genfs_io.c revision 1.53.2.7 1 /* $NetBSD: genfs_io.c,v 1.53.2.7 2012/01/14 04:44:45 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53.2.7 2012/01/14 04:44:45 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 #include <sys/radixtree.h>
47
48 #include <miscfs/genfs/genfs.h>
49 #include <miscfs/genfs/genfs_node.h>
50 #include <miscfs/specfs/specdev.h>
51 #include <miscfs/syncfs/syncfs.h>
52
53 #include <uvm/uvm.h>
54 #include <uvm/uvm_pager.h>
55 #include <uvm/uvm_page_array.h>
56
57 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
58 off_t, enum uio_rw);
59 static void genfs_dio_iodone(struct buf *);
60
61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 void (*)(struct buf *));
63 static void genfs_rel_pages(struct vm_page **, int);
64 static void genfs_markdirty(struct vnode *);
65
66 int genfs_maxdio = MAXPHYS;
67
68 static void
69 genfs_rel_pages(struct vm_page **pgs, int npages)
70 {
71 int i;
72
73 for (i = 0; i < npages; i++) {
74 struct vm_page *pg = pgs[i];
75
76 if (pg == NULL || pg == PGO_DONTCARE)
77 continue;
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90
91 KASSERT(mutex_owned(vp->v_interlock));
92 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
93 vn_syncer_add_to_worklist(vp, filedelay);
94 }
95 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
96 vp->v_iflag |= VI_WRMAPDIRTY;
97 }
98 }
99
100 /*
101 * generic VM getpages routine.
102 * Return PG_BUSY pages for the given range,
103 * reading from backing store if necessary.
104 */
105
106 int
107 genfs_getpages(void *v)
108 {
109 struct vop_getpages_args /* {
110 struct vnode *a_vp;
111 voff_t a_offset;
112 struct vm_page **a_m;
113 int *a_count;
114 int a_centeridx;
115 vm_prot_t a_access_type;
116 int a_advice;
117 int a_flags;
118 } */ * const ap = v;
119
120 off_t diskeof, memeof;
121 int i, error, npages;
122 const int flags = ap->a_flags;
123 struct vnode * const vp = ap->a_vp;
124 struct uvm_object * const uobj = &vp->v_uobj;
125 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
126 const bool async = (flags & PGO_SYNCIO) == 0;
127 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
128 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
130 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
131 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
132 bool has_trans_wapbl = false;
133 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
134
135 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
136 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
137
138 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
139 vp->v_type == VLNK || vp->v_type == VBLK);
140
141 startover:
142 error = 0;
143 const voff_t origvsize = vp->v_size;
144 const off_t origoffset = ap->a_offset;
145 const int orignpages = *ap->a_count;
146
147 GOP_SIZE(vp, origvsize, &diskeof, 0);
148 if (flags & PGO_PASTEOF) {
149 off_t newsize;
150 #if defined(DIAGNOSTIC)
151 off_t writeeof;
152 #endif /* defined(DIAGNOSTIC) */
153
154 newsize = MAX(origvsize,
155 origoffset + (orignpages << PAGE_SHIFT));
156 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
157 #if defined(DIAGNOSTIC)
158 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
159 if (newsize > round_page(writeeof)) {
160 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
161 __func__, newsize, round_page(writeeof));
162 }
163 #endif /* defined(DIAGNOSTIC) */
164 } else {
165 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
166 }
167 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
168 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
169 KASSERT(orignpages > 0);
170
171 /*
172 * Bounds-check the request.
173 */
174
175 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
176 if ((flags & PGO_LOCKED) == 0) {
177 mutex_exit(uobj->vmobjlock);
178 }
179 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
180 origoffset, *ap->a_count, memeof,0);
181 error = EINVAL;
182 goto out_err;
183 }
184
185 /* uobj is locked */
186
187 if ((flags & PGO_NOTIMESTAMP) == 0 &&
188 (vp->v_type != VBLK ||
189 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
190 int updflags = 0;
191
192 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
193 updflags = GOP_UPDATE_ACCESSED;
194 }
195 if (memwrite) {
196 updflags |= GOP_UPDATE_MODIFIED;
197 }
198 if (updflags != 0) {
199 GOP_MARKUPDATE(vp, updflags);
200 }
201 }
202
203 /*
204 * For PGO_LOCKED requests, just return whatever's in memory.
205 */
206
207 if (flags & PGO_LOCKED) {
208 int nfound;
209 struct vm_page *pg;
210
211 KASSERT(!glocked);
212 npages = *ap->a_count;
213 #if defined(DEBUG)
214 for (i = 0; i < npages; i++) {
215 pg = ap->a_m[i];
216 KASSERT(pg == NULL || pg == PGO_DONTCARE);
217 }
218 #endif /* defined(DEBUG) */
219 nfound = uvn_findpages(uobj, origoffset, &npages,
220 ap->a_m, NULL,
221 UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 KASSERT(npages == *ap->a_count);
223 if (nfound == 0) {
224 error = EBUSY;
225 goto out_err;
226 }
227 if (!genfs_node_rdtrylock(vp)) {
228 genfs_rel_pages(ap->a_m, npages);
229
230 /*
231 * restore the array.
232 */
233
234 for (i = 0; i < npages; i++) {
235 pg = ap->a_m[i];
236
237 if (pg != NULL && pg != PGO_DONTCARE) {
238 ap->a_m[i] = NULL;
239 }
240 KASSERT(ap->a_m[i] == NULL ||
241 ap->a_m[i] == PGO_DONTCARE);
242 }
243 } else {
244 genfs_node_unlock(vp);
245 }
246 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 if (error == 0 && memwrite) {
248 for (i = 0; i < npages; i++) {
249 pg = ap->a_m[i];
250 if (pg == NULL || pg == PGO_DONTCARE) {
251 continue;
252 }
253 if (uvm_pagegetdirty(pg) ==
254 UVM_PAGE_STATUS_CLEAN) {
255 uvm_pagemarkdirty(pg,
256 UVM_PAGE_STATUS_UNKNOWN);
257 }
258 }
259 genfs_markdirty(vp);
260 }
261 goto out_err;
262 }
263 mutex_exit(uobj->vmobjlock);
264
265 /*
266 * find the requested pages and make some simple checks.
267 * leave space in the page array for a whole block.
268 */
269
270 const int fs_bshift = (vp->v_type != VBLK) ?
271 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
272 const int dev_bshift = (vp->v_type != VBLK) ?
