Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.53.8.1
      1 /*	$NetBSD: genfs_io.c,v 1.53.8.1 2012/05/07 03:01:12 riz Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53.8.1 2012/05/07 03:01:12 riz Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 
     47 #include <miscfs/genfs/genfs.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <miscfs/specfs/specdev.h>
     50 #include <miscfs/syncfs/syncfs.h>
     51 
     52 #include <uvm/uvm.h>
     53 #include <uvm/uvm_pager.h>
     54 
     55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     56     off_t, enum uio_rw);
     57 static void genfs_dio_iodone(struct buf *);
     58 
     59 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     60     void (*)(struct buf *));
     61 static void genfs_rel_pages(struct vm_page **, int);
     62 static void genfs_markdirty(struct vnode *);
     63 
     64 int genfs_maxdio = MAXPHYS;
     65 
     66 static void
     67 genfs_rel_pages(struct vm_page **pgs, int npages)
     68 {
     69 	int i;
     70 
     71 	for (i = 0; i < npages; i++) {
     72 		struct vm_page *pg = pgs[i];
     73 
     74 		if (pg == NULL || pg == PGO_DONTCARE)
     75 			continue;
     76 		if (pg->flags & PG_FAKE) {
     77 			pg->flags |= PG_RELEASED;
     78 		}
     79 	}
     80 	mutex_enter(&uvm_pageqlock);
     81 	uvm_page_unbusy(pgs, npages);
     82 	mutex_exit(&uvm_pageqlock);
     83 }
     84 
     85 static void
     86 genfs_markdirty(struct vnode *vp)
     87 {
     88 	struct genfs_node * const gp = VTOG(vp);
     89 
     90 	KASSERT(mutex_owned(vp->v_interlock));
     91 	gp->g_dirtygen++;
     92 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     93 		vn_syncer_add_to_worklist(vp, filedelay);
     94 	}
     95 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
     96 		vp->v_iflag |= VI_WRMAPDIRTY;
     97 	}
     98 }
     99 
    100 /*
    101  * generic VM getpages routine.
    102  * Return PG_BUSY pages for the given range,
    103  * reading from backing store if necessary.
    104  */
    105 
    106 int
    107 genfs_getpages(void *v)
    108 {
    109 	struct vop_getpages_args /* {
    110 		struct vnode *a_vp;
    111 		voff_t a_offset;
    112 		struct vm_page **a_m;
    113 		int *a_count;
    114 		int a_centeridx;
    115 		vm_prot_t a_access_type;
    116 		int a_advice;
    117 		int a_flags;
    118 	} */ * const ap = v;
    119 
    120 	off_t diskeof, memeof;
    121 	int i, error, npages;
    122 	const int flags = ap->a_flags;
    123 	struct vnode * const vp = ap->a_vp;
    124 	struct uvm_object * const uobj = &vp->v_uobj;
    125 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    126 	const bool async = (flags & PGO_SYNCIO) == 0;
    127 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    128 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    129 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    130 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    131 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
    132 	bool has_trans_wapbl = false;
    133 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    134 
    135 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    136 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    137 
    138 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    139 	    vp->v_type == VLNK || vp->v_type == VBLK);
    140 
    141 startover:
    142 	error = 0;
    143 	const voff_t origvsize = vp->v_size;
    144 	const off_t origoffset = ap->a_offset;
    145 	const int orignpages = *ap->a_count;
    146 
    147 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    148 	if (flags & PGO_PASTEOF) {
    149 		off_t newsize;
    150 #if defined(DIAGNOSTIC)
    151 		off_t writeeof;
    152 #endif /* defined(DIAGNOSTIC) */
    153 
    154 		newsize = MAX(origvsize,
    155 		    origoffset + (orignpages << PAGE_SHIFT));
    156 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    157 #if defined(DIAGNOSTIC)
    158 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    159 		if (newsize > round_page(writeeof)) {
    160 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    161 			    __func__, newsize, round_page(writeeof));
    162 		}
    163 #endif /* defined(DIAGNOSTIC) */
    164 	} else {
    165 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    166 	}
    167 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    168 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    169 	KASSERT(orignpages > 0);
    170 
    171 	/*
    172 	 * Bounds-check the request.
    173 	 */
    174 
    175 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    176 		if ((flags & PGO_LOCKED) == 0) {
    177 			mutex_exit(uobj->vmobjlock);
    178 		}
    179 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    180 		    origoffset, *ap->a_count, memeof,0);
    181 		error = EINVAL;
    182 		goto out_err;
    183 	}
    184 
    185 	/* uobj is locked */
    186 
    187 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    188 	    (vp->v_type != VBLK ||
    189 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    190 		int updflags = 0;
    191 
    192 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    193 			updflags = GOP_UPDATE_ACCESSED;
    194 		}
    195 		if (memwrite) {
    196 			updflags |= GOP_UPDATE_MODIFIED;
    197 		}
    198 		if (updflags != 0) {
    199 			GOP_MARKUPDATE(vp, updflags);
    200 		}
    201 	}
    202 
    203 	/*
    204 	 * For PGO_LOCKED requests, just return whatever's in memory.
    205 	 */
    206 
    207 	if (flags & PGO_LOCKED) {
    208 		int nfound;
    209 		struct vm_page *pg;
    210 
    211 		KASSERT(!glocked);
    212 		npages = *ap->a_count;
    213 #if defined(DEBUG)
    214 		for (i = 0; i < npages; i++) {
    215 			pg = ap->a_m[i];
    216 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    217 		}
    218 #endif /* defined(DEBUG) */
    219 		nfound = uvn_findpages(uobj, origoffset, &npages,
    220 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    221 		KASSERT(npages == *ap->a_count);
    222 		if (nfound == 0) {
    223 			error = EBUSY;
    224 			goto out_err;
    225 		}
    226 		if (!genfs_node_rdtrylock(vp)) {
    227 			genfs_rel_pages(ap->a_m, npages);
    228 
    229 			/*
    230 			 * restore the array.
    231 			 */
    232 
    233 			for (i = 0; i < npages; i++) {
    234 				pg = ap->a_m[i];
    235 
    236 				if (pg != NULL && pg != PGO_DONTCARE) {
    237 					ap->a_m[i] = NULL;
    238 				}
    239 				KASSERT(ap->a_m[i] == NULL ||
    240 				    ap->a_m[i] == PGO_DONTCARE);
    241 			}
    242 		} else {
    243 			genfs_node_unlock(vp);
    244 		}
    245 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    246 		if (error == 0 && memwrite) {
    247 			genfs_markdirty(vp);
    248 		}
    249 		goto out_err;
    250 	}
    251 	mutex_exit(uobj->vmobjlock);
    252 
    253 	/*
    254 	 * find the requested pages and make some simple checks.
    255 	 * leave space in the page array for a whole block.
    256 	 */
    257 
    258 	const int fs_bshift = (vp->v_type != VBLK) ?
    259 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    260 	const int dev_bshift = (vp->v_type != VBLK) ?
