu->ci_schedstate.spc_flags &
996 SPCF_SHOULDYIELD) && !pagedaemon;
997 if (pg->flags & PG_BUSY || yld) {
998 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
999 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1000 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1001 error = EDEADLK;
1002 if (busypg != NULL)
1003 *busypg = pg;
1004 break;
1005 }
1006 if (pagedaemon) {
1007 /*
1008 * someone has taken the page while we
1009 * dropped the lock for fstrans_start.
1010 */
1011 break;
1012 }
1013 nextoff = pg->offset; /* visit this page again */
1014 if ((pg->flags & PG_BUSY) != 0) {
1015 pg->flags |= PG_WANTED;
1016 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1017 } else {
1018 KASSERT(yld);
1019 mutex_exit(slock);
1020 preempt();
1021 }
1022 /*
1023 * as we dropped the object lock, our cached pages can
1024 * be stale.
1025 */
1026 uvm_page_array_clear(&a);
1027 mutex_enter(slock);
1028 continue;
1029 }
1030
1031 nextoff = pg->offset + PAGE_SIZE;
1032 uvm_page_array_advance(&a);
1033
1034 /*
1035 * if we're freeing, remove all mappings of the page now.
1036 * if we're cleaning, check if the page needs to be cleaned.
1037 */
1038
1039 protected = false;
1040 if (flags & PGO_FREE) {
1041 pmap_page_protect(pg, VM_PROT_NONE);
1042 protected = true;
1043 } else if (flags & PGO_CLEANIT) {
1044
1045 /*
1046 * if we still have some hope to pull this vnode off
1047 * from the syncer queue, write-protect the page.
1048 */
1049
1050 if (tryclean && wasclean) {
1051
1052 /*
1053 * uobj pages get wired only by uvm_fault
1054 * where uobj is locked.
1055 */
1056
1057 if (pg->wire_count == 0) {
1058 pmap_page_protect(pg,
1059 VM_PROT_READ|VM_PROT_EXECUTE);
1060 protected = true;
1061 } else {
1062 /*
1063 * give up.
1064 */
1065 tryclean = false;
1066 }
1067 }
1068 }
1069
1070 if (flags & PGO_CLEANIT) {
1071 needs_clean = uvm_pagecheckdirty(pg, protected);
1072 } else {
1073 needs_clean = false;
1074 }
1075
1076 /*
1077 * if we're cleaning, build a cluster.
1078 * the cluster will consist of pages which are currently dirty.
1079 * if not cleaning, just operate on the one page.
1080 */
1081
1082 if (needs_clean) {
1083 unsigned int nforw;
1084 unsigned int fpflags;
1085
1086 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1087 wasclean = false;
1088 memset(pgs, 0, sizeof(pgs));
1089 pg->flags |= PG_BUSY;
1090 UVM_PAGE_OWN(pg, "genfs_putpages");
1091
1092 fpflags = UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY;
1093
1094 /*
1095 * XXX PG_PAGER1 incompatibility check.
1096 *
1097 * this is a kludge for nfs. nfs has two kind of dirty
1098 * pages:
1099 * - not written to the server yet
1100 * - written to the server but not committed yet
1101 * the latter is marked as PG_NEEDCOMMIT. (== PG_PAGER1)
1102 * nfs doesn't want them being clustered together.
1103 *
1104 * probably it's better to make PG_NEEDCOMMIT a first
1105 * level citizen for uvm/genfs.
1106 */
1107 if ((pg->flags & PG_PAGER1) != 0) {
1108 fpflags |= UFP_ONLYPAGER1;
1109 } else {
1110 fpflags |= UFP_NOPAGER1;
1111 }
1112
1113 /*
1114 * first look backward.
1115 *
1116 * because we always scan pages in the ascending order,
1117 * backward scan can be useful only for the first page
1118 * in the range.
1119 */
1120 if (startoff == pg->offset) {
1121 npages = MIN(maxpages >> 1,
1122 pg->offset >> PAGE_SHIFT);
1123 nback = npages;
1124 uvn_findpages(uobj, pg->offset - PAGE_SIZE,
1125 &nback, &pgs[0], NULL,
1126 fpflags | UFP_BACKWARD);
1127 if (nback) {
1128 memmove(&pgs[0], &pgs[npages - nback],
1129 nback * sizeof(pgs[0]));
1130 if (npages - nback < nback)
1131 memset(&pgs[nback], 0,
1132 (npages - nback) *
1133 sizeof(pgs[0]));
1134 else
1135 memset(&pgs[npages - nback], 0,
1136 nback * sizeof(pgs[0]));
1137 }
1138 } else {
1139 nback = 0;
1140 }
1141
1142 /*
1143 * then plug in our page of interest.