273 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
274 const int fs_bsize = 1 << fs_bshift;
275 #define blk_mask (fs_bsize - 1)
276 #define trunc_blk(x) ((x) & ~blk_mask)
277 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
278
279 const int orignmempages = MIN(orignpages,
280 round_page(memeof - origoffset) >> PAGE_SHIFT);
281 npages = orignmempages;
282 const off_t startoffset = trunc_blk(origoffset);
283 const off_t endoffset = MIN(
284 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
285 round_page(memeof));
286 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
287
288 const int pgs_size = sizeof(struct vm_page *) *
289 ((endoffset - startoffset) >> PAGE_SHIFT);
290 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
291
292 if (pgs_size > sizeof(pgs_onstack)) {
293 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
294 if (pgs == NULL) {
295 pgs = pgs_onstack;
296 error = ENOMEM;
297 goto out_err;
298 }
299 } else {
300 pgs = pgs_onstack;
301 (void)memset(pgs, 0, pgs_size);
302 }
303
304 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
305 ridx, npages, startoffset, endoffset);
306
307 if (!has_trans_wapbl) {
308 fstrans_start(vp->v_mount, FSTRANS_SHARED);
309 /*
310 * XXX: This assumes that we come here only via
311 * the mmio path
312 */
313 if (need_wapbl) {
314 error = WAPBL_BEGIN(vp->v_mount);
315 if (error) {
316 fstrans_done(vp->v_mount);
317 goto out_err_free;
318 }
319 }
320 has_trans_wapbl = true;
321 }
322
323 /*
324 * hold g_glock to prevent a race with truncate.
325 *
326 * check if our idea of v_size is still valid.
327 */
328
329 KASSERT(!glocked || genfs_node_wrlocked(vp));
330 if (!glocked) {
331 if (blockalloc) {
332 genfs_node_wrlock(vp);
333 } else {
334 genfs_node_rdlock(vp);
335 }
336 }
337 mutex_enter(uobj->vmobjlock);
338 if (vp->v_size < origvsize) {
339 if (!glocked) {
340 genfs_node_unlock(vp);
341 }
342 if (pgs != pgs_onstack)
343 kmem_free(pgs, pgs_size);
344 goto startover;
345 }
346
347 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
348 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
349 if (!glocked) {
350 genfs_node_unlock(vp);
351 }
352 KASSERT(async != 0);
353 genfs_rel_pages(&pgs[ridx], orignmempages);
354 mutex_exit(uobj->vmobjlock);
355 error = EBUSY;
356 goto out_err_free;
357 }
358
359 /*
360 * if PGO_OVERWRITE is set, don't bother reading the pages.
361 */
362
363 if (overwrite) {
364 if (!glocked) {
365 genfs_node_unlock(vp);
366 }
367 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
368
369 for (i = 0; i < npages; i++) {
370 struct vm_page *pg = pgs[ridx + i];
371
372 /*
373 * it's caller's responsibility to allocate blocks
374 * beforehand for the overwrite case.
375 */
376 pg->flags &= ~(PG_RDONLY|PG_HOLE);
377 /*
378 * mark the page dirty.
379 * otherwise another thread can do putpages and pull
380 * our vnode from syncer's queue before our caller does
381 * ubc_release.
382 */
383 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
384 }
385 npages += ridx;
386 goto out;
387 }
388
389 /*
390 * if the pages are already resident, just return them.
391 */
392
393 for (i = 0; i < npages; i++) {
394 struct vm_page *pg = pgs[ridx + i];
395
396 if ((pg->flags & PG_FAKE) ||
397 (memwrite && (pg->flags & (PG_RDONLY|PG_HOLE)) != 0)) {
398 break;
399 }
400 }
401 if (i == npages) {
402 if (!glocked) {
403 genfs_node_unlock(vp);
404 }
405 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
406 npages += ridx;
407 goto out;
408 }
409
410 /*
411 * the page wasn't resident and we're not overwriting,
412 * so we're going to have to do some i/o.
413 * find any additional pages needed to cover the expanded range.
414 */
415
416 npages = (endoffset - startoffset) >> PAGE_SHIFT;
417 if (startoffset != origoffset || npages != orignmempages) {
418 int npgs;
419
420 /*
421 * we need to avoid deadlocks caused by locking
422 * additional pages at lower offsets than pages we
423 * already have locked. unlock them all and start over.
424 */
425
426 genfs_rel_pages(&pgs[ridx], orignmempages);
427 memset(pgs, 0, pgs_size);
428
429 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
430 startoffset, endoffset, 0,0);
431 npgs = npages;
432 if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
433 async ? UFP_NOWAIT : UFP_ALL) != npages) {
434 if (!glocked) {
435 genfs_node_unlock(vp);
436 }
437 KASSERT(async != 0);
438 genfs_rel_pages(pgs, npages);
439 mutex_exit(uobj->vmobjlock);
440 error = EBUSY;
441 goto out_err_free;
442 }
443 }
444
445 mutex_exit(uobj->vmobjlock);
446
447 {
448 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
449 vaddr_t kva;
450 struct buf *bp, *mbp;
451 bool sawhole = false;
452
453 /*
454 * read the desired page(s).
455 */
456
457 totalbytes = npages << PAGE_SHIFT;
458 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
459 tailbytes = totalbytes - bytes;
460 skipbytes = 0;
461
462 kva = uvm_pagermapin(pgs, npages,
463 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
464
465 mbp = getiobuf(vp, true);
466 mbp->b_bufsize = totalbytes;
467 mbp->b_data = (void *)kva;
468 mbp->b_resid = mbp->b_bcount = bytes;
469 mbp->b_cflags = BC_BUSY;
470 if (async) {
471 mbp->b_flags = B_READ | B_ASYNC;
472 mbp->b_iodone = uvm_aio_biodone;
473 } else {
474 mbp->b_flags = B_READ;
475 mbp->b_iodone = NULL;
476 }
477 if (async)
478 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
479 else
480 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
481
482 /*
483 * if EOF is in the middle of the range, zero the part past EOF.
484 * skip over pages which are not PG_FAKE since in that case they have
485 * valid data that we need to preserve.
486 */
487
488 tailstart = bytes;
489 while (tailbytes > 0) {
490 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
491
492 KASSERT(len <= tailbytes);
493 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
494 memset((void *)(kva + tailstart), 0, len);
495 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
496 kva, tailstart, len, 0);
497 }
498 tailstart += len;
499 tailbytes -= len;
500 }
501
502 /*
503 * now loop over the pages, reading as needed.
504 */
505
506 bp = NULL;
507 off_t offset;
508 for (offset = startoffset;
509 bytes > 0;
510 offset += iobytes, bytes -= iobytes) {
511 int run;
512 daddr_t lbn, blkno;
513 int pidx;
514 struct vnode *devvp;
515
516 /*
517 * skip pages which don't need to be read.