    261 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    262 	const int fs_bsize = 1 << fs_bshift;
    263 #define	blk_mask	(fs_bsize - 1)
    264 #define	trunc_blk(x)	((x) & ~blk_mask)
    265 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    266 
    267 	const int orignmempages = MIN(orignpages,
    268 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    269 	npages = orignmempages;
    270 	const off_t startoffset = trunc_blk(origoffset);
    271 	const off_t endoffset = MIN(
    272 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    273 	    round_page(memeof));
    274 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    275 
    276 	const int pgs_size = sizeof(struct vm_page *) *
    277 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    278 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    279 
    280 	if (pgs_size > sizeof(pgs_onstack)) {
    281 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    282 		if (pgs == NULL) {
    283 			pgs = pgs_onstack;
    284 			error = ENOMEM;
    285 			goto out_err;
    286 		}
    287 	} else {
    288 		pgs = pgs_onstack;
    289 		(void)memset(pgs, 0, pgs_size);
    290 	}
    291 
    292 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    293 	    ridx, npages, startoffset, endoffset);
    294 
    295 	if (!has_trans_wapbl) {
    296 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    297 		/*
    298 		 * XXX: This assumes that we come here only via
    299 		 * the mmio path
    300 		 */
    301 		if (need_wapbl) {
    302 			error = WAPBL_BEGIN(vp->v_mount);
    303 			if (error) {
    304 				fstrans_done(vp->v_mount);
    305 				goto out_err_free;
    306 			}
    307 		}
    308 		has_trans_wapbl = true;
    309 	}
    310 
    311 	/*
    312 	 * hold g_glock to prevent a race with truncate.
    313 	 *
    314 	 * check if our idea of v_size is still valid.
    315 	 */
    316 
    317 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    318 	if (!glocked) {
    319 		if (blockalloc) {
    320 			genfs_node_wrlock(vp);
    321 		} else {
    322 			genfs_node_rdlock(vp);
    323 		}
    324 	}
    325 	mutex_enter(uobj->vmobjlock);
    326 	if (vp->v_size < origvsize) {
    327 		if (!glocked) {
    328 			genfs_node_unlock(vp);
    329 		}
    330 		if (pgs != pgs_onstack)
    331 			kmem_free(pgs, pgs_size);
    332 		goto startover;
    333 	}
    334 
    335 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    336 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    337 		if (!glocked) {
    338 			genfs_node_unlock(vp);
    339 		}
    340 		KASSERT(async != 0);
    341 		genfs_rel_pages(&pgs[ridx], orignmempages);
    342 		mutex_exit(uobj->vmobjlock);
    343 		error = EBUSY;
    344 		goto out_err_free;
    345 	}
    346 
    347 	/*
    348 	 * if the pages are already resident, just return them.
    349 	 */
    350 
    351 	for (i = 0; i < npages; i++) {
    352 		struct vm_page *pg = pgs[ridx + i];
    353 
    354 		if ((pg->flags & PG_FAKE) ||
    355 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    356 			break;
    357 		}
    358 	}
    359 	if (i == npages) {
    360 		if (!glocked) {
    361 			genfs_node_unlock(vp);
    362 		}
    363 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    364 		npages += ridx;
    365 		goto out;
    366 	}
    367 
    368 	/*
    369 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    370 	 */
    371 
    372 	if (overwrite) {
    373 		if (!glocked) {
    374 			genfs_node_unlock(vp);
    375 		}
    376 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    377 
    378 		for (i = 0; i < npages; i++) {
    379 			struct vm_page *pg = pgs[ridx + i];
    380 
    381 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    382 		}
    383 		npages += ridx;
    384 		goto out;
    385 	}
    386 
    387 	/*
    388 	 * the page wasn't resident and we're not overwriting,
    389 	 * so we're going to have to do some i/o.
    390 	 * find any additional pages needed to cover the expanded range.
    391 	 */
    392 
    393 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    394 	if (startoffset != origoffset || npages != orignmempages) {
    395 		int npgs;
    396 
    397 		/*
    398 		 * we need to avoid deadlocks caused by locking
    399 		 * additional pages at lower offsets than pages we
    400 		 * already have locked.  unlock them all and start over.
    401 		 */
    402 
    403 		genfs_rel_pages(&pgs[ridx], orignmempages);
    404 		memset(pgs, 0, pgs_size);
    405 
    406 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    407 		    startoffset, endoffset, 0,0);
    408 		npgs = npages;
    409 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    410 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    411 			if (!glocked) {
    412 				genfs_node_unlock(vp);
    413 			}
    414 			KASSERT(async != 0);
    415 			genfs_rel_pages(pgs, npages);
    416 			mutex_exit(uobj->vmobjlock);
    417 			error = EBUSY;
    418 			goto out_err_free;
    419 		}
    420 	}
    421 
    422 	mutex_exit(uobj->vmobjlock);
    423 
    424     {
    425 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    426 	vaddr_t kva;
    427 	struct buf *bp, *mbp;
    428 	bool sawhole = false;
    429 
    430 	/*
    431 	 * read the desired page(s).
    432 	 */
    433 
    434 	totalbytes = npages << PAGE_SHIFT;
    435 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    436 	tailbytes = totalbytes - bytes;
    437 	skipbytes = 0;
    438 
    439 	kva = uvm_pagermapin(pgs, npages,
    440 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    441 
    442 	mbp = getiobuf(vp, true);
    443 	mbp->b_bufsize = totalbytes;
    444 	mbp->b_data = (void *)kva;
    445 	mbp->b_resid = mbp->b_bcount = bytes;
    446 	mbp->b_cflags = BC_BUSY;
    447 	if (async) {
    448 		mbp->b_flags = B_READ | B_ASYNC;
    449 		mbp->b_iodone = uvm_aio_biodone;
    450 	} else {
    451 		mbp->b_flags = B_READ;
    452 		mbp->b_iodone = NULL;
    453 	}
    454 	if (async)
    455 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    456 	else
    457 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    458 
    459 	/*
    460 	 * if EOF is in the middle of the range, zero the part past EOF.
    461 	 * skip over pages which are not PG_FAKE since in that case they have
    462 	 * valid data that we need to preserve.
    463 	 */
    464 
    465 	tailstart = bytes;
    466 	while (tailbytes > 0) {
    467 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    468 
    469 		KASSERT(len <= tailbytes);
    470 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    471 			memset((void *)(kva + tailstart), 0, len);
    472 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    473 			    kva, tailstart, len, 0);
    474 		}
    475 		tailstart += len;
    476 		tailbytes -= len;
    477 	}
    478 
    479 	/*
    480 	 * now loop over the pages, reading as needed.
    481 	 */
    482 
    483 	bp = NULL;
    484 	off_t offset;
    485 	for (offset = startoffset;
    486 	    bytes > 0;
    487 	    offset += iobytes, bytes -= iobytes) {
    488 		int run;
    489 		daddr_t lbn, blkno;
    490 		int pidx;
    491 		struct vnode *devvp;
    492 
    493 		/*
    494 		 * skip pages which don't need to be read.