1144 */
1145
1146 pgs[nback] = pg;
1147
1148 /*
1149 * then look forward to fill in the remaining space in
1150 * the array of pages.
1151 *
1152 * pass our cached array of pages so that hopefully
1153 * uvn_findpages can find some good pages in it.
1154 */
1155
1156 nforw = maxpages - nback - 1;
1157 uvn_findpages(uobj, pg->offset + PAGE_SIZE,
1158 &nforw, &pgs[nback + 1], &a, fpflags);
1159 npages = nback + 1 + nforw;
1160 } else {
1161 pgs[0] = pg;
1162 npages = 1;
1163 nback = 0;
1164 }
1165
1166 /*
1167 * apply FREE or DEACTIVATE options if requested.
1168 */
1169
1170 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1171 mutex_enter(&uvm_pageqlock);
1172 }
1173 for (i = 0; i < npages; i++) {
1174 struct vm_page *tpg = pgs[i];
1175
1176 KASSERT(tpg->uobject == uobj);
1177 KASSERT(i == 0 ||
1178 pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1179 KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1180 UVM_PAGE_STATUS_DIRTY);
1181 if (tpg->offset < startoff || tpg->offset >= endoff)
1182 continue;
1183 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1184 uvm_pagedeactivate(tpg);
1185 } else if (flags & PGO_FREE) {
1186 pmap_page_protect(tpg, VM_PROT_NONE);
1187 if (tpg->flags & PG_BUSY) {
1188 tpg->flags |= freeflag;
1189 if (pagedaemon) {
1190 uvm_pageout_start(1);
1191 uvm_pagedequeue(tpg);
1192 }
1193 } else {
1194
1195 /*
1196 * ``page is not busy''
1197 * implies that npages is 1
1198 * and needs_clean is false.
1199 */
1200
1201 KASSERT(npages == 1);
1202 KASSERT(!needs_clean);
1203 KASSERT(pg == tpg);
1204 KASSERT(nextoff ==
1205 tpg->offset + PAGE_SIZE);
1206 uvm_pagefree(tpg);
1207 if (pagedaemon)
1208 uvmexp.pdfreed++;
1209 }
1210 }
1211 }
1212 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1213 mutex_exit(&uvm_pageqlock);
1214 }
1215 if (needs_clean) {
1216 mutex_exit(slock);
1217 KASSERT(nextoff == pg->offset + PAGE_SIZE);
1218 KASSERT(nback < npages);
1219 nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1220 KASSERT(pgs[nback] == pg);
1221 KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1222
1223 /*
1224 * start the i/o.
1225 */
1226 error = GOP_WRITE(vp, pgs, npages, flags);
1227 written = true;
1228 /*
1229 * as we dropped the object lock, our cached pages can
1230 * be stale.
1231 */
1232 uvm_page_array_clear(&a);
1233 mutex_enter(slock);
1234 if (error) {
1235 break;
1236 }
1237 }
1238 }
1239 uvm_page_array_fini(&a);
1240
1241 /*
1242 * update ctime/mtime if the modification we started writing out might
1243 * be from mmap'ed write.
1244 *
1245 * this is necessary when an application keeps a file mmaped and
1246 * repeatedly modifies it via the window. note that, because we
1247 * don't always write-protect pages when cleaning, such modifications
1248 * might not involve any page faults.
1249 */
1250
1251 if (written && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1252 (vp->v_type != VBLK ||
1253 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1254 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1255 }
1256
1257 /*
1258 * if we no longer have any possibly dirty pages, take us off the
1259 * syncer list.
1260 */
1261
1262 if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
1263 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
1264 UVM_PAGE_DIRTY_TAG)) {
1265 vp->v_iflag &= ~VI_WRMAPDIRTY;
1266 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1267 vn_syncer_remove_from_worklist(vp);
1268 }
1269
1270 #if !defined(DEBUG)
1271 skip_scan:
1272 #endif /* !defined(DEBUG) */
1273
1274 /*
1275 * if we found or started any i/o and we're doing sync i/o,
1276 * wait for all writes to finish.
