Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.55.4.1
      1 /*	$NetBSD: genfs_io.c,v 1.55.4.1 2014/05/18 17:46:09 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.55.4.1 2014/05/18 17:46:09 rmind Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 
     47 #include <miscfs/genfs/genfs.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <miscfs/specfs/specdev.h>
     50 #include <miscfs/syncfs/syncfs.h>
     51 
     52 #include <uvm/uvm.h>
     53 #include <uvm/uvm_pager.h>
     54 
     55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     56     off_t, enum uio_rw);
     57 static void genfs_dio_iodone(struct buf *);
     58 
     59 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     60     void (*)(struct buf *));
     61 static void genfs_rel_pages(struct vm_page **, unsigned int);
     62 static void genfs_markdirty(struct vnode *);
     63 
     64 int genfs_maxdio = MAXPHYS;
     65 
     66 static void
     67 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     68 {
     69 	unsigned int i;
     70 
     71 	for (i = 0; i < npages; i++) {
     72 		struct vm_page *pg = pgs[i];
     73 
     74 		if (pg == NULL || pg == PGO_DONTCARE)
     75 			continue;
     76 		KASSERT(uvm_page_locked_p(pg));
     77 		if (pg->flags & PG_FAKE) {
     78 			pg->flags |= PG_RELEASED;
     79 		}
     80 	}
     81 	mutex_enter(&uvm_pageqlock);
     82 	uvm_page_unbusy(pgs, npages);
     83 	mutex_exit(&uvm_pageqlock);
     84 }
     85 
     86 static void
     87 genfs_markdirty(struct vnode *vp)
     88 {
     89 	struct genfs_node * const gp = VTOG(vp);
     90 
     91 	KASSERT(mutex_owned(vp->v_interlock));
     92 	gp->g_dirtygen++;
     93 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     94 		vn_syncer_add_to_worklist(vp, filedelay);
     95 	}
     96 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
     97 		vp->v_iflag |= VI_WRMAPDIRTY;
     98 	}
     99 }
    100 
    101 /*
    102  * generic VM getpages routine.
    103  * Return PG_BUSY pages for the given range,
    104  * reading from backing store if necessary.
    105  */
    106 
    107 int
    108 genfs_getpages(void *v)
    109 {
    110 	struct vop_getpages_args /* {
    111 		struct vnode *a_vp;
    112 		voff_t a_offset;
    113 		struct vm_page **a_m;
    114 		int *a_count;
    115 		int a_centeridx;
    116 		vm_prot_t a_access_type;
    117 		int a_advice;
    118 		int a_flags;
    119 	} */ * const ap = v;
    120 
    121 	off_t diskeof, memeof;
    122 	int i, error, npages;
    123 	const int flags = ap->a_flags;
    124 	struct vnode * const vp = ap->a_vp;
    125 	struct uvm_object * const uobj = &vp->v_uobj;
    126 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    127 	const bool async = (flags & PGO_SYNCIO) == 0;
    128 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    130 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    131 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    132 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
    133 	bool has_trans_wapbl = false;
    134 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    135 
    136 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    137 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    138 
    139 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    140 	    vp->v_type == VLNK || vp->v_type == VBLK);
    141 
    142 startover:
    143 	error = 0;
    144 	const voff_t origvsize = vp->v_size;
    145 	const off_t origoffset = ap->a_offset;
    146 	const int orignpages = *ap->a_count;
    147 
    148 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    149 	if (flags & PGO_PASTEOF) {
    150 		off_t newsize;
    151 #if defined(DIAGNOSTIC)
    152 		off_t writeeof;
    153 #endif /* defined(DIAGNOSTIC) */
    154 
    155 		newsize = MAX(origvsize,
    156 		    origoffset + (orignpages << PAGE_SHIFT));
    157 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    158 #if defined(DIAGNOSTIC)
    159 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    160 		if (newsize > round_page(writeeof)) {
    161 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    162 			    __func__, newsize, round_page(writeeof));
    163 		}
    164 #endif /* defined(DIAGNOSTIC) */
    165 	} else {
    166 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    167 	}
    168 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    169 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    170 	KASSERT(orignpages > 0);
    171 
    172 	/*
    173 	 * Bounds-check the request.
    174 	 */
    175 
    176 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    177 		if ((flags & PGO_LOCKED) == 0) {
    178 			mutex_exit(uobj->vmobjlock);
    179 		}
    180 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    181 		    origoffset, *ap->a_count, memeof,0);
    182 		error = EINVAL;
    183 		goto out_err;
    184 	}
    185 
    186 	/* uobj is locked */
    187 
    188 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    189 	    (vp->v_type != VBLK ||
    190 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    191 		int updflags = 0;
    192 
    193 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    194 			updflags = GOP_UPDATE_ACCESSED;
    195 		}
    196 		if (memwrite) {
    197 			updflags |= GOP_UPDATE_MODIFIED;
    198 		}
    199 		if (updflags != 0) {
    200 			GOP_MARKUPDATE(vp, updflags);
    201 		}
    202 	}
    203 
    204 	/*
    205 	 * For PGO_LOCKED requests, just return whatever's in memory.
    206 	 */
    207 
    208 	if (flags & PGO_LOCKED) {
    209 		int nfound;
    210 		struct vm_page *pg;
    211 
    212 		KASSERT(!glocked);
    213 		npages = *ap->a_count;
    214 #if defined(DEBUG)
    215 		for (i = 0; i < npages; i++) {
    216 			pg = ap->a_m[i];
    217 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    218 		}
    219 #endif /* defined(DEBUG) */
    220 		nfound = uvn_findpages(uobj, origoffset, &npages,
    221 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    222 		KASSERT(npages == *ap->a_count);
    223 		if (nfound == 0) {
    224 			error = EBUSY;
    225 			goto out_err;
    226 		}
    227 		if (!genfs_node_rdtrylock(vp)) {
    228 			genfs_rel_pages(ap->a_m, npages);
    229 
    230 			/*
    231 			 * restore the array.
    232 			 */
    233 
    234 			for (i = 0; i < npages; i++) {
    235 				pg = ap->a_m[i];
    236 
    237 				if (pg != NULL && pg != PGO_DONTCARE) {
    238 					ap->a_m[i] = NULL;
    239 				}
    240 				KASSERT(ap->a_m[i] == NULL ||
    241 				    ap->a_m[i] == PGO_DONTCARE);
    242 			}
    243 		} else {
    244 			genfs_node_unlock(vp);
    245 		}
    246 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    247 		if (error == 0 && memwrite) {
    248 			genfs_markdirty(vp);
    249 		}
    250 		goto out_err;
    251 	}
    252 	mutex_exit(uobj->vmobjlock);
    253 
    254 	/*
    255 	 * find the requested pages and make some simple checks.
    256 	 * leave space in the page array for a whole block.
    257 	 */
    258 
    259 	const int fs_bshift = (vp->v_type != VBLK) ?
    260 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    261 	const int dev_bshift = (vp->v_type != VBLK) ?
