genfs_io.c revision 1.53.2.2 1 /* $NetBSD: genfs_io.c,v 1.53.2.2 2011/11/10 14:37:33 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53.2.2 2011/11/10 14:37:33 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 #include <sys/radixtree.h>
47
48 #include <miscfs/genfs/genfs.h>
49 #include <miscfs/genfs/genfs_node.h>
50 #include <miscfs/specfs/specdev.h>
51 #include <miscfs/syncfs/syncfs.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55 #include <uvm/uvm_page_array.h>
56
57 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
58 off_t, enum uio_rw);
59 static void genfs_dio_iodone(struct buf *);
60
61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 void (*)(struct buf *));
63 static void genfs_rel_pages(struct vm_page **, int);
64 static void genfs_markdirty(struct vnode *);
65
66 int genfs_maxdio = MAXPHYS;
67
68 static void
69 genfs_rel_pages(struct vm_page **pgs, int npages)
70 {
71 int i;
72
73 for (i = 0; i < npages; i++) {
74 struct vm_page *pg = pgs[i];
75
76 if (pg == NULL || pg == PGO_DONTCARE)
77 continue;
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
128 const bool async = (flags & PGO_SYNCIO) == 0;
129 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
130 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
131 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
132 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
133 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
134 bool has_trans_wapbl = false;
135 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
136
137 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
138 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
139
140 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
141 vp->v_type == VLNK || vp->v_type == VBLK);
142
143 startover:
144 error = 0;
145 const voff_t origvsize = vp->v_size;
146 const off_t origoffset = ap->a_offset;
147 const int orignpages = *ap->a_count;
148
149 GOP_SIZE(vp, origvsize, &diskeof, 0);
150 if (flags & PGO_PASTEOF) {
151 off_t newsize;
152 #if defined(DIAGNOSTIC)
153 off_t writeeof;
154 #endif /* defined(DIAGNOSTIC) */
155
156 newsize = MAX(origvsize,
157 origoffset + (orignpages << PAGE_SHIFT));
158 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
159 #if defined(DIAGNOSTIC)
160 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
161 if (newsize > round_page(writeeof)) {
162 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
163 __func__, newsize, round_page(writeeof));
164 }
165 #endif /* defined(DIAGNOSTIC) */
166 } else {
167 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
168 }
169 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
170 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
171 KASSERT(orignpages > 0);
172
173 /*
174 * Bounds-check the request.
175 */
176
177 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
178 if ((flags & PGO_LOCKED) == 0) {
179 mutex_exit(uobj->vmobjlock);
180 }
181 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
182 origoffset, *ap->a_count, memeof,0);
183 error = EINVAL;
184 goto out_err;
185 }
186
187 /* uobj is locked */
188
189 if ((flags & PGO_NOTIMESTAMP) == 0 &&
190 (vp->v_type != VBLK ||
191 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
192 int updflags = 0;
193
194 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
195 updflags = GOP_UPDATE_ACCESSED;
196 }
197 if (memwrite) {
198 updflags |= GOP_UPDATE_MODIFIED;
199 }
200 if (updflags != 0) {
201 GOP_MARKUPDATE(vp, updflags);
202 }
203 }
204
205 /*
206 * For PGO_LOCKED requests, just return whatever's in memory.
207 */
208
209 if (flags & PGO_LOCKED) {
210 int nfound;
211 struct vm_page *pg;
212
213 KASSERT(!glocked);
214 npages = *ap->a_count;
215 #if defined(DEBUG)
216 for (i = 0; i < npages; i++) {
217 pg = ap->a_m[i];
218 KASSERT(pg == NULL || pg == PGO_DONTCARE);
219 }
220 #endif /* defined(DEBUG) */
221 nfound = uvn_findpages(uobj, origoffset, &npages,
222 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
223 KASSERT(npages == *ap->a_count);
224 if (nfound == 0) {
225 error = EBUSY;
226 goto out_err;
227 }
228 if (!genfs_node_rdtrylock(vp)) {
229 genfs_rel_pages(ap->a_m, npages);
230
231 /*
232 * restore the array.
233 */
234
235 for (i = 0; i < npages; i++) {
236 pg = ap->a_m[i];
237
238 if (pg != NULL && pg != PGO_DONTCARE) {
239 ap->a_m[i] = NULL;
240 }
241 KASSERT(ap->a_m[i] == NULL ||
242 ap->a_m[i] == PGO_DONTCARE);
243 }
244 } else {
245 genfs_node_unlock(vp);
246 }
247 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
248 if (error == 0 && memwrite) {
249 for (i = 0; i < npages; i++) {
250 pg = ap->a_m[i];
251 if (pg == NULL || pg == PGO_DONTCARE) {
252 continue;
253 }
254 if (uvm_pagegetdirty(pg) ==
255 UVM_PAGE_STATUS_CLEAN) {
256 uvm_pagemarkdirty(pg,
257 UVM_PAGE_STATUS_UNKNOWN);
258 }
259 }
260 genfs_markdirty(vp);
261 }
262 goto out_err;
263 }
264 mutex_exit(uobj->vmobjlock);
265
266 /*
267 * find the requested pages and make some simple checks.
268 * leave space in the page array for a whole block.
269 */
270
271 const int fs_bshift = (vp->v_type != VBLK) ?
272 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
273 const int dev_bshift = (vp->v_type != VBLK) ?
274 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
275 const int fs_bsize = 1 << fs_bshift;
276 #define blk_mask (fs_bsize - 1)
277 #define trunc_blk(x) ((x) & ~blk_mask)
278 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
279
280 const int orignmempages = MIN(orignpages,
281 round_page(memeof - origoffset) >> PAGE_SHIFT);
282 npages = orignmempages;
283 const off_t startoffset = trunc_blk(origoffset);
284 const off_t endoffset = MIN(
285 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
286 round_page(memeof));
287 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
288
289 const int pgs_size = sizeof(struct vm_page *) *
290 ((endoffset - startoffset) >> PAGE_SHIFT);
291 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
292
293 if (pgs_size > sizeof(pgs_onstack)) {
294 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
295 if (pgs == NULL) {
296 pgs = pgs_onstack;
297 error = ENOMEM;
298 goto out_err;
299 }
300 } else {
301 pgs = pgs_onstack;
302 (void)memset(pgs, 0, pgs_size);
303 }
304
305 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
306 ridx, npages, startoffset, endoffset);
307
308 if (!has_trans_wapbl) {
309 fstrans_start(vp->v_mount, FSTRANS_SHARED);
310 /*
311 * XXX: This assumes that we come here only via
312 * the mmio path
313 */
314 if (need_wapbl) {
315 error = WAPBL_BEGIN(vp->v_mount);
316 if (error) {
317 fstrans_done(vp->v_mount);
318 goto out_err_free;
319 }
320 }
321 has_trans_wapbl = true;
322 }
323
324 /*
325 * hold g_glock to prevent a race with truncate.