    495 		 */
    496 
    497 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    498 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    499 			size_t b;
    500 
    501 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    502 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    503 				sawhole = true;
    504 			}
    505 			b = MIN(PAGE_SIZE, bytes);
    506 			offset += b;
    507 			bytes -= b;
    508 			skipbytes += b;
    509 			pidx++;
    510 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    511 			    offset, 0,0,0);
    512 			if (bytes == 0) {
    513 				goto loopdone;
    514 			}
    515 		}
    516 
    517 		/*
    518 		 * bmap the file to find out the blkno to read from and
    519 		 * how much we can read in one i/o.  if bmap returns an error,
    520 		 * skip the rest of the top-level i/o.
    521 		 */
    522 
    523 		lbn = offset >> fs_bshift;
    524 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    525 		if (error) {
    526 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    527 			    lbn,error,0,0);
    528 			skipbytes += bytes;
    529 			bytes = 0;
    530 			goto loopdone;
    531 		}
    532 
    533 		/*
    534 		 * see how many pages can be read with this i/o.
    535 		 * reduce the i/o size if necessary to avoid
    536 		 * overwriting pages with valid data.
    537 		 */
    538 
    539 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    540 		    bytes);
    541 		if (offset + iobytes > round_page(offset)) {
    542 			int pcount;
    543 
    544 			pcount = 1;
    545 			while (pidx + pcount < npages &&
    546 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    547 				pcount++;
    548 			}
    549 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    550 			    (offset - trunc_page(offset)));
    551 		}
    552 
    553 		/*
    554 		 * if this block isn't allocated, zero it instead of
    555 		 * reading it.  unless we are going to allocate blocks,
    556 		 * mark the pages we zeroed PG_RDONLY.
    557 		 */
    558 
    559 		if (blkno == (daddr_t)-1) {
    560 			int holepages = (round_page(offset + iobytes) -
    561 			    trunc_page(offset)) >> PAGE_SHIFT;
    562 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    563 
    564 			sawhole = true;
    565 			memset((char *)kva + (offset - startoffset), 0,
    566 			    iobytes);
    567 			skipbytes += iobytes;
    568 
    569 			mutex_enter(uobj->vmobjlock);
    570 			for (i = 0; i < holepages; i++) {
    571 				if (memwrite) {
    572 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    573 				}
    574 				if (!blockalloc) {
    575 					pgs[pidx + i]->flags |= PG_RDONLY;
    576 				}
    577 			}
    578 			mutex_exit(uobj->vmobjlock);
    579 			continue;
    580 		}
    581 
    582 		/*
    583 		 * allocate a sub-buf for this piece of the i/o
    584 		 * (or just use mbp if there's only 1 piece),
    585 		 * and start it going.
    586 		 */
    587 
    588 		if (offset == startoffset && iobytes == bytes) {
    589 			bp = mbp;
    590 		} else {
    591 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    592 			    vp, bp, vp->v_numoutput, 0);
    593 			bp = getiobuf(vp, true);
    594 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    595 		}
    596 		bp->b_lblkno = 0;
    597 
    598 		/* adjust physical blkno for partial blocks */
    599 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    600 		    dev_bshift);
    601 
    602 		UVMHIST_LOG(ubchist,
    603 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    604 		    bp, offset, bp->b_bcount, bp->b_blkno);
    605 
    606 		VOP_STRATEGY(devvp, bp);
    607 	}
    608 
    609 loopdone:
    610 	nestiobuf_done(mbp, skipbytes, error);
    611 	if (async) {
    612 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    613 		if (!glocked) {
    614 			genfs_node_unlock(vp);
    615 		}
    616 		error = 0;
    617 		goto out_err_free;
    618 	}
    619 	if (bp != NULL) {
    620 		error = biowait(mbp);
    621 	}
    622 
    623 	/* Remove the mapping (make KVA available as soon as possible) */
    624 	uvm_pagermapout(kva, npages);
    625 
    626 	/*
    627 	 * if this we encountered a hole then we have to do a little more work.
    628 	 * for read faults, we marked the page PG_RDONLY so that future
    629 	 * write accesses to the page will fault again.
    630 	 * for write faults, we must make sure that the backing store for
    631 	 * the page is completely allocated while the pages are locked.
    632 	 */
    633 
    634 	if (!error && sawhole && blockalloc) {
    635 		error = GOP_ALLOC(vp, startoffset,
    636 		    npages << PAGE_SHIFT, 0, cred);
    637 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    638 		    startoffset, npages << PAGE_SHIFT, error,0);
    639 		if (!error) {
    640 			mutex_enter(uobj->vmobjlock);
    641 			for (i = 0; i < npages; i++) {
    642 				struct vm_page *pg = pgs[i];
    643 
    644 				if (pg == NULL) {
    645 					continue;
    646 				}
    647 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    648 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    649 				    pg,0,0,0);
    650 			}
    651 			mutex_exit(uobj->vmobjlock);
    652 		}
    653 	}
    654 	if (!glocked) {
    655 		genfs_node_unlock(vp);
    656 	}
    657 
    658 	putiobuf(mbp);
    659     }
    660 
    661 	mutex_enter(uobj->vmobjlock);
    662 
    663 	/*
    664 	 * we're almost done!  release the pages...
    665 	 * for errors, we free the pages.
    666 	 * otherwise we activate them and mark them as valid and clean.
    667 	 * also, unbusy pages that were not actually requested.
    668 	 */
    669 
    670 	if (error) {
    671 		for (i = 0; i < npages; i++) {
    672 			struct vm_page *pg = pgs[i];
    673 
    674 			if (pg == NULL) {
    675 				continue;
    676 			}
    677 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    678 			    pg, pg->flags, 0,0);
    679 			if (pg->flags & PG_FAKE) {
    680 				pg->flags |= PG_RELEASED;
    681 			}
    682 		}
    683 		mutex_enter(&uvm_pageqlock);
    684 		uvm_page_unbusy(pgs, npages);
    685 		mutex_exit(&uvm_pageqlock);
    686 		mutex_exit(uobj->vmobjlock);
    687 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    688 		goto out_err_free;
    689 	}
    690 
    691 out:
    692 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    693 	error = 0;
    694 	mutex_enter(&uvm_pageqlock);
    695 	for (i = 0; i < npages; i++) {
    696 		struct vm_page *pg = pgs[i];
    697 		if (pg == NULL) {
    698 			continue;
    699 		}
    700 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    701 		    pg, pg->flags, 0,0);
    702 		if (pg->flags & PG_FAKE && !overwrite) {
    703 			pg->flags &= ~(PG_FAKE);
    704 			pmap_clear_modify(pgs[i]);
    705 		}
    706 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    707 		if (i < ridx || i >= ridx + orignmempages || async) {
    708 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    709 			    pg, pg->offset,0,0);
    710 			if (pg->flags & PG_WANTED) {
    711 				wakeup(pg);
    712 			}
    713 			if (pg->flags & PG_FAKE) {
    714 				KASSERT(overwrite);
    715 				uvm_pagezero(pg);
    716 			}
    717 			if (pg->flags & PG_RELEASED) {
    718 				uvm_pagefree(pg);
    719 				continue;
    720 			}
    721 			uvm_pageenqueue(pg);
    722 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    723 			UVM_PAGE_OWN(pg, NULL);
    724 		}
    725 	}
    726 	mutex_exit(&uvm_pageqlock);
    727 	if (memwrite) {
    728 		genfs_markdirty(vp);
    729 	}
    730 	mutex_exit(uobj->vmobjlock);
    731 	if (ap->a_m != NULL) {
    732 		memcpy(ap->a_m, &pgs[ridx],
    733 		    orignmempages * sizeof(struct vm_page *));
    734 	}
    735 
    736 out_err_free:
    737 	if (pgs != NULL && pgs != pgs_onstack)
    738 		kmem_free(pgs, pgs_size);
    739 out_err:
    740 	if (has_trans_wapbl) {
    741 		if (need_wapbl)
    742 			WAPBL_END(vp->v_mount);
    743 		fstrans_done(vp->v_mount);
    744 	}
    745 	return error;
    746 }
    747 
    748 /*
    749  * generic VM putpages routine.
