genfs_io.c revision 1.53.8.1 1 /* $NetBSD: genfs_io.c,v 1.53.8.1 2012/05/07 03:01:12 riz Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.53.8.1 2012/05/07 03:01:12 riz Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50 #include <miscfs/syncfs/syncfs.h>
51
52 #include <uvm/uvm.h>
53 #include <uvm/uvm_pager.h>
54
55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
56 off_t, enum uio_rw);
57 static void genfs_dio_iodone(struct buf *);
58
59 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
60 void (*)(struct buf *));
61 static void genfs_rel_pages(struct vm_page **, int);
62 static void genfs_markdirty(struct vnode *);
63
64 int genfs_maxdio = MAXPHYS;
65
66 static void
67 genfs_rel_pages(struct vm_page **pgs, int npages)
68 {
69 int i;
70
71 for (i = 0; i < npages; i++) {
72 struct vm_page *pg = pgs[i];
73
74 if (pg == NULL || pg == PGO_DONTCARE)
75 continue;
76 if (pg->flags & PG_FAKE) {
77 pg->flags |= PG_RELEASED;
78 }
79 }
80 mutex_enter(&uvm_pageqlock);
81 uvm_page_unbusy(pgs, npages);
82 mutex_exit(&uvm_pageqlock);
83 }
84
85 static void
86 genfs_markdirty(struct vnode *vp)
87 {
88 struct genfs_node * const gp = VTOG(vp);
89
90 KASSERT(mutex_owned(vp->v_interlock));
91 gp->g_dirtygen++;
92 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
93 vn_syncer_add_to_worklist(vp, filedelay);
94 }
95 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
96 vp->v_iflag |= VI_WRMAPDIRTY;
97 }
98 }
99
100 /*
101 * generic VM getpages routine.
102 * Return PG_BUSY pages for the given range,
103 * reading from backing store if necessary.
104 */
105
106 int
107 genfs_getpages(void *v)
108 {
109 struct vop_getpages_args /* {
110 struct vnode *a_vp;
111 voff_t a_offset;
112 struct vm_page **a_m;
113 int *a_count;
114 int a_centeridx;
115 vm_prot_t a_access_type;
116 int a_advice;
117 int a_flags;
118 } */ * const ap = v;
119
120 off_t diskeof, memeof;
121 int i, error, npages;
122 const int flags = ap->a_flags;
123 struct vnode * const vp = ap->a_vp;
124 struct uvm_object * const uobj = &vp->v_uobj;
125 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
126 const bool async = (flags & PGO_SYNCIO) == 0;
127 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
128 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
130 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
131 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
132 bool has_trans_wapbl = false;
133 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
134
135 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
136 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
137
138 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
139 vp->v_type == VLNK || vp->v_type == VBLK);
140
141 startover:
142 error = 0;
143 const voff_t origvsize = vp->v_size;
144 const off_t origoffset = ap->a_offset;
145 const int orignpages = *ap->a_count;
146
147 GOP_SIZE(vp, origvsize, &diskeof, 0);
148 if (flags & PGO_PASTEOF) {
149 off_t newsize;
150 #if defined(DIAGNOSTIC)
151 off_t writeeof;
152 #endif /* defined(DIAGNOSTIC) */
153
154 newsize = MAX(origvsize,
155 origoffset + (orignpages << PAGE_SHIFT));
156 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
157 #if defined(DIAGNOSTIC)
158 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
159 if (newsize > round_page(writeeof)) {
160 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
161 __func__, newsize, round_page(writeeof));
162 }
163 #endif /* defined(DIAGNOSTIC) */
164 } else {
165 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
166 }
167 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
168 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
169 KASSERT(orignpages > 0);
170
171 /*
172 * Bounds-check the request.
173 */
174
175 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
176 if ((flags & PGO_LOCKED) == 0) {
177 mutex_exit(uobj->vmobjlock);
178 }
179 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
180 origoffset, *ap->a_count, memeof,0);
181 error = EINVAL;
182 goto out_err;
183 }
184
185 /* uobj is locked */
186
187 if ((flags & PGO_NOTIMESTAMP) == 0 &&
188 (vp->v_type != VBLK ||
189 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
190 int updflags = 0;
191
192 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
193 updflags = GOP_UPDATE_ACCESSED;
194 }
195 if (memwrite) {
196 updflags |= GOP_UPDATE_MODIFIED;
197 }
198 if (updflags != 0) {
199 GOP_MARKUPDATE(vp, updflags);
200 }
201 }
202
203 /*
204 * For PGO_LOCKED requests, just return whatever's in memory.
205 */
206
207 if (flags & PGO_LOCKED) {
208 int nfound;
209 struct vm_page *pg;
210
211 KASSERT(!glocked);
212 npages = *ap->a_count;
213 #if defined(DEBUG)
214 for (i = 0; i < npages; i++) {
215 pg = ap->a_m[i];
216 KASSERT(pg == NULL || pg == PGO_DONTCARE);
217 }
218 #endif /* defined(DEBUG) */
219 nfound = uvn_findpages(uobj, origoffset, &npages,
220 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
221 KASSERT(npages == *ap->a_count);
222 if (nfound == 0) {
223 error = EBUSY;
224 goto out_err;
225 }
226 if (!genfs_node_rdtrylock(vp)) {
227 genfs_rel_pages(ap->a_m, npages);
228
229 /*
230 * restore the array.
231 */
232
233 for (i = 0; i < npages; i++) {
234 pg = ap->a_m[i];
235
236 if (pg != NULL && pg != PGO_DONTCARE) {
237 ap->a_m[i] = NULL;
238 }
239 KASSERT(ap->a_m[i] == NULL ||
240 ap->a_m[i] == PGO_DONTCARE);
241 }
242 } else {
243 genfs_node_unlock(vp);
244 }
245 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
246 if (error == 0 && memwrite) {
247 genfs_markdirty(vp);
248 }
249 goto out_err;
250 }
251 mutex_exit(uobj->vmobjlock);
252
253 /*
254 * find the requested pages and make some simple checks.
255 * leave space in the page array for a whole block.
256 */
257
258 const int fs_bshift = (vp->v_type != VBLK) ?
259 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
260 const int dev_bshift = (vp->v_type != VBLK) ?