1277 */
1278
1279 if (!wasclean && !async) {
1280 while (vp->v_numoutput != 0)
1281 cv_wait(&vp->v_cv, slock);
1282 }
1283 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1284 mutex_exit(slock);
1285
1286 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1287 /*
1288 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1289 * retrying is not a big deal because, in many cases,
1290 * uobj->uo_npages is already 0 here.
1291 */
1292 mutex_enter(slock);
1293 goto retry;
1294 }
1295
1296 if (has_trans) {
1297 if (need_wapbl)
1298 WAPBL_END(vp->v_mount);
1299 fstrans_done(vp->v_mount);
1300 }
1301
1302 return (error);
1303 }
1304
1305 int
1306 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1307 {
1308 off_t off;
1309 vaddr_t kva;
1310 size_t len;
1311 int error;
1312 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1313
1314 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1315 vp, pgs, npages, flags);
1316
1317 off = pgs[0]->offset;
1318 kva = uvm_pagermapin(pgs, npages,
1319 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1320 len = npages << PAGE_SHIFT;
1321
1322 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1323 uvm_aio_biodone);
1324
1325 return error;
1326 }
1327
1328 /*
1329 * genfs_gop_write_rwmap:
1330 *
1331 * a variant of genfs_gop_write. it's used by UDF for its directory buffers.
1332 * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1333 * the contents before writing it out to the underlying storage.
1334 */
1335
1336 int
1337 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1338 int flags)
1339 {
1340 off_t off;
1341 vaddr_t kva;
1342 size_t len;
1343 int error;
1344 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1345
1346 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1347 vp, pgs, npages, flags);
1348
1349 off = pgs[0]->offset;
1350 kva = uvm_pagermapin(pgs, npages,
1351 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1352 len = npages << PAGE_SHIFT;
1353
1354 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1355 uvm_aio_biodone);
1356
1357 return error;
1358 }
1359
1360 /*
1361 * Backend routine for doing I/O to vnode pages. Pages are already locked
1362 * and mapped into kernel memory. Here we just look up the underlying
1363 * device block addresses and call the strategy routine.
1364 */
1365
1366 static int
1367 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1368 enum uio_rw rw, void (*iodone)(struct buf *))
1369 {
1370 int s, error;
1371 int fs_bshift, dev_bshift;
1372 off_t eof, offset, startoffset;
1373 size_t bytes, iobytes, skipbytes;
1374 struct buf *mbp, *bp;
1375 const bool async = (flags & PGO_SYNCIO) == 0;
1376 const bool lazy = (flags & PGO_LAZY) == 0;
1377 const bool iowrite = rw == UIO_WRITE;
1378 const int brw = iowrite ? B_WRITE : B_READ;
1379 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1380
1381 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1382 vp, kva, len, flags);
1383
1384 KASSERT(vp->v_size <= vp->v_writesize);
1385 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1386 if (vp->v_type != VBLK) {
1387 fs_bshift = vp->v_mount->mnt_fs_bshift;
1388 dev_bshift = vp->v_mount->mnt_dev_bshift;
1389 } else {
1390 fs_bshift = DEV_BSHIFT;
1391 dev_bshift = DEV_BSHIFT;
1392 }
1393 error = 0;
1394 startoffset = off;
1395 bytes = MIN(len, eof - startoffset);
1396 skipbytes = 0;
1397 KASSERT(bytes != 0);
1398
1399 if (iowrite) {
1400 mutex_enter(vp->v_interlock);
1401 vp->v_numoutput += 2;
1402 mutex_exit(vp->v_interlock);
1403 }
1404 mbp = getiobuf(vp, true);
1405 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1406 vp, mbp, vp->v_numoutput, bytes);
1407 mbp->b_bufsize = len;
1408 mbp->b_data = (void *)kva;
1409 mbp->b_resid = mbp->b_bcount = bytes;
1410 mbp->b_cflags = BC_BUSY | BC_AGE;
1411 if (async) {
1412 mbp->b_flags = brw | B_ASYNC;
1413 mbp->b_iodone = iodone;
1414 } else {
1415 mbp->b_flags = brw;
1416 mbp->b_iodone = NULL;
1417 }
1418 if (curlwp == uvm.pagedaemon_lwp)
1419 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1420 else if (async || lazy)
1421 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1422 else
1423 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1424
1425 bp = NULL;
1426 for (offset = startoffset;
1427 bytes > 0;
1428 offset += iobytes, bytes -= iobytes) {
1429 int run;
1430 daddr_t lbn, blkno;
1431 struct vnode *devvp;
1432
1433 /*
1434 * bmap the file to find out the blkno to read from and
1435 * how much we can read in one i/o. if bmap returns an error,
1436 * skip the rest of the top-level i/o.
