genfs_io.c revision 1.55.4.1 1 /* $NetBSD: genfs_io.c,v 1.55.4.1 2014/05/18 17:46:09 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.55.4.1 2014/05/18 17:46:09 rmind Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50 #include <miscfs/syncfs/syncfs.h>
51
52 #include <uvm/uvm.h>
53 #include <uvm/uvm_pager.h>
54
55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
56 off_t, enum uio_rw);
57 static void genfs_dio_iodone(struct buf *);
58
59 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
60 void (*)(struct buf *));
61 static void genfs_rel_pages(struct vm_page **, unsigned int);
62 static void genfs_markdirty(struct vnode *);
63
64 int genfs_maxdio = MAXPHYS;
65
66 static void
67 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
68 {
69 unsigned int i;
70
71 for (i = 0; i < npages; i++) {
72 struct vm_page *pg = pgs[i];
73
74 if (pg == NULL || pg == PGO_DONTCARE)
75 continue;
76 KASSERT(uvm_page_locked_p(pg));
77 if (pg->flags & PG_FAKE) {
78 pg->flags |= PG_RELEASED;
79 }
80 }
81 mutex_enter(&uvm_pageqlock);
82 uvm_page_unbusy(pgs, npages);
83 mutex_exit(&uvm_pageqlock);
84 }
85
86 static void
87 genfs_markdirty(struct vnode *vp)
88 {
89 struct genfs_node * const gp = VTOG(vp);
90
91 KASSERT(mutex_owned(vp->v_interlock));
92 gp->g_dirtygen++;
93 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
94 vn_syncer_add_to_worklist(vp, filedelay);
95 }
96 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
97 vp->v_iflag |= VI_WRMAPDIRTY;
98 }
99 }
100
101 /*
102 * generic VM getpages routine.
103 * Return PG_BUSY pages for the given range,
104 * reading from backing store if necessary.
105 */
106
107 int
108 genfs_getpages(void *v)
109 {
110 struct vop_getpages_args /* {
111 struct vnode *a_vp;
112 voff_t a_offset;
113 struct vm_page **a_m;
114 int *a_count;
115 int a_centeridx;
116 vm_prot_t a_access_type;
117 int a_advice;
118 int a_flags;
119 } */ * const ap = v;
120
121 off_t diskeof, memeof;
122 int i, error, npages;
123 const int flags = ap->a_flags;
124 struct vnode * const vp = ap->a_vp;
125 struct uvm_object * const uobj = &vp->v_uobj;
126 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
133 bool has_trans_wapbl = false;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 startover:
143 error = 0;
144 const voff_t origvsize = vp->v_size;
145 const off_t origoffset = ap->a_offset;
146 const int orignpages = *ap->a_count;
147
148 GOP_SIZE(vp, origvsize, &diskeof, 0);
149 if (flags & PGO_PASTEOF) {
150 off_t newsize;
151 #if defined(DIAGNOSTIC)
152 off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154
155 newsize = MAX(origvsize,
156 origoffset + (orignpages << PAGE_SHIFT));
157 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 if (newsize > round_page(writeeof)) {
161 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 __func__, newsize, round_page(writeeof));
163 }
164 #endif /* defined(DIAGNOSTIC) */
165 } else {
166 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 }
168 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 KASSERT(orignpages > 0);
171
172 /*
173 * Bounds-check the request.
174 */
175
176 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 if ((flags & PGO_LOCKED) == 0) {
178 mutex_exit(uobj->vmobjlock);
179 }
180 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 origoffset, *ap->a_count, memeof,0);
182 error = EINVAL;
183 goto out_err;
184 }
185
186 /* uobj is locked */
187
188 if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 (vp->v_type != VBLK ||
190 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 int updflags = 0;
192
193 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 updflags = GOP_UPDATE_ACCESSED;
195 }
196 if (memwrite) {
197 updflags |= GOP_UPDATE_MODIFIED;
198 }
199 if (updflags != 0) {
200 GOP_MARKUPDATE(vp, updflags);
201 }
202 }
203
204 /*
205 * For PGO_LOCKED requests, just return whatever's in memory.
206 */
207
208 if (flags & PGO_LOCKED) {
209 int nfound;
210 struct vm_page *pg;
211
212 KASSERT(!glocked);
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 KASSERT(npages == *ap->a_count);
223 if (nfound == 0) {
224 error = EBUSY;
225 goto out_err;
226 }
227 if (!genfs_node_rdtrylock(vp)) {
228 genfs_rel_pages(ap->a_m, npages);
229
230 /*
231 * restore the array.