    262 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    263 	const int fs_bsize = 1 << fs_bshift;
    264 #define	blk_mask	(fs_bsize - 1)
    265 #define	trunc_blk(x)	((x) & ~blk_mask)
    266 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    267 
    268 	const int orignmempages = MIN(orignpages,
    269 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    270 	npages = orignmempages;
    271 	const off_t startoffset = trunc_blk(origoffset);
    272 	const off_t endoffset = MIN(
    273 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    274 	    round_page(memeof));
    275 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    276 
    277 	const int pgs_size = sizeof(struct vm_page *) *
    278 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    279 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    280 
    281 	if (pgs_size > sizeof(pgs_onstack)) {
    282 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    283 		if (pgs == NULL) {
    284 			pgs = pgs_onstack;
    285 			error = ENOMEM;
    286 			goto out_err;
    287 		}
    288 	} else {
    289 		pgs = pgs_onstack;
    290 		(void)memset(pgs, 0, pgs_size);
    291 	}
    292 
    293 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    294 	    ridx, npages, startoffset, endoffset);
    295 
    296 	if (!has_trans_wapbl) {
    297 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    298 		/*
    299 		 * XXX: This assumes that we come here only via
    300 		 * the mmio path
    301 		 */
    302 		if (need_wapbl) {
    303 			error = WAPBL_BEGIN(vp->v_mount);
    304 			if (error) {
    305 				fstrans_done(vp->v_mount);
    306 				goto out_err_free;
    307 			}
    308 		}
    309 		has_trans_wapbl = true;
    310 	}
    311 
    312 	/*
    313 	 * hold g_glock to prevent a race with truncate.
    314 	 *
    315 	 * check if our idea of v_size is still valid.
    316 	 */
    317 
    318 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    319 	if (!glocked) {
    320 		if (blockalloc) {
    321 			genfs_node_wrlock(vp);
    322 		} else {
    323 			genfs_node_rdlock(vp);
    324 		}
    325 	}
    326 	mutex_enter(uobj->vmobjlock);
    327 	if (vp->v_size < origvsize) {
    328 		if (!glocked) {
    329 			genfs_node_unlock(vp);
    330 		}
    331 		if (pgs != pgs_onstack)
    332 			kmem_free(pgs, pgs_size);
    333 		goto startover;
    334 	}
    335 
    336 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    337 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    338 		if (!glocked) {
    339 			genfs_node_unlock(vp);
    340 		}
    341 		KASSERT(async != 0);
    342 		genfs_rel_pages(&pgs[ridx], orignmempages);
    343 		mutex_exit(uobj->vmobjlock);
    344 		error = EBUSY;
    345 		goto out_err_free;
    346 	}
    347 
    348 	/*
    349 	 * if the pages are already resident, just return them.
    350 	 */
    351 
    352 	for (i = 0; i < npages; i++) {
    353 		struct vm_page *pg = pgs[ridx + i];
    354 
    355 		if ((pg->flags & PG_FAKE) ||
    356 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    357 			break;
    358 		}
    359 	}
    360 	if (i == npages) {
    361 		if (!glocked) {
    362 			genfs_node_unlock(vp);
    363 		}
    364 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    365 		npages += ridx;
    366 		goto out;
    367 	}
    368 
    369 	/*
    370 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    371 	 */
    372 
    373 	if (overwrite) {
    374 		if (!glocked) {
    375 			genfs_node_unlock(vp);
    376 		}
    377 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    378 
    379 		for (i = 0; i < npages; i++) {
    380 			struct vm_page *pg = pgs[ridx + i];
    381 
    382 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    383 		}
    384 		npages += ridx;
    385 		goto out;
    386 	}
    387 
    388 	/*
    389 	 * the page wasn't resident and we're not overwriting,
    390 	 * so we're going to have to do some i/o.
    391 	 * find any additional pages needed to cover the expanded range.
    392 	 */
    393 
    394 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    395 	if (startoffset != origoffset || npages != orignmempages) {
    396 		int npgs;
    397 
    398 		/*
    399 		 * we need to avoid deadlocks caused by locking
    400 		 * additional pages at lower offsets than pages we
    401 		 * already have locked.  unlock them all and start over.
    402 		 */
    403 
    404 		genfs_rel_pages(&pgs[ridx], orignmempages);
    405 		memset(pgs, 0, pgs_size);
    406 
    407 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    408 		    startoffset, endoffset, 0,0);
    409 		npgs = npages;
    410 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    411 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    412 			if (!glocked) {
    413 				genfs_node_unlock(vp);
    414 			}
    415 			KASSERT(async != 0);
    416 			genfs_rel_pages(pgs, npages);
    417 			mutex_exit(uobj->vmobjlock);
    418 			error = EBUSY;
    419 			goto out_err_free;
    420 		}
    421 	}
    422 
    423 	mutex_exit(uobj->vmobjlock);
    424 
    425     {
    426 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    427 	vaddr_t kva;
    428 	struct buf *bp, *mbp;
    429 	bool sawhole = false;
    430 
    431 	/*
    432 	 * read the desired page(s).
    433 	 */
    434 
    435 	totalbytes = npages << PAGE_SHIFT;
    436 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    437 	tailbytes = totalbytes - bytes;
    438 	skipbytes = 0;
    439 
    440 	kva = uvm_pagermapin(pgs, npages,
    441 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    442 	if (kva == 0) {
    443 		error = EBUSY;
    444 		goto mapin_fail;
    445 	}
    446 
    447 	mbp = getiobuf(vp, true);
    448 	mbp->b_bufsize = totalbytes;
    449 	mbp->b_data = (void *)kva;
    450 	mbp->b_resid = mbp->b_bcount = bytes;
    451 	mbp->b_cflags = BC_BUSY;
    452 	if (async) {
    453 		mbp->b_flags = B_READ | B_ASYNC;
    454 		mbp->b_iodone = uvm_aio_biodone;
    455 	} else {
    456 		mbp->b_flags = B_READ;
    457 		mbp->b_iodone = NULL;
    458 	}
    459 	if (async)
    460 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    461 	else
    462 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    463 
    464 	/*
    465 	 * if EOF is in the middle of the range, zero the part past EOF.
    466 	 * skip over pages which are not PG_FAKE since in that case they have
    467 	 * valid data that we need to preserve.
    468 	 */
    469 
    470 	tailstart = bytes;
    471 	while (tailbytes > 0) {
    472 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    473 
    474 		KASSERT(len <= tailbytes);
    475 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    476 			memset((void *)(kva + tailstart), 0, len);
    477 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    478 			    kva, tailstart, len, 0);
    479 		}
    480 		tailstart += len;
    481 		tailbytes -= len;
    482 	}
    483 
    484 	/*
    485 	 * now loop over the pages, reading as needed.
    486 	 */
    487 
    488 	bp = NULL;
    489 	off_t offset;
    490 	for (offset = startoffset;
    491 	    bytes > 0;
    492 	    offset += iobytes, bytes -= iobytes) {
    493 		int run;
    494 		daddr_t lbn, blkno;
    495 		int pidx;
    496 		struct vnode *devvp;
    497 
    498 		/*
    499 		 * skip pages which don't need to be read.