518 */
519
520 pidx = (offset - startoffset) >> PAGE_SHIFT;
521 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
522 size_t b;
523
524 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
525 if ((pgs[pidx]->flags & PG_HOLE)) {
526 sawhole = true;
527 }
528 b = MIN(PAGE_SIZE, bytes);
529 offset += b;
530 bytes -= b;
531 skipbytes += b;
532 pidx++;
533 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
534 offset, 0,0,0);
535 if (bytes == 0) {
536 goto loopdone;
537 }
538 }
539
540 /*
541 * bmap the file to find out the blkno to read from and
542 * how much we can read in one i/o. if bmap returns an error,
543 * skip the rest of the top-level i/o.
544 */
545
546 lbn = offset >> fs_bshift;
547 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
548 if (error) {
549 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
550 lbn,error,0,0);
551 skipbytes += bytes;
552 bytes = 0;
553 goto loopdone;
554 }
555
556 /*
557 * see how many pages can be read with this i/o.
558 * reduce the i/o size if necessary to avoid
559 * overwriting pages with valid data.
560 */
561
562 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
563 bytes);
564 if (offset + iobytes > round_page(offset)) {
565 int pcount;
566
567 pcount = 1;
568 while (pidx + pcount < npages &&
569 pgs[pidx + pcount]->flags & PG_FAKE) {
570 pcount++;
571 }
572 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
573 (offset - trunc_page(offset)));
574 }
575
576 /*
577 * if this block isn't allocated, zero it instead of
578 * reading it. unless we are going to allocate blocks,
579 * mark the pages we zeroed PG_HOLE.
580 */
581
582 if (blkno == (daddr_t)-1) {
583 int holepages = (round_page(offset + iobytes) -
584 trunc_page(offset)) >> PAGE_SHIFT;
585 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
586
587 sawhole = true;
588 memset((char *)kva + (offset - startoffset), 0,
589 iobytes);
590 skipbytes += iobytes;
591
592 mutex_enter(uobj->vmobjlock);
593 for (i = 0; i < holepages; i++) {
594 #if 0
595 if (memwrite) {
596 uvm_pagemarkdirty(pgs[pidx + i],
597 UVM_PAGE_STATUS_DIRTY);
598 }
599 #endif
600 if (!blockalloc) {
601 pgs[pidx + i]->flags |= PG_HOLE;
602 }
603 }
604 mutex_exit(uobj->vmobjlock);
605 continue;
606 }
607
608 /*
609 * allocate a sub-buf for this piece of the i/o
610 * (or just use mbp if there's only 1 piece),
611 * and start it going.
612 */
613
614 if (offset == startoffset && iobytes == bytes) {
615 bp = mbp;
616 } else {
617 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
618 vp, bp, vp->v_numoutput, 0);
619 bp = getiobuf(vp, true);
620 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
621 }
622 bp->b_lblkno = 0;
623
624 /* adjust physical blkno for partial blocks */
625 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
626 dev_bshift);
627
628 UVMHIST_LOG(ubchist,
629 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
630 bp, offset, bp->b_bcount, bp->b_blkno);
631
632 VOP_STRATEGY(devvp, bp);
633 }
634
635 loopdone:
636 nestiobuf_done(mbp, skipbytes, error);
637 if (async) {
638 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
639 if (!glocked) {
640 genfs_node_unlock(vp);
641 }
642 error = 0;
643 goto out_err_free;
644 }
645 if (bp != NULL) {
646 error = biowait(mbp);
647 }
648
649 /* Remove the mapping (make KVA available as soon as possible) */
650 uvm_pagermapout(kva, npages);
651
652 /*
653 * if this we encountered a hole then we have to do a little more work.
654 * if blockalloc is false, we marked the page PG_HOLE so that future
655 * write accesses to the page will fault again.
656 * if blockalloc is true, we must make sure that the backing store for
657 * the page is completely allocated while the pages are locked.
658 */
659
660 if (!error && sawhole && blockalloc) {
661 error = GOP_ALLOC(vp, startoffset,
662 npages << PAGE_SHIFT, 0, cred);
663 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
664 startoffset, npages << PAGE_SHIFT, error,0);
665 if (!error) {
666 mutex_enter(uobj->vmobjlock);
667 for (i = 0; i < npages; i++) {
668 struct vm_page *pg = pgs[i];
669
670 if (pg == NULL) {
671 continue;
672 }
673 pg->flags &= ~PG_HOLE;
674 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
675 UVMHIST_LOG(ubchist, "mark dirty pg %p",
676 pg,0,0,0);
677 }
678 mutex_exit(uobj->vmobjlock);
679 }
680 }
681 if (!glocked) {
682 genfs_node_unlock(vp);
683 }
684
685 putiobuf(mbp);
686 }
687
688 mutex_enter(uobj->vmobjlock);
689
690 /*
691 * we're almost done! release the pages...
692 * for errors, we free the pages.
693 * otherwise we activate them and mark them as valid and clean.
694 * also, unbusy pages that were not actually requested.
695 */
696
697 if (error) {
698 for (i = 0; i < npages; i++) {
699 struct vm_page *pg = pgs[i];
700
701 if (pg == NULL) {
702 continue;
703 }
704 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
705 pg, pg->flags, 0,0);
706 if (pg->flags & PG_FAKE) {
707 pg->flags |= PG_RELEASED;
708 }
709 }
710 mutex_enter(&uvm_pageqlock);
711 uvm_page_unbusy(pgs, npages);
712 mutex_exit(&uvm_pageqlock);
713 mutex_exit(uobj->vmobjlock);
714 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
715 goto out_err_free;
716 }
717
718 out:
719 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
720 error = 0;
721 mutex_enter(&uvm_pageqlock);
722 for (i = 0; i < npages; i++) {
723 struct vm_page *pg = pgs[i];
724 if (pg == NULL) {
725 continue;
726 }
727 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
728 pg, pg->flags, 0,0);
729 if (pg->flags & PG_FAKE && !overwrite) {
730 /*
731 * we've read page's contents from the backing storage.
732 *
733 * for a read fault, we keep them CLEAN.
734 */
735 KASSERT(uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN);
736 pg->flags &= ~PG_FAKE;
737 }
738 KASSERT(!blockalloc || (pg->flags & PG_HOLE) == 0);
739 if (i < ridx || i >= ridx + orignmempages || async) {
740 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
741 pg, pg->offset,0,0);
742 KASSERT(!overwrite);
743 if (pg->flags & PG_WANTED) {
744 wakeup(pg);
745 }
746 if (pg->flags & PG_FAKE && overwrite) {
747 uvm_pagezero(pg);
748 }
749 if (pg->flags & PG_RELEASED) {
750 uvm_pagefree(pg);
751 continue;
752 }
753 uvm_pageenqueue(pg);
754 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
755 UVM_PAGE_OWN(pg, NULL);
756 } else if (memwrite && !overwrite &&
757 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
758 /*
759 * for a write fault, start dirtiness tracking of
760 * requested pages.