232 */
233
234 for (i = 0; i < npages; i++) {
235 pg = ap->a_m[i];
236
237 if (pg != NULL && pg != PGO_DONTCARE) {
238 ap->a_m[i] = NULL;
239 }
240 KASSERT(ap->a_m[i] == NULL ||
241 ap->a_m[i] == PGO_DONTCARE);
242 }
243 } else {
244 genfs_node_unlock(vp);
245 }
246 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 if (error == 0 && memwrite) {
248 genfs_markdirty(vp);
249 }
250 goto out_err;
251 }
252 mutex_exit(uobj->vmobjlock);
253
254 /*
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
257 */
258
259 const int fs_bshift = (vp->v_type != VBLK) ?
260 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 const int dev_bshift = (vp->v_type != VBLK) ?
262 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
263 const int fs_bsize = 1 << fs_bshift;
264 #define blk_mask (fs_bsize - 1)
265 #define trunc_blk(x) ((x) & ~blk_mask)
266 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
267
268 const int orignmempages = MIN(orignpages,
269 round_page(memeof - origoffset) >> PAGE_SHIFT);
270 npages = orignmempages;
271 const off_t startoffset = trunc_blk(origoffset);
272 const off_t endoffset = MIN(
273 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
274 round_page(memeof));
275 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
276
277 const int pgs_size = sizeof(struct vm_page *) *
278 ((endoffset - startoffset) >> PAGE_SHIFT);
279 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
280
281 if (pgs_size > sizeof(pgs_onstack)) {
282 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
283 if (pgs == NULL) {
284 pgs = pgs_onstack;
285 error = ENOMEM;
286 goto out_err;
287 }
288 } else {
289 pgs = pgs_onstack;
290 (void)memset(pgs, 0, pgs_size);
291 }
292
293 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
294 ridx, npages, startoffset, endoffset);
295
296 if (!has_trans_wapbl) {
297 fstrans_start(vp->v_mount, FSTRANS_SHARED);
298 /*
299 * XXX: This assumes that we come here only via
300 * the mmio path
301 */
302 if (need_wapbl) {
303 error = WAPBL_BEGIN(vp->v_mount);
304 if (error) {
305 fstrans_done(vp->v_mount);
306 goto out_err_free;
307 }
308 }
309 has_trans_wapbl = true;
310 }
311
312 /*
313 * hold g_glock to prevent a race with truncate.
314 *
315 * check if our idea of v_size is still valid.
316 */
317
318 KASSERT(!glocked || genfs_node_wrlocked(vp));
319 if (!glocked) {
320 if (blockalloc) {
321 genfs_node_wrlock(vp);
322 } else {
323 genfs_node_rdlock(vp);
324 }
325 }
326 mutex_enter(uobj->vmobjlock);
327 if (vp->v_size < origvsize) {
328 if (!glocked) {
329 genfs_node_unlock(vp);
330 }
331 if (pgs != pgs_onstack)
332 kmem_free(pgs, pgs_size);
333 goto startover;
334 }
335
336 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
337 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
338 if (!glocked) {
339 genfs_node_unlock(vp);
340 }
341 KASSERT(async != 0);
342 genfs_rel_pages(&pgs[ridx], orignmempages);
343 mutex_exit(uobj->vmobjlock);
344 error = EBUSY;
345 goto out_err_free;
346 }
347
348 /*
349 * if the pages are already resident, just return them.
350 */
351
352 for (i = 0; i < npages; i++) {
353 struct vm_page *pg = pgs[ridx + i];
354
355 if ((pg->flags & PG_FAKE) ||
356 (blockalloc && (pg->flags & PG_RDONLY))) {
357 break;
358 }
359 }
360 if (i == npages) {
361 if (!glocked) {
362 genfs_node_unlock(vp);
363 }
364 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
365 npages += ridx;
366 goto out;
367 }
368
369 /*
370 * if PGO_OVERWRITE is set, don't bother reading the pages.
371 */
372
373 if (overwrite) {
374 if (!glocked) {
375 genfs_node_unlock(vp);
376 }
377 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
378
379 for (i = 0; i < npages; i++) {
380 struct vm_page *pg = pgs[ridx + i];
381
382 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
383 }
384 npages += ridx;
385 goto out;
386 }
387
388 /*
389 * the page wasn't resident and we're not overwriting,
390 * so we're going to have to do some i/o.
391 * find any additional pages needed to cover the expanded range.