261 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
262 const int fs_bsize = 1 << fs_bshift;
263 #define blk_mask (fs_bsize - 1)
264 #define trunc_blk(x) ((x) & ~blk_mask)
265 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
266
267 const int orignmempages = MIN(orignpages,
268 round_page(memeof - origoffset) >> PAGE_SHIFT);
269 npages = orignmempages;
270 const off_t startoffset = trunc_blk(origoffset);
271 const off_t endoffset = MIN(
272 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
273 round_page(memeof));
274 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
275
276 const int pgs_size = sizeof(struct vm_page *) *
277 ((endoffset - startoffset) >> PAGE_SHIFT);
278 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
279
280 if (pgs_size > sizeof(pgs_onstack)) {
281 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
282 if (pgs == NULL) {
283 pgs = pgs_onstack;
284 error = ENOMEM;
285 goto out_err;
286 }
287 } else {
288 pgs = pgs_onstack;
289 (void)memset(pgs, 0, pgs_size);
290 }
291
292 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
293 ridx, npages, startoffset, endoffset);
294
295 if (!has_trans_wapbl) {
296 fstrans_start(vp->v_mount, FSTRANS_SHARED);
297 /*
298 * XXX: This assumes that we come here only via
299 * the mmio path
300 */
301 if (need_wapbl) {
302 error = WAPBL_BEGIN(vp->v_mount);
303 if (error) {
304 fstrans_done(vp->v_mount);
305 goto out_err_free;
306 }
307 }
308 has_trans_wapbl = true;
309 }
310
311 /*
312 * hold g_glock to prevent a race with truncate.
313 *
314 * check if our idea of v_size is still valid.
315 */
316
317 KASSERT(!glocked || genfs_node_wrlocked(vp));
318 if (!glocked) {
319 if (blockalloc) {
320 genfs_node_wrlock(vp);
321 } else {
322 genfs_node_rdlock(vp);
323 }
324 }
325 mutex_enter(uobj->vmobjlock);
326 if (vp->v_size < origvsize) {
327 if (!glocked) {
328 genfs_node_unlock(vp);
329 }
330 if (pgs != pgs_onstack)
331 kmem_free(pgs, pgs_size);
332 goto startover;
333 }
334
335 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
336 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
337 if (!glocked) {
338 genfs_node_unlock(vp);
339 }
340 KASSERT(async != 0);
341 genfs_rel_pages(&pgs[ridx], orignmempages);
342 mutex_exit(uobj->vmobjlock);
343 error = EBUSY;
344 goto out_err_free;
345 }
346
347 /*
348 * if the pages are already resident, just return them.
349 */
350
351 for (i = 0; i < npages; i++) {
352 struct vm_page *pg = pgs[ridx + i];
353
354 if ((pg->flags & PG_FAKE) ||
355 (blockalloc && (pg->flags & PG_RDONLY))) {
356 break;
357 }
358 }
359 if (i == npages) {
360 if (!glocked) {
361 genfs_node_unlock(vp);
362 }
363 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
364 npages += ridx;
365 goto out;
366 }
367
368 /*
369 * if PGO_OVERWRITE is set, don't bother reading the pages.
370 */
371
372 if (overwrite) {
373 if (!glocked) {
374 genfs_node_unlock(vp);
375 }
376 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
377
378 for (i = 0; i < npages; i++) {
379 struct vm_page *pg = pgs[ridx + i];
380
381 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
382 }
383 npages += ridx;
384 goto out;
385 }
386
387 /*
388 * the page wasn't resident and we're not overwriting,
389 * so we're going to have to do some i/o.
390 * find any additional pages needed to cover the expanded range.
391 */
392
393 npages = (endoffset - startoffset) >> PAGE_SHIFT;
394 if (startoffset != origoffset || npages != orignmempages) {
395 int npgs;
396
397 /*
398 * we need to avoid deadlocks caused by locking
399 * additional pages at lower offsets than pages we
400 * already have locked. unlock them all and start over.
401 */
402
403 genfs_rel_pages(&pgs[ridx], orignmempages);
404 memset(pgs, 0, pgs_size);
405
406 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
407 startoffset, endoffset, 0,0);
408 npgs = npages;
409 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
410 async ? UFP_NOWAIT : UFP_ALL) != npages) {
411 if (!glocked) {
412 genfs_node_unlock(vp);
413 }
414 KASSERT(async != 0);
415 genfs_rel_pages(pgs, npages);
416 mutex_exit(uobj->vmobjlock);
417 error = EBUSY;
418 goto out_err_free;
419 }
420 }
421
422 mutex_exit(uobj->vmobjlock);
423
424 {
425 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
426 vaddr_t kva;
427 struct buf *bp, *mbp;
428 bool sawhole = false;
429
430 /*
431 * read the desired page(s).
432 */
433
434 totalbytes = npages << PAGE_SHIFT;
435 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
436 tailbytes = totalbytes - bytes;
437 skipbytes = 0;
438
439 kva = uvm_pagermapin(pgs, npages,
440 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
441
442 mbp = getiobuf(vp, true);
443 mbp->b_bufsize = totalbytes;
444 mbp->b_data = (void *)kva;
445 mbp->b_resid = mbp->b_bcount = bytes;
446 mbp->b_cflags = BC_BUSY;
447 if (async) {
448 mbp->b_flags = B_READ | B_ASYNC;
449 mbp->b_iodone = uvm_aio_biodone;
450 } else {
451 mbp->b_flags = B_READ;
452 mbp->b_iodone = NULL;
453 }
454 if (async)
455 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
456 else
457 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
458
459 /*
460 * if EOF is in the middle of the range, zero the part past EOF.
461 * skip over pages which are not PG_FAKE since in that case they have
462 * valid data that we need to preserve.
463 */
464
465 tailstart = bytes;
466 while (tailbytes > 0) {
467 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
468
469 KASSERT(len <= tailbytes);
470 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
471 memset((void *)(kva + tailstart), 0, len);
472 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
473 kva, tailstart, len, 0);
474 }
475 tailstart += len;
476 tailbytes -= len;
477 }
478
479 /*
480 * now loop over the pages, reading as needed.
481 */
482
483 bp = NULL;
484 off_t offset;
485 for (offset = startoffset;
486 bytes > 0;
487 offset += iobytes, bytes -= iobytes) {
488 int run;
489 daddr_t lbn, blkno;
490 int pidx;
491 struct vnode *devvp;
492
493 /*
494 * skip pages which don't need to be read.