761 */
762 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
763 }
764 }
765 mutex_exit(&uvm_pageqlock);
766 if (memwrite) {
767 genfs_markdirty(vp);
768 }
769 mutex_exit(uobj->vmobjlock);
770 if (ap->a_m != NULL) {
771 memcpy(ap->a_m, &pgs[ridx],
772 orignmempages * sizeof(struct vm_page *));
773 }
774
775 out_err_free:
776 if (pgs != NULL && pgs != pgs_onstack)
777 kmem_free(pgs, pgs_size);
778 out_err:
779 if (has_trans_wapbl) {
780 if (need_wapbl)
781 WAPBL_END(vp->v_mount);
782 fstrans_done(vp->v_mount);
783 }
784 return error;
785 }
786
787 /*
788 * generic VM putpages routine.
789 * Write the given range of pages to backing store.
790 *
791 * => "offhi == 0" means flush all pages at or after "offlo".
792 * => object should be locked by caller. we return with the
793 * object unlocked.
794 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
795 * thus, a caller might want to unlock higher level resources
796 * (e.g. vm_map) before calling flush.
797 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
798 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
799 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
800 * that new pages are inserted on the tail end of the list. thus,
801 * we can make a complete pass through the object in one go by starting
802 * at the head and working towards the tail (new pages are put in
803 * front of us).
804 * => NOTE: we are allowed to lock the page queues, so the caller
805 * must not be holding the page queue lock.
806 *
807 * note on "cleaning" object and PG_BUSY pages:
808 * this routine is holding the lock on the object. the only time
809 * that it can run into a PG_BUSY page that it does not own is if
810 * some other process has started I/O on the page (e.g. either
811 * a pagein, or a pageout). if the PG_BUSY page is being paged
812 * in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
813 * one has had a chance to modify it yet. if the PG_BUSY page is
814 * being paged out then it means that someone else has already started
815 * cleaning the page for us (how nice!). in this case, if we
816 * have syncio specified, then after we make our pass through the
817 * object we need to wait for the other PG_BUSY pages to clear
818 * off (i.e. we need to do an iosync). also note that once a
819 * page is PG_BUSY it must stay in its object until it is un-busyed.
820 *
821 * note on page traversal:
822 * we can traverse the pages in an object either by going down the
823 * linked list in "uobj->memq", or we can go over the address range
824 * by page doing hash table lookups for each address. depending
825 * on how many pages are in the object it may be cheaper to do one
826 * or the other. we set "by_list" to true if we are using memq.
827 * if the cost of a hash lookup was equal to the cost of the list
828 * traversal we could compare the number of pages in the start->stop
829 * range to the total number of pages in the object. however, it
830 * seems that a hash table lookup is more expensive than the linked
831 * list traversal, so we multiply the number of pages in the
832 * range by an estimate of the relatively higher cost of the hash lookup.
833 */
834
835 int
836 genfs_putpages(void *v)
837 {
838 struct vop_putpages_args /* {
839 struct vnode *a_vp;
840 voff_t a_offlo;
841 voff_t a_offhi;
842 int a_flags;
843 } */ * const ap = v;
844
845 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
846 ap->a_flags, NULL);
847 }
848
849 int
850 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
851 int origflags, struct vm_page **busypg)
852 {
853 struct uvm_object * const uobj = &vp->v_uobj;
854 kmutex_t * const slock = uobj->vmobjlock;
855 off_t off;
856 /* Even for strange MAXPHYS, the shift rounds down to a page */
857 #define maxpages (MAXPHYS >> PAGE_SHIFT)
858 int i, error;
859 unsigned int npages, nback;
860 int freeflag;
861 struct vm_page *pgs[maxpages], *pg;
862 struct uvm_page_array a;
863 bool wasclean, needs_clean, yld;
864 bool async = (origflags & PGO_SYNCIO) == 0;
865 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
866 struct lwp * const l = curlwp ? curlwp : &lwp0;
867 int flags;
868 bool modified; /* if we write out any pages */
869 bool need_wapbl;
870 bool has_trans;
871 bool tryclean; /* try to pull off from the syncer's list */
872 bool onworklst;
873 const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
874
875 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
876
877 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
878 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
879 KASSERT(startoff < endoff || endoff == 0);
880
881 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
882 vp, uobj->uo_npages, startoff, endoff - startoff);
883
884 has_trans = false;
885 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
886 (origflags & PGO_JOURNALLOCKED) == 0);
887
888 retry:
889 modified = false;
890 flags = origflags;
891 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
892 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
893
894 /*
895 * shortcut if we have no pages to process.
896 */
897
898 if (uobj->uo_npages == 0 || (dirtyonly &&
899 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
900 UVM_PAGE_DIRTY_TAG))) {
901 if (vp->v_iflag & VI_ONWORKLST) {
902 vp->v_iflag &= ~VI_WRMAPDIRTY;
903 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
904 vn_syncer_remove_from_worklist(vp);
905 }
906 if (has_trans) {
907 if (need_wapbl)
908 WAPBL_END(vp->v_mount);
909 fstrans_done(vp->v_mount);
910 }
911 mutex_exit(slock);
912 return (0);
913 }
914
915 /*
916 * the vnode has pages, set up to process the request.
917 */
918
919 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
920 mutex_exit(slock);
921 if (pagedaemon) {
922 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
923 if (error)
924 return error;
925 } else
926 fstrans_start(vp->v_mount, FSTRANS_LAZY);
927 if (need_wapbl) {
928 error = WAPBL_BEGIN(vp->v_mount);
929 if (error) {
930 fstrans_done(vp->v_mount);
931 return error;
932 }
933 }
934 has_trans = true;
935 mutex_enter(slock);
936 goto retry;
937 }
938
939 error = 0;
940 wasclean = (vp->v_numoutput == 0);
941 off = startoff;
942 if (endoff == 0 || flags & PGO_ALLPAGES) {
943 endoff = trunc_page(LLONG_MAX);
944 }
945
946 /*
947 * if this vnode is known not to have dirty pages,
948 * don't bother to clean it out.
949 */
950
951 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
952 #if !defined(DEBUG)
953 if (dirtyonly) {
954 goto skip_scan;
955 }
956 #endif /* !defined(DEBUG) */
957 flags &= ~PGO_CLEANIT;
958 }
959
960 /*
961 * start the loop.