    500 		 */
    501 
    502 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    503 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    504 			size_t b;
    505 
    506 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    507 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    508 				sawhole = true;
    509 			}
    510 			b = MIN(PAGE_SIZE, bytes);
    511 			offset += b;
    512 			bytes -= b;
    513 			skipbytes += b;
    514 			pidx++;
    515 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    516 			    offset, 0,0,0);
    517 			if (bytes == 0) {
    518 				goto loopdone;
    519 			}
    520 		}
    521 
    522 		/*
    523 		 * bmap the file to find out the blkno to read from and
    524 		 * how much we can read in one i/o.  if bmap returns an error,
    525 		 * skip the rest of the top-level i/o.
    526 		 */
    527 
    528 		lbn = offset >> fs_bshift;
    529 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    530 		if (error) {
    531 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    532 			    lbn,error,0,0);
    533 			skipbytes += bytes;
    534 			bytes = 0;
    535 			goto loopdone;
    536 		}
    537 
    538 		/*
    539 		 * see how many pages can be read with this i/o.
    540 		 * reduce the i/o size if necessary to avoid
    541 		 * overwriting pages with valid data.
    542 		 */
    543 
    544 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    545 		    bytes);
    546 		if (offset + iobytes > round_page(offset)) {
    547 			int pcount;
    548 
    549 			pcount = 1;
    550 			while (pidx + pcount < npages &&
    551 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    552 				pcount++;
    553 			}
    554 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    555 			    (offset - trunc_page(offset)));
    556 		}
    557 
    558 		/*
    559 		 * if this block isn't allocated, zero it instead of
    560 		 * reading it.  unless we are going to allocate blocks,
    561 		 * mark the pages we zeroed PG_RDONLY.
    562 		 */
    563 
    564 		if (blkno == (daddr_t)-1) {
    565 			int holepages = (round_page(offset + iobytes) -
    566 			    trunc_page(offset)) >> PAGE_SHIFT;
    567 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    568 
    569 			sawhole = true;
    570 			memset((char *)kva + (offset - startoffset), 0,
    571 			    iobytes);
    572 			skipbytes += iobytes;
    573 
    574 			mutex_enter(uobj->vmobjlock);
    575 			for (i = 0; i < holepages; i++) {
    576 				if (memwrite) {
    577 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    578 				}
    579 				if (!blockalloc) {
    580 					pgs[pidx + i]->flags |= PG_RDONLY;
    581 				}
    582 			}
    583 			mutex_exit(uobj->vmobjlock);
    584 			continue;
    585 		}
    586 
    587 		/*
    588 		 * allocate a sub-buf for this piece of the i/o
    589 		 * (or just use mbp if there's only 1 piece),
    590 		 * and start it going.
    591 		 */
    592 
    593 		if (offset == startoffset && iobytes == bytes) {
    594 			bp = mbp;
    595 		} else {
    596 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    597 			    vp, bp, vp->v_numoutput, 0);
    598 			bp = getiobuf(vp, true);
    599 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    600 		}
    601 		bp->b_lblkno = 0;
    602 
    603 		/* adjust physical blkno for partial blocks */
    604 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    605 		    dev_bshift);
    606 
    607 		UVMHIST_LOG(ubchist,
    608 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    609 		    bp, offset, bp->b_bcount, bp->b_blkno);
    610 
    611 		VOP_STRATEGY(devvp, bp);
    612 	}
    613 
    614 loopdone:
    615 	nestiobuf_done(mbp, skipbytes, error);
    616 	if (async) {
    617 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    618 		if (!glocked) {
    619 			genfs_node_unlock(vp);
    620 		}
    621 		error = 0;
    622 		goto out_err_free;
    623 	}
    624 	if (bp != NULL) {
    625 		error = biowait(mbp);
    626 	}
    627 
    628 	/* Remove the mapping (make KVA available as soon as possible) */
    629 	uvm_pagermapout(kva, npages);
    630 
    631 	/*
    632 	 * if this we encountered a hole then we have to do a little more work.
    633 	 * for read faults, we marked the page PG_RDONLY so that future
    634 	 * write accesses to the page will fault again.
    635 	 * for write faults, we must make sure that the backing store for
    636 	 * the page is completely allocated while the pages are locked.
    637 	 */
    638 
    639 	if (!error && sawhole && blockalloc) {
    640 		error = GOP_ALLOC(vp, startoffset,
    641 		    npages << PAGE_SHIFT, 0, cred);
    642 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    643 		    startoffset, npages << PAGE_SHIFT, error,0);
    644 		if (!error) {
    645 			mutex_enter(uobj->vmobjlock);
    646 			for (i = 0; i < npages; i++) {
    647 				struct vm_page *pg = pgs[i];
    648 
    649 				if (pg == NULL) {
    650 					continue;
    651 				}
    652 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    653 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    654 				    pg,0,0,0);
    655 			}
    656 			mutex_exit(uobj->vmobjlock);
    657 		}
    658 	}
    659 
    660 	putiobuf(mbp);
    661     }
    662 
    663 mapin_fail:
    664 	if (!glocked) {
    665 		genfs_node_unlock(vp);
    666 	}
    667 	mutex_enter(uobj->vmobjlock);
    668 
    669 	/*
    670 	 * we're almost done!  release the pages...
    671 	 * for errors, we free the pages.
    672 	 * otherwise we activate them and mark them as valid and clean.
    673 	 * also, unbusy pages that were not actually requested.
    674 	 */
    675 
    676 	if (error) {
    677 		genfs_rel_pages(pgs, npages);
    678 		mutex_exit(uobj->vmobjlock);
    679 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    680 		goto out_err_free;
    681 	}
    682 
    683 out:
    684 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    685 	error = 0;
    686 	mutex_enter(&uvm_pageqlock);
    687 	for (i = 0; i < npages; i++) {
    688 		struct vm_page *pg = pgs[i];
    689 		if (pg == NULL) {
    690 			continue;
    691 		}
    692 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    693 		    pg, pg->flags, 0,0);
    694 		if (pg->flags & PG_FAKE && !overwrite) {
    695 			pg->flags &= ~(PG_FAKE);
    696 			pmap_clear_modify(pgs[i]);
    697 		}
    698 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    699 		if (i < ridx || i >= ridx + orignmempages || async) {
    700 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    701 			    pg, pg->offset,0,0);
    702 			if (pg->flags & PG_WANTED) {
    703 				wakeup(pg);
    704 			}
    705 			if (pg->flags & PG_FAKE) {
    706 				KASSERT(overwrite);
    707 				uvm_pagezero(pg);
    708 			}
    709 			if (pg->flags & PG_RELEASED) {
    710 				uvm_pagefree(pg);
    711 				continue;
    712 			}
    713 			uvm_pageenqueue(pg);
    714 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    715 			UVM_PAGE_OWN(pg, NULL);
    716 		}
    717 	}
    718 	mutex_exit(&uvm_pageqlock);
    719 	if (memwrite) {
    720 		genfs_markdirty(vp);
    721 	}
    722 	mutex_exit(uobj->vmobjlock);
    723 	if (ap->a_m != NULL) {
    724 		memcpy(ap->a_m, &pgs[ridx],
    725 		    orignmempages * sizeof(struct vm_page *));
    726 	}
    727 
    728 out_err_free:
    729 	if (pgs != NULL && pgs != pgs_onstack)
    730 		kmem_free(pgs, pgs_size);
    731 out_err:
    732 	if (has_trans_wapbl) {
    733 		if (need_wapbl)
    734 			WAPBL_END(vp->v_mount);
    735 		fstrans_done(vp->v_mount);
    736 	}
    737 	return error;
    738 }
    739 
    740 /*
    741  * generic VM putpages routine.
