genfs_io.c revision 1.53.2.17 1 /* $NetBSD: genfs_io.c,v 1.53.2.17 2012/11/02 08:30:05 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53.2.17 2012/11/02 08:30:05 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 #include <sys/radixtree.h>
47
48 #include <miscfs/genfs/genfs.h>
49 #include <miscfs/genfs/genfs_node.h>
50 #include <miscfs/specfs/specdev.h>
51 #include <miscfs/syncfs/syncfs.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55 #include <uvm/uvm_page_array.h>
56
57 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
58 off_t, enum uio_rw);
59 static void genfs_dio_iodone(struct buf *);
60
61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 void (*)(struct buf *));
63 static void genfs_rel_pages(struct vm_page **, unsigned int);
64 static void genfs_markdirty(struct vnode *);
65
66 int genfs_maxdio = MAXPHYS;
67
68 static void
69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70 {
71 unsigned int i;
72
73 for (i = 0; i < npages; i++) {
74 struct vm_page *pg = pgs[i];
75
76 if (pg == NULL || pg == PGO_DONTCARE)
77 continue;
78 KASSERT(uvm_page_locked_p(pg));
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 mutex_enter(&uvm_pageqlock);
84 uvm_page_unbusy(pgs, npages);
85 mutex_exit(&uvm_pageqlock);
86 }
87
88 static void
89 genfs_markdirty(struct vnode *vp)
90 {
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
94 vn_syncer_add_to_worklist(vp, filedelay);
95 }
96 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
97 vp->v_iflag |= VI_WRMAPDIRTY;
98 }
99 }
100
101 /*
102 * generic VM getpages routine.
103 * Return PG_BUSY pages for the given range,
104 * reading from backing store if necessary.
105 */
106
107 int
108 genfs_getpages(void *v)
109 {
110 struct vop_getpages_args /* {
111 struct vnode *a_vp;
112 voff_t a_offset;
113 struct vm_page **a_m;
114 int *a_count;
115 int a_centeridx;
116 vm_prot_t a_access_type;
117 int a_advice;
118 int a_flags;
119 } */ * const ap = v;
120
121 off_t diskeof, memeof;
122 int i, error, npages;
123 const int flags = ap->a_flags;
124 struct vnode * const vp = ap->a_vp;
125 struct uvm_object * const uobj = &vp->v_uobj;
126 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
133 bool has_trans_wapbl = false;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 startover:
143 error = 0;
144 const voff_t origvsize = vp->v_size;
145 const off_t origoffset = ap->a_offset;
146 const int orignpages = *ap->a_count;
147
148 GOP_SIZE(vp, origvsize, &diskeof, 0);
149 if (flags & PGO_PASTEOF) {
150 off_t newsize;
151 #if defined(DIAGNOSTIC)
152 off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154
155 newsize = MAX(origvsize,
156 origoffset + (orignpages << PAGE_SHIFT));
157 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 if (newsize > round_page(writeeof)) {
161 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 __func__, newsize, round_page(writeeof));
163 }
164 #endif /* defined(DIAGNOSTIC) */
165 } else {
166 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 }
168 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 KASSERT(orignpages > 0);
171
172 /*
173 * Bounds-check the request.
174 */
175
176 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 if ((flags & PGO_LOCKED) == 0) {
178 mutex_exit(uobj->vmobjlock);
179 }
180 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 origoffset, *ap->a_count, memeof,0);
182 error = EINVAL;
183 goto out_err;
184 }
185
186 /* uobj is locked */
187
188 if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 (vp->v_type != VBLK ||
190 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 int updflags = 0;
192
193 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 updflags = GOP_UPDATE_ACCESSED;
195 }
196 if (memwrite) {
197 updflags |= GOP_UPDATE_MODIFIED;
198 }
199 if (updflags != 0) {
200 GOP_MARKUPDATE(vp, updflags);
201 }
202 }
203
204 /*
205 * For PGO_LOCKED requests, just return whatever's in memory.
206 */
207
208 if (flags & PGO_LOCKED) {
209 int nfound;
210 struct vm_page *pg;
211
212 KASSERT(!glocked);
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, NULL,
222 UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
223 KASSERT(npages == *ap->a_count);
224 if (nfound == 0) {
225 error = EBUSY;
226 goto out_err;
227 }
228 /*
229 * lock and unlock g_glock to ensure that no one is truncating
230 * the file behind us.
231 */
232 if (!genfs_node_rdtrylock(vp)) {
233 genfs_rel_pages(ap->a_m, npages);
234
235 /*
236 * restore the array.
237 */
238
239 for (i = 0; i < npages; i++) {
240 pg = ap->a_m[i];
241
242 if (pg != NULL && pg != PGO_DONTCARE) {
243 ap->a_m[i] = NULL;
244 }
245 KASSERT(ap->a_m[i] == NULL ||
246 ap->a_m[i] == PGO_DONTCARE);
247 }
248 } else {
249 genfs_node_unlock(vp);
250 }
251 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
252 if (error == 0 && memwrite) {
253 for (i = 0; i < npages; i++) {
254 pg = ap->a_m[i];
255 if (pg == NULL || pg == PGO_DONTCARE) {
256 continue;
257 }
258 if (uvm_pagegetdirty(pg) ==
259 UVM_PAGE_STATUS_CLEAN) {
260 uvm_pagemarkdirty(pg,
261 UVM_PAGE_STATUS_UNKNOWN);
262 }
263 }
264 genfs_markdirty(vp);
265 }
266 goto out_err;
267 }
268 mutex_exit(uobj->vmobjlock);
269
270 /*
271 * find the requested pages and make some simple checks.
272 * leave space in the page array for a whole block.
273 */
274
275 const int fs_bshift = (vp->v_type != VBLK) ?
276 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
277 const int dev_bshift = (vp->v_type != VBLK) ?
278 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
279 const int fs_bsize = 1 << fs_bshift;
280 #define blk_mask (fs_bsize - 1)
281 #define trunc_blk(x) ((x) & ~blk_mask)
282 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
283
284 const int orignmempages = MIN(orignpages,
285 round_page(memeof - origoffset) >> PAGE_SHIFT);
286 npages = orignmempages;
287 const off_t startoffset = trunc_blk(origoffset);
288 const off_t endoffset = MIN(
289 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
290 round_page(memeof));
291 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
292
293 const int pgs_size = sizeof(struct vm_page *) *
294 ((endoffset - startoffset) >> PAGE_SHIFT);
295 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
296
297 if (pgs_size > sizeof(pgs_onstack)) {
298 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
299 if (pgs == NULL) {
300 pgs = pgs_onstack;
301 error = ENOMEM;
302 goto out_err;
303 }
304 } else {
305 pgs = pgs_onstack;
306 (void)memset(pgs, 0, pgs_size);
307 }
308
309 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
310 ridx, npages, startoffset, endoffset);
311
312 if (!has_trans_wapbl) {
313 fstrans_start(vp->v_mount, FSTRANS_SHARED);
314 /*
315 * XXX: This assumes that we come here only via
316 * the mmio path
317 */
318 if (need_wapbl) {
319 error = WAPBL_BEGIN(vp->v_mount);
320 if (error) {
321 fstrans_done(vp->v_mount);
322 goto out_err_free;
323 }
324 }
325 has_trans_wapbl = true;
326 }
327
328 /*
329 * hold g_glock to prevent a race with truncate.