962 */
963
964 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
965 tryclean = true;
966 uvm_page_array_init(&a);
967 for (;;) {
968 bool protected;
969
970 pg = uvm_page_array_fill_and_peek(&a, uobj, off, 0,
971 dirtyonly ? UVM_PAGE_ARRAY_FILL_DIRTYONLY : 0);
972 if (pg == NULL) {
973 break;
974 }
975
976 /*
977 * if the current page is not interesting, move on to the next.
978 */
979
980 KASSERT(pg->uobject == uobj);
981 KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
982 (pg->flags & (PG_BUSY)) != 0);
983 KASSERT(pg->offset >= startoff);
984 KASSERT(pg->offset >= off);
985 KASSERT(!dirtyonly ||
986 uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN);
987 if (pg->offset >= endoff) {
988 break;
989 }
990 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
991 KASSERT((pg->flags & PG_BUSY) != 0);
992 wasclean = false;
993 off = pg->offset + PAGE_SIZE;
994 uvm_page_array_advance(&a);
995 continue;
996 }
997
998 /*
999 * if the current page needs to be cleaned and it's busy,
1000 * wait for it to become unbusy.
1001 */
1002
1003 yld = (l->l_cpu->ci_schedstate.spc_flags &
1004 SPCF_SHOULDYIELD) && !pagedaemon;
1005 if (pg->flags & PG_BUSY || yld) {
1006 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1007 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1008 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1009 error = EDEADLK;
1010 if (busypg != NULL)
1011 *busypg = pg;
1012 break;
1013 }
1014 if (pagedaemon) {
1015 /*
1016 * someone has taken the page while we
1017 * dropped the lock for fstrans_start.
1018 */
1019 break;
1020 }
1021 off = pg->offset; /* visit this page again */
1022 if ((pg->flags & PG_BUSY) != 0) {
1023 pg->flags |= PG_WANTED;
1024 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1025 } else {
1026 KASSERT(yld);
1027 mutex_exit(slock);
1028 preempt();
1029 }
1030 /*
1031 * as we dropped the object lock, our cached pages can
1032 * be stale.
1033 */
1034 uvm_page_array_clear(&a);
1035 mutex_enter(slock);
1036 continue;
1037 }
1038
1039 off = pg->offset + PAGE_SIZE;
1040 uvm_page_array_advance(&a);
1041
1042 /*
1043 * if we're freeing, remove all mappings of the page now.
1044 * if we're cleaning, check if the page is needs to be cleaned.
1045 */
1046
1047 protected = false;
1048 if (flags & PGO_FREE) {
1049 pmap_page_protect(pg, VM_PROT_NONE);
1050 protected = true;
1051 } else if (flags & PGO_CLEANIT) {
1052
1053 /*
1054 * if we still have some hope to pull this vnode off
1055 * from the syncer queue, write-protect the page.
1056 */
1057
1058 if (tryclean && wasclean) {
1059
1060 /*
1061 * uobj pages get wired only by uvm_fault
1062 * where uobj is locked.
1063 */
1064
1065 if (pg->wire_count == 0) {
1066 pmap_page_protect(pg,
1067 VM_PROT_READ|VM_PROT_EXECUTE);
1068 protected = true;
1069 } else {
1070 /*
1071 * give up.
1072 */
1073 tryclean = false;
1074 }
1075 }
1076 }
1077
1078 if (flags & PGO_CLEANIT) {
1079 needs_clean = uvm_pagecheckdirty(pg, protected);
1080 } else {
1081 needs_clean = false;
1082 }
1083
1084 /*
1085 * if we're cleaning, build a cluster.
1086 * the cluster will consist of pages which are currently dirty.
1087 * if not cleaning, just operate on the one page.
1088 */
1089
1090 if (needs_clean) {
1091 unsigned int nforw;
1092 unsigned int fpflags;
1093
1094 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1095 wasclean = false;
1096 memset(pgs, 0, sizeof(pgs));
1097 pg->flags |= PG_BUSY;
1098 UVM_PAGE_OWN(pg, "genfs_putpages");
1099
1100 /*
1101 * XXX PG_PAGER1 incompatibility check.
1102 * this is a kludge for nfs.
1103 * probably it's better to make PG_NEEDCOMMIT a first
1104 * level citizen for uvm/genfs.
1105 */
1106 fpflags = UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY;
1107 if ((pg->flags & PG_PAGER1) != 0) {
1108 fpflags |= UFP_ONLYPAGER1;
1109 } else {
1110 fpflags |= UFP_NOPAGER1;
1111 }
1112
1113 /*
1114 * first look backward.
1115 */
1116 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1117 nback = npages;
1118 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1119 NULL, fpflags | UFP_BACKWARD);
1120 if (nback) {
1121 memmove(&pgs[0], &pgs[npages - nback],
1122 nback * sizeof(pgs[0]));
1123 if (npages - nback < nback)
1124 memset(&pgs[nback], 0,
1125 (npages - nback) * sizeof(pgs[0]));
1126 else
1127 memset(&pgs[npages - nback], 0,
1128 nback * sizeof(pgs[0]));
1129 }
1130
1131 /*
1132 * then plug in our page of interest.
1133 */
1134
1135 pgs[nback] = pg;
1136
1137 /*
1138 * then look forward to fill in the remaining space in
1139 * the array of pages.
1140 *
1141 * pass our cached array of pages so that hopefully
1142 * uvn_findpages can find some good pages in it.
1143 */
1144
1145 nforw = maxpages - nback - 1;
1146 uvn_findpages(uobj, pg->offset + PAGE_SIZE,
1147 &nforw, &pgs[nback + 1], &a, fpflags);
1148 npages = nback + 1 + nforw;
1149 } else {
1150 pgs[0] = pg;
1151 npages = 1;
1152 nback = 0;
1153 }
1154
1155 /*
1156 * apply FREE or DEACTIVATE options if requested.
1157 */
1158
1159 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1160 mutex_enter(&uvm_pageqlock);
1161 }
1162 for (i = 0; i < npages; i++) {
1163 struct vm_page *tpg = pgs[i];
1164
1165 KASSERT(tpg->uobject == uobj);
1166 if (tpg->offset < startoff || tpg->offset >= endoff)
1167 continue;
1168 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1169 uvm_pagedeactivate(tpg);
1170 } else if (flags & PGO_FREE) {
1171 pmap_page_protect(tpg, VM_PROT_NONE);
1172 if (tpg->flags & PG_BUSY) {
1173 tpg->flags |= freeflag;
1174 if (pagedaemon) {
1175 uvm_pageout_start(1);
1176 uvm_pagedequeue(tpg);
1177 }
1178 } else {
1179
1180 /*
1181 * ``page is not busy''
1182 * implies that npages is 1
1183 * and needs_clean is false.