392 */
393
394 npages = (endoffset - startoffset) >> PAGE_SHIFT;
395 if (startoffset != origoffset || npages != orignmempages) {
396 int npgs;
397
398 /*
399 * we need to avoid deadlocks caused by locking
400 * additional pages at lower offsets than pages we
401 * already have locked. unlock them all and start over.
402 */
403
404 genfs_rel_pages(&pgs[ridx], orignmempages);
405 memset(pgs, 0, pgs_size);
406
407 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
408 startoffset, endoffset, 0,0);
409 npgs = npages;
410 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
411 async ? UFP_NOWAIT : UFP_ALL) != npages) {
412 if (!glocked) {
413 genfs_node_unlock(vp);
414 }
415 KASSERT(async != 0);
416 genfs_rel_pages(pgs, npages);
417 mutex_exit(uobj->vmobjlock);
418 error = EBUSY;
419 goto out_err_free;
420 }
421 }
422
423 mutex_exit(uobj->vmobjlock);
424
425 {
426 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
427 vaddr_t kva;
428 struct buf *bp, *mbp;
429 bool sawhole = false;
430
431 /*
432 * read the desired page(s).
433 */
434
435 totalbytes = npages << PAGE_SHIFT;
436 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
437 tailbytes = totalbytes - bytes;
438 skipbytes = 0;
439
440 kva = uvm_pagermapin(pgs, npages,
441 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
442 if (kva == 0) {
443 error = EBUSY;
444 goto mapin_fail;
445 }
446
447 mbp = getiobuf(vp, true);
448 mbp->b_bufsize = totalbytes;
449 mbp->b_data = (void *)kva;
450 mbp->b_resid = mbp->b_bcount = bytes;
451 mbp->b_cflags = BC_BUSY;
452 if (async) {
453 mbp->b_flags = B_READ | B_ASYNC;
454 mbp->b_iodone = uvm_aio_biodone;
455 } else {
456 mbp->b_flags = B_READ;
457 mbp->b_iodone = NULL;
458 }
459 if (async)
460 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
461 else
462 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
463
464 /*
465 * if EOF is in the middle of the range, zero the part past EOF.
466 * skip over pages which are not PG_FAKE since in that case they have
467 * valid data that we need to preserve.
468 */
469
470 tailstart = bytes;
471 while (tailbytes > 0) {
472 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
473
474 KASSERT(len <= tailbytes);
475 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
476 memset((void *)(kva + tailstart), 0, len);
477 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
478 kva, tailstart, len, 0);
479 }
480 tailstart += len;
481 tailbytes -= len;
482 }
483
484 /*
485 * now loop over the pages, reading as needed.
486 */
487
488 bp = NULL;
489 off_t offset;
490 for (offset = startoffset;
491 bytes > 0;
492 offset += iobytes, bytes -= iobytes) {
493 int run;
494 daddr_t lbn, blkno;
495 int pidx;
496 struct vnode *devvp;
497
498 /*
499 * skip pages which don't need to be read.
500 */
501
502 pidx = (offset - startoffset) >> PAGE_SHIFT;
503 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
504 size_t b;
505
506 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
507 if ((pgs[pidx]->flags & PG_RDONLY)) {
508 sawhole = true;
509 }
510 b = MIN(PAGE_SIZE, bytes);
511 offset += b;
512 bytes -= b;
513 skipbytes += b;
514 pidx++;
515 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
516 offset, 0,0,0);
517 if (bytes == 0) {
518 goto loopdone;
519 }
520 }
521
522 /*
523 * bmap the file to find out the blkno to read from and
524 * how much we can read in one i/o. if bmap returns an error,
525 * skip the rest of the top-level i/o.
526 */
527
528 lbn = offset >> fs_bshift;
529 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
530 if (error) {
531 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
532 lbn,error,0,0);
533 skipbytes += bytes;
534 bytes = 0;
535 goto loopdone;
536 }
537
538 /*
539 * see how many pages can be read with this i/o.
540 * reduce the i/o size if necessary to avoid
541 * overwriting pages with valid data.
542 */
543
544 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
545 bytes);
546 if (offset + iobytes > round_page(offset)) {
547 int pcount;
548
549 pcount = 1;
550 while (pidx + pcount < npages &&
551 pgs[pidx + pcount]->flags & PG_FAKE) {
552 pcount++;
553 }
554 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
555 (offset - trunc_page(offset)));
556 }
557
558 /*
559 * if this block isn't allocated, zero it instead of
560 * reading it. unless we are going to allocate blocks,
561 * mark the pages we zeroed PG_RDONLY.