330 *
331 * check if our idea of v_size is still valid.
332 */
333
334 KASSERT(!glocked || genfs_node_wrlocked(vp));
335 if (!glocked) {
336 if (blockalloc) {
337 genfs_node_wrlock(vp);
338 } else {
339 genfs_node_rdlock(vp);
340 }
341 }
342 mutex_enter(uobj->vmobjlock);
343 if (vp->v_size < origvsize) {
344 if (!glocked) {
345 genfs_node_unlock(vp);
346 }
347 if (pgs != pgs_onstack)
348 kmem_free(pgs, pgs_size);
349 goto startover;
350 }
351
352 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
353 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
354 if (!glocked) {
355 genfs_node_unlock(vp);
356 }
357 KASSERT(async != 0);
358 genfs_rel_pages(&pgs[ridx], orignmempages);
359 mutex_exit(uobj->vmobjlock);
360 error = EBUSY;
361 goto out_err_free;
362 }
363
364 /*
365 * if PGO_OVERWRITE is set, don't bother reading the pages.
366 */
367
368 if (overwrite) {
369 if (!glocked) {
370 genfs_node_unlock(vp);
371 }
372 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
373
374 for (i = 0; i < npages; i++) {
375 struct vm_page *pg = pgs[ridx + i];
376
377 /*
378 * it's caller's responsibility to allocate blocks
379 * beforehand for the overwrite case.
380 */
381 pg->flags &= ~PG_RDONLY;
382 /*
383 * mark the page DIRTY.
384 * otherwise another thread can do putpages and pull
385 * our vnode from syncer's queue before our caller does
386 * ubc_release. note that putpages won't see CLEAN
387 * pages even if they are BUSY.
388 */
389 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
390 }
391 npages += ridx;
392 goto out;
393 }
394
395 /*
396 * if the pages are already resident, just return them.
397 */
398
399 for (i = 0; i < npages; i++) {
400 struct vm_page *pg = pgs[ridx + i];
401
402 if ((pg->flags & PG_FAKE) ||
403 (memwrite && (pg->flags & PG_RDONLY) != 0)) {
404 break;
405 }
406 }
407 if (i == npages) {
408 if (!glocked) {
409 genfs_node_unlock(vp);
410 }
411 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
412 npages += ridx;
413 goto out;
414 }
415
416 /*
417 * the page wasn't resident and we're not overwriting,
418 * so we're going to have to do some i/o.
419 * find any additional pages needed to cover the expanded range.
420 */
421
422 npages = (endoffset - startoffset) >> PAGE_SHIFT;
423 if (startoffset != origoffset || npages != orignmempages) {
424 int npgs;
425
426 /*
427 * we need to avoid deadlocks caused by locking
428 * additional pages at lower offsets than pages we
429 * already have locked. unlock them all and start over.
430 */
431
432 genfs_rel_pages(&pgs[ridx], orignmempages);
433 memset(pgs, 0, pgs_size);
434
435 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
436 startoffset, endoffset, 0,0);
437 npgs = npages;
438 if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
439 async ? UFP_NOWAIT : UFP_ALL) != npages) {
440 if (!glocked) {
441 genfs_node_unlock(vp);
442 }
443 KASSERT(async != 0);
444 genfs_rel_pages(pgs, npages);
445 mutex_exit(uobj->vmobjlock);
446 error = EBUSY;
447 goto out_err_free;
448 }
449 }
450
451 mutex_exit(uobj->vmobjlock);
452
453 {
454 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
455 vaddr_t kva;
456 struct buf *bp, *mbp;
457 bool sawhole = false;
458
459 /*
460 * read the desired page(s).
461 */
462
463 totalbytes = npages << PAGE_SHIFT;
464 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
465 tailbytes = totalbytes - bytes;
466 skipbytes = 0;
467
468 kva = uvm_pagermapin(pgs, npages,
469 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
470 if (kva == 0) {
471 error = EBUSY;
472 goto mapin_fail;
473 }
474
475 mbp = getiobuf(vp, true);
476 mbp->b_bufsize = totalbytes;
477 mbp->b_data = (void *)kva;
478 mbp->b_resid = mbp->b_bcount = bytes;
479 mbp->b_cflags = BC_BUSY;
480 if (async) {
481 mbp->b_flags = B_READ | B_ASYNC;
482 mbp->b_iodone = uvm_aio_biodone;
483 } else {
484 mbp->b_flags = B_READ;
485 mbp->b_iodone = NULL;
486 }
487 if (async)
488 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
489 else
490 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
491
492 /*
493 * if EOF is in the middle of the range, zero the part past EOF.
494 * skip over pages which are not PG_FAKE since in that case they have
495 * valid data that we need to preserve.
496 */
497
498 tailstart = bytes;
499 while (tailbytes > 0) {
500 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
501
502 KASSERT(len <= tailbytes);
503 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
504 memset((void *)(kva + tailstart), 0, len);
505 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
506 kva, tailstart, len, 0);
507 }
508 tailstart += len;
509 tailbytes -= len;
510 }
511
512 /*
513 * now loop over the pages, reading as needed.
514 */
515
516 bp = NULL;
517 off_t offset;
518 for (offset = startoffset;
519 bytes > 0;
520 offset += iobytes, bytes -= iobytes) {
521 int run;
522 daddr_t lbn, blkno;
523 int pidx;
524 struct vnode *devvp;
525
526 /*
527 * skip pages which don't need to be read.
528 */
529
530 pidx = (offset - startoffset) >> PAGE_SHIFT;
531 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
532 size_t b;
533
534 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
535 if ((pgs[pidx]->flags & PG_RDONLY)) {
536 sawhole = true;
537 }
538 b = MIN(PAGE_SIZE, bytes);
539 offset += b;
540 bytes -= b;
541 skipbytes += b;
542 pidx++;
543 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
544 offset, 0,0,0);
545 if (bytes == 0) {
546 goto loopdone;
547 }
548 }
549
550 /*
551 * bmap the file to find out the blkno to read from and
552 * how much we can read in one i/o. if bmap returns an error,
553 * skip the rest of the top-level i/o.