326 *
327 * check if our idea of v_size is still valid.
328 */
329
330 KASSERT(!glocked || genfs_node_wrlocked(vp));
331 if (!glocked) {
332 if (blockalloc) {
333 genfs_node_wrlock(vp);
334 } else {
335 genfs_node_rdlock(vp);
336 }
337 }
338 mutex_enter(uobj->vmobjlock);
339 if (vp->v_size < origvsize) {
340 if (!glocked) {
341 genfs_node_unlock(vp);
342 }
343 if (pgs != pgs_onstack)
344 kmem_free(pgs, pgs_size);
345 goto startover;
346 }
347
348 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
349 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
350 if (!glocked) {
351 genfs_node_unlock(vp);
352 }
353 KASSERT(async != 0);
354 genfs_rel_pages(&pgs[ridx], orignmempages);
355 mutex_exit(uobj->vmobjlock);
356 error = EBUSY;
357 goto out_err_free;
358 }
359
360 /*
361 * if PGO_OVERWRITE is set, don't bother reading the pages.
362 */
363
364 if (overwrite) {
365 if (!glocked) {
366 genfs_node_unlock(vp);
367 }
368 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
369
370 for (i = 0; i < npages; i++) {
371 struct vm_page *pg = pgs[ridx + i];
372
373 /*
374 * we should not see PG_HOLE pages here as it's a
375 * caller's responsibility to allocate blocks
376 * beforehand for the overwrite case.
377 */
378 KASSERT((pg->flags & PG_HOLE) == 0);
379 pg->flags &= ~PG_RDONLY;
380 /*
381 * mark the page dirty.
382 * otherwise another thread can do putpages and pull
383 * our vnode from syncer's queue before our caller does
384 * ubc_release.
385 */
386 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
387 }
388 npages += ridx;
389 goto out;
390 }
391
392 /*
393 * if the pages are already resident, just return them.
394 */
395
396 for (i = 0; i < npages; i++) {
397 struct vm_page *pg = pgs[ridx + i];
398
399 if ((pg->flags & PG_FAKE) ||
400 (memwrite && (pg->flags & (PG_RDONLY|PG_HOLE)) != 0)) {
401 break;
402 }
403 }
404 if (i == npages) {
405 if (!glocked) {
406 genfs_node_unlock(vp);
407 }
408 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
409 npages += ridx;
410 goto out;
411 }
412
413 /*
414 * the page wasn't resident and we're not overwriting,
415 * so we're going to have to do some i/o.
416 * find any additional pages needed to cover the expanded range.
417 */
418
419 npages = (endoffset - startoffset) >> PAGE_SHIFT;
420 if (startoffset != origoffset || npages != orignmempages) {
421 int npgs;
422
423 /*
424 * we need to avoid deadlocks caused by locking
425 * additional pages at lower offsets than pages we
426 * already have locked. unlock them all and start over.
427 */
428
429 genfs_rel_pages(&pgs[ridx], orignmempages);
430 memset(pgs, 0, pgs_size);
431
432 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
433 startoffset, endoffset, 0,0);
434 npgs = npages;
435 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
436 async ? UFP_NOWAIT : UFP_ALL) != npages) {
437 if (!glocked) {
438 genfs_node_unlock(vp);
439 }
440 KASSERT(async != 0);
441 genfs_rel_pages(pgs, npages);
442 mutex_exit(uobj->vmobjlock);
443 error = EBUSY;
444 goto out_err_free;
445 }
446 }
447
448 mutex_exit(uobj->vmobjlock);
449
450 {
451 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
452 vaddr_t kva;
453 struct buf *bp, *mbp;
454 bool sawhole = false;
455
456 /*
457 * read the desired page(s).
458 */
459
460 totalbytes = npages << PAGE_SHIFT;
461 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
462 tailbytes = totalbytes - bytes;
463 skipbytes = 0;
464
465 kva = uvm_pagermapin(pgs, npages,
466 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
467
468 mbp = getiobuf(vp, true);
469 mbp->b_bufsize = totalbytes;
470 mbp->b_data = (void *)kva;
471 mbp->b_resid = mbp->b_bcount = bytes;
472 mbp->b_cflags = BC_BUSY;
473 if (async) {
474 mbp->b_flags = B_READ | B_ASYNC;
475 mbp->b_iodone = uvm_aio_biodone;
476 } else {
477 mbp->b_flags = B_READ;
478 mbp->b_iodone = NULL;
479 }
480 if (async)
481 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
482 else
483 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
484
485 /*
486 * if EOF is in the middle of the range, zero the part past EOF.
487 * skip over pages which are not PG_FAKE since in that case they have
488 * valid data that we need to preserve.
489 */
490
491 tailstart = bytes;
492 while (tailbytes > 0) {
493 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
494
495 KASSERT(len <= tailbytes);
496 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
497 memset((void *)(kva + tailstart), 0, len);
498 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
499 kva, tailstart, len, 0);
500 }
501 tailstart += len;
502 tailbytes -= len;
503 }
504
505 /*
506 * now loop over the pages, reading as needed.
507 */
508
509 bp = NULL;
510 off_t offset;
511 for (offset = startoffset;
512 bytes > 0;
513 offset += iobytes, bytes -= iobytes) {
514 int run;
515 daddr_t lbn, blkno;
516 int pidx;
517 struct vnode *devvp;
518
519 /*
520 * skip pages which don't need to be read.
521 */
522
523 pidx = (offset - startoffset) >> PAGE_SHIFT;
524 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
525 size_t b;
526
527 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
528 if ((pgs[pidx]->flags & PG_HOLE)) {
529 sawhole = true;
530 }
531 b = MIN(PAGE_SIZE, bytes);
532 offset += b;
533 bytes -= b;
534 skipbytes += b;
535 pidx++;
536 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
537 offset, 0,0,0);
538 if (bytes == 0) {
539 goto loopdone;
540 }
541 }
542
543 /*
544 * bmap the file to find out the blkno to read from and
545 * how much we can read in one i/o. if bmap returns an error,
546 * skip the rest of the top-level i/o.
547 */
548
549 lbn = offset >> fs_bshift;
550 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
551 if (error) {
552 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
553 lbn,error,0,0);
554 skipbytes += bytes;
555 bytes = 0;
556 goto loopdone;
557 }
558
559 /*
560 * see how many pages can be read with this i/o.
561 * reduce the i/o size if necessary to avoid
562 * overwriting pages with valid data.