562 */
563
564 if (blkno == (daddr_t)-1) {
565 int holepages = (round_page(offset + iobytes) -
566 trunc_page(offset)) >> PAGE_SHIFT;
567 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
568
569 sawhole = true;
570 memset((char *)kva + (offset - startoffset), 0,
571 iobytes);
572 skipbytes += iobytes;
573
574 mutex_enter(uobj->vmobjlock);
575 for (i = 0; i < holepages; i++) {
576 if (memwrite) {
577 pgs[pidx + i]->flags &= ~PG_CLEAN;
578 }
579 if (!blockalloc) {
580 pgs[pidx + i]->flags |= PG_RDONLY;
581 }
582 }
583 mutex_exit(uobj->vmobjlock);
584 continue;
585 }
586
587 /*
588 * allocate a sub-buf for this piece of the i/o
589 * (or just use mbp if there's only 1 piece),
590 * and start it going.
591 */
592
593 if (offset == startoffset && iobytes == bytes) {
594 bp = mbp;
595 } else {
596 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
597 vp, bp, vp->v_numoutput, 0);
598 bp = getiobuf(vp, true);
599 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
600 }
601 bp->b_lblkno = 0;
602
603 /* adjust physical blkno for partial blocks */
604 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
605 dev_bshift);
606
607 UVMHIST_LOG(ubchist,
608 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
609 bp, offset, bp->b_bcount, bp->b_blkno);
610
611 VOP_STRATEGY(devvp, bp);
612 }
613
614 loopdone:
615 nestiobuf_done(mbp, skipbytes, error);
616 if (async) {
617 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
618 if (!glocked) {
619 genfs_node_unlock(vp);
620 }
621 error = 0;
622 goto out_err_free;
623 }
624 if (bp != NULL) {
625 error = biowait(mbp);
626 }
627
628 /* Remove the mapping (make KVA available as soon as possible) */
629 uvm_pagermapout(kva, npages);
630
631 /*
632 * if this we encountered a hole then we have to do a little more work.
633 * for read faults, we marked the page PG_RDONLY so that future
634 * write accesses to the page will fault again.
635 * for write faults, we must make sure that the backing store for
636 * the page is completely allocated while the pages are locked.
637 */
638
639 if (!error && sawhole && blockalloc) {
640 error = GOP_ALLOC(vp, startoffset,
641 npages << PAGE_SHIFT, 0, cred);
642 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
643 startoffset, npages << PAGE_SHIFT, error,0);
644 if (!error) {
645 mutex_enter(uobj->vmobjlock);
646 for (i = 0; i < npages; i++) {
647 struct vm_page *pg = pgs[i];
648
649 if (pg == NULL) {
650 continue;
651 }
652 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
653 UVMHIST_LOG(ubchist, "mark dirty pg %p",
654 pg,0,0,0);
655 }
656 mutex_exit(uobj->vmobjlock);
657 }
658 }
659
660 putiobuf(mbp);
661 }
662
663 mapin_fail:
664 if (!glocked) {
665 genfs_node_unlock(vp);
666 }
667 mutex_enter(uobj->vmobjlock);
668
669 /*
670 * we're almost done! release the pages...
671 * for errors, we free the pages.
672 * otherwise we activate them and mark them as valid and clean.
673 * also, unbusy pages that were not actually requested.
674 */
675
676 if (error) {
677 genfs_rel_pages(pgs, npages);
678 mutex_exit(uobj->vmobjlock);
679 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
680 goto out_err_free;
681 }
682
683 out:
684 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
685 error = 0;
686 mutex_enter(&uvm_pageqlock);
687 for (i = 0; i < npages; i++) {
688 struct vm_page *pg = pgs[i];
689 if (pg == NULL) {
690 continue;
691 }
692 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
693 pg, pg->flags, 0,0);
694 if (pg->flags & PG_FAKE && !overwrite) {
695 pg->flags &= ~(PG_FAKE);
696 pmap_clear_modify(pgs[i]);
697 }
698 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
699 if (i < ridx || i >= ridx + orignmempages || async) {
700 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
701 pg, pg->offset,0,0);
702 if (pg->flags & PG_WANTED) {
703 wakeup(pg);
704 }
705 if (pg->flags & PG_FAKE) {
706 KASSERT(overwrite);
707 uvm_pagezero(pg);
708 }
709 if (pg->flags & PG_RELEASED) {
710 uvm_pagefree(pg);
711 continue;
712 }
713 uvm_pageenqueue(pg);
714 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
715 UVM_PAGE_OWN(pg, NULL);
716 }
717 }
718 mutex_exit(&uvm_pageqlock);
719 if (memwrite) {
720 genfs_markdirty(vp);
721 }
722 mutex_exit(uobj->vmobjlock);
723 if (ap->a_m != NULL) {
724 memcpy(ap->a_m, &pgs[ridx],
725 orignmempages * sizeof(struct vm_page *));
726 }
727
728 out_err_free:
729 if (pgs != NULL && pgs != pgs_onstack)
730 kmem_free(pgs, pgs_size);
731 out_err:
732 if (has_trans_wapbl) {
733 if (need_wapbl)
734 WAPBL_END(vp->v_mount);
735 fstrans_done(vp->v_mount);
736 }
737 return error;
738 }
739
740 /*
741 * generic VM putpages routine.