554 */
555
556 lbn = offset >> fs_bshift;
557 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
558 if (error) {
559 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
560 lbn,error,0,0);
561 skipbytes += bytes;
562 bytes = 0;
563 goto loopdone;
564 }
565
566 /*
567 * see how many pages can be read with this i/o.
568 * reduce the i/o size if necessary to avoid
569 * overwriting pages with valid data.
570 */
571
572 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
573 bytes);
574 if (offset + iobytes > round_page(offset)) {
575 int pcount;
576
577 pcount = 1;
578 while (pidx + pcount < npages &&
579 pgs[pidx + pcount]->flags & PG_FAKE) {
580 pcount++;
581 }
582 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
583 (offset - trunc_page(offset)));
584 }
585
586 /*
587 * if this block isn't allocated, zero it instead of
588 * reading it. unless we are going to allocate blocks,
589 * mark the pages we zeroed PG_RDONLY.
590 */
591
592 if (blkno == (daddr_t)-1) {
593 int holepages = (round_page(offset + iobytes) -
594 trunc_page(offset)) >> PAGE_SHIFT;
595 UVMHIST_LOG(ubchist, "lbn 0x%x -> RDONLY", lbn,0,0,0);
596
597 sawhole = true;
598 memset((char *)kva + (offset - startoffset), 0,
599 iobytes);
600 skipbytes += iobytes;
601
602 if (!blockalloc) {
603 mutex_enter(uobj->vmobjlock);
604 for (i = 0; i < holepages; i++) {
605 pgs[pidx + i]->flags |= PG_RDONLY;
606 }
607 mutex_exit(uobj->vmobjlock);
608 }
609 continue;
610 }
611
612 /*
613 * allocate a sub-buf for this piece of the i/o
614 * (or just use mbp if there's only 1 piece),
615 * and start it going.
616 */
617
618 if (offset == startoffset && iobytes == bytes) {
619 bp = mbp;
620 } else {
621 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
622 vp, bp, vp->v_numoutput, 0);
623 bp = getiobuf(vp, true);
624 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
625 }
626 bp->b_lblkno = 0;
627
628 /* adjust physical blkno for partial blocks */
629 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
630 dev_bshift);
631
632 UVMHIST_LOG(ubchist,
633 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
634 bp, offset, bp->b_bcount, bp->b_blkno);
635
636 VOP_STRATEGY(devvp, bp);
637 }
638
639 loopdone:
640 nestiobuf_done(mbp, skipbytes, error);
641 if (async) {
642 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
643 if (!glocked) {
644 genfs_node_unlock(vp);
645 }
646 error = 0;
647 goto out_err_free;
648 }
649 if (bp != NULL) {
650 error = biowait(mbp);
651 }
652
653 /* Remove the mapping (make KVA available as soon as possible) */
654 uvm_pagermapout(kva, npages);
655
656 /*
657 * if this we encountered a hole then we have to do a little more work.
658 * if blockalloc is false, we marked the page PG_RDONLY so that future
659 * write accesses to the page will fault again.
660 * if blockalloc is true, we must make sure that the backing store for
661 * the page is completely allocated while the pages are locked.
662 */
663
664 if (!error && sawhole && blockalloc) {
665 error = GOP_ALLOC(vp, startoffset,
666 npages << PAGE_SHIFT, 0, cred);
667 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
668 startoffset, npages << PAGE_SHIFT, error,0);
669 if (!error) {
670 mutex_enter(uobj->vmobjlock);
671 for (i = 0; i < npages; i++) {
672 struct vm_page *pg = pgs[i];
673
674 if (pg == NULL) {
675 continue;
676 }
677 pg->flags &= ~PG_RDONLY;
678 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
679 UVMHIST_LOG(ubchist, "mark dirty pg %p",
680 pg,0,0,0);
681 }
682 mutex_exit(uobj->vmobjlock);
683 }
684 }
685
686 putiobuf(mbp);
687 }
688
689 mapin_fail:
690 if (!glocked) {
691 genfs_node_unlock(vp);
692 }
693 mutex_enter(uobj->vmobjlock);
694
695 /*
696 * we're almost done! release the pages...
697 * for errors, we free the pages.
698 * otherwise we activate them and mark them as valid and clean.
699 * also, unbusy pages that were not actually requested.
700 */
701
702 if (error) {
703 genfs_rel_pages(pgs, npages);
704 mutex_exit(uobj->vmobjlock);
705 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
706 goto out_err_free;
707 }
708
709 out:
710 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
711 error = 0;
712 mutex_enter(&uvm_pageqlock);
713 for (i = 0; i < npages; i++) {
714 struct vm_page *pg = pgs[i];
715 if (pg == NULL) {
716 continue;
717 }
718 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
719 pg, pg->flags, 0,0);
720 if (pg->flags & PG_FAKE && !overwrite) {
721 /*
722 * we've read page's contents from the backing storage.
723 *
724 * for a read fault, we keep them CLEAN.
725 */
726 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
727 pg->flags &= ~PG_FAKE;
728 }
729 KASSERT(!blockalloc || (pg->flags & PG_RDONLY) == 0);
730 if (i < ridx || i >= ridx + orignmempages || async) {
731 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
732 pg, pg->offset,0,0);
733 KASSERT(!overwrite);
734 if (pg->flags & PG_WANTED) {
735 wakeup(pg);
736 }
737 if (pg->flags & PG_FAKE && overwrite) {
738 uvm_pagezero(pg);
739 }
740 if (pg->flags & PG_RELEASED) {
741 uvm_pagefree(pg);
742 continue;
743 }
744 uvm_pageenqueue(pg);
745 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
746 UVM_PAGE_OWN(pg, NULL);
747 } else if (memwrite && !overwrite &&
748 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
749 /*
750 * for a write fault, start dirtiness tracking of
751 * requested pages.
752 */
753 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
754 }
755 }
756 mutex_exit(&uvm_pageqlock);
757 if (memwrite) {
758 genfs_markdirty(vp);
759 }
760 mutex_exit(uobj->vmobjlock);
761 if (ap->a_m != NULL) {
762 memcpy(ap->a_m, &pgs[ridx],
763 orignmempages * sizeof(struct vm_page *));
764 }
765
766 out_err_free:
767 if (pgs != NULL && pgs != pgs_onstack)
768 kmem_free(pgs, pgs_size);
769 out_err:
770 if (has_trans_wapbl) {
771 if (need_wapbl)
772 WAPBL_END(vp->v_mount);
773 fstrans_done(vp->v_mount);
774 }
775 return error;
776 }
777
778 /*
779 * generic VM putpages routine.
780 * Write the given range of pages to backing store.
781 *
782 * => "offhi == 0" means flush all pages at or after "offlo".