    742  * Write the given range of pages to backing store.
    743  *
    744  * => "offhi == 0" means flush all pages at or after "offlo".
    745  * => object should be locked by caller.  we return with the
    746  *      object unlocked.
    747  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    748  *	thus, a caller might want to unlock higher level resources
    749  *	(e.g. vm_map) before calling flush.
    750  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    751  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    752  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    753  *	that new pages are inserted on the tail end of the list.   thus,
    754  *	we can make a complete pass through the object in one go by starting
    755  *	at the head and working towards the tail (new pages are put in
    756  *	front of us).
    757  * => NOTE: we are allowed to lock the page queues, so the caller
    758  *	must not be holding the page queue lock.
    759  *
    760  * note on "cleaning" object and PG_BUSY pages:
    761  *	this routine is holding the lock on the object.   the only time
    762  *	that it can run into a PG_BUSY page that it does not own is if
    763  *	some other process has started I/O on the page (e.g. either
    764  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    765  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    766  *	had a chance to modify it yet.    if the PG_BUSY page is being
    767  *	paged out then it means that someone else has already started
    768  *	cleaning the page for us (how nice!).    in this case, if we
    769  *	have syncio specified, then after we make our pass through the
    770  *	object we need to wait for the other PG_BUSY pages to clear
    771  *	off (i.e. we need to do an iosync).   also note that once a
    772  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    773  *
    774  * note on page traversal:
    775  *	we can traverse the pages in an object either by going down the
    776  *	linked list in "uobj->memq", or we can go over the address range
    777  *	by page doing hash table lookups for each address.    depending
    778  *	on how many pages are in the object it may be cheaper to do one
    779  *	or the other.   we set "by_list" to true if we are using memq.
    780  *	if the cost of a hash lookup was equal to the cost of the list
    781  *	traversal we could compare the number of pages in the start->stop
    782  *	range to the total number of pages in the object.   however, it
    783  *	seems that a hash table lookup is more expensive than the linked
    784  *	list traversal, so we multiply the number of pages in the
    785  *	range by an estimate of the relatively higher cost of the hash lookup.
    786  */
    787 
    788 int
    789 genfs_putpages(void *v)
    790 {
    791 	struct vop_putpages_args /* {
    792 		struct vnode *a_vp;
    793 		voff_t a_offlo;
    794 		voff_t a_offhi;
    795 		int a_flags;
    796 	} */ * const ap = v;
    797 
    798 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    799 	    ap->a_flags, NULL);
    800 }
    801 
    802 int
    803 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    804     int origflags, struct vm_page **busypg)
    805 {
    806 	struct uvm_object * const uobj = &vp->v_uobj;
    807 	kmutex_t * const slock = uobj->vmobjlock;
    808 	off_t off;
    809 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    810 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    811 	int i, error, npages, nback;
    812 	int freeflag;
    813 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    814 	bool wasclean, by_list, needs_clean, yld;
    815 	bool async = (origflags & PGO_SYNCIO) == 0;
    816 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    817 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    818 	struct genfs_node * const gp = VTOG(vp);
    819 	int flags;
    820 	int dirtygen;
    821 	bool modified;
    822 	bool need_wapbl;
    823 	bool has_trans;
    824 	bool cleanall;
    825 	bool onworklst;
    826 
    827 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    828 
    829 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    830 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    831 	KASSERT(startoff < endoff || endoff == 0);
    832 
    833 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    834 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    835 
    836 	has_trans = false;
    837 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    838 	    (origflags & PGO_JOURNALLOCKED) == 0);
    839 
    840 retry:
    841 	modified = false;
    842 	flags = origflags;
    843 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    844 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    845 	if (uobj->uo_npages == 0) {
    846 		if (vp->v_iflag & VI_ONWORKLST) {
    847 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    848 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    849 				vn_syncer_remove_from_worklist(vp);
    850 		}
    851 		if (has_trans) {
    852 			if (need_wapbl)
    853 				WAPBL_END(vp->v_mount);
    854 			fstrans_done(vp->v_mount);
    855 		}
    856 		mutex_exit(slock);
    857 		return (0);
    858 	}
    859 
    860 	/*
    861 	 * the vnode has pages, set up to process the request.
    862 	 */
    863 
    864 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    865 		mutex_exit(slock);
    866 		if (pagedaemon) {
    867 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    868 			if (error)
    869 				return error;
    870 		} else
    871 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    872 		if (need_wapbl) {
    873 			error = WAPBL_BEGIN(vp->v_mount);
    874 			if (error) {
    875 				fstrans_done(vp->v_mount);
    876 				return error;
    877 			}
    878 		}
    879 		has_trans = true;
    880 		mutex_enter(slock);
    881 		goto retry;
    882 	}
    883 
    884 	error = 0;
    885 	wasclean = (vp->v_numoutput == 0);
    886 	off = startoff;
    887 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    888 		endoff = trunc_page(LLONG_MAX);
    889 	}
    890 	by_list = (uobj->uo_npages <=
    891 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    892 
    893 	/*
    894 	 * if this vnode is known not to have dirty pages,
    895 	 * don't bother to clean it out.
    896 	 */
    897 
    898 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    899 #if !defined(DEBUG)
    900 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    901 			goto skip_scan;
    902 		}
    903 #endif /* !defined(DEBUG) */
    904 		flags &= ~PGO_CLEANIT;
    905 	}
    906 
    907 	/*
    908 	 * start the loop.  when scanning by list, hold the last page
    909 	 * in the list before we start.  pages allocated after we start
    910 	 * will be added to the end of the list, so we can stop at the
    911 	 * current last page.
    912 	 */
    913 
    914 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    915 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    916 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    917 	dirtygen = gp->g_dirtygen;
    918 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    919 	if (by_list) {
    920 		curmp.flags = PG_MARKER;
    921 		endmp.flags = PG_MARKER;
    922 		pg = TAILQ_FIRST(&uobj->memq);
    923 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    924 	} else {
    925 		pg = uvm_pagelookup(uobj, off);
    926 	}
    927 	nextpg = NULL;
    928 	while (by_list || off < endoff) {
    929 
    930 		/*
    931 		 * if the current page is not interesting, move on to the next.