    750  * Write the given range of pages to backing store.
    751  *
    752  * => "offhi == 0" means flush all pages at or after "offlo".
    753  * => object should be locked by caller.  we return with the
    754  *      object unlocked.
    755  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    756  *	thus, a caller might want to unlock higher level resources
    757  *	(e.g. vm_map) before calling flush.
    758  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    759  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    760  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    761  *	that new pages are inserted on the tail end of the list.   thus,
    762  *	we can make a complete pass through the object in one go by starting
    763  *	at the head and working towards the tail (new pages are put in
    764  *	front of us).
    765  * => NOTE: we are allowed to lock the page queues, so the caller
    766  *	must not be holding the page queue lock.
    767  *
    768  * note on "cleaning" object and PG_BUSY pages:
    769  *	this routine is holding the lock on the object.   the only time
    770  *	that it can run into a PG_BUSY page that it does not own is if
    771  *	some other process has started I/O on the page (e.g. either
    772  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    773  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    774  *	had a chance to modify it yet.    if the PG_BUSY page is being
    775  *	paged out then it means that someone else has already started
    776  *	cleaning the page for us (how nice!).    in this case, if we
    777  *	have syncio specified, then after we make our pass through the
    778  *	object we need to wait for the other PG_BUSY pages to clear
    779  *	off (i.e. we need to do an iosync).   also note that once a
    780  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    781  *
    782  * note on page traversal:
    783  *	we can traverse the pages in an object either by going down the
    784  *	linked list in "uobj->memq", or we can go over the address range
    785  *	by page doing hash table lookups for each address.    depending
    786  *	on how many pages are in the object it may be cheaper to do one
    787  *	or the other.   we set "by_list" to true if we are using memq.
    788  *	if the cost of a hash lookup was equal to the cost of the list
    789  *	traversal we could compare the number of pages in the start->stop
    790  *	range to the total number of pages in the object.   however, it
    791  *	seems that a hash table lookup is more expensive than the linked
    792  *	list traversal, so we multiply the number of pages in the
    793  *	range by an estimate of the relatively higher cost of the hash lookup.
    794  */
    795 
    796 int
    797 genfs_putpages(void *v)
    798 {
    799 	struct vop_putpages_args /* {
    800 		struct vnode *a_vp;
    801 		voff_t a_offlo;
    802 		voff_t a_offhi;
    803 		int a_flags;
    804 	} */ * const ap = v;
    805 
    806 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    807 	    ap->a_flags, NULL);
    808 }
    809 
    810 int
    811 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    812     int origflags, struct vm_page **busypg)
    813 {
    814 	struct uvm_object * const uobj = &vp->v_uobj;
    815 	kmutex_t * const slock = uobj->vmobjlock;
    816 	off_t off;
    817 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    818 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    819 	int i, error, npages, nback;
    820 	int freeflag;
    821 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    822 	bool wasclean, by_list, needs_clean, yld;
    823 	bool async = (origflags & PGO_SYNCIO) == 0;
    824 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    825 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    826 	struct genfs_node * const gp = VTOG(vp);
    827 	int flags;
    828 	int dirtygen;
    829 	bool modified;
    830 	bool need_wapbl;
    831 	bool has_trans;
    832 	bool cleanall;
    833 	bool onworklst;
    834 
    835 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    836 
    837 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    838 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    839 	KASSERT(startoff < endoff || endoff == 0);
    840 
    841 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    842 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    843 
    844 	has_trans = false;
    845 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    846 	    (origflags & PGO_JOURNALLOCKED) == 0);
    847 
    848 retry:
    849 	modified = false;
    850 	flags = origflags;
    851 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    852 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    853 	if (uobj->uo_npages == 0) {
    854 		if (vp->v_iflag & VI_ONWORKLST) {
    855 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    856 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    857 				vn_syncer_remove_from_worklist(vp);
    858 		}
    859 		if (has_trans) {
    860 			if (need_wapbl)
    861 				WAPBL_END(vp->v_mount);
    862 			fstrans_done(vp->v_mount);
    863 		}
    864 		mutex_exit(slock);
    865 		return (0);
    866 	}
    867 
    868 	/*
    869 	 * the vnode has pages, set up to process the request.
    870 	 */
    871 
    872 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    873 		mutex_exit(slock);
    874 		if (pagedaemon) {
    875 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    876 			if (error)
    877 				return error;
    878 		} else
    879 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    880 		if (need_wapbl) {
    881 			error = WAPBL_BEGIN(vp->v_mount);
    882 			if (error) {
    883 				fstrans_done(vp->v_mount);
    884 				return error;
    885 			}
    886 		}
    887 		has_trans = true;
    888 		mutex_enter(slock);
    889 		goto retry;
    890 	}
    891 
    892 	error = 0;
    893 	wasclean = (vp->v_numoutput == 0);
    894 	off = startoff;
    895 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    896 		endoff = trunc_page(LLONG_MAX);
    897 	}
    898 	by_list = (uobj->uo_npages <=
    899 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    900 
    901 	/*
    902 	 * if this vnode is known not to have dirty pages,
    903 	 * don't bother to clean it out.
    904 	 */
    905 
    906 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    907 #if !defined(DEBUG)
    908 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    909 			goto skip_scan;
    910 		}
    911 #endif /* !defined(DEBUG) */
    912 		flags &= ~PGO_CLEANIT;
    913 	}
    914 
    915 	/*
    916 	 * start the loop.  when scanning by list, hold the last page
    917 	 * in the list before we start.  pages allocated after we start
    918 	 * will be added to the end of the list, so we can stop at the
    919 	 * current last page.
    920 	 */
    921 
    922 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    923 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    924 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    925 	dirtygen = gp->g_dirtygen;
    926 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    927 	if (by_list) {
    928 		curmp.flags = PG_MARKER;
    929 		endmp.flags = PG_MARKER;
    930 		pg = TAILQ_FIRST(&uobj->memq);
    931 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    932 	} else {
    933 		pg = uvm_pagelookup(uobj, off);
    934 	}
    935 	nextpg = NULL;
    936 	while (by_list || off < endoff) {
    937 
    938 		/*
    939 		 * if the current page is not interesting, move on to the next.