783 * => object should be locked by caller. we return with the
784 * object unlocked.
785 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
786 * thus, a caller might want to unlock higher level resources
787 * (e.g. vm_map) before calling flush.
788 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
789 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
790 * => NOTE: we are allowed to lock the page queues, so the caller
791 * must not be holding the page queue lock.
792 *
793 * note on "cleaning" object and PG_BUSY pages:
794 * this routine is holding the lock on the object. the only time
795 * that it can run into a PG_BUSY page that it does not own is if
796 * some other process has started I/O on the page (e.g. either
797 * a pagein, or a pageout). if the PG_BUSY page is being paged
798 * in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
799 * one has had a chance to modify it yet. if the PG_BUSY page is
800 * being paged out then it means that someone else has already started
801 * cleaning the page for us (how nice!). in this case, if we
802 * have syncio specified, then after we make our pass through the
803 * object we need to wait for the other PG_BUSY pages to clear
804 * off (i.e. we need to do an iosync). also note that once a
805 * page is PG_BUSY it must stay in its object until it is un-busyed.
806 */
807
808 int
809 genfs_putpages(void *v)
810 {
811 struct vop_putpages_args /* {
812 struct vnode *a_vp;
813 voff_t a_offlo;
814 voff_t a_offhi;
815 int a_flags;
816 } */ * const ap = v;
817
818 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
819 ap->a_flags, NULL);
820 }
821
822 int
823 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
824 int origflags, struct vm_page **busypg)
825 {
826 struct uvm_object * const uobj = &vp->v_uobj;
827 kmutex_t * const slock = uobj->vmobjlock;
828 off_t nextoff;
829 /* Even for strange MAXPHYS, the shift rounds down to a page */
830 #define maxpages (MAXPHYS >> PAGE_SHIFT)
831 unsigned int i;
832 unsigned int npages, nback;
833 unsigned int freeflag;
834 int error;
835 struct vm_page *pgs[maxpages], *pg;
836 struct uvm_page_array a;
837 bool wasclean, needs_clean;
838 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
839 struct lwp * const l = curlwp ? curlwp : &lwp0;
840 int flags;
841 bool written; /* if we write out any pages */
842 bool need_wapbl;
843 bool has_trans;
844 bool tryclean; /* try to pull off from the syncer's list */
845 bool onworklst;
846 const bool integrity_sync =
847 (origflags & (PGO_LAZY|PGO_SYNCIO|PGO_CLEANIT)) ==
848 (PGO_SYNCIO|PGO_CLEANIT);
849 const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
850
851 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
852
853 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
854 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
855 KASSERT(startoff < endoff || endoff == 0);
856
857 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
858 vp, uobj->uo_npages, startoff, endoff - startoff);
859
860 has_trans = false;
861 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
862 (origflags & PGO_JOURNALLOCKED) == 0);
863
864 retry:
865 flags = origflags;
866 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
867 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
868
869 /*
870 * shortcut if we have no pages to process.
871 */
872
873 if (uobj->uo_npages == 0 || (dirtyonly &&
874 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
875 UVM_PAGE_DIRTY_TAG))) {
876 if (vp->v_iflag & VI_ONWORKLST) {
877 vp->v_iflag &= ~VI_WRMAPDIRTY;
878 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
879 vn_syncer_remove_from_worklist(vp);
880 }
881 if (has_trans) {
882 if (need_wapbl)
883 WAPBL_END(vp->v_mount);
884 fstrans_done(vp->v_mount);
885 }
886 mutex_exit(slock);
887 return (0);
888 }
889
890 /*
891 * the vnode has pages, set up to process the request.
892 */
893
894 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
895 mutex_exit(slock);
896 if (pagedaemon) {
897 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
898 if (error)
899 return error;
900 } else
901 fstrans_start(vp->v_mount, FSTRANS_LAZY);
902 if (need_wapbl) {
903 error = WAPBL_BEGIN(vp->v_mount);
904 if (error) {
905 fstrans_done(vp->v_mount);
906 return error;
907 }
908 }
909 has_trans = true;
910 mutex_enter(slock);
911 goto retry;
912 }
913
914 error = 0;
915 wasclean = (vp->v_numoutput == 0);
916
917 /*
918 * if this vnode is known not to have dirty pages,
919 * don't bother to clean it out.
920 */
921
922 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
923 #if !defined(DEBUG)
924 if (dirtyonly) {
925 goto skip_scan;
926 }
927 #endif /* !defined(DEBUG) */
928 flags &= ~PGO_CLEANIT;
929 }
930
931 /*
932 * start the loop to scan pages.
933 */
934
935 written = false;
936 nextoff = startoff;
937 if (endoff == 0 || flags & PGO_ALLPAGES) {
938 endoff = trunc_page(LLONG_MAX);
939 }
940 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
941 tryclean = true;
942 uvm_page_array_init(&a);
943 for (;;) {
944 bool protected;
945
946 /*
947 * if !dirtyonly, iterate over all resident pages in the range.
948 *
949 * if dirtyonly, only possibly dirty pages are interested.
950 * however, if we are asked to sync for integrity, we should
951 * wait on pages being written back by another threads as well.
952 */
953
954 pg = uvm_page_array_fill_and_peek(&a, uobj, nextoff, 0,
955 dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
956 (integrity_sync ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
957 if (pg == NULL) {
958 break;
959 }
960
961 KASSERT(pg->uobject == uobj);
962 KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
963 (pg->flags & (PG_BUSY)) != 0);
964 KASSERT(pg->offset >= startoff);
965 KASSERT(pg->offset >= nextoff);
966 KASSERT(!dirtyonly ||
967 uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
968 radix_tree_get_tag(&uobj->uo_pages,
969 pg->offset >> PAGE_SHIFT, UVM_PAGE_WRITEBACK_TAG));
970 if (pg->offset >= endoff) {
971 break;
972 }
973
974 /*
975 * a preempt point.
976 */
977
978 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
979 != 0) {
980 nextoff = pg->offset; /* visit this page again */
981 mutex_exit(slock);
982 preempt();
983 /*
984 * as we dropped the object lock, our cached pages can
985 * be stale.
986 */
987 uvm_page_array_clear(&a);
988 mutex_enter(slock);
989 continue;
990 }
991
992 /*
993 * if the current page is busy, wait for it to become unbusy.
994 */
995
996 if ((pg->flags & PG_BUSY) != 0) {
997 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
998 if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
999 && (flags & PGO_BUSYFAIL) != 0) {
1000 UVMHIST_LOG(ubchist, "busyfail %p", pg,
1001 0,0,0);
1002 error = EDEADLK;
1003 if (busypg != NULL)
1004 *busypg = pg;
1005 break;
1006 }
1007 if (pagedaemon) {
1008 /*
1009 * someone has taken the page while we
1010 * dropped the lock for fstrans_start.