563 */
564
565 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
566 bytes);
567 if (offset + iobytes > round_page(offset)) {
568 int pcount;
569
570 pcount = 1;
571 while (pidx + pcount < npages &&
572 pgs[pidx + pcount]->flags & PG_FAKE) {
573 pcount++;
574 }
575 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
576 (offset - trunc_page(offset)));
577 }
578
579 /*
580 * if this block isn't allocated, zero it instead of
581 * reading it. unless we are going to allocate blocks,
582 * mark the pages we zeroed PG_HOLE.
583 */
584
585 if (blkno == (daddr_t)-1) {
586 int holepages = (round_page(offset + iobytes) -
587 trunc_page(offset)) >> PAGE_SHIFT;
588 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
589
590 sawhole = true;
591 memset((char *)kva + (offset - startoffset), 0,
592 iobytes);
593 skipbytes += iobytes;
594
595 mutex_enter(uobj->vmobjlock);
596 for (i = 0; i < holepages; i++) {
597 #if 0
598 if (memwrite) {
599 uvm_pagemarkdirty(pgs[pidx + i],
600 UVM_PAGE_STATUS_DIRTY);
601 }
602 #endif
603 if (!blockalloc) {
604 pgs[pidx + i]->flags |= PG_HOLE;
605 }
606 }
607 mutex_exit(uobj->vmobjlock);
608 continue;
609 }
610
611 /*
612 * allocate a sub-buf for this piece of the i/o
613 * (or just use mbp if there's only 1 piece),
614 * and start it going.
615 */
616
617 if (offset == startoffset && iobytes == bytes) {
618 bp = mbp;
619 } else {
620 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
621 vp, bp, vp->v_numoutput, 0);
622 bp = getiobuf(vp, true);
623 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
624 }
625 bp->b_lblkno = 0;
626
627 /* adjust physical blkno for partial blocks */
628 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
629 dev_bshift);
630
631 UVMHIST_LOG(ubchist,
632 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
633 bp, offset, bp->b_bcount, bp->b_blkno);
634
635 VOP_STRATEGY(devvp, bp);
636 }
637
638 loopdone:
639 nestiobuf_done(mbp, skipbytes, error);
640 if (async) {
641 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
642 if (!glocked) {
643 genfs_node_unlock(vp);
644 }
645 error = 0;
646 goto out_err_free;
647 }
648 if (bp != NULL) {
649 error = biowait(mbp);
650 }
651
652 /* Remove the mapping (make KVA available as soon as possible) */
653 uvm_pagermapout(kva, npages);
654
655 /*
656 * if this we encountered a hole then we have to do a little more work.
657 * if blockalloc is false, we marked the page PG_HOLE so that future
658 * write accesses to the page will fault again.
659 * if blockalloc is true, we must make sure that the backing store for
660 * the page is completely allocated while the pages are locked.
661 */
662
663 if (!error && sawhole && blockalloc) {
664 error = GOP_ALLOC(vp, startoffset,
665 npages << PAGE_SHIFT, 0, cred);
666 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
667 startoffset, npages << PAGE_SHIFT, error,0);
668 if (!error) {
669 mutex_enter(uobj->vmobjlock);
670 for (i = 0; i < npages; i++) {
671 struct vm_page *pg = pgs[i];
672
673 if (pg == NULL) {
674 continue;
675 }
676 pg->flags &= ~PG_HOLE;
677 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
678 UVMHIST_LOG(ubchist, "mark dirty pg %p",
679 pg,0,0,0);
680 }
681 mutex_exit(uobj->vmobjlock);
682 }
683 }
684 if (!glocked) {
685 genfs_node_unlock(vp);
686 }
687
688 putiobuf(mbp);
689 }
690
691 mutex_enter(uobj->vmobjlock);
692
693 /*
694 * we're almost done! release the pages...
695 * for errors, we free the pages.
696 * otherwise we activate them and mark them as valid and clean.
697 * also, unbusy pages that were not actually requested.
698 */
699
700 if (error) {
701 for (i = 0; i < npages; i++) {
702 struct vm_page *pg = pgs[i];
703
704 if (pg == NULL) {
705 continue;
706 }
707 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
708 pg, pg->flags, 0,0);
709 if (pg->flags & PG_FAKE) {
710 pg->flags |= PG_RELEASED;
711 }
712 }
713 mutex_enter(&uvm_pageqlock);
714 uvm_page_unbusy(pgs, npages);
715 mutex_exit(&uvm_pageqlock);
716 mutex_exit(uobj->vmobjlock);
717 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
718 goto out_err_free;
719 }
720
721 out:
722 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
723 error = 0;
724 mutex_enter(&uvm_pageqlock);
725 for (i = 0; i < npages; i++) {
726 struct vm_page *pg = pgs[i];
727 if (pg == NULL) {
728 continue;
729 }
730 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
731 pg, pg->flags, 0,0);
732 if (pg->flags & PG_FAKE && !overwrite) {
733 /*
734 * we've read page's contents from the backing storage.
735 *
736 * for a read fault, we keep them CLEAN.
737 */
738 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
739 pg->flags &= ~PG_FAKE;
740 }
741 KASSERT(!blockalloc || (pg->flags & PG_HOLE) == 0);
742 if (i < ridx || i >= ridx + orignmempages || async) {
743 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
744 pg, pg->offset,0,0);
745 KASSERT(!overwrite);
746 if (pg->flags & PG_WANTED) {
747 wakeup(pg);
748 }
749 if (pg->flags & PG_FAKE && overwrite) {
750 uvm_pagezero(pg);
751 }
752 if (pg->flags & PG_RELEASED) {
753 uvm_pagefree(pg);
754 continue;
755 }
756 uvm_pageenqueue(pg);
757 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
758 UVM_PAGE_OWN(pg, NULL);
759 } else if (memwrite && !overwrite &&
760 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
761 /*
762 * for a write fault, start dirtiness tracking of
763 * requested pages.
764 */
765 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
766 }
767 }
768 mutex_exit(&uvm_pageqlock);
769 if (memwrite) {
770 genfs_markdirty(vp);
771 }
772 mutex_exit(uobj->vmobjlock);
773 if (ap->a_m != NULL) {
774 memcpy(ap->a_m, &pgs[ridx],
775 orignmempages * sizeof(struct vm_page *));
776 }
777
778 out_err_free:
779 if (pgs != NULL && pgs != pgs_onstack)
780 kmem_free(pgs, pgs_size);
781 out_err:
782 if (has_trans_wapbl) {
783 if (need_wapbl)
784 WAPBL_END(vp->v_mount);
785 fstrans_done(vp->v_mount);
786 }
787 return error;
788 }
789
790 /*
791 * generic VM putpages routine.