1184 */
1185
1186 KASSERT(npages == 1);
1187 KASSERT(!needs_clean);
1188 KASSERT(pg == tpg);
1189 KASSERT(off == tpg->offset + PAGE_SIZE);
1190 uvm_pagefree(tpg);
1191 if (pagedaemon)
1192 uvmexp.pdfreed++;
1193 }
1194 }
1195 }
1196 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1197 mutex_exit(&uvm_pageqlock);
1198 }
1199 if (needs_clean) {
1200 KASSERT(off == pg->offset + PAGE_SIZE);
1201 off = pg->offset + ((npages - nback) << PAGE_SHIFT);
1202 KASSERT(pgs[nback] == pg);
1203 KASSERT(off == pgs[npages - 1]->offset + PAGE_SIZE);
1204 mutex_exit(slock);
1205
1206 /*
1207 * start the i/o.
1208 *
1209 * as we dropped the object lock, our cached pages can
1210 * be stale.
1211 */
1212 modified = true;
1213 uvm_page_array_clear(&a);
1214 error = GOP_WRITE(vp, pgs, npages, flags);
1215 mutex_enter(slock);
1216 if (error) {
1217 break;
1218 }
1219 }
1220 }
1221 uvm_page_array_fini(&a);
1222
1223 /*
1224 * update ctime/mtime if the modification we started writing out might
1225 * be from mmap'ed write.
1226 *
1227 * this is necessary when an application keeps a file mmaped and
1228 * repeatedly modifies it via the window. note that, because we
1229 * don't always write-protect pages when cleaning, such modifications
1230 * might not involve any page faults.
1231 */
1232
1233 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1234 (vp->v_type != VBLK ||
1235 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1236 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1237 }
1238
1239 /*
1240 * if we no longer have any possibly dirty pages, take us off the
1241 * syncer list.
1242 */
1243
1244 if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
1245 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
1246 UVM_PAGE_DIRTY_TAG)) {
1247 vp->v_iflag &= ~VI_WRMAPDIRTY;
1248 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1249 vn_syncer_remove_from_worklist(vp);
1250 }
1251
1252 #if !defined(DEBUG)
1253 skip_scan:
1254 #endif /* !defined(DEBUG) */
1255
1256 /*
1257 * if we started any i/o and we're doing sync i/o, wait for all writes
1258 * to finish.
1259 */
1260
1261 if (!wasclean && !async) {
1262 while (vp->v_numoutput != 0)
1263 cv_wait(&vp->v_cv, slock);
1264 }
1265 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1266 mutex_exit(slock);
1267
1268 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1269 /*
1270 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1271 * retrying is not a big deal because, in many cases,
1272 * uobj->uo_npages is already 0 here.
1273 */
1274 mutex_enter(slock);
1275 goto retry;
1276 }
1277
1278 if (has_trans) {
1279 if (need_wapbl)
1280 WAPBL_END(vp->v_mount);
1281 fstrans_done(vp->v_mount);
1282 }
1283
1284 return (error);
1285 }
1286
1287 int
1288 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1289 {
1290 off_t off;
1291 vaddr_t kva;
1292 size_t len;
1293 int error;
1294 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1295
1296 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1297 vp, pgs, npages, flags);
1298
1299 off = pgs[0]->offset;
1300 kva = uvm_pagermapin(pgs, npages,
1301 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1302 len = npages << PAGE_SHIFT;
1303
1304 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1305 uvm_aio_biodone);
1306
1307 return error;
1308 }
1309
1310 int
1311 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1312 {
1313 off_t off;
1314 vaddr_t kva;
1315 size_t len;
1316 int error;
1317 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1318
1319 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1320 vp, pgs, npages, flags);
1321
1322 off = pgs[0]->offset;
1323 kva = uvm_pagermapin(pgs, npages,
1324 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1325 len = npages << PAGE_SHIFT;
1326
1327 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1328 uvm_aio_biodone);
1329
1330 return error;
1331 }
1332
1333 /*
1334 * Backend routine for doing I/O to vnode pages. Pages are already locked
1335 * and mapped into kernel memory. Here we just look up the underlying
1336 * device block addresses and call the strategy routine.
1337 */
1338
1339 static int
1340 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1341 enum uio_rw rw, void (*iodone)(struct buf *))
1342 {
1343 int s, error;
1344 int fs_bshift, dev_bshift;
1345 off_t eof, offset, startoffset;
1346 size_t bytes, iobytes, skipbytes;
1347 struct buf *mbp, *bp;
1348 const bool async = (flags & PGO_SYNCIO) == 0;
1349 const bool iowrite = rw == UIO_WRITE;
1350 const int brw = iowrite ? B_WRITE : B_READ;
1351 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1352
1353 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1354 vp, kva, len, flags);
1355
1356 KASSERT(vp->v_size <= vp->v_writesize);
1357 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1358 if (vp->v_type != VBLK) {
1359 fs_bshift = vp->v_mount->mnt_fs_bshift;
1360 dev_bshift = vp->v_mount->mnt_dev_bshift;
1361 } else {
1362 fs_bshift = DEV_BSHIFT;
1363 dev_bshift = DEV_BSHIFT;
1364 }
1365 error = 0;
1366 startoffset = off;
1367 bytes = MIN(len, eof - startoffset);
1368 skipbytes = 0;
1369 KASSERT(bytes != 0);
1370
1371 if (iowrite) {
1372 mutex_enter(vp->v_interlock);
1373 vp->v_numoutput += 2;
1374 mutex_exit(vp->v_interlock);
1375 }
1376 mbp = getiobuf(vp, true);
1377 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1378 vp, mbp, vp->v_numoutput, bytes);
1379 mbp->b_bufsize = len;
1380 mbp->b_data = (void *)kva;
1381 mbp->b_resid = mbp->b_bcount = bytes;
1382 mbp->b_cflags = BC_BUSY | BC_AGE;
1383 if (async) {
1384 mbp->b_flags = brw | B_ASYNC;
1385 mbp->b_iodone = iodone;
1386 } else {
1387 mbp->b_flags = brw;
1388 mbp->b_iodone = NULL;
1389 }
1390 if (curlwp == uvm.pagedaemon_lwp)
1391 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1392 else if (async)
1393 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1394 else
1395 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1396
1397 bp = NULL;
1398 for (offset = startoffset;
1399 bytes > 0;
1400 offset += iobytes, bytes -= iobytes) {
1401 int run;
1402 daddr_t lbn, blkno;
1403 struct vnode *devvp;
1404
1405 /*
1406 * bmap the file to find out the blkno to read from and
1407 * how much we can read in one i/o. if bmap returns an error,
1408 * skip the rest of the top-level i/o.