495 */
496
497 pidx = (offset - startoffset) >> PAGE_SHIFT;
498 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
499 size_t b;
500
501 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
502 if ((pgs[pidx]->flags & PG_RDONLY)) {
503 sawhole = true;
504 }
505 b = MIN(PAGE_SIZE, bytes);
506 offset += b;
507 bytes -= b;
508 skipbytes += b;
509 pidx++;
510 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
511 offset, 0,0,0);
512 if (bytes == 0) {
513 goto loopdone;
514 }
515 }
516
517 /*
518 * bmap the file to find out the blkno to read from and
519 * how much we can read in one i/o. if bmap returns an error,
520 * skip the rest of the top-level i/o.
521 */
522
523 lbn = offset >> fs_bshift;
524 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
525 if (error) {
526 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
527 lbn,error,0,0);
528 skipbytes += bytes;
529 bytes = 0;
530 goto loopdone;
531 }
532
533 /*
534 * see how many pages can be read with this i/o.
535 * reduce the i/o size if necessary to avoid
536 * overwriting pages with valid data.
537 */
538
539 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
540 bytes);
541 if (offset + iobytes > round_page(offset)) {
542 int pcount;
543
544 pcount = 1;
545 while (pidx + pcount < npages &&
546 pgs[pidx + pcount]->flags & PG_FAKE) {
547 pcount++;
548 }
549 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
550 (offset - trunc_page(offset)));
551 }
552
553 /*
554 * if this block isn't allocated, zero it instead of
555 * reading it. unless we are going to allocate blocks,
556 * mark the pages we zeroed PG_RDONLY.
557 */
558
559 if (blkno == (daddr_t)-1) {
560 int holepages = (round_page(offset + iobytes) -
561 trunc_page(offset)) >> PAGE_SHIFT;
562 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
563
564 sawhole = true;
565 memset((char *)kva + (offset - startoffset), 0,
566 iobytes);
567 skipbytes += iobytes;
568
569 mutex_enter(uobj->vmobjlock);
570 for (i = 0; i < holepages; i++) {
571 if (memwrite) {
572 pgs[pidx + i]->flags &= ~PG_CLEAN;
573 }
574 if (!blockalloc) {
575 pgs[pidx + i]->flags |= PG_RDONLY;
576 }
577 }
578 mutex_exit(uobj->vmobjlock);
579 continue;
580 }
581
582 /*
583 * allocate a sub-buf for this piece of the i/o
584 * (or just use mbp if there's only 1 piece),
585 * and start it going.
586 */
587
588 if (offset == startoffset && iobytes == bytes) {
589 bp = mbp;
590 } else {
591 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
592 vp, bp, vp->v_numoutput, 0);
593 bp = getiobuf(vp, true);
594 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
595 }
596 bp->b_lblkno = 0;
597
598 /* adjust physical blkno for partial blocks */
599 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
600 dev_bshift);
601
602 UVMHIST_LOG(ubchist,
603 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
604 bp, offset, bp->b_bcount, bp->b_blkno);
605
606 VOP_STRATEGY(devvp, bp);
607 }
608
609 loopdone:
610 nestiobuf_done(mbp, skipbytes, error);
611 if (async) {
612 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
613 if (!glocked) {
614 genfs_node_unlock(vp);
615 }
616 error = 0;
617 goto out_err_free;
618 }
619 if (bp != NULL) {
620 error = biowait(mbp);
621 }
622
623 /* Remove the mapping (make KVA available as soon as possible) */
624 uvm_pagermapout(kva, npages);
625
626 /*
627 * if this we encountered a hole then we have to do a little more work.
628 * for read faults, we marked the page PG_RDONLY so that future
629 * write accesses to the page will fault again.
630 * for write faults, we must make sure that the backing store for
631 * the page is completely allocated while the pages are locked.
632 */
633
634 if (!error && sawhole && blockalloc) {
635 error = GOP_ALLOC(vp, startoffset,
636 npages << PAGE_SHIFT, 0, cred);
637 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
638 startoffset, npages << PAGE_SHIFT, error,0);
639 if (!error) {
640 mutex_enter(uobj->vmobjlock);
641 for (i = 0; i < npages; i++) {
642 struct vm_page *pg = pgs[i];
643
644 if (pg == NULL) {
645 continue;
646 }
647 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
648 UVMHIST_LOG(ubchist, "mark dirty pg %p",
649 pg,0,0,0);
650 }
651 mutex_exit(uobj->vmobjlock);
652 }
653 }
654 if (!glocked) {
655 genfs_node_unlock(vp);
656 }
657
658 putiobuf(mbp);
659 }
660
661 mutex_enter(uobj->vmobjlock);
662
663 /*
664 * we're almost done! release the pages...
665 * for errors, we free the pages.
666 * otherwise we activate them and mark them as valid and clean.
667 * also, unbusy pages that were not actually requested.
668 */
669
670 if (error) {
671 for (i = 0; i < npages; i++) {
672 struct vm_page *pg = pgs[i];
673
674 if (pg == NULL) {
675 continue;
676 }
677 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
678 pg, pg->flags, 0,0);
679 if (pg->flags & PG_FAKE) {
680 pg->flags |= PG_RELEASED;
681 }
682 }
683 mutex_enter(&uvm_pageqlock);
684 uvm_page_unbusy(pgs, npages);
685 mutex_exit(&uvm_pageqlock);
686 mutex_exit(uobj->vmobjlock);
687 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
688 goto out_err_free;
689 }
690
691 out:
692 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
693 error = 0;
694 mutex_enter(&uvm_pageqlock);
695 for (i = 0; i < npages; i++) {
696 struct vm_page *pg = pgs[i];
697 if (pg == NULL) {
698 continue;
699 }
700 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
701 pg, pg->flags, 0,0);
702 if (pg->flags & PG_FAKE && !overwrite) {
703 pg->flags &= ~(PG_FAKE);
704 pmap_clear_modify(pgs[i]);
705 }
706 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
707 if (i < ridx || i >= ridx + orignmempages || async) {
708 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
709 pg, pg->offset,0,0);
710 if (pg->flags & PG_WANTED) {
711 wakeup(pg);
712 }
713 if (pg->flags & PG_FAKE) {
714 KASSERT(overwrite);
715 uvm_pagezero(pg);
716 }
717 if (pg->flags & PG_RELEASED) {
718 uvm_pagefree(pg);
719 continue;
720 }
721 uvm_pageenqueue(pg);
722 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
723 UVM_PAGE_OWN(pg, NULL);
724 }
725 }
726 mutex_exit(&uvm_pageqlock);
727 if (memwrite) {
728 genfs_markdirty(vp);
729 }
730 mutex_exit(uobj->vmobjlock);
731 if (ap->a_m != NULL) {
732 memcpy(ap->a_m, &pgs[ridx],
733 orignmempages * sizeof(struct vm_page *));
734 }
735
736 out_err_free:
737 if (pgs != NULL && pgs != pgs_onstack)
738 kmem_free(pgs, pgs_size);
739 out_err:
740 if (has_trans_wapbl) {
741 if (need_wapbl)
742 WAPBL_END(vp->v_mount);
743 fstrans_done(vp->v_mount);
744 }
745 return error;
746 }
747
748 /*
749 * generic VM putpages routine.