792 * Write the given range of pages to backing store.
793 *
794 * => "offhi == 0" means flush all pages at or after "offlo".
795 * => object should be locked by caller. we return with the
796 * object unlocked.
797 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
798 * thus, a caller might want to unlock higher level resources
799 * (e.g. vm_map) before calling flush.
800 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
801 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
802 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
803 * that new pages are inserted on the tail end of the list. thus,
804 * we can make a complete pass through the object in one go by starting
805 * at the head and working towards the tail (new pages are put in
806 * front of us).
807 * => NOTE: we are allowed to lock the page queues, so the caller
808 * must not be holding the page queue lock.
809 *
810 * note on "cleaning" object and PG_BUSY pages:
811 * this routine is holding the lock on the object. the only time
812 * that it can run into a PG_BUSY page that it does not own is if
813 * some other process has started I/O on the page (e.g. either
814 * a pagein, or a pageout). if the PG_BUSY page is being paged
815 * in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
816 * one has had a chance to modify it yet. if the PG_BUSY page is
817 * being paged out then it means that someone else has already started
818 * cleaning the page for us (how nice!). in this case, if we
819 * have syncio specified, then after we make our pass through the
820 * object we need to wait for the other PG_BUSY pages to clear
821 * off (i.e. we need to do an iosync). also note that once a
822 * page is PG_BUSY it must stay in its object until it is un-busyed.
823 *
824 * note on page traversal:
825 * we can traverse the pages in an object either by going down the
826 * linked list in "uobj->memq", or we can go over the address range
827 * by page doing hash table lookups for each address. depending
828 * on how many pages are in the object it may be cheaper to do one
829 * or the other. we set "by_list" to true if we are using memq.
830 * if the cost of a hash lookup was equal to the cost of the list
831 * traversal we could compare the number of pages in the start->stop
832 * range to the total number of pages in the object. however, it
833 * seems that a hash table lookup is more expensive than the linked
834 * list traversal, so we multiply the number of pages in the
835 * range by an estimate of the relatively higher cost of the hash lookup.
836 */
837
838 int
839 genfs_putpages(void *v)
840 {
841 struct vop_putpages_args /* {
842 struct vnode *a_vp;
843 voff_t a_offlo;
844 voff_t a_offhi;
845 int a_flags;
846 } */ * const ap = v;
847
848 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
849 ap->a_flags, NULL);
850 }
851
852 int
853 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
854 int origflags, struct vm_page **busypg)
855 {
856 struct uvm_object * const uobj = &vp->v_uobj;
857 kmutex_t * const slock = uobj->vmobjlock;
858 off_t off;
859 /* Even for strange MAXPHYS, the shift rounds down to a page */
860 #define maxpages (MAXPHYS >> PAGE_SHIFT)
861 int i, error, npages, nback;
862 int freeflag;
863 struct vm_page *pgs[maxpages], *pg;
864 struct uvm_page_array ar;
865 bool wasclean, needs_clean, yld;
866 bool async = (origflags & PGO_SYNCIO) == 0;
867 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
868 struct lwp * const l = curlwp ? curlwp : &lwp0;
869 struct genfs_node * const gp = VTOG(vp);
870 int flags;
871 int dirtygen;
872 bool modified; /* if we write out any pages */
873 bool need_wapbl;
874 bool has_trans;
875 bool cleanall; /* try to pull off from the syncer's list */
876 bool onworklst;
877 const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
878
879 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
880
881 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
882 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
883 KASSERT(startoff < endoff || endoff == 0);
884
885 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
886 vp, uobj->uo_npages, startoff, endoff - startoff);
887
888 has_trans = false;
889 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
890 (origflags & PGO_JOURNALLOCKED) == 0);
891
892 retry:
893 modified = false;
894 flags = origflags;
895 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
896 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
897 if (uobj->uo_npages == 0 || (dirtyonly &&
898 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
899 UVM_PAGE_DIRTY_TAG))) {
900 if (vp->v_iflag & VI_ONWORKLST) {
901 vp->v_iflag &= ~VI_WRMAPDIRTY;
902 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
903 vn_syncer_remove_from_worklist(vp);
904 }
905 if (has_trans) {
906 if (need_wapbl)
907 WAPBL_END(vp->v_mount);
908 fstrans_done(vp->v_mount);
909 }
910 mutex_exit(slock);
911 return (0);
912 }
913
914 /*
915 * the vnode has pages, set up to process the request.
916 */
917
918 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
919 mutex_exit(slock);
920 if (pagedaemon) {
921 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
922 if (error)
923 return error;
924 } else
925 fstrans_start(vp->v_mount, FSTRANS_LAZY);
926 if (need_wapbl) {
927 error = WAPBL_BEGIN(vp->v_mount);
928 if (error) {
929 fstrans_done(vp->v_mount);
930 return error;
931 }
932 }
933 has_trans = true;
934 mutex_enter(slock);
935 goto retry;
936 }
937
938 error = 0;
939 wasclean = (vp->v_numoutput == 0);
940 off = startoff;
941 if (endoff == 0 || flags & PGO_ALLPAGES) {
942 endoff = trunc_page(LLONG_MAX);
943 }
944
945 /*
946 * if this vnode is known not to have dirty pages,
947 * don't bother to clean it out.
948 */
949
950 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
951 #if !defined(DEBUG)
952 if (dirtyonly) {
953 goto skip_scan;
954 }
955 #endif /* !defined(DEBUG) */
956 flags &= ~PGO_CLEANIT;
957 }
958
959 /*
960 * start the loop. when scanning by list, hold the last page
961 * in the list before we start. pages allocated after we start
962 * will be added to the end of the list, so we can stop at the
963 * current last page.
964 */
965
966 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
967 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
968 (vp->v_iflag & VI_ONWORKLST) != 0;
969 dirtygen = gp->g_dirtygen;
970 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
971
972 uvm_page_array_init(&ar);
973 for (;;) {
974 bool protected;
975
976 pg = uvm_page_array_peek(&ar);
977 if (pg == NULL) {
978 if (uvm_page_array_fill(&ar, uobj, off, dirtyonly)) {
979 break;
980 }
981 pg = uvm_page_array_peek(&ar);
982 KASSERT(pg != NULL);
983 }
984
985 /*
986 * if the current page is not interesting, move on to the next.