742 * Write the given range of pages to backing store.
743 *
744 * => "offhi == 0" means flush all pages at or after "offlo".
745 * => object should be locked by caller. we return with the
746 * object unlocked.
747 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
748 * thus, a caller might want to unlock higher level resources
749 * (e.g. vm_map) before calling flush.
750 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
751 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
752 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
753 * that new pages are inserted on the tail end of the list. thus,
754 * we can make a complete pass through the object in one go by starting
755 * at the head and working towards the tail (new pages are put in
756 * front of us).
757 * => NOTE: we are allowed to lock the page queues, so the caller
758 * must not be holding the page queue lock.
759 *
760 * note on "cleaning" object and PG_BUSY pages:
761 * this routine is holding the lock on the object. the only time
762 * that it can run into a PG_BUSY page that it does not own is if
763 * some other process has started I/O on the page (e.g. either
764 * a pagein, or a pageout). if the PG_BUSY page is being paged
765 * in, then it can not be dirty (!PG_CLEAN) because no one has
766 * had a chance to modify it yet. if the PG_BUSY page is being
767 * paged out then it means that someone else has already started
768 * cleaning the page for us (how nice!). in this case, if we
769 * have syncio specified, then after we make our pass through the
770 * object we need to wait for the other PG_BUSY pages to clear
771 * off (i.e. we need to do an iosync). also note that once a
772 * page is PG_BUSY it must stay in its object until it is un-busyed.
773 *
774 * note on page traversal:
775 * we can traverse the pages in an object either by going down the
776 * linked list in "uobj->memq", or we can go over the address range
777 * by page doing hash table lookups for each address. depending
778 * on how many pages are in the object it may be cheaper to do one
779 * or the other. we set "by_list" to true if we are using memq.
780 * if the cost of a hash lookup was equal to the cost of the list
781 * traversal we could compare the number of pages in the start->stop
782 * range to the total number of pages in the object. however, it
783 * seems that a hash table lookup is more expensive than the linked
784 * list traversal, so we multiply the number of pages in the
785 * range by an estimate of the relatively higher cost of the hash lookup.
786 */
787
788 int
789 genfs_putpages(void *v)
790 {
791 struct vop_putpages_args /* {
792 struct vnode *a_vp;
793 voff_t a_offlo;
794 voff_t a_offhi;
795 int a_flags;
796 } */ * const ap = v;
797
798 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
799 ap->a_flags, NULL);
800 }
801
802 int
803 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
804 int origflags, struct vm_page **busypg)
805 {
806 struct uvm_object * const uobj = &vp->v_uobj;
807 kmutex_t * const slock = uobj->vmobjlock;
808 off_t off;
809 /* Even for strange MAXPHYS, the shift rounds down to a page */
810 #define maxpages (MAXPHYS >> PAGE_SHIFT)
811 int i, error, npages, nback;
812 int freeflag;
813 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
814 bool wasclean, by_list, needs_clean, yld;
815 bool async = (origflags & PGO_SYNCIO) == 0;
816 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
817 struct lwp * const l = curlwp ? curlwp : &lwp0;
818 struct genfs_node * const gp = VTOG(vp);
819 int flags;
820 int dirtygen;
821 bool modified;
822 bool need_wapbl;
823 bool has_trans;
824 bool cleanall;
825 bool onworklst;
826
827 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
828
829 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
830 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
831 KASSERT(startoff < endoff || endoff == 0);
832
833 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
834 vp, uobj->uo_npages, startoff, endoff - startoff);
835
836 has_trans = false;
837 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
838 (origflags & PGO_JOURNALLOCKED) == 0);
839
840 retry:
841 modified = false;
842 flags = origflags;
843 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
844 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
845 if (uobj->uo_npages == 0) {
846 if (vp->v_iflag & VI_ONWORKLST) {
847 vp->v_iflag &= ~VI_WRMAPDIRTY;
848 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
849 vn_syncer_remove_from_worklist(vp);
850 }
851 if (has_trans) {
852 if (need_wapbl)
853 WAPBL_END(vp->v_mount);
854 fstrans_done(vp->v_mount);
855 }
856 mutex_exit(slock);
857 return (0);
858 }
859
860 /*
861 * the vnode has pages, set up to process the request.