750 * Write the given range of pages to backing store.
751 *
752 * => "offhi == 0" means flush all pages at or after "offlo".
753 * => object should be locked by caller. we return with the
754 * object unlocked.
755 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
756 * thus, a caller might want to unlock higher level resources
757 * (e.g. vm_map) before calling flush.
758 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
759 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
760 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
761 * that new pages are inserted on the tail end of the list. thus,
762 * we can make a complete pass through the object in one go by starting
763 * at the head and working towards the tail (new pages are put in
764 * front of us).
765 * => NOTE: we are allowed to lock the page queues, so the caller
766 * must not be holding the page queue lock.
767 *
768 * note on "cleaning" object and PG_BUSY pages:
769 * this routine is holding the lock on the object. the only time
770 * that it can run into a PG_BUSY page that it does not own is if
771 * some other process has started I/O on the page (e.g. either
772 * a pagein, or a pageout). if the PG_BUSY page is being paged
773 * in, then it can not be dirty (!PG_CLEAN) because no one has
774 * had a chance to modify it yet. if the PG_BUSY page is being
775 * paged out then it means that someone else has already started
776 * cleaning the page for us (how nice!). in this case, if we
777 * have syncio specified, then after we make our pass through the
778 * object we need to wait for the other PG_BUSY pages to clear
779 * off (i.e. we need to do an iosync). also note that once a
780 * page is PG_BUSY it must stay in its object until it is un-busyed.
781 *
782 * note on page traversal:
783 * we can traverse the pages in an object either by going down the
784 * linked list in "uobj->memq", or we can go over the address range
785 * by page doing hash table lookups for each address. depending
786 * on how many pages are in the object it may be cheaper to do one
787 * or the other. we set "by_list" to true if we are using memq.
788 * if the cost of a hash lookup was equal to the cost of the list
789 * traversal we could compare the number of pages in the start->stop
790 * range to the total number of pages in the object. however, it
791 * seems that a hash table lookup is more expensive than the linked
792 * list traversal, so we multiply the number of pages in the
793 * range by an estimate of the relatively higher cost of the hash lookup.
794 */
795
796 int
797 genfs_putpages(void *v)
798 {
799 struct vop_putpages_args /* {
800 struct vnode *a_vp;
801 voff_t a_offlo;
802 voff_t a_offhi;
803 int a_flags;
804 } */ * const ap = v;
805
806 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
807 ap->a_flags, NULL);
808 }
809
810 int
811 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
812 int origflags, struct vm_page **busypg)
813 {
814 struct uvm_object * const uobj = &vp->v_uobj;
815 kmutex_t * const slock = uobj->vmobjlock;
816 off_t off;
817 /* Even for strange MAXPHYS, the shift rounds down to a page */
818 #define maxpages (MAXPHYS >> PAGE_SHIFT)
819 int i, error, npages, nback;
820 int freeflag;
821 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
822 bool wasclean, by_list, needs_clean, yld;
823 bool async = (origflags & PGO_SYNCIO) == 0;
824 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
825 struct lwp * const l = curlwp ? curlwp : &lwp0;
826 struct genfs_node * const gp = VTOG(vp);
827 int flags;
828 int dirtygen;
829 bool modified;
830 bool need_wapbl;
831 bool has_trans;
832 bool cleanall;
833 bool onworklst;
834
835 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
836
837 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
838 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
839 KASSERT(startoff < endoff || endoff == 0);
840
841 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
842 vp, uobj->uo_npages, startoff, endoff - startoff);
843
844 has_trans = false;
845 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
846 (origflags & PGO_JOURNALLOCKED) == 0);
847
848 retry:
849 modified = false;
850 flags = origflags;
851 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
852 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
853 if (uobj->uo_npages == 0) {
854 if (vp->v_iflag & VI_ONWORKLST) {
855 vp->v_iflag &= ~VI_WRMAPDIRTY;
856 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
857 vn_syncer_remove_from_worklist(vp);
858 }
859 if (has_trans) {
860 if (need_wapbl)
861 WAPBL_END(vp->v_mount);
862 fstrans_done(vp->v_mount);
863 }
864 mutex_exit(slock);
865 return (0);
866 }
867
868 /*
869 * the vnode has pages, set up to process the request.
870 */
871
872 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
873 mutex_exit(slock);
874 if (pagedaemon) {
875 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
876 if (error)
877 return error;
878 } else
879 fstrans_start(vp->v_mount, FSTRANS_LAZY);
880 if (need_wapbl) {
881 error = WAPBL_BEGIN(vp->v_mount);
882 if (error) {
883 fstrans_done(vp->v_mount);
884 return error;
885 }
886 }
887 has_trans = true;
888 mutex_enter(slock);
889 goto retry;
890 }
891
892 error = 0;
893 wasclean = (vp->v_numoutput == 0);
894 off = startoff;
895 if (endoff == 0 || flags & PGO_ALLPAGES) {
896 endoff = trunc_page(LLONG_MAX);
897 }
898 by_list = (uobj->uo_npages <=
899 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
900
901 /*
902 * if this vnode is known not to have dirty pages,
903 * don't bother to clean it out.
904 */
905
906 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
907 #if !defined(DEBUG)
908 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
909 goto skip_scan;
910 }
911 #endif /* !defined(DEBUG) */
912 flags &= ~PGO_CLEANIT;
913 }
914
915 /*
916 * start the loop. when scanning by list, hold the last page
917 * in the list before we start. pages allocated after we start
918 * will be added to the end of the list, so we can stop at the
919 * current last page.
920 */
921
922 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
923 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
924 (vp->v_iflag & VI_ONWORKLST) != 0;
925 dirtygen = gp->g_dirtygen;
926 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
927 if (by_list) {
928 curmp.flags = PG_MARKER;
929 endmp.flags = PG_MARKER;
930 pg = TAILQ_FIRST(&uobj->memq);
931 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
932 } else {
933 pg = uvm_pagelookup(uobj, off);
934 }
935 nextpg = NULL;
936 while (by_list || off < endoff) {
937
938 /*
939 * if the current page is not interesting, move on to the next.