987 */
988
989 KASSERT(pg->uobject == uobj);
990 KASSERT((pg->flags & PG_MARKER) == 0);
991 KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
992 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
993 KASSERT(pg->offset >= startoff);
994 KASSERT(pg->offset >= off);
995 KASSERT(!dirtyonly ||
996 uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
997 off = pg->offset + PAGE_SIZE;
998 if (pg->offset >= endoff) {
999 break;
1000 }
1001 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1002 KASSERT((pg->flags & PG_BUSY) != 0);
1003 wasclean = false;
1004 uvm_page_array_advance(&ar);
1005 continue;
1006 }
1007
1008 /*
1009 * if the current page needs to be cleaned and it's busy,
1010 * wait for it to become unbusy.
1011 */
1012
1013 yld = (l->l_cpu->ci_schedstate.spc_flags &
1014 SPCF_SHOULDYIELD) && !pagedaemon;
1015 if (pg->flags & PG_BUSY || yld) {
1016 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1017 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1018 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1019 error = EDEADLK;
1020 if (busypg != NULL)
1021 *busypg = pg;
1022 break;
1023 }
1024 if (pagedaemon) {
1025 /*
1026 * someone has taken the page while we
1027 * dropped the lock for fstrans_start.
1028 */
1029 break;
1030 }
1031 off = pg->offset; /* visit this page again */
1032 if (yld) {
1033 mutex_exit(slock);
1034 preempt();
1035 } else {
1036 pg->flags |= PG_WANTED;
1037 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1038 }
1039 /*
1040 * as we dropped the object lock, our cached pages can
1041 * be stale.
1042 */
1043 uvm_page_array_clear(&ar);
1044 mutex_enter(slock);
1045 continue;
1046 }
1047
1048 uvm_page_array_advance(&ar);
1049
1050 /*
1051 * if we're freeing, remove all mappings of the page now.
1052 * if we're cleaning, check if the page is needs to be cleaned.
1053 */
1054
1055 protected = false;
1056 if (flags & PGO_FREE) {
1057 pmap_page_protect(pg, VM_PROT_NONE);
1058 protected = true;
1059 } else if (flags & PGO_CLEANIT) {
1060
1061 /*
1062 * if we still have some hope to pull this vnode off
1063 * from the syncer queue, write-protect the page.
1064 */
1065
1066 if (cleanall && wasclean &&
1067 gp->g_dirtygen == dirtygen) {
1068
1069 /*
1070 * uobj pages get wired only by uvm_fault
1071 * where uobj is locked.
1072 */
1073
1074 if (pg->wire_count == 0) {
1075 pmap_page_protect(pg,
1076 VM_PROT_READ|VM_PROT_EXECUTE);
1077 protected = true;
1078 } else {
1079 cleanall = false;
1080 }
1081 }
1082 }
1083
1084 if (flags & PGO_CLEANIT) {
1085 needs_clean = uvm_pagecheckdirty(pg, protected);
1086 } else {
1087 needs_clean = false;
1088 }
1089
1090 /*
1091 * if we're cleaning, build a cluster.
1092 * the cluster will consist of pages which are currently dirty.
1093 * if not cleaning, just operate on the one page.
1094 */
1095
1096 if (needs_clean) {
1097 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1098 wasclean = false;
1099 memset(pgs, 0, sizeof(pgs));
1100 pg->flags |= PG_BUSY;
1101 UVM_PAGE_OWN(pg, "genfs_putpages");
1102
1103 #if 0 /* XXX notyet */
1104 /*
1105 * first look backward.
1106 */
1107
1108 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1109 nback = npages;
1110 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1111 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1112 if (nback) {
1113 memmove(&pgs[0], &pgs[npages - nback],
1114 nback * sizeof(pgs[0]));
1115 if (npages - nback < nback)
1116 memset(&pgs[nback], 0,
1117 (npages - nback) * sizeof(pgs[0]));
1118 else
1119 memset(&pgs[npages - nback], 0,
1120 nback * sizeof(pgs[0]));
1121 }
1122 #else
1123 nback = 0;
1124 #endif
1125
1126 /*
1127 * then plug in our page of interest.
1128 */
1129
1130 pgs[nback] = pg;
1131
1132 /*
1133 * then look forward to fill in the remaining space in
1134 * the array of pages.
1135 */
1136
1137 for (npages = 1; npages < maxpages; npages++) {
1138 struct vm_page *nextpg;
1139
1140 nextpg = uvm_page_array_peek(&ar);
1141 if (nextpg == NULL) {
1142 /*
1143 * regardless of the value of dirtyonly,
1144 * we don't need to care about clean
1145 * pages here as we will drop the
1146 * object lock to call GOP_WRITE and
1147 * thus need to clear the array
1148 * before the next iteration anyway.
1149 */
1150 if (uvm_page_array_fill(&ar, uobj,
1151 pgs[npages - 1]->offset + PAGE_SIZE,
1152 true)) {
1153 break;
1154 }
1155 nextpg = uvm_page_array_peek(&ar);
1156 if (nextpg == NULL) {
1157 break;
1158 }
1159 }
1160 KASSERT(nextpg->uobject == pg->uobject);
1161 KASSERT(nextpg->offset > pg->offset);
1162 KASSERT(nextpg->offset >
1163 pgs[npages - 1]->offset);
1164 if (pgs[npages - 1]->offset + PAGE_SIZE !=
1165 nextpg->offset) {
1166 break;
1167 }
1168 if ((nextpg->flags & PG_BUSY) != 0) {
1169 break;
1170 }
1171 /*
1172 * XXX hack for nfs
1173 */
1174 if (((nextpg->flags ^ pgs[npages - 1]->flags) &
1175 PG_PAGER1) != 0) {
1176 break;
1177 }
1178 if (!uvm_pagecheckdirty(nextpg, false)) {
1179 break;
1180 }
1181 nextpg->flags |= PG_BUSY;
1182 UVM_PAGE_OWN(nextpg, "genfs_putpages2");
1183 pgs[npages] = nextpg;
1184 uvm_page_array_advance(&ar);
1185 }
1186 } else {
1187 pgs[0] = pg;
1188 npages = 1;
1189 nback = 0;
1190 }
1191
1192 /*
1193 * apply FREE or DEACTIVATE options if requested.
1194 */
1195
1196 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1197 mutex_enter(&uvm_pageqlock);
1198 }
1199 for (i = 0; i < npages; i++) {
1200 struct vm_page *tpg = pgs[i];
1201
1202 KASSERT(tpg->uobject == uobj);
1203 if (tpg->offset < startoff || tpg->offset >= endoff)
1204 continue;
1205 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1206 uvm_pagedeactivate(tpg);
1207 } else if (flags & PGO_FREE) {
1208 pmap_page_protect(tpg, VM_PROT_NONE);
1209 if (tpg->flags & PG_BUSY) {
1210 tpg->flags |= freeflag;
1211 if (pagedaemon) {
1212 uvm_pageout_start(1);
1213 uvm_pagedequeue(tpg);
1214 }
1215 } else {
1216
1217 /*
1218 * ``page is not busy''
1219 * implies that npages is 1
1220 * and needs_clean is false.