    940 		 */
    941 
    942 		KASSERT(pg == NULL || pg->uobject == uobj ||
    943 		    (pg->flags & PG_MARKER) != 0);
    944 		KASSERT(pg == NULL ||
    945 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    946 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
    947 		if (by_list) {
    948 			if (pg == &endmp) {
    949 				break;
    950 			}
    951 			if (pg->flags & PG_MARKER) {
    952 				pg = TAILQ_NEXT(pg, listq.queue);
    953 				continue;
    954 			}
    955 			if (pg->offset < startoff || pg->offset >= endoff ||
    956 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    957 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    958 					wasclean = false;
    959 				}
    960 				pg = TAILQ_NEXT(pg, listq.queue);
    961 				continue;
    962 			}
    963 			off = pg->offset;
    964 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    965 			if (pg != NULL) {
    966 				wasclean = false;
    967 			}
    968 			off += PAGE_SIZE;
    969 			if (off < endoff) {
    970 				pg = uvm_pagelookup(uobj, off);
    971 			}
    972 			continue;
    973 		}
    974 
    975 		/*
    976 		 * if the current page needs to be cleaned and it's busy,
    977 		 * wait for it to become unbusy.
    978 		 */
    979 
    980 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    981 		    SPCF_SHOULDYIELD) && !pagedaemon;
    982 		if (pg->flags & PG_BUSY || yld) {
    983 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    984 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    985 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    986 				error = EDEADLK;
    987 				if (busypg != NULL)
    988 					*busypg = pg;
    989 				break;
    990 			}
    991 			if (pagedaemon) {
    992 				/*
    993 				 * someone has taken the page while we
    994 				 * dropped the lock for fstrans_start.
    995 				 */
    996 				break;
    997 			}
    998 			if (by_list) {
    999 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1000 				UVMHIST_LOG(ubchist, "curmp next %p",
   1001 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1002 			}
   1003 			if (yld) {
   1004 				mutex_exit(slock);
   1005 				preempt();
   1006 				mutex_enter(slock);
   1007 			} else {
   1008 				pg->flags |= PG_WANTED;
   1009 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1010 				mutex_enter(slock);
   1011 			}
   1012 			if (by_list) {
   1013 				UVMHIST_LOG(ubchist, "after next %p",
   1014 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1015 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1016 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1017 			} else {
   1018 				pg = uvm_pagelookup(uobj, off);
   1019 			}
   1020 			continue;
   1021 		}
   1022 
   1023 		/*
   1024 		 * if we're freeing, remove all mappings of the page now.
   1025 		 * if we're cleaning, check if the page is needs to be cleaned.
   1026 		 */
   1027 
   1028 		if (flags & PGO_FREE) {
   1029 			pmap_page_protect(pg, VM_PROT_NONE);
   1030 		} else if (flags & PGO_CLEANIT) {
   1031 
   1032 			/*
   1033 			 * if we still have some hope to pull this vnode off
   1034 			 * from the syncer queue, write-protect the page.
   1035 			 */
   1036 
   1037 			if (cleanall && wasclean &&
   1038 			    gp->g_dirtygen == dirtygen) {
   1039 
   1040 				/*
   1041 				 * uobj pages get wired only by uvm_fault
   1042 				 * where uobj is locked.
   1043 				 */
   1044 
   1045 				if (pg->wire_count == 0) {
   1046 					pmap_page_protect(pg,
   1047 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1048 				} else {
   1049 					cleanall = false;
   1050 				}
   1051 			}
   1052 		}
   1053 
   1054 		if (flags & PGO_CLEANIT) {
   1055 			needs_clean = pmap_clear_modify(pg) ||
   1056 			    (pg->flags & PG_CLEAN) == 0;
   1057 			pg->flags |= PG_CLEAN;
   1058 		} else {
   1059 			needs_clean = false;
   1060 		}
   1061 
   1062 		/*
   1063 		 * if we're cleaning, build a cluster.
   1064 		 * the cluster will consist of pages which are currently dirty,
   1065 		 * but they will be returned to us marked clean.
   1066 		 * if not cleaning, just operate on the one page.
   1067 		 */
   1068 
   1069 		if (needs_clean) {
   1070 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1071 			wasclean = false;
   1072 			memset(pgs, 0, sizeof(pgs));
   1073 			pg->flags |= PG_BUSY;
   1074 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1075 
   1076 			/*
   1077 			 * first look backward.
   1078 			 */
   1079 
   1080 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1081 			nback = npages;
   1082 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1083 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1084 			if (nback) {
   1085 				memmove(&pgs[0], &pgs[npages - nback],
   1086 				    nback * sizeof(pgs[0]));
   1087 				if (npages - nback < nback)
   1088 					memset(&pgs[nback], 0,
   1089 					    (npages - nback) * sizeof(pgs[0]));
   1090 				else
   1091 					memset(&pgs[npages - nback], 0,
   1092 					    nback * sizeof(pgs[0]));
   1093 			}
   1094 
   1095 			/*
   1096 			 * then plug in our page of interest.
   1097 			 */
   1098 
   1099 			pgs[nback] = pg;
   1100 
   1101 			/*
   1102 			 * then look forward to fill in the remaining space in
   1103 			 * the array of pages.
   1104 			 */
   1105 
   1106 			npages = maxpages - nback - 1;
   1107 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1108 			    &pgs[nback + 1],
   1109 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1110 			npages += nback + 1;
   1111 		} else {
   1112 			pgs[0] = pg;
   1113 			npages = 1;
   1114 			nback = 0;
   1115 		}
   1116 
   1117 		/*
   1118 		 * apply FREE or DEACTIVATE options if requested.
   1119 		 */
   1120 
   1121 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1122 			mutex_enter(&uvm_pageqlock);
   1123 		}
   1124 		for (i = 0; i < npages; i++) {
   1125 			tpg = pgs[i];
   1126 			KASSERT(tpg->uobject == uobj);
   1127 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1128 				pg = tpg;
   1129 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1130 				continue;
   1131 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1132 				uvm_pagedeactivate(tpg);
   1133 			} else if (flags & PGO_FREE) {
   1134 				pmap_page_protect(tpg, VM_PROT_NONE);
   1135 				if (tpg->flags & PG_BUSY) {
   1136 					tpg->flags |= freeflag;
   1137 					if (pagedaemon) {
   1138 						uvm_pageout_start(1);
   1139 						uvm_pagedequeue(tpg);
   1140 					}
   1141 				} else {
   1142 
   1143 					/*
   1144 					 * ``page is not busy''
   1145 					 * implies that npages is 1
   1146 					 * and needs_clean is false.
   1147 					 */
   1148 
   1149 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1150 					uvm_pagefree(tpg);
   1151 					if (pagedaemon)
   1152 						uvmexp.pdfreed++;
   1153 				}
   1154 			}
   1155 		}
   1156 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1157 			mutex_exit(&uvm_pageqlock);
   1158 		}
   1159 		if (needs_clean) {
   1160 			modified = true;
   1161 
   1162 			/*
   1163 			 * start the i/o.  if we're traversing by list,
   1164 			 * keep our place in the list with a marker page.