1409 */
1410
1411 lbn = offset >> fs_bshift;
1412 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1413 if (error) {
1414 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1415 lbn,error,0,0);
1416 skipbytes += bytes;
1417 bytes = 0;
1418 goto loopdone;
1419 }
1420
1421 /*
1422 * see how many pages can be read with this i/o.
1423 * reduce the i/o size if necessary to avoid
1424 * overwriting pages with valid data.
1425 */
1426
1427 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1428 bytes);
1429
1430 /*
1431 * if this block isn't allocated, zero it instead of
1432 * reading it. unless we are going to allocate blocks,
1433 * mark the pages we zeroed PG_RDONLY.
1434 */
1435
1436 if (blkno == (daddr_t)-1) {
1437 if (!iowrite) {
1438 memset((char *)kva + (offset - startoffset), 0,
1439 iobytes);
1440 }
1441 skipbytes += iobytes;
1442 continue;
1443 }
1444
1445 /*
1446 * allocate a sub-buf for this piece of the i/o
1447 * (or just use mbp if there's only 1 piece),
1448 * and start it going.
1449 */
1450
1451 if (offset == startoffset && iobytes == bytes) {
1452 bp = mbp;
1453 } else {
1454 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1455 vp, bp, vp->v_numoutput, 0);
1456 bp = getiobuf(vp, true);
1457 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1458 }
1459 bp->b_lblkno = 0;
1460
1461 /* adjust physical blkno for partial blocks */
1462 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1463 dev_bshift);
1464
1465 UVMHIST_LOG(ubchist,
1466 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1467 bp, offset, bp->b_bcount, bp->b_blkno);
1468
1469 VOP_STRATEGY(devvp, bp);
1470 }
1471
1472 loopdone:
1473 if (skipbytes) {
1474 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1475 }
1476 nestiobuf_done(mbp, skipbytes, error);
1477 if (async) {
1478 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1479 return (0);
1480 }
1481 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1482 error = biowait(mbp);
1483 s = splbio();
1484 (*iodone)(mbp);
1485 splx(s);
1486 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1487 return (error);
1488 }
1489
1490 int
1491 genfs_compat_getpages(void *v)
1492 {
1493 struct vop_getpages_args /* {
1494 struct vnode *a_vp;
1495 voff_t a_offset;
1496 struct vm_page **a_m;
1497 int *a_count;
1498 int a_centeridx;
1499 vm_prot_t a_access_type;
1500 int a_advice;
1501 int a_flags;
1502 } */ *ap = v;
1503
1504 off_t origoffset;
1505 struct vnode *vp = ap->a_vp;
1506 struct uvm_object *uobj = &vp->v_uobj;
1507 struct vm_page *pg, **pgs;
1508 vaddr_t kva;
1509 int i, error, orignpages, npages;
1510 struct iovec iov;
1511 struct uio uio;
1512 kauth_cred_t cred = curlwp->l_cred;
1513 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1514
1515 error = 0;
1516 origoffset = ap->a_offset;
1517 orignpages = *ap->a_count;
1518 pgs = ap->a_m;
1519
1520 if (ap->a_flags & PGO_LOCKED) {
1521 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1522 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1523
1524 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1525 if (error == 0 && memwrite) {
1526 genfs_markdirty(vp);
1527 }
1528 return error;
1529 }
1530 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1531 mutex_exit(uobj->vmobjlock);
1532 return EINVAL;
1533 }
1534 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1535 mutex_exit(uobj->vmobjlock);
1536 return 0;
1537 }
1538 npages = orignpages;
1539 uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1540 mutex_exit(uobj->vmobjlock);
1541 kva = uvm_pagermapin(pgs, npages,
1542 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1543 for (i = 0; i < npages; i++) {
1544 pg = pgs[i];
1545 if ((pg->flags & PG_FAKE) == 0) {
1546 continue;
1547 }
1548 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1549 iov.iov_len = PAGE_SIZE;
1550 uio.uio_iov = &iov;
1551 uio.uio_iovcnt = 1;
1552 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1553 uio.uio_rw = UIO_READ;
1554 uio.uio_resid = PAGE_SIZE;
1555 UIO_SETUP_SYSSPACE(&uio);
1556 /* XXX vn_lock */
1557 error = VOP_READ(vp, &uio, 0, cred);
1558 if (error) {
1559 break;
1560 }
1561 if (uio.uio_resid) {
1562 memset(iov.iov_base, 0, uio.uio_resid);
1563 }
1564 }
1565 uvm_pagermapout(kva, npages);
1566 mutex_enter(uobj->vmobjlock);
1567 mutex_enter(&uvm_pageqlock);
1568 for (i = 0; i < npages; i++) {
1569 pg = pgs[i];
1570 if (error && (pg->flags & PG_FAKE) != 0) {
1571 pg->flags |= PG_RELEASED;
1572 } else {
1573 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1574 uvm_pageactivate(pg);
1575 }
1576 }
1577 if (error) {
1578 uvm_page_unbusy(pgs, npages);
1579 }
1580 mutex_exit(&uvm_pageqlock);
1581 if (error == 0 && memwrite) {
1582 genfs_markdirty(vp);
1583 }
1584 mutex_exit(uobj->vmobjlock);
1585 return error;
1586 }
1587
1588 int
1589 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1590 int flags)
1591 {
1592 off_t offset;
1593 struct iovec iov;
1594 struct uio uio;
1595 kauth_cred_t cred = curlwp->l_cred;
1596 struct buf *bp;
1597 vaddr_t kva;
1598 int error;
1599
1600 offset = pgs[0]->offset;
1601 kva = uvm_pagermapin(pgs, npages,
1602 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1603
1604 iov.iov_base = (void *)kva;
1605 iov.iov_len = npages << PAGE_SHIFT;
1606 uio.uio_iov = &iov;
1607 uio.uio_iovcnt = 1;
1608 uio.uio_offset = offset;
1609 uio.uio_rw = UIO_WRITE;
1610 uio.uio_resid = npages << PAGE_SHIFT;
1611 UIO_SETUP_SYSSPACE(&uio);
1612 /* XXX vn_lock */
1613 error = VOP_WRITE(vp, &uio, 0, cred);
1614
1615 mutex_enter(vp->v_interlock);
1616 vp->v_numoutput++;
1617 mutex_exit(vp->v_interlock);
1618
1619 bp = getiobuf(vp, true);
1620 bp->b_cflags = BC_BUSY | BC_AGE;
1621 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1622 bp->b_data = (char *)kva;
1623 bp->b_bcount = npages << PAGE_SHIFT;
1624 bp->b_bufsize = npages << PAGE_SHIFT;
1625 bp->b_resid = 0;
1626 bp->b_error = error;
1627 uvm_aio_aiodone(bp);
1628 return (error);
1629 }
1630
1631 /*
1632 * Process a uio using direct I/O. If we reach a part of the request
1633 * which cannot be processed in this fashion for some reason, just return.