    932 		 */
    933 
    934 		KASSERT(pg == NULL || pg->uobject == uobj ||
    935 		    (pg->flags & PG_MARKER) != 0);
    936 		KASSERT(pg == NULL ||
    937 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    938 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
    939 		if (by_list) {
    940 			if (pg == &endmp) {
    941 				break;
    942 			}
    943 			if (pg->flags & PG_MARKER) {
    944 				pg = TAILQ_NEXT(pg, listq.queue);
    945 				continue;
    946 			}
    947 			if (pg->offset < startoff || pg->offset >= endoff ||
    948 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    949 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    950 					wasclean = false;
    951 				}
    952 				pg = TAILQ_NEXT(pg, listq.queue);
    953 				continue;
    954 			}
    955 			off = pg->offset;
    956 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    957 			if (pg != NULL) {
    958 				wasclean = false;
    959 			}
    960 			off += PAGE_SIZE;
    961 			if (off < endoff) {
    962 				pg = uvm_pagelookup(uobj, off);
    963 			}
    964 			continue;
    965 		}
    966 
    967 		/*
    968 		 * if the current page needs to be cleaned and it's busy,
    969 		 * wait for it to become unbusy.
    970 		 */
    971 
    972 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    973 		    SPCF_SHOULDYIELD) && !pagedaemon;
    974 		if (pg->flags & PG_BUSY || yld) {
    975 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    976 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    977 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    978 				error = EDEADLK;
    979 				if (busypg != NULL)
    980 					*busypg = pg;
    981 				break;
    982 			}
    983 			if (pagedaemon) {
    984 				/*
    985 				 * someone has taken the page while we
    986 				 * dropped the lock for fstrans_start.
    987 				 */
    988 				break;
    989 			}
    990 			if (by_list) {
    991 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    992 				UVMHIST_LOG(ubchist, "curmp next %p",
    993 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    994 			}
    995 			if (yld) {
    996 				mutex_exit(slock);
    997 				preempt();
    998 				mutex_enter(slock);
    999 			} else {
   1000 				pg->flags |= PG_WANTED;
   1001 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1002 				mutex_enter(slock);
   1003 			}
   1004 			if (by_list) {
   1005 				UVMHIST_LOG(ubchist, "after next %p",
   1006 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1007 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1008 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1009 			} else {
   1010 				pg = uvm_pagelookup(uobj, off);
   1011 			}
   1012 			continue;
   1013 		}
   1014 
   1015 		/*
   1016 		 * if we're freeing, remove all mappings of the page now.
   1017 		 * if we're cleaning, check if the page is needs to be cleaned.
   1018 		 */
   1019 
   1020 		if (flags & PGO_FREE) {
   1021 			pmap_page_protect(pg, VM_PROT_NONE);
   1022 		} else if (flags & PGO_CLEANIT) {
   1023 
   1024 			/*
   1025 			 * if we still have some hope to pull this vnode off
   1026 			 * from the syncer queue, write-protect the page.
   1027 			 */
   1028 
   1029 			if (cleanall && wasclean &&
   1030 			    gp->g_dirtygen == dirtygen) {
   1031 
   1032 				/*
   1033 				 * uobj pages get wired only by uvm_fault
   1034 				 * where uobj is locked.
   1035 				 */
   1036 
   1037 				if (pg->wire_count == 0) {
   1038 					pmap_page_protect(pg,
   1039 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1040 				} else {
   1041 					cleanall = false;
   1042 				}
   1043 			}
   1044 		}
   1045 
   1046 		if (flags & PGO_CLEANIT) {
   1047 			needs_clean = pmap_clear_modify(pg) ||
   1048 			    (pg->flags & PG_CLEAN) == 0;
   1049 			pg->flags |= PG_CLEAN;
   1050 		} else {
   1051 			needs_clean = false;
   1052 		}
   1053 
   1054 		/*
   1055 		 * if we're cleaning, build a cluster.
   1056 		 * the cluster will consist of pages which are currently dirty,
   1057 		 * but they will be returned to us marked clean.
   1058 		 * if not cleaning, just operate on the one page.
   1059 		 */
   1060 
   1061 		if (needs_clean) {
   1062 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1063 			wasclean = false;
   1064 			memset(pgs, 0, sizeof(pgs));
   1065 			pg->flags |= PG_BUSY;
   1066 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1067 
   1068 			/*
   1069 			 * first look backward.
   1070 			 */
   1071 
   1072 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1073 			nback = npages;
   1074 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1075 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1076 			if (nback) {
   1077 				memmove(&pgs[0], &pgs[npages - nback],
   1078 				    nback * sizeof(pgs[0]));
   1079 				if (npages - nback < nback)
   1080 					memset(&pgs[nback], 0,
   1081 					    (npages - nback) * sizeof(pgs[0]));
   1082 				else
   1083 					memset(&pgs[npages - nback], 0,
   1084 					    nback * sizeof(pgs[0]));
   1085 			}
   1086 
   1087 			/*
   1088 			 * then plug in our page of interest.
   1089 			 */
   1090 
   1091 			pgs[nback] = pg;
   1092 
   1093 			/*
   1094 			 * then look forward to fill in the remaining space in
   1095 			 * the array of pages.
   1096 			 */
   1097 
   1098 			npages = maxpages - nback - 1;
   1099 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1100 			    &pgs[nback + 1],
   1101 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1102 			npages += nback + 1;
   1103 		} else {
   1104 			pgs[0] = pg;
   1105 			npages = 1;
   1106 			nback = 0;
   1107 		}
   1108 
   1109 		/*
   1110 		 * apply FREE or DEACTIVATE options if requested.
   1111 		 */
   1112 
   1113 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1114 			mutex_enter(&uvm_pageqlock);
   1115 		}
   1116 		for (i = 0; i < npages; i++) {
   1117 			tpg = pgs[i];
   1118 			KASSERT(tpg->uobject == uobj);
   1119 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1120 				pg = tpg;
   1121 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1122 				continue;
   1123 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1124 				uvm_pagedeactivate(tpg);
   1125 			} else if (flags & PGO_FREE) {
   1126 				pmap_page_protect(tpg, VM_PROT_NONE);
   1127 				if (tpg->flags & PG_BUSY) {
   1128 					tpg->flags |= freeflag;
   1129 					if (pagedaemon) {
   1130 						uvm_pageout_start(1);
   1131 						uvm_pagedequeue(tpg);
   1132 					}
   1133 				} else {
   1134 
   1135 					/*
   1136 					 * ``page is not busy''
   1137 					 * implies that npages is 1
   1138 					 * and needs_clean is false.
   1139 					 */
   1140 
   1141 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1142 					uvm_pagefree(tpg);
   1143 					if (pagedaemon)
   1144 						uvmexp.pdfreed++;
   1145 				}
   1146 			}
   1147 		}
   1148 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1149 			mutex_exit(&uvm_pageqlock);
   1150 		}
   1151 		if (needs_clean) {
   1152 			modified = true;
   1153 
   1154 			/*
   1155 			 * start the i/o.  if we're traversing by list,
   1156 			 * keep our place in the list with a marker page.