1437 */
1438
1439 lbn = offset >> fs_bshift;
1440 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1441 if (error) {
1442 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1443 lbn,error,0,0);
1444 skipbytes += bytes;
1445 bytes = 0;
1446 goto loopdone;
1447 }
1448
1449 /*
1450 * see how many pages can be read with this i/o.
1451 * reduce the i/o size if necessary to avoid
1452 * overwriting pages with valid data.
1453 */
1454
1455 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1456 bytes);
1457
1458 /*
1459 * if this block isn't allocated, zero it instead of
1460 * reading it. unless we are going to allocate blocks,
1461 * mark the pages we zeroed PG_RDONLY.
1462 */
1463
1464 if (blkno == (daddr_t)-1) {
1465 if (!iowrite) {
1466 memset((char *)kva + (offset - startoffset), 0,
1467 iobytes);
1468 }
1469 skipbytes += iobytes;
1470 continue;
1471 }
1472
1473 /*
1474 * allocate a sub-buf for this piece of the i/o
1475 * (or just use mbp if there's only 1 piece),
1476 * and start it going.
1477 */
1478
1479 if (offset == startoffset && iobytes == bytes) {
1480 bp = mbp;
1481 } else {
1482 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1483 vp, bp, vp->v_numoutput, 0);
1484 bp = getiobuf(vp, true);
1485 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1486 }
1487 bp->b_lblkno = 0;
1488
1489 /* adjust physical blkno for partial blocks */
1490 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1491 dev_bshift);
1492
1493 UVMHIST_LOG(ubchist,
1494 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1495 bp, offset, bp->b_bcount, bp->b_blkno);
1496
1497 VOP_STRATEGY(devvp, bp);
1498 }
1499
1500 loopdone:
1501 if (skipbytes) {
1502 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1503 }
1504 nestiobuf_done(mbp, skipbytes, error);
1505 if (async) {
1506 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1507 return (0);
1508 }
1509 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1510 error = biowait(mbp);
1511 s = splbio();
1512 (*iodone)(mbp);
1513 splx(s);
1514 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1515 return (error);
1516 }
1517
1518 int
1519 genfs_compat_getpages(void *v)
1520 {
1521 struct vop_getpages_args /* {
1522 struct vnode *a_vp;
1523 voff_t a_offset;
1524 struct vm_page **a_m;
1525 int *a_count;
1526 int a_centeridx;
1527 vm_prot_t a_access_type;
1528 int a_advice;
1529 int a_flags;
1530 } */ *ap = v;
1531
1532 off_t origoffset;
1533 struct vnode *vp = ap->a_vp;
1534 struct uvm_object *uobj = &vp->v_uobj;
1535 struct vm_page *pg, **pgs;
1536 vaddr_t kva;
1537 int i, error, orignpages, npages;
1538 struct iovec iov;
1539 struct uio uio;
1540 kauth_cred_t cred = curlwp->l_cred;
1541 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1542
1543 error = 0;
1544 origoffset = ap->a_offset;
1545 orignpages = *ap->a_count;
1546 pgs = ap->a_m;
1547
1548 if (ap->a_flags & PGO_LOCKED) {
1549 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1550 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1551
1552 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1553 if (error == 0 && memwrite) {
1554 genfs_markdirty(vp);
1555 }
1556 return error;
1557 }
1558 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1559 mutex_exit(uobj->vmobjlock);
1560 return EINVAL;
1561 }
1562 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1563 mutex_exit(uobj->vmobjlock);
1564 return 0;
1565 }
1566 npages = orignpages;
1567 uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1568 mutex_exit(uobj->vmobjlock);
1569 kva = uvm_pagermapin(pgs, npages,
1570 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1571 for (i = 0; i < npages; i++) {
1572 pg = pgs[i];
1573 if ((pg->flags & PG_FAKE) == 0) {
1574 continue;
1575 }
1576 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1577 iov.iov_len = PAGE_SIZE;
1578 uio.uio_iov = &iov;
1579 uio.uio_iovcnt = 1;