1011 */
1012 break;
1013 }
1014 /*
1015 * don't bother to wait on other's activities
1016 * unless we are asked to sync for integrity.
1017 */
1018 if (!integrity_sync && (flags & PGO_RECLAIM) == 0) {
1019 wasclean = false;
1020 nextoff = pg->offset + PAGE_SIZE;
1021 uvm_page_array_advance(&a);
1022 continue;
1023 }
1024 nextoff = pg->offset; /* visit this page again */
1025 pg->flags |= PG_WANTED;
1026 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1027 /*
1028 * as we dropped the object lock, our cached pages can
1029 * be stale.
1030 */
1031 uvm_page_array_clear(&a);
1032 mutex_enter(slock);
1033 continue;
1034 }
1035
1036 nextoff = pg->offset + PAGE_SIZE;
1037 uvm_page_array_advance(&a);
1038
1039 /*
1040 * if we're freeing, remove all mappings of the page now.
1041 * if we're cleaning, check if the page needs to be cleaned.
1042 */
1043
1044 protected = false;
1045 if (flags & PGO_FREE) {
1046 pmap_page_protect(pg, VM_PROT_NONE);
1047 protected = true;
1048 } else if (flags & PGO_CLEANIT) {
1049
1050 /*
1051 * if we still have some hope to pull this vnode off
1052 * from the syncer queue, write-protect the page.
1053 */
1054
1055 if (tryclean && wasclean) {
1056
1057 /*
1058 * uobj pages get wired only by uvm_fault
1059 * where uobj is locked.
1060 */
1061
1062 if (pg->wire_count == 0) {
1063 pmap_page_protect(pg,
1064 VM_PROT_READ|VM_PROT_EXECUTE);
1065 protected = true;
1066 } else {
1067 /*
1068 * give up.
1069 */
1070 tryclean = false;
1071 }
1072 }
1073 }
1074
1075 if (flags & PGO_CLEANIT) {
1076 needs_clean = uvm_pagecheckdirty(pg, protected);
1077 } else {
1078 needs_clean = false;
1079 }
1080
1081 /*
1082 * if we're cleaning, build a cluster.
1083 * the cluster will consist of pages which are currently dirty.
1084 * if not cleaning, just operate on the one page.
1085 */
1086
1087 if (needs_clean) {
1088 unsigned int nforw;
1089 unsigned int fpflags;
1090
1091 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1092 wasclean = false;
1093 memset(pgs, 0, sizeof(pgs));
1094 pg->flags |= PG_BUSY;
1095 UVM_PAGE_OWN(pg, "genfs_putpages");
1096
1097 fpflags = UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY;
1098
1099 /*
1100 * XXX PG_PAGER1 incompatibility check.
1101 *
1102 * this is a kludge for nfs. nfs has two kind of dirty
1103 * pages:
1104 * - not written to the server yet
1105 * - written to the server but not committed yet
1106 * the latter is marked as PG_NEEDCOMMIT. (== PG_PAGER1)
1107 * nfs doesn't want them being clustered together.
1108 *
1109 * probably it's better to make PG_NEEDCOMMIT a first
1110 * level citizen for uvm/genfs.
1111 */
1112 if ((pg->flags & PG_PAGER1) != 0) {
1113 fpflags |= UFP_ONLYPAGER1;
1114 } else {
1115 fpflags |= UFP_NOPAGER1;
1116 }
1117
1118 /*
1119 * first look backward.
1120 *
1121 * because we always scan pages in the ascending order,
1122 * backward scan can be useful only for the first page
1123 * in the range.
1124 */
1125 if (startoff == pg->offset) {
1126 npages = MIN(maxpages >> 1,
1127 pg->offset >> PAGE_SHIFT);
1128 nback = npages;
1129 uvn_findpages(uobj, pg->offset - PAGE_SIZE,
1130 &nback, &pgs[0], NULL,
1131 fpflags | UFP_BACKWARD);
1132 if (nback) {
1133 memmove(&pgs[0], &pgs[npages - nback],
1134 nback * sizeof(pgs[0]));
1135 if (npages - nback < nback)
1136 memset(&pgs[nback], 0,
1137 (npages - nback) *
1138 sizeof(pgs[0]));
1139 else
1140 memset(&pgs[npages - nback], 0,
1141 nback * sizeof(pgs[0]));
1142 }
1143 } else {
1144 nback = 0;
1145 }
1146
1147 /*
1148 * then plug in our page of interest.
1149 */
1150
1151 pgs[nback] = pg;
1152
1153 /*
1154 * then look forward to fill in the remaining space in
1155 * the array of pages.
1156 *
1157 * pass our cached array of pages so that hopefully
1158 * uvn_findpages can find some good pages in it.
1159 * the array a was filled above with the one of
1160 * following sets of flags:
1161 * 0
1162 * UVM_PAGE_ARRAY_FILL_DIRTY
1163 * UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
1164 */
1165
1166 nforw = maxpages - nback - 1;
1167 uvn_findpages(uobj, pg->offset + PAGE_SIZE,
1168 &nforw, &pgs[nback + 1], &a, fpflags);
1169 npages = nback + 1 + nforw;
1170 } else {
1171 pgs[0] = pg;
1172 npages = 1;
1173 nback = 0;
1174 }
1175
1176 /*
1177 * apply FREE or DEACTIVATE options if requested.
1178 */
1179
1180 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1181 mutex_enter(&uvm_pageqlock);
1182 }
1183 for (i = 0; i < npages; i++) {
1184 struct vm_page *tpg = pgs[i];
1185
1186 KASSERT(tpg->uobject == uobj);
1187 KASSERT(i == 0 ||
1188 pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1189 KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1190 UVM_PAGE_STATUS_DIRTY);
1191 if (needs_clean) {
1192 /*
1193 * mark pages as WRITEBACK so that concurrent
1194 * fsync can find and wait for our activities.
1195 */
1196 radix_tree_set_tag(&uobj->uo_pages,
1197 pgs[i]->offset >> PAGE_SHIFT,
1198 UVM_PAGE_WRITEBACK_TAG);
1199 }
1200 if (tpg->offset < startoff || tpg->offset >= endoff)
1201 continue;
1202 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1203 uvm_pagedeactivate(tpg);
1204 } else if (flags & PGO_FREE) {
1205 pmap_page_protect(tpg, VM_PROT_NONE);
1206 if (tpg->flags & PG_BUSY) {
1207 tpg->flags |= freeflag;
1208 if (pagedaemon) {
1209 uvm_pageout_start(1);
1210 uvm_pagedequeue(tpg);
1211 }
1212 } else {
1213
1214 /*
1215 * ``page is not busy''
1216 * implies that npages is 1
1217 * and needs_clean is false.