   1157 			 */
   1158 
   1159 			if (by_list) {
   1160 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1161 				    listq.queue);
   1162 			}
   1163 			mutex_exit(slock);
   1164 			error = GOP_WRITE(vp, pgs, npages, flags);
   1165 			mutex_enter(slock);
   1166 			if (by_list) {
   1167 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1168 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1169 			}
   1170 			if (error) {
   1171 				break;
   1172 			}
   1173 			if (by_list) {
   1174 				continue;
   1175 			}
   1176 		}
   1177 
   1178 		/*
   1179 		 * find the next page and continue if there was no error.
   1180 		 */
   1181 
   1182 		if (by_list) {
   1183 			if (nextpg) {
   1184 				pg = nextpg;
   1185 				nextpg = NULL;
   1186 			} else {
   1187 				pg = TAILQ_NEXT(pg, listq.queue);
   1188 			}
   1189 		} else {
   1190 			off += (npages - nback) << PAGE_SHIFT;
   1191 			if (off < endoff) {
   1192 				pg = uvm_pagelookup(uobj, off);
   1193 			}
   1194 		}
   1195 	}
   1196 	if (by_list) {
   1197 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1198 	}
   1199 
   1200 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1201 	    (vp->v_type != VBLK ||
   1202 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1203 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1204 	}
   1205 
   1206 	/*
   1207 	 * if we're cleaning and there was nothing to clean,
   1208 	 * take us off the syncer list.  if we started any i/o
   1209 	 * and we're doing sync i/o, wait for all writes to finish.
   1210 	 */
   1211 
   1212 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1213 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1214 #if defined(DEBUG)
   1215 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1216 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
   1217 				continue;
   1218 			}
   1219 			if ((pg->flags & PG_CLEAN) == 0) {
   1220 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1221 			}
   1222 			if (pmap_is_modified(pg)) {
   1223 				printf("%s: %p: modified\n", __func__, pg);
   1224 			}
   1225 		}
   1226 #endif /* defined(DEBUG) */
   1227 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1228 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1229 			vn_syncer_remove_from_worklist(vp);
   1230 	}
   1231 
   1232 #if !defined(DEBUG)
   1233 skip_scan:
   1234 #endif /* !defined(DEBUG) */
   1235 
   1236 	/* Wait for output to complete. */
   1237 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1238 		while (vp->v_numoutput != 0)
   1239 			cv_wait(&vp->v_cv, slock);
   1240 	}
   1241 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1242 	mutex_exit(slock);
   1243 
   1244 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1245 		/*
   1246 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1247 		 * retrying is not a big deal because, in many cases,
   1248 		 * uobj->uo_npages is already 0 here.
   1249 		 */
   1250 		mutex_enter(slock);
   1251 		goto retry;
   1252 	}
   1253 
   1254 	if (has_trans) {
   1255 		if (need_wapbl)
   1256 			WAPBL_END(vp->v_mount);
   1257 		fstrans_done(vp->v_mount);
   1258 	}
   1259 
   1260 	return (error);
   1261 }
   1262 
   1263 int
   1264 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1265 {
   1266 	off_t off;
   1267 	vaddr_t kva;
   1268 	size_t len;
   1269 	int error;
   1270 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1271 
   1272 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1273 	    vp, pgs, npages, flags);
   1274 
   1275 	off = pgs[0]->offset;
   1276 	kva = uvm_pagermapin(pgs, npages,
   1277 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1278 	len = npages << PAGE_SHIFT;
   1279 
   1280 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1281 			    uvm_aio_biodone);
   1282 
   1283 	return error;
   1284 }
   1285 
   1286 int
   1287 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1288 {
   1289 	off_t off;
   1290 	vaddr_t kva;
   1291 	size_t len;
   1292 	int error;
   1293 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1294 
   1295 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1296 	    vp, pgs, npages, flags);
   1297 
   1298 	off = pgs[0]->offset;
   1299 	kva = uvm_pagermapin(pgs, npages,
   1300 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1301 	len = npages << PAGE_SHIFT;
   1302 
   1303 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1304 			    uvm_aio_biodone);
   1305 
   1306 	return error;
   1307 }
   1308 
   1309 /*
   1310  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1311  * and mapped into kernel memory.  Here we just look up the underlying
   1312  * device block addresses and call the strategy routine.
   1313  */
   1314 
   1315 static int
   1316 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1317     enum uio_rw rw, void (*iodone)(struct buf *))
   1318 {
   1319 	int s, error;
   1320 	int fs_bshift, dev_bshift;
   1321 	off_t eof, offset, startoffset;
   1322 	size_t bytes, iobytes, skipbytes;
   1323 	struct buf *mbp, *bp;
   1324 	const bool async = (flags & PGO_SYNCIO) == 0;
   1325 	const bool lazy = (flags & PGO_LAZY) == 0;
   1326 	const bool iowrite = rw == UIO_WRITE;
   1327 	const int brw = iowrite ? B_WRITE : B_READ;
   1328 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1329 
   1330 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1331 	    vp, kva, len, flags);
   1332 
   1333 	KASSERT(vp->v_size <= vp->v_writesize);
   1334 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1335 	if (vp->v_type != VBLK) {
   1336 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1337 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1338 	} else {
   1339 		fs_bshift = DEV_BSHIFT;
   1340 		dev_bshift = DEV_BSHIFT;
   1341 	}
   1342 	error = 0;
   1343 	startoffset = off;
   1344 	bytes = MIN(len, eof - startoffset);
   1345 	skipbytes = 0;
   1346 	KASSERT(bytes != 0);
   1347 
   1348 	if (iowrite) {
   1349 		mutex_enter(vp->v_interlock);
   1350 		vp->v_numoutput += 2;
   1351 		mutex_exit(vp->v_interlock);
   1352 	}
   1353 	mbp = getiobuf(vp, true);
   1354 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1355 	    vp, mbp, vp->v_numoutput, bytes);
   1356 	mbp->b_bufsize = len;
   1357 	mbp->b_data = (void *)kva;
   1358 	mbp->b_resid = mbp->b_bcount = bytes;
   1359 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1360 	if (async) {
   1361 		mbp->b_flags = brw | B_ASYNC;
   1362 		mbp->b_iodone = iodone;
   1363 	} else {
   1364 		mbp->b_flags = brw;
   1365 		mbp->b_iodone = NULL;
   1366 	}
   1367 	if (curlwp == uvm.pagedaemon_lwp)
   1368 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1369 	else if (async || lazy)
   1370 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1371 	else
   1372 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1373 
   1374 	bp = NULL;
   1375 	for (offset = startoffset;
   1376 	    bytes > 0;
   1377 	    offset += iobytes, bytes -= iobytes) {
   1378 		int run;
   1379 		daddr_t lbn, blkno;
   1380 		struct vnode *devvp;
   1381 
   1382 		/*
   1383 		 * bmap the file to find out the blkno to read from and
   1384 		 * how much we can read in one i/o.  if bmap returns an error,
   1385 		 * skip the rest of the top-level i/o.
   1386 		 */
   1387 
   1388 		lbn = offset >> fs_bshift;
   1389 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1390 		if (error) {
   1391 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1392 			    lbn,error,0,0);
   1393 			skipbytes += bytes;
   1394 			bytes = 0;
   1395 			goto loopdone;
   1396 		}
   1397 
   1398 		/*
   1399 		 * see how many pages can be read with this i/o.