   1165 			 */
   1166 
   1167 			if (by_list) {
   1168 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1169 				    listq.queue);
   1170 			}
   1171 			mutex_exit(slock);
   1172 			error = GOP_WRITE(vp, pgs, npages, flags);
   1173 			mutex_enter(slock);
   1174 			if (by_list) {
   1175 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1176 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1177 			}
   1178 			if (error) {
   1179 				break;
   1180 			}
   1181 			if (by_list) {
   1182 				continue;
   1183 			}
   1184 		}
   1185 
   1186 		/*
   1187 		 * find the next page and continue if there was no error.
   1188 		 */
   1189 
   1190 		if (by_list) {
   1191 			if (nextpg) {
   1192 				pg = nextpg;
   1193 				nextpg = NULL;
   1194 			} else {
   1195 				pg = TAILQ_NEXT(pg, listq.queue);
   1196 			}
   1197 		} else {
   1198 			off += (npages - nback) << PAGE_SHIFT;
   1199 			if (off < endoff) {
   1200 				pg = uvm_pagelookup(uobj, off);
   1201 			}
   1202 		}
   1203 	}
   1204 	if (by_list) {
   1205 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1206 	}
   1207 
   1208 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1209 	    (vp->v_type != VBLK ||
   1210 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1211 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1212 	}
   1213 
   1214 	/*
   1215 	 * if we're cleaning and there was nothing to clean,
   1216 	 * take us off the syncer list.  if we started any i/o
   1217 	 * and we're doing sync i/o, wait for all writes to finish.
   1218 	 */
   1219 
   1220 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1221 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1222 #if defined(DEBUG)
   1223 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1224 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
   1225 				continue;
   1226 			}
   1227 			if ((pg->flags & PG_CLEAN) == 0) {
   1228 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1229 			}
   1230 			if (pmap_is_modified(pg)) {
   1231 				printf("%s: %p: modified\n", __func__, pg);
   1232 			}
   1233 		}
   1234 #endif /* defined(DEBUG) */
   1235 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1236 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1237 			vn_syncer_remove_from_worklist(vp);
   1238 	}
   1239 
   1240 #if !defined(DEBUG)
   1241 skip_scan:
   1242 #endif /* !defined(DEBUG) */
   1243 
   1244 	/* Wait for output to complete. */
   1245 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1246 		while (vp->v_numoutput != 0)
   1247 			cv_wait(&vp->v_cv, slock);
   1248 	}
   1249 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1250 	mutex_exit(slock);
   1251 
   1252 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1253 		/*
   1254 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1255 		 * retrying is not a big deal because, in many cases,
   1256 		 * uobj->uo_npages is already 0 here.
   1257 		 */
   1258 		mutex_enter(slock);
   1259 		goto retry;
   1260 	}
   1261 
   1262 	if (has_trans) {
   1263 		if (need_wapbl)
   1264 			WAPBL_END(vp->v_mount);
   1265 		fstrans_done(vp->v_mount);
   1266 	}
   1267 
   1268 	return (error);
   1269 }
   1270 
   1271 int
   1272 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1273 {
   1274 	off_t off;
   1275 	vaddr_t kva;
   1276 	size_t len;
   1277 	int error;
   1278 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1279 
   1280 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1281 	    vp, pgs, npages, flags);
   1282 
   1283 	off = pgs[0]->offset;
   1284 	kva = uvm_pagermapin(pgs, npages,
   1285 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1286 	len = npages << PAGE_SHIFT;
   1287 
   1288 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1289 			    uvm_aio_biodone);
   1290 
   1291 	return error;
   1292 }
   1293 
   1294 int
   1295 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1296 {
   1297 	off_t off;
   1298 	vaddr_t kva;
   1299 	size_t len;
   1300 	int error;
   1301 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1302 
   1303 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1304 	    vp, pgs, npages, flags);
   1305 
   1306 	off = pgs[0]->offset;
   1307 	kva = uvm_pagermapin(pgs, npages,
   1308 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1309 	len = npages << PAGE_SHIFT;
   1310 
   1311 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1312 			    uvm_aio_biodone);
   1313 
   1314 	return error;
   1315 }
   1316 
   1317 /*
   1318  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1319  * and mapped into kernel memory.  Here we just look up the underlying
   1320  * device block addresses and call the strategy routine.
   1321  */
   1322 
   1323 static int
   1324 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1325     enum uio_rw rw, void (*iodone)(struct buf *))
   1326 {
   1327 	int s, error;
   1328 	int fs_bshift, dev_bshift;
   1329 	off_t eof, offset, startoffset;
   1330 	size_t bytes, iobytes, skipbytes;
   1331 	struct buf *mbp, *bp;
   1332 	const bool async = (flags & PGO_SYNCIO) == 0;
   1333 	const bool lazy = (flags & PGO_LAZY) == 0;
   1334 	const bool iowrite = rw == UIO_WRITE;
   1335 	const int brw = iowrite ? B_WRITE : B_READ;
   1336 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1337 
   1338 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1339 	    vp, kva, len, flags);
   1340 
   1341 	KASSERT(vp->v_size <= vp->v_writesize);
   1342 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1343 	if (vp->v_type != VBLK) {
   1344 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1345 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1346 	} else {
   1347 		fs_bshift = DEV_BSHIFT;
   1348 		dev_bshift = DEV_BSHIFT;
   1349 	}
   1350 	error = 0;
   1351 	startoffset = off;
   1352 	bytes = MIN(len, eof - startoffset);
   1353 	skipbytes = 0;
   1354 	KASSERT(bytes != 0);
   1355 
   1356 	if (iowrite) {
   1357 		mutex_enter(vp->v_interlock);
   1358 		vp->v_numoutput += 2;
   1359 		mutex_exit(vp->v_interlock);
   1360 	}
   1361 	mbp = getiobuf(vp, true);
   1362 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1363 	    vp, mbp, vp->v_numoutput, bytes);
   1364 	mbp->b_bufsize = len;
   1365 	mbp->b_data = (void *)kva;
   1366 	mbp->b_resid = mbp->b_bcount = bytes;
   1367 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1368 	if (async) {
   1369 		mbp->b_flags = brw | B_ASYNC;
   1370 		mbp->b_iodone = iodone;
   1371 	} else {
   1372 		mbp->b_flags = brw;
   1373 		mbp->b_iodone = NULL;
   1374 	}
   1375 	if (curlwp == uvm.pagedaemon_lwp)
   1376 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1377 	else if (async || lazy)
   1378 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1379 	else
   1380 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1381 
   1382 	bp = NULL;
   1383 	for (offset = startoffset;
   1384 	    bytes > 0;
   1385 	    offset += iobytes, bytes -= iobytes) {
   1386 		int run;
   1387 		daddr_t lbn, blkno;
   1388 		struct vnode *devvp;
   1389 
   1390 		/*
   1391 		 * bmap the file to find out the blkno to read from and
   1392 		 * how much we can read in one i/o.  if bmap returns an error,
   1393 		 * skip the rest of the top-level i/o.
   1394 		 */
   1395 
   1396 		lbn = offset >> fs_bshift;
   1397 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1398 		if (error) {
   1399 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1400 			    lbn,error,0,0);
   1401 			skipbytes += bytes;
   1402 			bytes = 0;
   1403 			goto loopdone;
   1404 		}
   1405 
   1406 		/*
   1407 		 * see how many pages can be read with this i/o.