862 */
863
864 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
865 mutex_exit(slock);
866 if (pagedaemon) {
867 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
868 if (error)
869 return error;
870 } else
871 fstrans_start(vp->v_mount, FSTRANS_LAZY);
872 if (need_wapbl) {
873 error = WAPBL_BEGIN(vp->v_mount);
874 if (error) {
875 fstrans_done(vp->v_mount);
876 return error;
877 }
878 }
879 has_trans = true;
880 mutex_enter(slock);
881 goto retry;
882 }
883
884 error = 0;
885 wasclean = (vp->v_numoutput == 0);
886 off = startoff;
887 if (endoff == 0 || flags & PGO_ALLPAGES) {
888 endoff = trunc_page(LLONG_MAX);
889 }
890 by_list = (uobj->uo_npages <=
891 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
892
893 /*
894 * if this vnode is known not to have dirty pages,
895 * don't bother to clean it out.
896 */
897
898 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
899 #if !defined(DEBUG)
900 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
901 goto skip_scan;
902 }
903 #endif /* !defined(DEBUG) */
904 flags &= ~PGO_CLEANIT;
905 }
906
907 /*
908 * start the loop. when scanning by list, hold the last page
909 * in the list before we start. pages allocated after we start
910 * will be added to the end of the list, so we can stop at the
911 * current last page.
912 */
913
914 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
915 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
916 (vp->v_iflag & VI_ONWORKLST) != 0;
917 dirtygen = gp->g_dirtygen;
918 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
919 if (by_list) {
920 curmp.flags = PG_MARKER;
921 endmp.flags = PG_MARKER;
922 pg = TAILQ_FIRST(&uobj->memq);
923 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
924 } else {
925 pg = uvm_pagelookup(uobj, off);
926 }
927 nextpg = NULL;
928 while (by_list || off < endoff) {
929
930 /*
931 * if the current page is not interesting, move on to the next.
932 */
933
934 KASSERT(pg == NULL || pg->uobject == uobj ||
935 (pg->flags & PG_MARKER) != 0);
936 KASSERT(pg == NULL ||
937 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
938 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
939 if (by_list) {
940 if (pg == &endmp) {
941 break;
942 }
943 if (pg->flags & PG_MARKER) {
944 pg = TAILQ_NEXT(pg, listq.queue);
945 continue;
946 }
947 if (pg->offset < startoff || pg->offset >= endoff ||
948 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
949 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
950 wasclean = false;
951 }
952 pg = TAILQ_NEXT(pg, listq.queue);
953 continue;
954 }
955 off = pg->offset;
956 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
957 if (pg != NULL) {
958 wasclean = false;
959 }
960 off += PAGE_SIZE;
961 if (off < endoff) {
962 pg = uvm_pagelookup(uobj, off);
963 }
964 continue;
965 }
966
967 /*
968 * if the current page needs to be cleaned and it's busy,
969 * wait for it to become unbusy.
970 */
971
972 yld = (l->l_cpu->ci_schedstate.spc_flags &
973 SPCF_SHOULDYIELD) && !pagedaemon;
974 if (pg->flags & PG_BUSY || yld) {
975 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
976 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
977 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
978 error = EDEADLK;
979 if (busypg != NULL)
980 *busypg = pg;
981 break;
982 }
983 if (pagedaemon) {
984 /*
985 * someone has taken the page while we
986 * dropped the lock for fstrans_start.
987 */
988 break;
989 }
990 if (by_list) {
991 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
992 UVMHIST_LOG(ubchist, "curmp next %p",
993 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
994 }
995 if (yld) {
996 mutex_exit(slock);
997 preempt();
998 mutex_enter(slock);
999 } else {
1000 pg->flags |= PG_WANTED;
1001 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1002 mutex_enter(slock);
1003 }
1004 if (by_list) {
1005 UVMHIST_LOG(ubchist, "after next %p",
1006 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1007 pg = TAILQ_NEXT(&curmp, listq.queue);
1008 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1009 } else {
1010 pg = uvm_pagelookup(uobj, off);
1011 }
1012 continue;
1013 }
1014
1015 /*
1016 * if we're freeing, remove all mappings of the page now.