1218 */
1219
1220 KASSERT(npages == 1);
1221 KASSERT(!needs_clean);
1222 KASSERT(pg == tpg);
1223 KASSERT(nextoff ==
1224 tpg->offset + PAGE_SIZE);
1225 uvm_pagefree(tpg);
1226 if (pagedaemon)
1227 uvmexp.pdfreed++;
1228 }
1229 }
1230 }
1231 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1232 mutex_exit(&uvm_pageqlock);
1233 }
1234 if (needs_clean) {
1235 mutex_exit(slock);
1236 KASSERT(nextoff == pg->offset + PAGE_SIZE);
1237 KASSERT(nback < npages);
1238 nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1239 KASSERT(pgs[nback] == pg);
1240 KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1241
1242 /*
1243 * start the i/o.
1244 */
1245 error = GOP_WRITE(vp, pgs, npages, flags);
1246 written = true;
1247 /*
1248 * as we dropped the object lock, our cached pages can
1249 * be stale.
1250 */
1251 uvm_page_array_clear(&a);
1252 mutex_enter(slock);
1253 if (error) {
1254 break;
1255 }
1256 }
1257 }
1258 uvm_page_array_fini(&a);
1259
1260 /*
1261 * update ctime/mtime if the modification we started writing out might
1262 * be from mmap'ed write.
1263 *
1264 * this is necessary when an application keeps a file mmaped and
1265 * repeatedly modifies it via the window. note that, because we
1266 * don't always write-protect pages when cleaning, such modifications
1267 * might not involve any page faults.
1268 */
1269
1270 if (written && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1271 (vp->v_type != VBLK ||
1272 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1273 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1274 }
1275
1276 /*
1277 * if we no longer have any possibly dirty pages, take us off the
1278 * syncer list.
1279 */
1280
1281 if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
1282 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
1283 UVM_PAGE_DIRTY_TAG)) {
1284 vp->v_iflag &= ~VI_WRMAPDIRTY;
1285 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1286 vn_syncer_remove_from_worklist(vp);
1287 }
1288
1289 #if !defined(DEBUG)
1290 skip_scan:
1291 #endif /* !defined(DEBUG) */
1292
1293 /*
1294 * if we found or started any i/o and we're asked to sync for integrity,
1295 * wait for all writes to finish.
1296 */
1297
1298 if (!wasclean && integrity_sync) {
1299 while (vp->v_numoutput != 0)
1300 cv_wait(&vp->v_cv, slock);
1301 }
1302 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1303 mutex_exit(slock);
1304
1305 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1306 /*
1307 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1308 * retrying is not a big deal because, in many cases,
1309 * uobj->uo_npages is already 0 here.
1310 */
1311 mutex_enter(slock);
1312 goto retry;
1313 }
1314
1315 if (has_trans) {
1316 if (need_wapbl)
1317 WAPBL_END(vp->v_mount);
1318 fstrans_done(vp->v_mount);
1319 }
1320
1321 return (error);
1322 }
1323
1324 int
1325 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1326 {
1327 off_t off;
1328 vaddr_t kva;
1329 size_t len;
1330 int error;
1331 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1332
1333 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1334 vp, pgs, npages, flags);
1335
1336 off = pgs[0]->offset;
1337 kva = uvm_pagermapin(pgs, npages,
1338 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1339 len = npages << PAGE_SHIFT;
1340
1341 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1342 uvm_aio_biodone);
1343
1344 return error;
1345 }
1346
1347 /*
1348 * genfs_gop_write_rwmap:
1349 *
1350 * a variant of genfs_gop_write. it's used by UDF for its directory buffers.
1351 * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1352 * the contents before writing it out to the underlying storage.
1353 */
1354
1355 int
1356 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1357 int flags)
1358 {
1359 off_t off;
1360 vaddr_t kva;
1361 size_t len;
1362 int error;
1363 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1364
1365 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1366 vp, pgs, npages, flags);
1367
1368 off = pgs[0]->offset;
1369 kva = uvm_pagermapin(pgs, npages,
1370 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1371 len = npages << PAGE_SHIFT;
1372
1373 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1374 uvm_aio_biodone);
1375
1376 return error;
1377 }
1378
1379 /*
1380 * Backend routine for doing I/O to vnode pages. Pages are already locked
1381 * and mapped into kernel memory. Here we just look up the underlying
1382 * device block addresses and call the strategy routine.
1383 */
1384
1385 static int
1386 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1387 enum uio_rw rw, void (*iodone)(struct buf *))
1388 {
1389 int s, error;
1390 int fs_bshift, dev_bshift;
1391 off_t eof, offset, startoffset;
1392 size_t bytes, iobytes, skipbytes;
1393 struct buf *mbp, *bp;
1394 const bool async = (flags & PGO_SYNCIO) == 0;
1395 const bool lazy = (flags & PGO_LAZY) == 0;
1396 const bool iowrite = rw == UIO_WRITE;
1397 const int brw = iowrite ? B_WRITE : B_READ;
1398 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1399
1400 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1401 vp, kva, len, flags);
1402
1403 KASSERT(vp->v_size <= vp->v_writesize);
1404 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1405 if (vp->v_type != VBLK) {
1406 fs_bshift = vp->v_mount->mnt_fs_bshift;
1407 dev_bshift = vp->v_mount->mnt_dev_bshift;
1408 } else {
1409 fs_bshift = DEV_BSHIFT;
1410 dev_bshift = DEV_BSHIFT;
1411 }
1412 error = 0;
1413 startoffset = off;
1414 bytes = MIN(len, eof - startoffset);
1415 skipbytes = 0;
1416 KASSERT(bytes != 0);
1417
1418 if (iowrite) {
1419 /*
1420 * why += 2?
1421 * 1 for biodone, 1 for uvm_aio_aiodone.
1422 */
1423 mutex_enter(vp->v_interlock);
1424 vp->v_numoutput += 2;
1425 mutex_exit(vp->v_interlock);
1426 }
1427 mbp = getiobuf(vp, true);
1428 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1429 vp, mbp, vp->v_numoutput, bytes);
1430 mbp->b_bufsize = len;
1431 mbp->b_data = (void *)kva;
1432 mbp->b_resid = mbp->b_bcount = bytes;
1433 mbp->b_cflags = BC_BUSY | BC_AGE;
1434 if (async) {
1435 mbp->b_flags = brw | B_ASYNC;
1436 mbp->b_iodone = iodone;
1437 } else {
1438 mbp->b_flags = brw;
1439 mbp->b_iodone = NULL;
1440 }
1441 if (curlwp == uvm.pagedaemon_lwp)
1442 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1443 else if (async || lazy)
1444 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1445 else
1446 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1447
1448 bp = NULL;
1449 for (offset = startoffset;
1450 bytes > 0;
1451 offset += iobytes, bytes -= iobytes) {
1452 int run;
1453 daddr_t lbn, blkno;
1454 struct vnode *devvp;
1455
1456 /*
1457 * bmap the file to find out the blkno to read from and
1458 * how much we can read in one i/o. if bmap returns an error,
1459 * skip the rest of the top-level i/o.