1580 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1581 uio.uio_rw = UIO_READ;
1582 uio.uio_resid = PAGE_SIZE;
1583 UIO_SETUP_SYSSPACE(&uio);
1584 /* XXX vn_lock */
1585 error = VOP_READ(vp, &uio, 0, cred);
1586 if (error) {
1587 break;
1588 }
1589 if (uio.uio_resid) {
1590 memset(iov.iov_base, 0, uio.uio_resid);
1591 }
1592 }
1593 uvm_pagermapout(kva, npages);
1594 mutex_enter(uobj->vmobjlock);
1595 mutex_enter(&uvm_pageqlock);
1596 for (i = 0; i < npages; i++) {
1597 pg = pgs[i];
1598 if (error && (pg->flags & PG_FAKE) != 0) {
1599 pg->flags |= PG_RELEASED;
1600 } else {
1601 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1602 uvm_pageactivate(pg);
1603 }
1604 }
1605 if (error) {
1606 uvm_page_unbusy(pgs, npages);
1607 }
1608 mutex_exit(&uvm_pageqlock);
1609 if (error == 0 && memwrite) {
1610 genfs_markdirty(vp);
1611 }
1612 mutex_exit(uobj->vmobjlock);
1613 return error;
1614 }
1615
1616 int
1617 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1618 int flags)
1619 {
1620 off_t offset;
1621 struct iovec iov;
1622 struct uio uio;
1623 kauth_cred_t cred = curlwp->l_cred;
1624 struct buf *bp;
1625 vaddr_t kva;
1626 int error;
1627
1628 offset = pgs[0]->offset;
1629 kva = uvm_pagermapin(pgs, npages,
1630 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1631
1632 iov.iov_base = (void *)kva;
1633 iov.iov_len = npages << PAGE_SHIFT;
1634 uio.uio_iov = &iov;
1635 uio.uio_iovcnt = 1;
1636 uio.uio_offset = offset;
1637 uio.uio_rw = UIO_WRITE;
1638 uio.uio_resid = npages << PAGE_SHIFT;
1639 UIO_SETUP_SYSSPACE(&uio);
1640 /* XXX vn_lock */
1641 error = VOP_WRITE(vp, &uio, 0, cred);
1642
1643 mutex_enter(vp->v_interlock);
1644 vp->v_numoutput++;
1645 mutex_exit(vp->v_interlock);
1646
1647 bp = getiobuf(vp, true);
1648 bp->b_cflags = BC_BUSY | BC_AGE;
1649 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1650 bp->b_data = (char *)kva;
1651 bp->b_bcount = npages << PAGE_SHIFT;
1652 bp->b_bufsize = npages << PAGE_SHIFT;
1653 bp->b_resid = 0;
1654 bp->b_error = error;
1655 uvm_aio_aiodone(bp);
1656 return (error);
1657 }
1658
1659 /*
1660 * Process a uio using direct I/O. If we reach a part of the request
1661 * which cannot be processed in this fashion for some reason, just return.
1662 * The caller must handle some additional part of the request using
1663 * buffered I/O before trying direct I/O again.
1664 */
1665
1666 void
1667 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1668 {
1669 struct vmspace *vs;
1670 struct iovec *iov;
1671 vaddr_t va;
1672 size_t len;
1673 const int mask = DEV_BSIZE - 1;
1674 int error;
1675 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1676 (ioflag & IO_JOURNALLOCKED) == 0);
1677
1678 /*
1679 * We only support direct I/O to user space for now.
1680 */
1681
1682 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1683 return;
1684 }
1685
1686 /*
1687 * If the vnode is mapped, we would need to get the getpages lock
1688 * to stabilize the bmap, but then we would get into trouble while
1689 * locking the pages if the pages belong to this same vnode (or a
1690 * multi-vnode cascade to the same effect). Just fall back to
1691 * buffered I/O if the vnode is mapped to avoid this mess.
1692 */
1693
1694 if (vp->v_vflag & VV_MAPPED) {
1695 return;
1696 }
1697
1698 if (need_wapbl) {
1699 error = WAPBL_BEGIN(vp->v_mount);
1700 if (error)
1701 return;
1702 }
1703
1704 /*
1705 * Do as much of the uio as possible with direct I/O.
1706 */
1707
1708 vs = uio->uio_vmspace;
1709 while (uio->uio_resid) {
1710 iov = uio->uio_iov;
1711 if (iov->iov_len == 0) {
1712 uio->uio_iov++;
1713 uio->uio_iovcnt--;
1714 continue;
1715 }
1716 va = (vaddr_t)iov->iov_base;
1717 len = MIN(iov->iov_len, genfs_maxdio);
1718 len &= ~mask;
1719
1720 /*
1721 * If the next chunk is smaller than DEV_BSIZE or extends past
1722 * the current EOF, then fall back to buffered I/O.