   1400 		 * reduce the i/o size if necessary to avoid
   1401 		 * overwriting pages with valid data.
   1402 		 */
   1403 
   1404 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1405 		    bytes);
   1406 
   1407 		/*
   1408 		 * if this block isn't allocated, zero it instead of
   1409 		 * reading it.  unless we are going to allocate blocks,
   1410 		 * mark the pages we zeroed PG_RDONLY.
   1411 		 */
   1412 
   1413 		if (blkno == (daddr_t)-1) {
   1414 			if (!iowrite) {
   1415 				memset((char *)kva + (offset - startoffset), 0,
   1416 				    iobytes);
   1417 			}
   1418 			skipbytes += iobytes;
   1419 			continue;
   1420 		}
   1421 
   1422 		/*
   1423 		 * allocate a sub-buf for this piece of the i/o
   1424 		 * (or just use mbp if there's only 1 piece),
   1425 		 * and start it going.
   1426 		 */
   1427 
   1428 		if (offset == startoffset && iobytes == bytes) {
   1429 			bp = mbp;
   1430 		} else {
   1431 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1432 			    vp, bp, vp->v_numoutput, 0);
   1433 			bp = getiobuf(vp, true);
   1434 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1435 		}
   1436 		bp->b_lblkno = 0;
   1437 
   1438 		/* adjust physical blkno for partial blocks */
   1439 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1440 		    dev_bshift);
   1441 
   1442 		UVMHIST_LOG(ubchist,
   1443 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1444 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1445 
   1446 		VOP_STRATEGY(devvp, bp);
   1447 	}
   1448 
   1449 loopdone:
   1450 	if (skipbytes) {
   1451 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1452 	}
   1453 	nestiobuf_done(mbp, skipbytes, error);
   1454 	if (async) {
   1455 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1456 		return (0);
   1457 	}
   1458 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1459 	error = biowait(mbp);
   1460 	s = splbio();
   1461 	(*iodone)(mbp);
   1462 	splx(s);
   1463 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1464 	return (error);
   1465 }
   1466 
   1467 int
   1468 genfs_compat_getpages(void *v)
   1469 {
   1470 	struct vop_getpages_args /* {
   1471 		struct vnode *a_vp;
   1472 		voff_t a_offset;
   1473 		struct vm_page **a_m;
   1474 		int *a_count;
   1475 		int a_centeridx;
   1476 		vm_prot_t a_access_type;
   1477 		int a_advice;
   1478 		int a_flags;
   1479 	} */ *ap = v;
   1480 
   1481 	off_t origoffset;
   1482 	struct vnode *vp = ap->a_vp;
   1483 	struct uvm_object *uobj = &vp->v_uobj;
   1484 	struct vm_page *pg, **pgs;
   1485 	vaddr_t kva;
   1486 	int i, error, orignpages, npages;
   1487 	struct iovec iov;
   1488 	struct uio uio;
   1489 	kauth_cred_t cred = curlwp->l_cred;
   1490 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1491 
   1492 	error = 0;
   1493 	origoffset = ap->a_offset;
   1494 	orignpages = *ap->a_count;
   1495 	pgs = ap->a_m;
   1496 
   1497 	if (ap->a_flags & PGO_LOCKED) {
   1498 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1499 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1500 
   1501 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1502 		if (error == 0 && memwrite) {
   1503 			genfs_markdirty(vp);
   1504 		}
   1505 		return error;
   1506 	}
   1507 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1508 		mutex_exit(uobj->vmobjlock);
   1509 		return EINVAL;
   1510 	}
   1511 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1512 		mutex_exit(uobj->vmobjlock);
   1513 		return 0;
   1514 	}
   1515 	npages = orignpages;
   1516 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1517 	mutex_exit(uobj->vmobjlock);
   1518 	kva = uvm_pagermapin(pgs, npages,
   1519 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1520 	for (i = 0; i < npages; i++) {
   1521 		pg = pgs[i];
   1522 		if ((pg->flags & PG_FAKE) == 0) {
   1523 			continue;
   1524 		}
   1525 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1526 		iov.iov_len = PAGE_SIZE;
   1527 		uio.uio_iov = &iov;
   1528 		uio.uio_iovcnt = 1;
   1529 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1530 		uio.uio_rw = UIO_READ;
   1531 		uio.uio_resid = PAGE_SIZE;
   1532 		UIO_SETUP_SYSSPACE(&uio);
   1533 		/* XXX vn_lock */
   1534 		error = VOP_READ(vp, &uio, 0, cred);
   1535 		if (error) {
   1536 			break;
   1537 		}
   1538 		if (uio.uio_resid) {
   1539 			memset(iov.iov_base, 0, uio.uio_resid);
   1540 		}
   1541 	}
   1542 	uvm_pagermapout(kva, npages);
   1543 	mutex_enter(uobj->vmobjlock);
   1544 	mutex_enter(&uvm_pageqlock);
   1545 	for (i = 0; i < npages; i++) {
   1546 		pg = pgs[i];
   1547 		if (error && (pg->flags & PG_FAKE) != 0) {
   1548 			pg->flags |= PG_RELEASED;
   1549 		} else {
   1550 			pmap_clear_modify(pg);
   1551 			uvm_pageactivate(pg);
   1552 		}
   1553 	}
   1554 	if (error) {
   1555 		uvm_page_unbusy(pgs, npages);
   1556 	}
   1557 	mutex_exit(&uvm_pageqlock);
   1558 	if (error == 0 && memwrite) {
   1559 		genfs_markdirty(vp);
   1560 	}
   1561 	mutex_exit(uobj->vmobjlock);
   1562 	return error;
   1563 }
   1564 
   1565 int
   1566 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1567     int flags)
   1568 {
   1569 	off_t offset;
   1570 	struct iovec iov;
   1571 	struct uio uio;
   1572 	kauth_cred_t cred = curlwp->l_cred;
   1573 	struct buf *bp;
   1574 	vaddr_t kva;
   1575 	int error;
   1576 
   1577 	offset = pgs[0]->offset;
   1578 	kva = uvm_pagermapin(pgs, npages,
   1579 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1580 
   1581 	iov.iov_base = (void *)kva;
   1582 	iov.iov_len = npages << PAGE_SHIFT;
   1583 	uio.uio_iov = &iov;
   1584 	uio.uio_iovcnt = 1;
   1585 	uio.uio_offset = offset;
   1586 	uio.uio_rw = UIO_WRITE;
   1587 	uio.uio_resid = npages << PAGE_SHIFT;
   1588 	UIO_SETUP_SYSSPACE(&uio);
   1589 	/* XXX vn_lock */
   1590 	error = VOP_WRITE(vp, &uio, 0, cred);
   1591 
   1592 	mutex_enter(vp->v_interlock);
   1593 	vp->v_numoutput++;
   1594 	mutex_exit(vp->v_interlock);
   1595 
   1596 	bp = getiobuf(vp, true);
   1597 	bp->b_cflags = BC_BUSY | BC_AGE;
   1598 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1599 	bp->b_data = (char *)kva;
   1600 	bp->b_bcount = npages << PAGE_SHIFT;
   1601 	bp->b_bufsize = npages << PAGE_SHIFT;
   1602 	bp->b_resid = 0;
   1603 	bp->b_error = error;
   1604 	uvm_aio_aiodone(bp);
   1605 	return (error);
   1606 }
   1607 
   1608 /*
   1609  * Process a uio using direct I/O.  If we reach a part of the request
   1610  * which cannot be processed in this fashion for some reason, just return.