1221 */
1222
1223 KASSERT(npages == 1);
1224 KASSERT(!needs_clean);
1225 KASSERT(pg == tpg);
1226 KASSERT(off == tpg->offset + PAGE_SIZE);
1227 uvm_pagefree(tpg);
1228 if (pagedaemon)
1229 uvmexp.pdfreed++;
1230 }
1231 }
1232 }
1233 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1234 mutex_exit(&uvm_pageqlock);
1235 }
1236 if (needs_clean) {
1237 KASSERT(off == pg->offset + PAGE_SIZE);
1238 off = pg->offset + ((npages - nback) << PAGE_SHIFT);
1239 KASSERT(pgs[nback] == pg);
1240 KASSERT(off == pgs[npages - 1]->offset + PAGE_SIZE);
1241 mutex_exit(slock);
1242
1243 /*
1244 * start the i/o.
1245 *
1246 * as we dropped the object lock, our cached pages can
1247 * be stale.
1248 */
1249 modified = true;
1250 uvm_page_array_clear(&ar);
1251 error = GOP_WRITE(vp, pgs, npages, flags);
1252 mutex_enter(slock);
1253 if (error) {
1254 break;
1255 }
1256 }
1257 }
1258 uvm_page_array_fini(&ar);
1259
1260 /*
1261 * update ctime/mtime if the modification we started writing out might
1262 * be from mmap'ed write.
1263 *
1264 * this is necessary when an application keeps a file mmaped and
1265 * repeatedly modifies it via the window. note that, because we
1266 * don't always write-protect pages when cleaning, such modifications
1267 * might not involve any page faults.
1268 */
1269
1270 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1271 (vp->v_type != VBLK ||
1272 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1273 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1274 }
1275
1276 /*
1277 * if we're cleaning and there was nothing to clean,
1278 * take us off the syncer list. if we started any i/o
1279 * and we're doing sync i/o, wait for all writes to finish.
1280 */
1281
1282 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1283 (vp->v_iflag & VI_ONWORKLST) != 0) {
1284 KASSERT(radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
1285 UVM_PAGE_DIRTY_TAG));
1286 vp->v_iflag &= ~VI_WRMAPDIRTY;
1287 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1288 vn_syncer_remove_from_worklist(vp);
1289 }
1290
1291 #if !defined(DEBUG)
1292 skip_scan:
1293 #endif /* !defined(DEBUG) */
1294
1295 /* Wait for output to complete. */
1296 if (!wasclean && !async && vp->v_numoutput != 0) {
1297 while (vp->v_numoutput != 0)
1298 cv_wait(&vp->v_cv, slock);
1299 }
1300 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1301 mutex_exit(slock);
1302
1303 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1304 /*
1305 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1306 * retrying is not a big deal because, in many cases,
1307 * uobj->uo_npages is already 0 here.
1308 */
1309 mutex_enter(slock);
1310 goto retry;
1311 }
1312
1313 if (has_trans) {
1314 if (need_wapbl)
1315 WAPBL_END(vp->v_mount);
1316 fstrans_done(vp->v_mount);
1317 }
1318
1319 return (error);
1320 }
1321
1322 int
1323 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1324 {
1325 off_t off;
1326 vaddr_t kva;
1327 size_t len;
1328 int error;
1329 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1330
1331 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1332 vp, pgs, npages, flags);
1333
1334 off = pgs[0]->offset;
1335 kva = uvm_pagermapin(pgs, npages,
1336 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1337 len = npages << PAGE_SHIFT;
1338
1339 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1340 uvm_aio_biodone);
1341
1342 return error;
1343 }
1344
1345 int
1346 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1347 {
1348 off_t off;
1349 vaddr_t kva;
1350 size_t len;
1351 int error;
1352 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1353
1354 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1355 vp, pgs, npages, flags);
1356
1357 off = pgs[0]->offset;
1358 kva = uvm_pagermapin(pgs, npages,
1359 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1360 len = npages << PAGE_SHIFT;
1361
1362 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1363 uvm_aio_biodone);
1364
1365 return error;
1366 }
1367
1368 /*
1369 * Backend routine for doing I/O to vnode pages. Pages are already locked
1370 * and mapped into kernel memory. Here we just look up the underlying
1371 * device block addresses and call the strategy routine.
1372 */
1373
1374 static int
1375 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1376 enum uio_rw rw, void (*iodone)(struct buf *))
1377 {
1378 int s, error;
1379 int fs_bshift, dev_bshift;
1380 off_t eof, offset, startoffset;
1381 size_t bytes, iobytes, skipbytes;
1382 struct buf *mbp, *bp;
1383 const bool async = (flags & PGO_SYNCIO) == 0;
1384 const bool iowrite = rw == UIO_WRITE;
1385 const int brw = iowrite ? B_WRITE : B_READ;
1386 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1387
1388 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1389 vp, kva, len, flags);
1390
1391 KASSERT(vp->v_size <= vp->v_writesize);
1392 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1393 if (vp->v_type != VBLK) {
1394 fs_bshift = vp->v_mount->mnt_fs_bshift;
1395 dev_bshift = vp->v_mount->mnt_dev_bshift;
1396 } else {
1397 fs_bshift = DEV_BSHIFT;
1398 dev_bshift = DEV_BSHIFT;
1399 }
1400 error = 0;
1401 startoffset = off;
1402 bytes = MIN(len, eof - startoffset);
1403 skipbytes = 0;
1404 KASSERT(bytes != 0);
1405
1406 if (iowrite) {
1407 mutex_enter(vp->v_interlock);
1408 vp->v_numoutput += 2;
1409 mutex_exit(vp->v_interlock);
1410 }
1411 mbp = getiobuf(vp, true);
1412 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1413 vp, mbp, vp->v_numoutput, bytes);
1414 mbp->b_bufsize = len;
1415 mbp->b_data = (void *)kva;
1416 mbp->b_resid = mbp->b_bcount = bytes;
1417 mbp->b_cflags = BC_BUSY | BC_AGE;
1418 if (async) {
1419 mbp->b_flags = brw | B_ASYNC;
1420 mbp->b_iodone = iodone;
1421 } else {
1422 mbp->b_flags = brw;
1423 mbp->b_iodone = NULL;
1424 }
1425 if (curlwp == uvm.pagedaemon_lwp)
1426 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1427 else if (async)
1428 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1429 else
1430 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1431
1432 bp = NULL;
1433 for (offset = startoffset;
1434 bytes > 0;
1435 offset += iobytes, bytes -= iobytes) {
1436 int run;
1437 daddr_t lbn, blkno;
1438 struct vnode *devvp;
1439
1440 /*
1441 * bmap the file to find out the blkno to read from and
1442 * how much we can read in one i/o. if bmap returns an error,
1443 * skip the rest of the top-level i/o.