1017 * if we're cleaning, check if the page is needs to be cleaned.
1018 */
1019
1020 if (flags & PGO_FREE) {
1021 pmap_page_protect(pg, VM_PROT_NONE);
1022 } else if (flags & PGO_CLEANIT) {
1023
1024 /*
1025 * if we still have some hope to pull this vnode off
1026 * from the syncer queue, write-protect the page.
1027 */
1028
1029 if (cleanall && wasclean &&
1030 gp->g_dirtygen == dirtygen) {
1031
1032 /*
1033 * uobj pages get wired only by uvm_fault
1034 * where uobj is locked.
1035 */
1036
1037 if (pg->wire_count == 0) {
1038 pmap_page_protect(pg,
1039 VM_PROT_READ|VM_PROT_EXECUTE);
1040 } else {
1041 cleanall = false;
1042 }
1043 }
1044 }
1045
1046 if (flags & PGO_CLEANIT) {
1047 needs_clean = pmap_clear_modify(pg) ||
1048 (pg->flags & PG_CLEAN) == 0;
1049 pg->flags |= PG_CLEAN;
1050 } else {
1051 needs_clean = false;
1052 }
1053
1054 /*
1055 * if we're cleaning, build a cluster.
1056 * the cluster will consist of pages which are currently dirty,
1057 * but they will be returned to us marked clean.
1058 * if not cleaning, just operate on the one page.
1059 */
1060
1061 if (needs_clean) {
1062 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1063 wasclean = false;
1064 memset(pgs, 0, sizeof(pgs));
1065 pg->flags |= PG_BUSY;
1066 UVM_PAGE_OWN(pg, "genfs_putpages");
1067
1068 /*
1069 * first look backward.
1070 */
1071
1072 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1073 nback = npages;
1074 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1075 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1076 if (nback) {
1077 memmove(&pgs[0], &pgs[npages - nback],
1078 nback * sizeof(pgs[0]));
1079 if (npages - nback < nback)
1080 memset(&pgs[nback], 0,
1081 (npages - nback) * sizeof(pgs[0]));
1082 else
1083 memset(&pgs[npages - nback], 0,
1084 nback * sizeof(pgs[0]));
1085 }
1086
1087 /*
1088 * then plug in our page of interest.
1089 */
1090
1091 pgs[nback] = pg;
1092
1093 /*
1094 * then look forward to fill in the remaining space in
1095 * the array of pages.
1096 */
1097
1098 npages = maxpages - nback - 1;
1099 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1100 &pgs[nback + 1],
1101 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1102 npages += nback + 1;
1103 } else {
1104 pgs[0] = pg;
1105 npages = 1;
1106 nback = 0;
1107 }
1108
1109 /*
1110 * apply FREE or DEACTIVATE options if requested.
1111 */
1112
1113 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1114 mutex_enter(&uvm_pageqlock);
1115 }
1116 for (i = 0; i < npages; i++) {
1117 tpg = pgs[i];
1118 KASSERT(tpg->uobject == uobj);
1119 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1120 pg = tpg;
1121 if (tpg->offset < startoff || tpg->offset >= endoff)
1122 continue;
1123 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1124 uvm_pagedeactivate(tpg);
1125 } else if (flags & PGO_FREE) {
1126 pmap_page_protect(tpg, VM_PROT_NONE);
1127 if (tpg->flags & PG_BUSY) {
1128 tpg->flags |= freeflag;
1129 if (pagedaemon) {
1130 uvm_pageout_start(1);
1131 uvm_pagedequeue(tpg);
1132 }
1133 } else {
1134
1135 /*
1136 * ``page is not busy''
1137 * implies that npages is 1
1138 * and needs_clean is false.
1139 */
1140
1141 nextpg = TAILQ_NEXT(tpg, listq.queue);
1142 uvm_pagefree(tpg);
1143 if (pagedaemon)
1144 uvmexp.pdfreed++;
1145 }
1146 }
1147 }
1148 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1149 mutex_exit(&uvm_pageqlock);
1150 }
1151 if (needs_clean) {
1152 modified = true;
1153
1154 /*
1155 * start the i/o. if we're traversing by list,
1156 * keep our place in the list with a marker page.