1460 */
1461
1462 lbn = offset >> fs_bshift;
1463 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1464 if (error) {
1465 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1466 lbn,error,0,0);
1467 skipbytes += bytes;
1468 bytes = 0;
1469 goto loopdone;
1470 }
1471
1472 /*
1473 * see how many pages can be read with this i/o.
1474 * reduce the i/o size if necessary to avoid
1475 * overwriting pages with valid data.
1476 */
1477
1478 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1479 bytes);
1480
1481 /*
1482 * if this block isn't allocated, zero it instead of
1483 * reading it. unless we are going to allocate blocks,
1484 * mark the pages we zeroed PG_RDONLY.
1485 */
1486
1487 if (blkno == (daddr_t)-1) {
1488 if (!iowrite) {
1489 memset((char *)kva + (offset - startoffset), 0,
1490 iobytes);
1491 }
1492 skipbytes += iobytes;
1493 continue;
1494 }
1495
1496 /*
1497 * allocate a sub-buf for this piece of the i/o
1498 * (or just use mbp if there's only 1 piece),
1499 * and start it going.
1500 */
1501
1502 if (offset == startoffset && iobytes == bytes) {
1503 bp = mbp;
1504 } else {
1505 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1506 vp, bp, vp->v_numoutput, 0);
1507 bp = getiobuf(vp, true);
1508 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1509 }
1510 bp->b_lblkno = 0;
1511
1512 /* adjust physical blkno for partial blocks */
1513 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1514 dev_bshift);
1515
1516 UVMHIST_LOG(ubchist,
1517 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1518 bp, offset, bp->b_bcount, bp->b_blkno);
1519
1520 VOP_STRATEGY(devvp, bp);
1521 }
1522
1523 loopdone:
1524 if (skipbytes) {
1525 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1526 }
1527 nestiobuf_done(mbp, skipbytes, error);
1528 if (async) {
1529 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1530 return (0);
1531 }
1532 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1533 error = biowait(mbp);
1534 s = splbio();
1535 (*iodone)(mbp);
1536 splx(s);
1537 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1538 return (error);
1539 }
1540
1541 int
1542 genfs_compat_getpages(void *v)
1543 {
1544 struct vop_getpages_args /* {
1545 struct vnode *a_vp;
1546 voff_t a_offset;
1547 struct vm_page **a_m;
1548 int *a_count;
1549 int a_centeridx;
1550 vm_prot_t a_access_type;
1551 int a_advice;
1552 int a_flags;
1553 } */ *ap = v;
1554
1555 off_t origoffset;
1556 struct vnode *vp = ap->a_vp;
1557 struct uvm_object *uobj = &vp->v_uobj;
1558 struct vm_page *pg, **pgs;
1559 vaddr_t kva;
1560 int i, error, orignpages, npages;
1561 struct iovec iov;
1562 struct uio uio;
1563 kauth_cred_t cred = curlwp->l_cred;
1564 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1565
1566 error = 0;
1567 origoffset = ap->a_offset;
1568 orignpages = *ap->a_count;
1569 pgs = ap->a_m;
1570
1571 if (ap->a_flags & PGO_LOCKED) {
1572 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1573 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1574
1575 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1576 if (error == 0 && memwrite) {
1577 genfs_markdirty(vp);
1578 }
1579 return error;
1580 }
1581 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1582 mutex_exit(uobj->vmobjlock);
1583 return EINVAL;
1584 }
1585 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1586 mutex_exit(uobj->vmobjlock);
1587 return 0;
1588 }
1589 npages = orignpages;
1590 uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1591 mutex_exit(uobj->vmobjlock);
1592 kva = uvm_pagermapin(pgs, npages,
1593 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1594 for (i = 0; i < npages; i++) {
1595 pg = pgs[i];
1596 if ((pg->flags & PG_FAKE) == 0) {
1597 continue;
1598 }
1599 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1600 iov.iov_len = PAGE_SIZE;
1601 uio.uio_iov = &iov;
1602 uio.uio_iovcnt = 1;
1603 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1604 uio.uio_rw = UIO_READ;
1605 uio.uio_resid = PAGE_SIZE;
1606 UIO_SETUP_SYSSPACE(&uio);
1607 /* XXX vn_lock */
1608 error = VOP_READ(vp, &uio, 0, cred);
1609 if (error) {
1610 break;
1611 }
1612 if (uio.uio_resid) {
1613 memset(iov.iov_base, 0, uio.uio_resid);
1614 }
1615 }
1616 uvm_pagermapout(kva, npages);
1617 mutex_enter(uobj->vmobjlock);
1618 mutex_enter(&uvm_pageqlock);
1619 for (i = 0; i < npages; i++) {
1620 pg = pgs[i];
1621 if (error && (pg->flags & PG_FAKE) != 0) {
1622 pg->flags |= PG_RELEASED;
1623 } else {
1624 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1625 uvm_pageactivate(pg);
1626 }
1627 }
1628 if (error) {
1629 uvm_page_unbusy(pgs, npages);
1630 }
1631 mutex_exit(&uvm_pageqlock);
1632 if (error == 0 && memwrite) {
1633 genfs_markdirty(vp);
1634 }
1635 mutex_exit(uobj->vmobjlock);
1636 return error;
1637 }
1638
1639 int
1640 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1641 int flags)
1642 {
1643 off_t offset;
1644 struct iovec iov;
1645 struct uio uio;
1646 kauth_cred_t cred = curlwp->l_cred;
1647 struct buf *bp;
1648 vaddr_t kva;
1649 int error;
1650
1651 offset = pgs[0]->offset;
1652 kva = uvm_pagermapin(pgs, npages,
1653 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1654
1655 iov.iov_base = (void *)kva;
1656 iov.iov_len = npages << PAGE_SHIFT;
1657 uio.uio_iov = &iov;
1658 uio.uio_iovcnt = 1;
1659 uio.uio_offset = offset;
1660 uio.uio_rw = UIO_WRITE;
1661 uio.uio_resid = npages << PAGE_SHIFT;
1662 UIO_SETUP_SYSSPACE(&uio);
1663 /* XXX vn_lock */
1664 error = VOP_WRITE(vp, &uio, 0, cred);
1665
1666 mutex_enter(vp->v_interlock);
1667 vp->v_numoutput++;
1668 mutex_exit(vp->v_interlock);
1669
1670 bp = getiobuf(vp, true);
1671 bp->b_cflags = BC_BUSY | BC_AGE;
1672 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1673 bp->b_data = (char *)kva;
1674 bp->b_bcount = npages << PAGE_SHIFT;
1675 bp->b_bufsize = npages << PAGE_SHIFT;
1676 bp->b_resid = 0;
1677 bp->b_error = error;
1678 uvm_aio_aiodone(bp);
1679 return (error);
1680 }
1681
1682 /*
1683 * Process a uio using direct I/O. If we reach a part of the request
1684 * which cannot be processed in this fashion for some reason, just return.