1444 */
1445
1446 lbn = offset >> fs_bshift;
1447 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1448 if (error) {
1449 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1450 lbn,error,0,0);
1451 skipbytes += bytes;
1452 bytes = 0;
1453 goto loopdone;
1454 }
1455
1456 /*
1457 * see how many pages can be read with this i/o.
1458 * reduce the i/o size if necessary to avoid
1459 * overwriting pages with valid data.
1460 */
1461
1462 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1463 bytes);
1464
1465 /*
1466 * if this block isn't allocated, zero it instead of
1467 * reading it. unless we are going to allocate blocks,
1468 * mark the pages we zeroed PG_RDONLY.
1469 */
1470
1471 if (blkno == (daddr_t)-1) {
1472 if (!iowrite) {
1473 memset((char *)kva + (offset - startoffset), 0,
1474 iobytes);
1475 }
1476 skipbytes += iobytes;
1477 continue;
1478 }
1479
1480 /*
1481 * allocate a sub-buf for this piece of the i/o
1482 * (or just use mbp if there's only 1 piece),
1483 * and start it going.
1484 */
1485
1486 if (offset == startoffset && iobytes == bytes) {
1487 bp = mbp;
1488 } else {
1489 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1490 vp, bp, vp->v_numoutput, 0);
1491 bp = getiobuf(vp, true);
1492 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1493 }
1494 bp->b_lblkno = 0;
1495
1496 /* adjust physical blkno for partial blocks */
1497 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1498 dev_bshift);
1499
1500 UVMHIST_LOG(ubchist,
1501 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1502 bp, offset, bp->b_bcount, bp->b_blkno);
1503
1504 VOP_STRATEGY(devvp, bp);
1505 }
1506
1507 loopdone:
1508 if (skipbytes) {
1509 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1510 }
1511 nestiobuf_done(mbp, skipbytes, error);
1512 if (async) {
1513 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1514 return (0);
1515 }
1516 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1517 error = biowait(mbp);
1518 s = splbio();
1519 (*iodone)(mbp);
1520 splx(s);
1521 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1522 return (error);
1523 }
1524
1525 int
1526 genfs_compat_getpages(void *v)
1527 {
1528 struct vop_getpages_args /* {
1529 struct vnode *a_vp;
1530 voff_t a_offset;
1531 struct vm_page **a_m;
1532 int *a_count;
1533 int a_centeridx;
1534 vm_prot_t a_access_type;
1535 int a_advice;
1536 int a_flags;
1537 } */ *ap = v;
1538
1539 off_t origoffset;
1540 struct vnode *vp = ap->a_vp;
1541 struct uvm_object *uobj = &vp->v_uobj;
1542 struct vm_page *pg, **pgs;
1543 vaddr_t kva;
1544 int i, error, orignpages, npages;
1545 struct iovec iov;
1546 struct uio uio;
1547 kauth_cred_t cred = curlwp->l_cred;
1548 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1549
1550 error = 0;
1551 origoffset = ap->a_offset;
1552 orignpages = *ap->a_count;
1553 pgs = ap->a_m;
1554
1555 if (ap->a_flags & PGO_LOCKED) {
1556 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1557 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1558
1559 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1560 if (error == 0 && memwrite) {
1561 genfs_markdirty(vp);
1562 }
1563 return error;
1564 }
1565 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1566 mutex_exit(uobj->vmobjlock);
1567 return EINVAL;
1568 }
1569 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1570 mutex_exit(uobj->vmobjlock);
1571 return 0;
1572 }
1573 npages = orignpages;
1574 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1575 mutex_exit(uobj->vmobjlock);
1576 kva = uvm_pagermapin(pgs, npages,
1577 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1578 for (i = 0; i < npages; i++) {
1579 pg = pgs[i];
1580 if ((pg->flags & PG_FAKE) == 0) {
1581 continue;
1582 }
1583 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1584 iov.iov_len = PAGE_SIZE;
1585 uio.uio_iov = &iov;
1586 uio.uio_iovcnt = 1;
1587 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1588 uio.uio_rw = UIO_READ;
1589 uio.uio_resid = PAGE_SIZE;
1590 UIO_SETUP_SYSSPACE(&uio);
1591 /* XXX vn_lock */
1592 error = VOP_READ(vp, &uio, 0, cred);
1593 if (error) {
1594 break;
1595 }
1596 if (uio.uio_resid) {
1597 memset(iov.iov_base, 0, uio.uio_resid);
1598 }
1599 }
1600 uvm_pagermapout(kva, npages);
1601 mutex_enter(uobj->vmobjlock);
1602 mutex_enter(&uvm_pageqlock);
1603 for (i = 0; i < npages; i++) {
1604 pg = pgs[i];
1605 if (error && (pg->flags & PG_FAKE) != 0) {
1606 pg->flags |= PG_RELEASED;
1607 } else {
1608 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1609 uvm_pageactivate(pg);
1610 }
1611 }
1612 if (error) {
1613 uvm_page_unbusy(pgs, npages);
1614 }
1615 mutex_exit(&uvm_pageqlock);
1616 if (error == 0 && memwrite) {
1617 genfs_markdirty(vp);
1618 }
1619 mutex_exit(uobj->vmobjlock);
1620 return error;
1621 }
1622
1623 int
1624 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1625 int flags)
1626 {
1627 off_t offset;
1628 struct iovec iov;
1629 struct uio uio;
1630 kauth_cred_t cred = curlwp->l_cred;
1631 struct buf *bp;
1632 vaddr_t kva;
1633 int error;
1634
1635 offset = pgs[0]->offset;
1636 kva = uvm_pagermapin(pgs, npages,
1637 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1638
1639 iov.iov_base = (void *)kva;
1640 iov.iov_len = npages << PAGE_SHIFT;
1641 uio.uio_iov = &iov;
1642 uio.uio_iovcnt = 1;
1643 uio.uio_offset = offset;
1644 uio.uio_rw = UIO_WRITE;
1645 uio.uio_resid = npages << PAGE_SHIFT;
1646 UIO_SETUP_SYSSPACE(&uio);
1647 /* XXX vn_lock */
1648 error = VOP_WRITE(vp, &uio, 0, cred);
1649
1650 mutex_enter(vp->v_interlock);
1651 vp->v_numoutput++;
1652 mutex_exit(vp->v_interlock);
1653
1654 bp = getiobuf(vp, true);
1655 bp->b_cflags = BC_BUSY | BC_AGE;
1656 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1657 bp->b_data = (char *)kva;
1658 bp->b_bcount = npages << PAGE_SHIFT;
1659 bp->b_bufsize = npages << PAGE_SHIFT;
1660 bp->b_resid = 0;
1661 bp->b_error = error;
1662 uvm_aio_aiodone(bp);
1663 return (error);
1664 }
1665
1666 /*
1667 * Process a uio using direct I/O. If we reach a part of the request
1668 * which cannot be processed in this fashion for some reason, just return.