   1408 		 * reduce the i/o size if necessary to avoid
   1409 		 * overwriting pages with valid data.
   1410 		 */
   1411 
   1412 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1413 		    bytes);
   1414 
   1415 		/*
   1416 		 * if this block isn't allocated, zero it instead of
   1417 		 * reading it.  unless we are going to allocate blocks,
   1418 		 * mark the pages we zeroed PG_RDONLY.
   1419 		 */
   1420 
   1421 		if (blkno == (daddr_t)-1) {
   1422 			if (!iowrite) {
   1423 				memset((char *)kva + (offset - startoffset), 0,
   1424 				    iobytes);
   1425 			}
   1426 			skipbytes += iobytes;
   1427 			continue;
   1428 		}
   1429 
   1430 		/*
   1431 		 * allocate a sub-buf for this piece of the i/o
   1432 		 * (or just use mbp if there's only 1 piece),
   1433 		 * and start it going.
   1434 		 */
   1435 
   1436 		if (offset == startoffset && iobytes == bytes) {
   1437 			bp = mbp;
   1438 		} else {
   1439 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1440 			    vp, bp, vp->v_numoutput, 0);
   1441 			bp = getiobuf(vp, true);
   1442 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1443 		}
   1444 		bp->b_lblkno = 0;
   1445 
   1446 		/* adjust physical blkno for partial blocks */
   1447 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1448 		    dev_bshift);
   1449 
   1450 		UVMHIST_LOG(ubchist,
   1451 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1452 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1453 
   1454 		VOP_STRATEGY(devvp, bp);
   1455 	}
   1456 
   1457 loopdone:
   1458 	if (skipbytes) {
   1459 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1460 	}
   1461 	nestiobuf_done(mbp, skipbytes, error);
   1462 	if (async) {
   1463 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1464 		return (0);
   1465 	}
   1466 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1467 	error = biowait(mbp);
   1468 	s = splbio();
   1469 	(*iodone)(mbp);
   1470 	splx(s);
   1471 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1472 	return (error);
   1473 }
   1474 
   1475 int
   1476 genfs_compat_getpages(void *v)
   1477 {
   1478 	struct vop_getpages_args /* {
   1479 		struct vnode *a_vp;
   1480 		voff_t a_offset;
   1481 		struct vm_page **a_m;
   1482 		int *a_count;
   1483 		int a_centeridx;
   1484 		vm_prot_t a_access_type;
   1485 		int a_advice;
   1486 		int a_flags;
   1487 	} */ *ap = v;
   1488 
   1489 	off_t origoffset;
   1490 	struct vnode *vp = ap->a_vp;
   1491 	struct uvm_object *uobj = &vp->v_uobj;
   1492 	struct vm_page *pg, **pgs;
   1493 	vaddr_t kva;
   1494 	int i, error, orignpages, npages;
   1495 	struct iovec iov;
   1496 	struct uio uio;
   1497 	kauth_cred_t cred = curlwp->l_cred;
   1498 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1499 
   1500 	error = 0;
   1501 	origoffset = ap->a_offset;
   1502 	orignpages = *ap->a_count;
   1503 	pgs = ap->a_m;
   1504 
   1505 	if (ap->a_flags & PGO_LOCKED) {
   1506 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1507 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1508 
   1509 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1510 		if (error == 0 && memwrite) {
   1511 			genfs_markdirty(vp);
   1512 		}
   1513 		return error;
   1514 	}
   1515 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1516 		mutex_exit(uobj->vmobjlock);
   1517 		return EINVAL;
   1518 	}
   1519 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1520 		mutex_exit(uobj->vmobjlock);
   1521 		return 0;
   1522 	}
   1523 	npages = orignpages;
   1524 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1525 	mutex_exit(uobj->vmobjlock);
   1526 	kva = uvm_pagermapin(pgs, npages,
   1527 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1528 	for (i = 0; i < npages; i++) {
   1529 		pg = pgs[i];
   1530 		if ((pg->flags & PG_FAKE) == 0) {
   1531 			continue;
   1532 		}
   1533 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1534 		iov.iov_len = PAGE_SIZE;
   1535 		uio.uio_iov = &iov;
   1536 		uio.uio_iovcnt = 1;
   1537 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1538 		uio.uio_rw = UIO_READ;
   1539 		uio.uio_resid = PAGE_SIZE;
   1540 		UIO_SETUP_SYSSPACE(&uio);
   1541 		/* XXX vn_lock */
   1542 		error = VOP_READ(vp, &uio, 0, cred);
   1543 		if (error) {
   1544 			break;
   1545 		}
   1546 		if (uio.uio_resid) {
   1547 			memset(iov.iov_base, 0, uio.uio_resid);
   1548 		}
   1549 	}
   1550 	uvm_pagermapout(kva, npages);
   1551 	mutex_enter(uobj->vmobjlock);
   1552 	mutex_enter(&uvm_pageqlock);
   1553 	for (i = 0; i < npages; i++) {
   1554 		pg = pgs[i];
   1555 		if (error && (pg->flags & PG_FAKE) != 0) {
   1556 			pg->flags |= PG_RELEASED;
   1557 		} else {
   1558 			pmap_clear_modify(pg);
   1559 			uvm_pageactivate(pg);
   1560 		}
   1561 	}
   1562 	if (error) {
   1563 		uvm_page_unbusy(pgs, npages);
   1564 	}
   1565 	mutex_exit(&uvm_pageqlock);
   1566 	if (error == 0 && memwrite) {
   1567 		genfs_markdirty(vp);
   1568 	}
   1569 	mutex_exit(uobj->vmobjlock);
   1570 	return error;
   1571 }
   1572 
   1573 int
   1574 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1575     int flags)
   1576 {
   1577 	off_t offset;
   1578 	struct iovec iov;
   1579 	struct uio uio;
   1580 	kauth_cred_t cred = curlwp->l_cred;
   1581 	struct buf *bp;
   1582 	vaddr_t kva;
   1583 	int error;
   1584 
   1585 	offset = pgs[0]->offset;
   1586 	kva = uvm_pagermapin(pgs, npages,
   1587 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1588 
   1589 	iov.iov_base = (void *)kva;
   1590 	iov.iov_len = npages << PAGE_SHIFT;
   1591 	uio.uio_iov = &iov;
   1592 	uio.uio_iovcnt = 1;
   1593 	uio.uio_offset = offset;
   1594 	uio.uio_rw = UIO_WRITE;
   1595 	uio.uio_resid = npages << PAGE_SHIFT;
   1596 	UIO_SETUP_SYSSPACE(&uio);
   1597 	/* XXX vn_lock */
   1598 	error = VOP_WRITE(vp, &uio, 0, cred);
   1599 
   1600 	mutex_enter(vp->v_interlock);
   1601 	vp->v_numoutput++;
   1602 	mutex_exit(vp->v_interlock);
   1603 
   1604 	bp = getiobuf(vp, true);
   1605 	bp->b_cflags = BC_BUSY | BC_AGE;
   1606 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1607 	bp->b_data = (char *)kva;
   1608 	bp->b_bcount = npages << PAGE_SHIFT;
   1609 	bp->b_bufsize = npages << PAGE_SHIFT;
   1610 	bp->b_resid = 0;
   1611 	bp->b_error = error;
   1612 	uvm_aio_aiodone(bp);
   1613 	return (error);
   1614 }
   1615 
   1616 /*
   1617  * Process a uio using direct I/O.  If we reach a part of the request
   1618  * which cannot be processed in this fashion for some reason, just return.