940 */
941
942 KASSERT(pg == NULL || pg->uobject == uobj ||
943 (pg->flags & PG_MARKER) != 0);
944 KASSERT(pg == NULL ||
945 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
946 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
947 if (by_list) {
948 if (pg == &endmp) {
949 break;
950 }
951 if (pg->flags & PG_MARKER) {
952 pg = TAILQ_NEXT(pg, listq.queue);
953 continue;
954 }
955 if (pg->offset < startoff || pg->offset >= endoff ||
956 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
957 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
958 wasclean = false;
959 }
960 pg = TAILQ_NEXT(pg, listq.queue);
961 continue;
962 }
963 off = pg->offset;
964 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
965 if (pg != NULL) {
966 wasclean = false;
967 }
968 off += PAGE_SIZE;
969 if (off < endoff) {
970 pg = uvm_pagelookup(uobj, off);
971 }
972 continue;
973 }
974
975 /*
976 * if the current page needs to be cleaned and it's busy,
977 * wait for it to become unbusy.
978 */
979
980 yld = (l->l_cpu->ci_schedstate.spc_flags &
981 SPCF_SHOULDYIELD) && !pagedaemon;
982 if (pg->flags & PG_BUSY || yld) {
983 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
984 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
985 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
986 error = EDEADLK;
987 if (busypg != NULL)
988 *busypg = pg;
989 break;
990 }
991 if (pagedaemon) {
992 /*
993 * someone has taken the page while we
994 * dropped the lock for fstrans_start.
995 */
996 break;
997 }
998 if (by_list) {
999 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1000 UVMHIST_LOG(ubchist, "curmp next %p",
1001 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1002 }
1003 if (yld) {
1004 mutex_exit(slock);
1005 preempt();
1006 mutex_enter(slock);
1007 } else {
1008 pg->flags |= PG_WANTED;
1009 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1010 mutex_enter(slock);
1011 }
1012 if (by_list) {
1013 UVMHIST_LOG(ubchist, "after next %p",
1014 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1015 pg = TAILQ_NEXT(&curmp, listq.queue);
1016 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1017 } else {
1018 pg = uvm_pagelookup(uobj, off);
1019 }
1020 continue;
1021 }
1022
1023 /*
1024 * if we're freeing, remove all mappings of the page now.
1025 * if we're cleaning, check if the page is needs to be cleaned.
1026 */
1027
1028 if (flags & PGO_FREE) {
1029 pmap_page_protect(pg, VM_PROT_NONE);
1030 } else if (flags & PGO_CLEANIT) {
1031
1032 /*
1033 * if we still have some hope to pull this vnode off
1034 * from the syncer queue, write-protect the page.
1035 */
1036
1037 if (cleanall && wasclean &&
1038 gp->g_dirtygen == dirtygen) {
1039
1040 /*
1041 * uobj pages get wired only by uvm_fault
1042 * where uobj is locked.
1043 */
1044
1045 if (pg->wire_count == 0) {
1046 pmap_page_protect(pg,
1047 VM_PROT_READ|VM_PROT_EXECUTE);
1048 } else {
1049 cleanall = false;
1050 }
1051 }
1052 }
1053
1054 if (flags & PGO_CLEANIT) {
1055 needs_clean = pmap_clear_modify(pg) ||
1056 (pg->flags & PG_CLEAN) == 0;
1057 pg->flags |= PG_CLEAN;
1058 } else {
1059 needs_clean = false;
1060 }
1061
1062 /*
1063 * if we're cleaning, build a cluster.
1064 * the cluster will consist of pages which are currently dirty,
1065 * but they will be returned to us marked clean.
1066 * if not cleaning, just operate on the one page.
1067 */
1068
1069 if (needs_clean) {
1070 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1071 wasclean = false;
1072 memset(pgs, 0, sizeof(pgs));
1073 pg->flags |= PG_BUSY;
1074 UVM_PAGE_OWN(pg, "genfs_putpages");
1075
1076 /*
1077 * first look backward.
1078 */
1079
1080 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1081 nback = npages;
1082 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1083 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1084 if (nback) {
1085 memmove(&pgs[0], &pgs[npages - nback],
1086 nback * sizeof(pgs[0]));
1087 if (npages - nback < nback)
1088 memset(&pgs[nback], 0,
1089 (npages - nback) * sizeof(pgs[0]));
1090 else
1091 memset(&pgs[npages - nback], 0,
1092 nback * sizeof(pgs[0]));
1093 }
1094
1095 /*
1096 * then plug in our page of interest.
1097 */
1098
1099 pgs[nback] = pg;
1100
1101 /*
1102 * then look forward to fill in the remaining space in
1103 * the array of pages.
1104 */
1105
1106 npages = maxpages - nback - 1;
1107 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1108 &pgs[nback + 1],
1109 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1110 npages += nback + 1;
1111 } else {
1112 pgs[0] = pg;
1113 npages = 1;
1114 nback = 0;
1115 }
1116
1117 /*
1118 * apply FREE or DEACTIVATE options if requested.
1119 */
1120
1121 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1122 mutex_enter(&uvm_pageqlock);
1123 }
1124 for (i = 0; i < npages; i++) {
1125 tpg = pgs[i];
1126 KASSERT(tpg->uobject == uobj);
1127 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1128 pg = tpg;
1129 if (tpg->offset < startoff || tpg->offset >= endoff)
1130 continue;
1131 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1132 uvm_pagedeactivate(tpg);
1133 } else if (flags & PGO_FREE) {
1134 pmap_page_protect(tpg, VM_PROT_NONE);
1135 if (tpg->flags & PG_BUSY) {
1136 tpg->flags |= freeflag;
1137 if (pagedaemon) {
1138 uvm_pageout_start(1);
1139 uvm_pagedequeue(tpg);
1140 }
1141 } else {
1142
1143 /*
1144 * ``page is not busy''
1145 * implies that npages is 1
1146 * and needs_clean is false.
1147 */
1148
1149 nextpg = TAILQ_NEXT(tpg, listq.queue);
1150 uvm_pagefree(tpg);
1151 if (pagedaemon)
1152 uvmexp.pdfreed++;
1153 }
1154 }
1155 }
1156 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1157 mutex_exit(&uvm_pageqlock);
1158 }
1159 if (needs_clean) {
1160 modified = true;
1161
1162 /*
1163 * start the i/o. if we're traversing by list,
1164 * keep our place in the list with a marker page.