1634 * The caller must handle some additional part of the request using
1635 * buffered I/O before trying direct I/O again.
1636 */
1637
1638 void
1639 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1640 {
1641 struct vmspace *vs;
1642 struct iovec *iov;
1643 vaddr_t va;
1644 size_t len;
1645 const int mask = DEV_BSIZE - 1;
1646 int error;
1647 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1648 (ioflag & IO_JOURNALLOCKED) == 0);
1649
1650 /*
1651 * We only support direct I/O to user space for now.
1652 */
1653
1654 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1655 return;
1656 }
1657
1658 /*
1659 * If the vnode is mapped, we would need to get the getpages lock
1660 * to stabilize the bmap, but then we would get into trouble while
1661 * locking the pages if the pages belong to this same vnode (or a
1662 * multi-vnode cascade to the same effect). Just fall back to
1663 * buffered I/O if the vnode is mapped to avoid this mess.
1664 */
1665
1666 if (vp->v_vflag & VV_MAPPED) {
1667 return;
1668 }
1669
1670 if (need_wapbl) {
1671 error = WAPBL_BEGIN(vp->v_mount);
1672 if (error)
1673 return;
1674 }
1675
1676 /*
1677 * Do as much of the uio as possible with direct I/O.
1678 */
1679
1680 vs = uio->uio_vmspace;
1681 while (uio->uio_resid) {
1682 iov = uio->uio_iov;
1683 if (iov->iov_len == 0) {
1684 uio->uio_iov++;
1685 uio->uio_iovcnt--;
1686 continue;
1687 }
1688 va = (vaddr_t)iov->iov_base;
1689 len = MIN(iov->iov_len, genfs_maxdio);
1690 len &= ~mask;
1691
1692 /*
1693 * If the next chunk is smaller than DEV_BSIZE or extends past
1694 * the current EOF, then fall back to buffered I/O.
1695 */
1696
1697 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1698 break;
1699 }
1700
1701 /*
1702 * Check alignment. The file offset must be at least
1703 * sector-aligned. The exact constraint on memory alignment
1704 * is very hardware-dependent, but requiring sector-aligned
1705 * addresses there too is safe.
1706 */
1707
1708 if (uio->uio_offset & mask || va & mask) {
1709 break;
1710 }
1711 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1712 uio->uio_rw);
1713 if (error) {
1714 break;
1715 }
1716 iov->iov_base = (char *)iov->iov_base + len;
1717 iov->iov_len -= len;
1718 uio->uio_offset += len;
1719 uio->uio_resid -= len;
1720 }
1721
1722 if (need_wapbl)
1723 WAPBL_END(vp->v_mount);
1724 }
1725
1726 /*
1727 * Iodone routine for direct I/O. We don't do much here since the request is
1728 * always synchronous, so the caller will do most of the work after biowait().
1729 */
1730
1731 static void
1732 genfs_dio_iodone(struct buf *bp)
1733 {
1734
1735 KASSERT((bp->b_flags & B_ASYNC) == 0);
1736 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1737 mutex_enter(bp->b_objlock);
1738 vwakeup(bp);
1739 mutex_exit(bp->b_objlock);
1740 }
1741 putiobuf(bp);
1742 }
1743
1744 /*
1745 * Process one chunk of a direct I/O request.
1746 */
1747
1748 static int
1749 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1750 off_t off, enum uio_rw rw)
1751 {
1752 struct vm_map *map;
1753 struct pmap *upm, *kpm;
1754 size_t klen = round_page(uva + len) - trunc_page(uva);
1755 off_t spoff, epoff;
1756 vaddr_t kva, puva;
1757 paddr_t pa;
1758 vm_prot_t prot;
1759 int error, rv, poff, koff;
1760 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1761 (rw == UIO_WRITE ? PGO_FREE : 0);
1762
1763 /*
1764 * For writes, verify that this range of the file already has fully
1765 * allocated backing store. If there are any holes, just punt and
1766 * make the caller take the buffered write path.
1767 */
1768
1769 if (rw == UIO_WRITE) {
1770 daddr_t lbn, elbn, blkno;
1771 int bsize, bshift, run;
1772
1773 bshift = vp->v_mount->mnt_fs_bshift;
1774 bsize = 1 << bshift;
1775 lbn = off >> bshift;
1776 elbn = (off + len + bsize - 1) >> bshift;
1777 while (lbn < elbn) {
1778 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1779 if (error) {
1780 return error;
1781 }
1782 if (blkno == (daddr_t)-1) {
1783 return ENOSPC;
1784 }
1785 lbn += 1 + run;
1786 }
1787 }
1788
1789 /*
1790 * Flush any cached pages for parts of the file that we're about to
1791 * access. If we're writing, invalidate pages as well.
1792 */
1793
1794 spoff = trunc_page(off);
1795 epoff = round_page(off + len);
1796 mutex_enter(vp->v_interlock);
1797 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1798 if (error) {
1799 return error;
1800 }
1801
1802 /*
1803 * Wire the user pages and remap them into kernel memory.
1804 */
1805
1806 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1807 error = uvm_vslock(vs, (void *)uva, len, prot);
1808 if (error) {
1809 return error;
1810 }
1811
1812 map = &vs->vm_map;
1813 upm = vm_map_pmap(map);
1814 kpm = vm_map_pmap(kernel_map);
1815 puva = trunc_page(uva);
1816 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1817 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1818 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1819 rv = pmap_extract(upm, puva + poff, &pa);
1820 KASSERT(rv);
1821 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1822 }
1823 pmap_update(kpm);
1824
1825 /*
1826 * Do the I/O.
1827 */
1828
1829 koff = uva - trunc_page(uva);
1830 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1831 genfs_dio_iodone);
1832
1833 /*
1834 * Tear down the kernel mapping.
1835 */
1836
1837 pmap_kremove(kva, klen);
1838 pmap_update(kpm);
1839 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1840
1841 /*
1842 * Unwire the user pages.
1843 */
1844
1845 uvm_vsunlock(vs, (void *)uva, len);
1846 return error;
1847 }
1848