1669 * The caller must handle some additional part of the request using
1670 * buffered I/O before trying direct I/O again.
1671 */
1672
1673 void
1674 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1675 {
1676 struct vmspace *vs;
1677 struct iovec *iov;
1678 vaddr_t va;
1679 size_t len;
1680 const int mask = DEV_BSIZE - 1;
1681 int error;
1682 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1683 (ioflag & IO_JOURNALLOCKED) == 0);
1684
1685 /*
1686 * We only support direct I/O to user space for now.
1687 */
1688
1689 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1690 return;
1691 }
1692
1693 /*
1694 * If the vnode is mapped, we would need to get the getpages lock
1695 * to stabilize the bmap, but then we would get into trouble while
1696 * locking the pages if the pages belong to this same vnode (or a
1697 * multi-vnode cascade to the same effect). Just fall back to
1698 * buffered I/O if the vnode is mapped to avoid this mess.
1699 */
1700
1701 if (vp->v_vflag & VV_MAPPED) {
1702 return;
1703 }
1704
1705 if (need_wapbl) {
1706 error = WAPBL_BEGIN(vp->v_mount);
1707 if (error)
1708 return;
1709 }
1710
1711 /*
1712 * Do as much of the uio as possible with direct I/O.
1713 */
1714
1715 vs = uio->uio_vmspace;
1716 while (uio->uio_resid) {
1717 iov = uio->uio_iov;
1718 if (iov->iov_len == 0) {
1719 uio->uio_iov++;
1720 uio->uio_iovcnt--;
1721 continue;
1722 }
1723 va = (vaddr_t)iov->iov_base;
1724 len = MIN(iov->iov_len, genfs_maxdio);
1725 len &= ~mask;
1726
1727 /*
1728 * If the next chunk is smaller than DEV_BSIZE or extends past
1729 * the current EOF, then fall back to buffered I/O.
1730 */
1731
1732 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1733 break;
1734 }
1735
1736 /*
1737 * Check alignment. The file offset must be at least
1738 * sector-aligned. The exact constraint on memory alignment
1739 * is very hardware-dependent, but requiring sector-aligned
1740 * addresses there too is safe.
1741 */
1742
1743 if (uio->uio_offset & mask || va & mask) {
1744 break;
1745 }
1746 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1747 uio->uio_rw);
1748 if (error) {
1749 break;
1750 }
1751 iov->iov_base = (char *)iov->iov_base + len;
1752 iov->iov_len -= len;
1753 uio->uio_offset += len;
1754 uio->uio_resid -= len;
1755 }
1756
1757 if (need_wapbl)
1758 WAPBL_END(vp->v_mount);
1759 }
1760
1761 /*
1762 * Iodone routine for direct I/O. We don't do much here since the request is
1763 * always synchronous, so the caller will do most of the work after biowait().
1764 */
1765
1766 static void
1767 genfs_dio_iodone(struct buf *bp)
1768 {
1769
1770 KASSERT((bp->b_flags & B_ASYNC) == 0);
1771 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1772 mutex_enter(bp->b_objlock);
1773 vwakeup(bp);
1774 mutex_exit(bp->b_objlock);
1775 }
1776 putiobuf(bp);
1777 }
1778
1779 /*
1780 * Process one chunk of a direct I/O request.
1781 */
1782
1783 static int
1784 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1785 off_t off, enum uio_rw rw)
1786 {
1787 struct vm_map *map;
1788 struct pmap *upm, *kpm;
1789 size_t klen = round_page(uva + len) - trunc_page(uva);
1790 off_t spoff, epoff;
1791 vaddr_t kva, puva;
1792 paddr_t pa;
1793 vm_prot_t prot;
1794 int error, rv, poff, koff;
1795 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1796 (rw == UIO_WRITE ? PGO_FREE : 0);
1797
1798 /*
1799 * For writes, verify that this range of the file already has fully
1800 * allocated backing store. If there are any holes, just punt and
1801 * make the caller take the buffered write path.
1802 */
1803
1804 if (rw == UIO_WRITE) {
1805 daddr_t lbn, elbn, blkno;
1806 int bsize, bshift, run;
1807
1808 bshift = vp->v_mount->mnt_fs_bshift;
1809 bsize = 1 << bshift;
1810 lbn = off >> bshift;
1811 elbn = (off + len + bsize - 1) >> bshift;
1812 while (lbn < elbn) {
1813 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1814 if (error) {
1815 return error;
1816 }
1817 if (blkno == (daddr_t)-1) {
1818 return ENOSPC;
1819 }
1820 lbn += 1 + run;
1821 }
1822 }
1823
1824 /*
1825 * Flush any cached pages for parts of the file that we're about to
1826 * access. If we're writing, invalidate pages as well.
1827 */
1828
1829 spoff = trunc_page(off);
1830 epoff = round_page(off + len);
1831 mutex_enter(vp->v_interlock);
1832 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1833 if (error) {
1834 return error;
1835 }
1836
1837 /*
1838 * Wire the user pages and remap them into kernel memory.
1839 */
1840
1841 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1842 error = uvm_vslock(vs, (void *)uva, len, prot);
1843 if (error) {
1844 return error;
1845 }
1846
1847 map = &vs->vm_map;
1848 upm = vm_map_pmap(map);
1849 kpm = vm_map_pmap(kernel_map);
1850 puva = trunc_page(uva);
1851 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1852 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1853 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1854 rv = pmap_extract(upm, puva + poff, &pa);
1855 KASSERT(rv);
1856 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1857 }
1858 pmap_update(kpm);
1859
1860 /*
1861 * Do the I/O.
1862 */
1863
1864 koff = uva - trunc_page(uva);
1865 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1866 genfs_dio_iodone);
1867
1868 /*
1869 * Tear down the kernel mapping.
1870 */
1871
1872 pmap_kremove(kva, klen);
1873 pmap_update(kpm);
1874 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1875
1876 /*
1877 * Unwire the user pages.
1878 */
1879
1880 uvm_vsunlock(vs, (void *)uva, len);
1881 return error;
1882 }
1883