1165 */
1166
1167 if (by_list) {
1168 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1169 listq.queue);
1170 }
1171 mutex_exit(slock);
1172 error = GOP_WRITE(vp, pgs, npages, flags);
1173 mutex_enter(slock);
1174 if (by_list) {
1175 pg = TAILQ_NEXT(&curmp, listq.queue);
1176 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1177 }
1178 if (error) {
1179 break;
1180 }
1181 if (by_list) {
1182 continue;
1183 }
1184 }
1185
1186 /*
1187 * find the next page and continue if there was no error.
1188 */
1189
1190 if (by_list) {
1191 if (nextpg) {
1192 pg = nextpg;
1193 nextpg = NULL;
1194 } else {
1195 pg = TAILQ_NEXT(pg, listq.queue);
1196 }
1197 } else {
1198 off += (npages - nback) << PAGE_SHIFT;
1199 if (off < endoff) {
1200 pg = uvm_pagelookup(uobj, off);
1201 }
1202 }
1203 }
1204 if (by_list) {
1205 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1206 }
1207
1208 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1209 (vp->v_type != VBLK ||
1210 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1211 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1212 }
1213
1214 /*
1215 * if we're cleaning and there was nothing to clean,
1216 * take us off the syncer list. if we started any i/o
1217 * and we're doing sync i/o, wait for all writes to finish.
1218 */
1219
1220 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1221 (vp->v_iflag & VI_ONWORKLST) != 0) {
1222 #if defined(DEBUG)
1223 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1224 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1225 continue;
1226 }
1227 if ((pg->flags & PG_CLEAN) == 0) {
1228 printf("%s: %p: !CLEAN\n", __func__, pg);
1229 }
1230 if (pmap_is_modified(pg)) {
1231 printf("%s: %p: modified\n", __func__, pg);
1232 }
1233 }
1234 #endif /* defined(DEBUG) */
1235 vp->v_iflag &= ~VI_WRMAPDIRTY;
1236 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1237 vn_syncer_remove_from_worklist(vp);
1238 }
1239
1240 #if !defined(DEBUG)
1241 skip_scan:
1242 #endif /* !defined(DEBUG) */
1243
1244 /* Wait for output to complete. */
1245 if (!wasclean && !async && vp->v_numoutput != 0) {
1246 while (vp->v_numoutput != 0)
1247 cv_wait(&vp->v_cv, slock);
1248 }
1249 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1250 mutex_exit(slock);
1251
1252 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1253 /*
1254 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1255 * retrying is not a big deal because, in many cases,
1256 * uobj->uo_npages is already 0 here.
1257 */
1258 mutex_enter(slock);
1259 goto retry;
1260 }
1261
1262 if (has_trans) {
1263 if (need_wapbl)
1264 WAPBL_END(vp->v_mount);
1265 fstrans_done(vp->v_mount);
1266 }
1267
1268 return (error);
1269 }
1270
1271 int
1272 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1273 {
1274 off_t off;
1275 vaddr_t kva;
1276 size_t len;
1277 int error;
1278 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1279
1280 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1281 vp, pgs, npages, flags);
1282
1283 off = pgs[0]->offset;
1284 kva = uvm_pagermapin(pgs, npages,
1285 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1286 len = npages << PAGE_SHIFT;
1287
1288 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1289 uvm_aio_biodone);
1290
1291 return error;
1292 }
1293
1294 int
1295 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1296 {
1297 off_t off;
1298 vaddr_t kva;
1299 size_t len;
1300 int error;
1301 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1302
1303 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1304 vp, pgs, npages, flags);
1305
1306 off = pgs[0]->offset;
1307 kva = uvm_pagermapin(pgs, npages,
1308 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1309 len = npages << PAGE_SHIFT;
1310
1311 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1312 uvm_aio_biodone);
1313
1314 return error;
1315 }
1316
1317 /*
1318 * Backend routine for doing I/O to vnode pages. Pages are already locked
1319 * and mapped into kernel memory. Here we just look up the underlying
1320 * device block addresses and call the strategy routine.
1321 */
1322
1323 static int
1324 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1325 enum uio_rw rw, void (*iodone)(struct buf *))
1326 {
1327 int s, error;
1328 int fs_bshift, dev_bshift;
1329 off_t eof, offset, startoffset;
1330 size_t bytes, iobytes, skipbytes;
1331 struct buf *mbp, *bp;
1332 const bool async = (flags & PGO_SYNCIO) == 0;
1333 const bool lazy = (flags & PGO_LAZY) == 0;
1334 const bool iowrite = rw == UIO_WRITE;
1335 const int brw = iowrite ? B_WRITE : B_READ;
1336 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1337
1338 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1339 vp, kva, len, flags);
1340
1341 KASSERT(vp->v_size <= vp->v_writesize);
1342 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1343 if (vp->v_type != VBLK) {
1344 fs_bshift = vp->v_mount->mnt_fs_bshift;
1345 dev_bshift = vp->v_mount->mnt_dev_bshift;
1346 } else {
1347 fs_bshift = DEV_BSHIFT;
1348 dev_bshift = DEV_BSHIFT;
1349 }
1350 error = 0;
1351 startoffset = off;
1352 bytes = MIN(len, eof - startoffset);
1353 skipbytes = 0;
1354 KASSERT(bytes != 0);
1355
1356 if (iowrite) {
1357 mutex_enter(vp->v_interlock);
1358 vp->v_numoutput += 2;
1359 mutex_exit(vp->v_interlock);
1360 }
1361 mbp = getiobuf(vp, true);
1362 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1363 vp, mbp, vp->v_numoutput, bytes);
1364 mbp->b_bufsize = len;
1365 mbp->b_data = (void *)kva;
1366 mbp->b_resid = mbp->b_bcount = bytes;
1367 mbp->b_cflags = BC_BUSY | BC_AGE;
1368 if (async) {
1369 mbp->b_flags = brw | B_ASYNC;
1370 mbp->b_iodone = iodone;
1371 } else {
1372 mbp->b_flags = brw;
1373 mbp->b_iodone = NULL;
1374 }
1375 if (curlwp == uvm.pagedaemon_lwp)
1376 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1377 else if (async || lazy)
1378 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1379 else
1380 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1381
1382 bp = NULL;
1383 for (offset = startoffset;
1384 bytes > 0;
1385 offset += iobytes, bytes -= iobytes) {
1386 int run;
1387 daddr_t lbn, blkno;
1388 struct vnode *devvp;
1389
1390 /*
1391 * bmap the file to find out the blkno to read from and
1392 * how much we can read in one i/o. if bmap returns an error,
1393 * skip the rest of the top-level i/o.