1685 * The caller must handle some additional part of the request using
1686 * buffered I/O before trying direct I/O again.
1687 */
1688
1689 void
1690 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1691 {
1692 struct vmspace *vs;
1693 struct iovec *iov;
1694 vaddr_t va;
1695 size_t len;
1696 const int mask = DEV_BSIZE - 1;
1697 int error;
1698 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1699 (ioflag & IO_JOURNALLOCKED) == 0);
1700
1701 /*
1702 * We only support direct I/O to user space for now.
1703 */
1704
1705 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1706 return;
1707 }
1708
1709 /*
1710 * If the vnode is mapped, we would need to get the getpages lock
1711 * to stabilize the bmap, but then we would get into trouble while
1712 * locking the pages if the pages belong to this same vnode (or a
1713 * multi-vnode cascade to the same effect). Just fall back to
1714 * buffered I/O if the vnode is mapped to avoid this mess.
1715 */
1716
1717 if (vp->v_vflag & VV_MAPPED) {
1718 return;
1719 }
1720
1721 if (need_wapbl) {
1722 error = WAPBL_BEGIN(vp->v_mount);
1723 if (error)
1724 return;
1725 }
1726
1727 /*
1728 * Do as much of the uio as possible with direct I/O.
1729 */
1730
1731 vs = uio->uio_vmspace;
1732 while (uio->uio_resid) {
1733 iov = uio->uio_iov;
1734 if (iov->iov_len == 0) {
1735 uio->uio_iov++;
1736 uio->uio_iovcnt--;
1737 continue;
1738 }
1739 va = (vaddr_t)iov->iov_base;
1740 len = MIN(iov->iov_len, genfs_maxdio);
1741 len &= ~mask;
1742
1743 /*
1744 * If the next chunk is smaller than DEV_BSIZE or extends past
1745 * the current EOF, then fall back to buffered I/O.
1746 */
1747
1748 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1749 break;
1750 }
1751
1752 /*
1753 * Check alignment. The file offset must be at least
1754 * sector-aligned. The exact constraint on memory alignment
1755 * is very hardware-dependent, but requiring sector-aligned
1756 * addresses there too is safe.
1757 */
1758
1759 if (uio->uio_offset & mask || va & mask) {
1760 break;
1761 }
1762 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1763 uio->uio_rw);
1764 if (error) {
1765 break;
1766 }
1767 iov->iov_base = (char *)iov->iov_base + len;
1768 iov->iov_len -= len;
1769 uio->uio_offset += len;
1770 uio->uio_resid -= len;
1771 }
1772
1773 if (need_wapbl)
1774 WAPBL_END(vp->v_mount);
1775 }
1776
1777 /*
1778 * Iodone routine for direct I/O. We don't do much here since the request is
1779 * always synchronous, so the caller will do most of the work after biowait().
1780 */
1781
1782 static void
1783 genfs_dio_iodone(struct buf *bp)
1784 {
1785
1786 KASSERT((bp->b_flags & B_ASYNC) == 0);
1787 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1788 mutex_enter(bp->b_objlock);
1789 vwakeup(bp);
1790 mutex_exit(bp->b_objlock);
1791 }
1792 putiobuf(bp);
1793 }
1794
1795 /*
1796 * Process one chunk of a direct I/O request.
1797 */
1798
1799 static int
1800 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1801 off_t off, enum uio_rw rw)
1802 {
1803 struct vm_map *map;
1804 struct pmap *upm, *kpm;
1805 size_t klen = round_page(uva + len) - trunc_page(uva);
1806 off_t spoff, epoff;
1807 vaddr_t kva, puva;
1808 paddr_t pa;
1809 vm_prot_t prot;
1810 int error, rv, poff, koff;
1811 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1812 (rw == UIO_WRITE ? PGO_FREE : 0);
1813
1814 /*
1815 * For writes, verify that this range of the file already has fully
1816 * allocated backing store. If there are any holes, just punt and
1817 * make the caller take the buffered write path.
1818 */
1819
1820 if (rw == UIO_WRITE) {
1821 daddr_t lbn, elbn, blkno;
1822 int bsize, bshift, run;
1823
1824 bshift = vp->v_mount->mnt_fs_bshift;
1825 bsize = 1 << bshift;
1826 lbn = off >> bshift;
1827 elbn = (off + len + bsize - 1) >> bshift;
1828 while (lbn < elbn) {
1829 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1830 if (error) {
1831 return error;
1832 }
1833 if (blkno == (daddr_t)-1) {
1834 return ENOSPC;
1835 }
1836 lbn += 1 + run;
1837 }
1838 }
1839
1840 /*
1841 * Flush any cached pages for parts of the file that we're about to
1842 * access. If we're writing, invalidate pages as well.
1843 */
1844
1845 spoff = trunc_page(off);
1846 epoff = round_page(off + len);
1847 mutex_enter(vp->v_interlock);
1848 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1849 if (error) {
1850 return error;
1851 }
1852
1853 /*
1854 * Wire the user pages and remap them into kernel memory.
1855 */
1856
1857 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1858 error = uvm_vslock(vs, (void *)uva, len, prot);
1859 if (error) {
1860 return error;
1861 }
1862
1863 map = &vs->vm_map;
1864 upm = vm_map_pmap(map);
1865 kpm = vm_map_pmap(kernel_map);
1866 puva = trunc_page(uva);
1867 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1868 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1869 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1870 rv = pmap_extract(upm, puva + poff, &pa);
1871 KASSERT(rv);
1872 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1873 }
1874 pmap_update(kpm);
1875
1876 /*
1877 * Do the I/O.
1878 */
1879
1880 koff = uva - trunc_page(uva);
1881 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1882 genfs_dio_iodone);
1883
1884 /*
1885 * Tear down the kernel mapping.
1886 */
1887
1888 pmap_kremove(kva, klen);
1889 pmap_update(kpm);
1890 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1891
1892 /*
1893 * Unwire the user pages.
1894 */
1895
1896 uvm_vsunlock(vs, (void *)uva, len);
1897 return error;
1898 }
1899