1723 */
1724
1725 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1726 break;
1727 }
1728
1729 /*
1730 * Check alignment. The file offset must be at least
1731 * sector-aligned. The exact constraint on memory alignment
1732 * is very hardware-dependent, but requiring sector-aligned
1733 * addresses there too is safe.
1734 */
1735
1736 if (uio->uio_offset & mask || va & mask) {
1737 break;
1738 }
1739 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1740 uio->uio_rw);
1741 if (error) {
1742 break;
1743 }
1744 iov->iov_base = (char *)iov->iov_base + len;
1745 iov->iov_len -= len;
1746 uio->uio_offset += len;
1747 uio->uio_resid -= len;
1748 }
1749
1750 if (need_wapbl)
1751 WAPBL_END(vp->v_mount);
1752 }
1753
1754 /*
1755 * Iodone routine for direct I/O. We don't do much here since the request is
1756 * always synchronous, so the caller will do most of the work after biowait().
1757 */
1758
1759 static void
1760 genfs_dio_iodone(struct buf *bp)
1761 {
1762
1763 KASSERT((bp->b_flags & B_ASYNC) == 0);
1764 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1765 mutex_enter(bp->b_objlock);
1766 vwakeup(bp);
1767 mutex_exit(bp->b_objlock);
1768 }
1769 putiobuf(bp);
1770 }
1771
1772 /*
1773 * Process one chunk of a direct I/O request.
1774 */
1775
1776 static int
1777 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1778 off_t off, enum uio_rw rw)
1779 {
1780 struct vm_map *map;
1781 struct pmap *upm, *kpm;
1782 size_t klen = round_page(uva + len) - trunc_page(uva);
1783 off_t spoff, epoff;
1784 vaddr_t kva, puva;
1785 paddr_t pa;
1786 vm_prot_t prot;
1787 int error, rv, poff, koff;
1788 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1789 (rw == UIO_WRITE ? PGO_FREE : 0);
1790
1791 /*
1792 * For writes, verify that this range of the file already has fully
1793 * allocated backing store. If there are any holes, just punt and
1794 * make the caller take the buffered write path.
1795 */
1796
1797 if (rw == UIO_WRITE) {
1798 daddr_t lbn, elbn, blkno;
1799 int bsize, bshift, run;
1800
1801 bshift = vp->v_mount->mnt_fs_bshift;
1802 bsize = 1 << bshift;
1803 lbn = off >> bshift;
1804 elbn = (off + len + bsize - 1) >> bshift;
1805 while (lbn < elbn) {
1806 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1807 if (error) {
1808 return error;
1809 }
1810 if (blkno == (daddr_t)-1) {
1811 return ENOSPC;
1812 }
1813 lbn += 1 + run;
1814 }
1815 }
1816
1817 /*
1818 * Flush any cached pages for parts of the file that we're about to
1819 * access. If we're writing, invalidate pages as well.
1820 */
1821
1822 spoff = trunc_page(off);
1823 epoff = round_page(off + len);
1824 mutex_enter(vp->v_interlock);
1825 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1826 if (error) {
1827 return error;
1828 }
1829
1830 /*
1831 * Wire the user pages and remap them into kernel memory.
1832 */
1833
1834 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1835 error = uvm_vslock(vs, (void *)uva, len, prot);
1836 if (error) {
1837 return error;
1838 }
1839
1840 map = &vs->vm_map;
1841 upm = vm_map_pmap(map);
1842 kpm = vm_map_pmap(kernel_map);
1843 puva = trunc_page(uva);
1844 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1845 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1846 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1847 rv = pmap_extract(upm, puva + poff, &pa);
1848 KASSERT(rv);
1849 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1850 }
1851 pmap_update(kpm);
1852
1853 /*
1854 * Do the I/O.
1855 */
1856
1857 koff = uva - trunc_page(uva);
1858 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1859 genfs_dio_iodone);
1860
1861 /*
1862 * Tear down the kernel mapping.
1863 */
1864
1865 pmap_kremove(kva, klen);
1866 pmap_update(kpm);
1867 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1868
1869 /*
1870 * Unwire the user pages.
1871 */
1872
1873 uvm_vsunlock(vs, (void *)uva, len);
1874 return error;
1875 }
1876