1394 */
1395
1396 lbn = offset >> fs_bshift;
1397 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1398 if (error) {
1399 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1400 lbn,error,0,0);
1401 skipbytes += bytes;
1402 bytes = 0;
1403 goto loopdone;
1404 }
1405
1406 /*
1407 * see how many pages can be read with this i/o.
1408 * reduce the i/o size if necessary to avoid
1409 * overwriting pages with valid data.
1410 */
1411
1412 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1413 bytes);
1414
1415 /*
1416 * if this block isn't allocated, zero it instead of
1417 * reading it. unless we are going to allocate blocks,
1418 * mark the pages we zeroed PG_RDONLY.
1419 */
1420
1421 if (blkno == (daddr_t)-1) {
1422 if (!iowrite) {
1423 memset((char *)kva + (offset - startoffset), 0,
1424 iobytes);
1425 }
1426 skipbytes += iobytes;
1427 continue;
1428 }
1429
1430 /*
1431 * allocate a sub-buf for this piece of the i/o
1432 * (or just use mbp if there's only 1 piece),
1433 * and start it going.
1434 */
1435
1436 if (offset == startoffset && iobytes == bytes) {
1437 bp = mbp;
1438 } else {
1439 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1440 vp, bp, vp->v_numoutput, 0);
1441 bp = getiobuf(vp, true);
1442 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1443 }
1444 bp->b_lblkno = 0;
1445
1446 /* adjust physical blkno for partial blocks */
1447 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1448 dev_bshift);
1449
1450 UVMHIST_LOG(ubchist,
1451 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1452 bp, offset, bp->b_bcount, bp->b_blkno);
1453
1454 VOP_STRATEGY(devvp, bp);
1455 }
1456
1457 loopdone:
1458 if (skipbytes) {
1459 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1460 }
1461 nestiobuf_done(mbp, skipbytes, error);
1462 if (async) {
1463 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1464 return (0);
1465 }
1466 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1467 error = biowait(mbp);
1468 s = splbio();
1469 (*iodone)(mbp);
1470 splx(s);
1471 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1472 return (error);
1473 }
1474
1475 int
1476 genfs_compat_getpages(void *v)
1477 {
1478 struct vop_getpages_args /* {
1479 struct vnode *a_vp;
1480 voff_t a_offset;
1481 struct vm_page **a_m;
1482 int *a_count;
1483 int a_centeridx;
1484 vm_prot_t a_access_type;
1485 int a_advice;
1486 int a_flags;
1487 } */ *ap = v;
1488
1489 off_t origoffset;
1490 struct vnode *vp = ap->a_vp;
1491 struct uvm_object *uobj = &vp->v_uobj;
1492 struct vm_page *pg, **pgs;
1493 vaddr_t kva;
1494 int i, error, orignpages, npages;
1495 struct iovec iov;
1496 struct uio uio;
1497 kauth_cred_t cred = curlwp->l_cred;
1498 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1499
1500 error = 0;
1501 origoffset = ap->a_offset;
1502 orignpages = *ap->a_count;
1503 pgs = ap->a_m;
1504
1505 if (ap->a_flags & PGO_LOCKED) {
1506 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1507 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1508
1509 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1510 if (error == 0 && memwrite) {
1511 genfs_markdirty(vp);
1512 }
1513 return error;
1514 }
1515 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1516 mutex_exit(uobj->vmobjlock);
1517 return EINVAL;
1518 }
1519 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1520 mutex_exit(uobj->vmobjlock);
1521 return 0;
1522 }
1523 npages = orignpages;
1524 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1525 mutex_exit(uobj->vmobjlock);
1526 kva = uvm_pagermapin(pgs, npages,
1527 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1528 for (i = 0; i < npages; i++) {
1529 pg = pgs[i];
1530 if ((pg->flags & PG_FAKE) == 0) {
1531 continue;
1532 }
1533 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1534 iov.iov_len = PAGE_SIZE;
1535 uio.uio_iov = &iov;
1536 uio.uio_iovcnt = 1;
1537 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1538 uio.uio_rw = UIO_READ;
1539 uio.uio_resid = PAGE_SIZE;
1540 UIO_SETUP_SYSSPACE(&uio);
1541 /* XXX vn_lock */
1542 error = VOP_READ(vp, &uio, 0, cred);
1543 if (error) {
1544 break;
1545 }
1546 if (uio.uio_resid) {
1547 memset(iov.iov_base, 0, uio.uio_resid);
1548 }
1549 }
1550 uvm_pagermapout(kva, npages);
1551 mutex_enter(uobj->vmobjlock);
1552 mutex_enter(&uvm_pageqlock);
1553 for (i = 0; i < npages; i++) {
1554 pg = pgs[i];
1555 if (error && (pg->flags & PG_FAKE) != 0) {
1556 pg->flags |= PG_RELEASED;
1557 } else {
1558 pmap_clear_modify(pg);
1559 uvm_pageactivate(pg);
1560 }
1561 }
1562 if (error) {
1563 uvm_page_unbusy(pgs, npages);
1564 }
1565 mutex_exit(&uvm_pageqlock);
1566 if (error == 0 && memwrite) {
1567 genfs_markdirty(vp);
1568 }
1569 mutex_exit(uobj->vmobjlock);
1570 return error;
1571 }
1572
1573 int
1574 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1575 int flags)
1576 {
1577 off_t offset;
1578 struct iovec iov;
1579 struct uio uio;
1580 kauth_cred_t cred = curlwp->l_cred;
1581 struct buf *bp;
1582 vaddr_t kva;
1583 int error;
1584
1585 offset = pgs[0]->offset;
1586 kva = uvm_pagermapin(pgs, npages,
1587 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1588
1589 iov.iov_base = (void *)kva;
1590 iov.iov_len = npages << PAGE_SHIFT;
1591 uio.uio_iov = &iov;
1592 uio.uio_iovcnt = 1;
1593 uio.uio_offset = offset;
1594 uio.uio_rw = UIO_WRITE;
1595 uio.uio_resid = npages << PAGE_SHIFT;
1596 UIO_SETUP_SYSSPACE(&uio);
1597 /* XXX vn_lock */
1598 error = VOP_WRITE(vp, &uio, 0, cred);
1599
1600 mutex_enter(vp->v_interlock);
1601 vp->v_numoutput++;
1602 mutex_exit(vp->v_interlock);
1603
1604 bp = getiobuf(vp, true);
1605 bp->b_cflags = BC_BUSY | BC_AGE;
1606 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1607 bp->b_data = (char *)kva;
1608 bp->b_bcount = npages << PAGE_SHIFT;
1609 bp->b_bufsize = npages << PAGE_SHIFT;
1610 bp->b_resid = 0;
1611 bp->b_error = error;
1612 uvm_aio_aiodone(bp);
1613 return (error);
1614 }
1615
1616 /*
1617 * Process a uio using direct I/O. If we reach a part of the request
1618 * which cannot be processed in this fashion for some reason, just return.