   1611  * The caller must handle some additional part of the request using
   1612  * buffered I/O before trying direct I/O again.
   1613  */
   1614 
   1615 void
   1616 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1617 {
   1618 	struct vmspace *vs;
   1619 	struct iovec *iov;
   1620 	vaddr_t va;
   1621 	size_t len;
   1622 	const int mask = DEV_BSIZE - 1;
   1623 	int error;
   1624 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1625 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1626 
   1627 	/*
   1628 	 * We only support direct I/O to user space for now.
   1629 	 */
   1630 
   1631 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1632 		return;
   1633 	}
   1634 
   1635 	/*
   1636 	 * If the vnode is mapped, we would need to get the getpages lock
   1637 	 * to stabilize the bmap, but then we would get into trouble while
   1638 	 * locking the pages if the pages belong to this same vnode (or a
   1639 	 * multi-vnode cascade to the same effect).  Just fall back to
   1640 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1641 	 */
   1642 
   1643 	if (vp->v_vflag & VV_MAPPED) {
   1644 		return;
   1645 	}
   1646 
   1647 	if (need_wapbl) {
   1648 		error = WAPBL_BEGIN(vp->v_mount);
   1649 		if (error)
   1650 			return;
   1651 	}
   1652 
   1653 	/*
   1654 	 * Do as much of the uio as possible with direct I/O.
   1655 	 */
   1656 
   1657 	vs = uio->uio_vmspace;
   1658 	while (uio->uio_resid) {
   1659 		iov = uio->uio_iov;
   1660 		if (iov->iov_len == 0) {
   1661 			uio->uio_iov++;
   1662 			uio->uio_iovcnt--;
   1663 			continue;
   1664 		}
   1665 		va = (vaddr_t)iov->iov_base;
   1666 		len = MIN(iov->iov_len, genfs_maxdio);
   1667 		len &= ~mask;
   1668 
   1669 		/*
   1670 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1671 		 * the current EOF, then fall back to buffered I/O.
   1672 		 */
   1673 
   1674 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1675 			break;
   1676 		}
   1677 
   1678 		/*
   1679 		 * Check alignment.  The file offset must be at least
   1680 		 * sector-aligned.  The exact constraint on memory alignment
   1681 		 * is very hardware-dependent, but requiring sector-aligned
   1682 		 * addresses there too is safe.
   1683 		 */
   1684 
   1685 		if (uio->uio_offset & mask || va & mask) {
   1686 			break;
   1687 		}
   1688 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1689 					  uio->uio_rw);
   1690 		if (error) {
   1691 			break;
   1692 		}
   1693 		iov->iov_base = (char *)iov->iov_base + len;
   1694 		iov->iov_len -= len;
   1695 		uio->uio_offset += len;
   1696 		uio->uio_resid -= len;
   1697 	}
   1698 
   1699 	if (need_wapbl)
   1700 		WAPBL_END(vp->v_mount);
   1701 }
   1702 
   1703 /*
   1704  * Iodone routine for direct I/O.  We don't do much here since the request is
   1705  * always synchronous, so the caller will do most of the work after biowait().
   1706  */
   1707 
   1708 static void
   1709 genfs_dio_iodone(struct buf *bp)
   1710 {
   1711 
   1712 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1713 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1714 		mutex_enter(bp->b_objlock);
   1715 		vwakeup(bp);
   1716 		mutex_exit(bp->b_objlock);
   1717 	}
   1718 	putiobuf(bp);
   1719 }
   1720 
   1721 /*
   1722  * Process one chunk of a direct I/O request.
   1723  */
   1724 
   1725 static int
   1726 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1727     off_t off, enum uio_rw rw)
   1728 {
   1729 	struct vm_map *map;
   1730 	struct pmap *upm, *kpm __unused;
   1731 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1732 	off_t spoff, epoff;
   1733 	vaddr_t kva, puva;
   1734 	paddr_t pa;
   1735 	vm_prot_t prot;
   1736 	int error, rv __diagused, poff, koff;
   1737 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1738 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1739 
   1740 	/*
   1741 	 * For writes, verify that this range of the file already has fully
   1742 	 * allocated backing store.  If there are any holes, just punt and
   1743 	 * make the caller take the buffered write path.
   1744 	 */
   1745 
   1746 	if (rw == UIO_WRITE) {
   1747 		daddr_t lbn, elbn, blkno;
   1748 		int bsize, bshift, run;
   1749 
   1750 		bshift = vp->v_mount->mnt_fs_bshift;
   1751 		bsize = 1 << bshift;
   1752 		lbn = off >> bshift;
   1753 		elbn = (off + len + bsize - 1) >> bshift;
   1754 		while (lbn < elbn) {
   1755 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1756 			if (error) {
   1757 				return error;
   1758 			}
   1759 			if (blkno == (daddr_t)-1) {
   1760 				return ENOSPC;
   1761 			}
   1762 			lbn += 1 + run;
   1763 		}
   1764 	}
   1765 
   1766 	/*
   1767 	 * Flush any cached pages for parts of the file that we're about to
   1768 	 * access.  If we're writing, invalidate pages as well.
   1769 	 */
   1770 
   1771 	spoff = trunc_page(off);
   1772 	epoff = round_page(off + len);
   1773 	mutex_enter(vp->v_interlock);
   1774 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1775 	if (error) {
   1776 		return error;
   1777 	}
   1778 
   1779 	/*
   1780 	 * Wire the user pages and remap them into kernel memory.
   1781 	 */
   1782 
   1783 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1784 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1785 	if (error) {
   1786 		return error;
   1787 	}
   1788 
   1789 	map = &vs->vm_map;
   1790 	upm = vm_map_pmap(map);
   1791 	kpm = vm_map_pmap(kernel_map);
   1792 	puva = trunc_page(uva);
   1793 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1794 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1795 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1796 		rv = pmap_extract(upm, puva + poff, &pa);
   1797 		KASSERT(rv);
   1798 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1799 	}
   1800 	pmap_update(kpm);
   1801 
   1802 	/*
   1803 	 * Do the I/O.
   1804 	 */
   1805 
   1806 	koff = uva - trunc_page(uva);
   1807 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1808 			    genfs_dio_iodone);
   1809 
   1810 	/*
   1811 	 * Tear down the kernel mapping.
   1812 	 */
   1813 
   1814 	pmap_kremove(kva, klen);
   1815 	pmap_update(kpm);
   1816 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1817 
   1818 	/*
   1819 	 * Unwire the user pages.
   1820 	 */
   1821 
   1822 	uvm_vsunlock(vs, (void *)uva, len);
   1823 	return error;
   1824 }
   1825