   1619  * The caller must handle some additional part of the request using
   1620  * buffered I/O before trying direct I/O again.
   1621  */
   1622 
   1623 void
   1624 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1625 {
   1626 	struct vmspace *vs;
   1627 	struct iovec *iov;
   1628 	vaddr_t va;
   1629 	size_t len;
   1630 	const int mask = DEV_BSIZE - 1;
   1631 	int error;
   1632 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1633 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1634 
   1635 	/*
   1636 	 * We only support direct I/O to user space for now.
   1637 	 */
   1638 
   1639 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1640 		return;
   1641 	}
   1642 
   1643 	/*
   1644 	 * If the vnode is mapped, we would need to get the getpages lock
   1645 	 * to stabilize the bmap, but then we would get into trouble while
   1646 	 * locking the pages if the pages belong to this same vnode (or a
   1647 	 * multi-vnode cascade to the same effect).  Just fall back to
   1648 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1649 	 */
   1650 
   1651 	if (vp->v_vflag & VV_MAPPED) {
   1652 		return;
   1653 	}
   1654 
   1655 	if (need_wapbl) {
   1656 		error = WAPBL_BEGIN(vp->v_mount);
   1657 		if (error)
   1658 			return;
   1659 	}
   1660 
   1661 	/*
   1662 	 * Do as much of the uio as possible with direct I/O.
   1663 	 */
   1664 
   1665 	vs = uio->uio_vmspace;
   1666 	while (uio->uio_resid) {
   1667 		iov = uio->uio_iov;
   1668 		if (iov->iov_len == 0) {
   1669 			uio->uio_iov++;
   1670 			uio->uio_iovcnt--;
   1671 			continue;
   1672 		}
   1673 		va = (vaddr_t)iov->iov_base;
   1674 		len = MIN(iov->iov_len, genfs_maxdio);
   1675 		len &= ~mask;
   1676 
   1677 		/*
   1678 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1679 		 * the current EOF, then fall back to buffered I/O.
   1680 		 */
   1681 
   1682 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1683 			break;
   1684 		}
   1685 
   1686 		/*
   1687 		 * Check alignment.  The file offset must be at least
   1688 		 * sector-aligned.  The exact constraint on memory alignment
   1689 		 * is very hardware-dependent, but requiring sector-aligned
   1690 		 * addresses there too is safe.
   1691 		 */
   1692 
   1693 		if (uio->uio_offset & mask || va & mask) {
   1694 			break;
   1695 		}
   1696 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1697 					  uio->uio_rw);
   1698 		if (error) {
   1699 			break;
   1700 		}
   1701 		iov->iov_base = (char *)iov->iov_base + len;
   1702 		iov->iov_len -= len;
   1703 		uio->uio_offset += len;
   1704 		uio->uio_resid -= len;
   1705 	}
   1706 
   1707 	if (need_wapbl)
   1708 		WAPBL_END(vp->v_mount);
   1709 }
   1710 
   1711 /*
   1712  * Iodone routine for direct I/O.  We don't do much here since the request is
   1713  * always synchronous, so the caller will do most of the work after biowait().
   1714  */
   1715 
   1716 static void
   1717 genfs_dio_iodone(struct buf *bp)
   1718 {
   1719 
   1720 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1721 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1722 		mutex_enter(bp->b_objlock);
   1723 		vwakeup(bp);
   1724 		mutex_exit(bp->b_objlock);
   1725 	}
   1726 	putiobuf(bp);
   1727 }
   1728 
   1729 /*
   1730  * Process one chunk of a direct I/O request.
   1731  */
   1732 
   1733 static int
   1734 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1735     off_t off, enum uio_rw rw)
   1736 {
   1737 	struct vm_map *map;
   1738 	struct pmap *upm, *kpm;
   1739 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1740 	off_t spoff, epoff;
   1741 	vaddr_t kva, puva;
   1742 	paddr_t pa;
   1743 	vm_prot_t prot;
   1744 	int error, rv, poff, koff;
   1745 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1746 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1747 
   1748 	/*
   1749 	 * For writes, verify that this range of the file already has fully
   1750 	 * allocated backing store.  If there are any holes, just punt and
   1751 	 * make the caller take the buffered write path.
   1752 	 */
   1753 
   1754 	if (rw == UIO_WRITE) {
   1755 		daddr_t lbn, elbn, blkno;
   1756 		int bsize, bshift, run;
   1757 
   1758 		bshift = vp->v_mount->mnt_fs_bshift;
   1759 		bsize = 1 << bshift;
   1760 		lbn = off >> bshift;
   1761 		elbn = (off + len + bsize - 1) >> bshift;
   1762 		while (lbn < elbn) {
   1763 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1764 			if (error) {
   1765 				return error;
   1766 			}
   1767 			if (blkno == (daddr_t)-1) {
   1768 				return ENOSPC;
   1769 			}
   1770 			lbn += 1 + run;
   1771 		}
   1772 	}
   1773 
   1774 	/*
   1775 	 * Flush any cached pages for parts of the file that we're about to
   1776 	 * access.  If we're writing, invalidate pages as well.
   1777 	 */
   1778 
   1779 	spoff = trunc_page(off);
   1780 	epoff = round_page(off + len);
   1781 	mutex_enter(vp->v_interlock);
   1782 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1783 	if (error) {
   1784 		return error;
   1785 	}
   1786 
   1787 	/*
   1788 	 * Wire the user pages and remap them into kernel memory.
   1789 	 */
   1790 
   1791 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1792 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1793 	if (error) {
   1794 		return error;
   1795 	}
   1796 
   1797 	map = &vs->vm_map;
   1798 	upm = vm_map_pmap(map);
   1799 	kpm = vm_map_pmap(kernel_map);
   1800 	puva = trunc_page(uva);
   1801 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1802 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1803 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1804 		rv = pmap_extract(upm, puva + poff, &pa);
   1805 		KASSERT(rv);
   1806 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1807 	}
   1808 	pmap_update(kpm);
   1809 
   1810 	/*
   1811 	 * Do the I/O.
   1812 	 */
   1813 
   1814 	koff = uva - trunc_page(uva);
   1815 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1816 			    genfs_dio_iodone);
   1817 
   1818 	/*
   1819 	 * Tear down the kernel mapping.
   1820 	 */
   1821 
   1822 	pmap_kremove(kva, klen);
   1823 	pmap_update(kpm);
   1824 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1825 
   1826 	/*
   1827 	 * Unwire the user pages.
   1828 	 */
   1829 
   1830 	uvm_vsunlock(vs, (void *)uva, len);
   1831 	return error;
   1832 }
   1833