1619 * The caller must handle some additional part of the request using
1620 * buffered I/O before trying direct I/O again.
1621 */
1622
1623 void
1624 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1625 {
1626 struct vmspace *vs;
1627 struct iovec *iov;
1628 vaddr_t va;
1629 size_t len;
1630 const int mask = DEV_BSIZE - 1;
1631 int error;
1632 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1633 (ioflag & IO_JOURNALLOCKED) == 0);
1634
1635 /*
1636 * We only support direct I/O to user space for now.
1637 */
1638
1639 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1640 return;
1641 }
1642
1643 /*
1644 * If the vnode is mapped, we would need to get the getpages lock
1645 * to stabilize the bmap, but then we would get into trouble while
1646 * locking the pages if the pages belong to this same vnode (or a
1647 * multi-vnode cascade to the same effect). Just fall back to
1648 * buffered I/O if the vnode is mapped to avoid this mess.
1649 */
1650
1651 if (vp->v_vflag & VV_MAPPED) {
1652 return;
1653 }
1654
1655 if (need_wapbl) {
1656 error = WAPBL_BEGIN(vp->v_mount);
1657 if (error)
1658 return;
1659 }
1660
1661 /*
1662 * Do as much of the uio as possible with direct I/O.
1663 */
1664
1665 vs = uio->uio_vmspace;
1666 while (uio->uio_resid) {
1667 iov = uio->uio_iov;
1668 if (iov->iov_len == 0) {
1669 uio->uio_iov++;
1670 uio->uio_iovcnt--;
1671 continue;
1672 }
1673 va = (vaddr_t)iov->iov_base;
1674 len = MIN(iov->iov_len, genfs_maxdio);
1675 len &= ~mask;
1676
1677 /*
1678 * If the next chunk is smaller than DEV_BSIZE or extends past
1679 * the current EOF, then fall back to buffered I/O.
1680 */
1681
1682 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1683 break;
1684 }
1685
1686 /*
1687 * Check alignment. The file offset must be at least
1688 * sector-aligned. The exact constraint on memory alignment
1689 * is very hardware-dependent, but requiring sector-aligned
1690 * addresses there too is safe.
1691 */
1692
1693 if (uio->uio_offset & mask || va & mask) {
1694 break;
1695 }
1696 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1697 uio->uio_rw);
1698 if (error) {
1699 break;
1700 }
1701 iov->iov_base = (char *)iov->iov_base + len;
1702 iov->iov_len -= len;
1703 uio->uio_offset += len;
1704 uio->uio_resid -= len;
1705 }
1706
1707 if (need_wapbl)
1708 WAPBL_END(vp->v_mount);
1709 }
1710
1711 /*
1712 * Iodone routine for direct I/O. We don't do much here since the request is
1713 * always synchronous, so the caller will do most of the work after biowait().
1714 */
1715
1716 static void
1717 genfs_dio_iodone(struct buf *bp)
1718 {
1719
1720 KASSERT((bp->b_flags & B_ASYNC) == 0);
1721 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1722 mutex_enter(bp->b_objlock);
1723 vwakeup(bp);
1724 mutex_exit(bp->b_objlock);
1725 }
1726 putiobuf(bp);
1727 }
1728
1729 /*
1730 * Process one chunk of a direct I/O request.
1731 */
1732
1733 static int
1734 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1735 off_t off, enum uio_rw rw)
1736 {
1737 struct vm_map *map;
1738 struct pmap *upm, *kpm;
1739 size_t klen = round_page(uva + len) - trunc_page(uva);
1740 off_t spoff, epoff;
1741 vaddr_t kva, puva;
1742 paddr_t pa;
1743 vm_prot_t prot;
1744 int error, rv, poff, koff;
1745 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1746 (rw == UIO_WRITE ? PGO_FREE : 0);
1747
1748 /*
1749 * For writes, verify that this range of the file already has fully
1750 * allocated backing store. If there are any holes, just punt and
1751 * make the caller take the buffered write path.
1752 */
1753
1754 if (rw == UIO_WRITE) {
1755 daddr_t lbn, elbn, blkno;
1756 int bsize, bshift, run;
1757
1758 bshift = vp->v_mount->mnt_fs_bshift;
1759 bsize = 1 << bshift;
1760 lbn = off >> bshift;
1761 elbn = (off + len + bsize - 1) >> bshift;
1762 while (lbn < elbn) {
1763 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1764 if (error) {
1765 return error;
1766 }
1767 if (blkno == (daddr_t)-1) {
1768 return ENOSPC;
1769 }
1770 lbn += 1 + run;
1771 }
1772 }
1773
1774 /*
1775 * Flush any cached pages for parts of the file that we're about to
1776 * access. If we're writing, invalidate pages as well.
1777 */
1778
1779 spoff = trunc_page(off);
1780 epoff = round_page(off + len);
1781 mutex_enter(vp->v_interlock);
1782 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1783 if (error) {
1784 return error;
1785 }
1786
1787 /*
1788 * Wire the user pages and remap them into kernel memory.
1789 */
1790
1791 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1792 error = uvm_vslock(vs, (void *)uva, len, prot);
1793 if (error) {
1794 return error;
1795 }
1796
1797 map = &vs->vm_map;
1798 upm = vm_map_pmap(map);
1799 kpm = vm_map_pmap(kernel_map);
1800 puva = trunc_page(uva);
1801 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1802 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1803 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1804 rv = pmap_extract(upm, puva + poff, &pa);
1805 KASSERT(rv);
1806 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1807 }
1808 pmap_update(kpm);
1809
1810 /*
1811 * Do the I/O.
1812 */
1813
1814 koff = uva - trunc_page(uva);
1815 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1816 genfs_dio_iodone);
1817
1818 /*
1819 * Tear down the kernel mapping.
1820 */
1821
1822 pmap_kremove(kva, klen);
1823 pmap_update(kpm);
1824 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1825
1826 /*
1827 * Unwire the user pages.
1828 */
1829
1830 uvm_vsunlock(vs, (void *)uva, len);
1831 return error;
1832 }
1833