1157 */
1158
1159 if (by_list) {
1160 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1161 listq.queue);
1162 }
1163 mutex_exit(slock);
1164 error = GOP_WRITE(vp, pgs, npages, flags);
1165 mutex_enter(slock);
1166 if (by_list) {
1167 pg = TAILQ_NEXT(&curmp, listq.queue);
1168 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1169 }
1170 if (error) {
1171 break;
1172 }
1173 if (by_list) {
1174 continue;
1175 }
1176 }
1177
1178 /*
1179 * find the next page and continue if there was no error.
1180 */
1181
1182 if (by_list) {
1183 if (nextpg) {
1184 pg = nextpg;
1185 nextpg = NULL;
1186 } else {
1187 pg = TAILQ_NEXT(pg, listq.queue);
1188 }
1189 } else {
1190 off += (npages - nback) << PAGE_SHIFT;
1191 if (off < endoff) {
1192 pg = uvm_pagelookup(uobj, off);
1193 }
1194 }
1195 }
1196 if (by_list) {
1197 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1198 }
1199
1200 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1201 (vp->v_type != VBLK ||
1202 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1203 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1204 }
1205
1206 /*
1207 * if we're cleaning and there was nothing to clean,
1208 * take us off the syncer list. if we started any i/o
1209 * and we're doing sync i/o, wait for all writes to finish.
1210 */
1211
1212 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1213 (vp->v_iflag & VI_ONWORKLST) != 0) {
1214 #if defined(DEBUG)
1215 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1216 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1217 continue;
1218 }
1219 if ((pg->flags & PG_CLEAN) == 0) {
1220 printf("%s: %p: !CLEAN\n", __func__, pg);
1221 }
1222 if (pmap_is_modified(pg)) {
1223 printf("%s: %p: modified\n", __func__, pg);
1224 }
1225 }
1226 #endif /* defined(DEBUG) */
1227 vp->v_iflag &= ~VI_WRMAPDIRTY;
1228 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1229 vn_syncer_remove_from_worklist(vp);
1230 }
1231
1232 #if !defined(DEBUG)
1233 skip_scan:
1234 #endif /* !defined(DEBUG) */
1235
1236 /* Wait for output to complete. */
1237 if (!wasclean && !async && vp->v_numoutput != 0) {
1238 while (vp->v_numoutput != 0)
1239 cv_wait(&vp->v_cv, slock);
1240 }
1241 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1242 mutex_exit(slock);
1243
1244 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1245 /*
1246 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1247 * retrying is not a big deal because, in many cases,
1248 * uobj->uo_npages is already 0 here.
1249 */
1250 mutex_enter(slock);
1251 goto retry;
1252 }
1253
1254 if (has_trans) {
1255 if (need_wapbl)
1256 WAPBL_END(vp->v_mount);
1257 fstrans_done(vp->v_mount);
1258 }
1259
1260 return (error);
1261 }
1262
1263 int
1264 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1265 {
1266 off_t off;
1267 vaddr_t kva;
1268 size_t len;
1269 int error;
1270 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1271
1272 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1273 vp, pgs, npages, flags);
1274
1275 off = pgs[0]->offset;
1276 kva = uvm_pagermapin(pgs, npages,
1277 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1278 len = npages << PAGE_SHIFT;
1279
1280 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1281 uvm_aio_biodone);
1282
1283 return error;
1284 }
1285
1286 int
1287 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1288 {
1289 off_t off;
1290 vaddr_t kva;
1291 size_t len;
1292 int error;
1293 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1294
1295 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1296 vp, pgs, npages, flags);
1297
1298 off = pgs[0]->offset;
1299 kva = uvm_pagermapin(pgs, npages,
1300 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1301 len = npages << PAGE_SHIFT;
1302
1303 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1304 uvm_aio_biodone);
1305
1306 return error;
1307 }
1308
1309 /*
1310 * Backend routine for doing I/O to vnode pages. Pages are already locked
1311 * and mapped into kernel memory. Here we just look up the underlying
1312 * device block addresses and call the strategy routine.
1313 */
1314
1315 static int
1316 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1317 enum uio_rw rw, void (*iodone)(struct buf *))
1318 {
1319 int s, error;
1320 int fs_bshift, dev_bshift;
1321 off_t eof, offset, startoffset;
1322 size_t bytes, iobytes, skipbytes;
1323 struct buf *mbp, *bp;
1324 const bool async = (flags & PGO_SYNCIO) == 0;
1325 const bool lazy = (flags & PGO_LAZY) == 0;
1326 const bool iowrite = rw == UIO_WRITE;
1327 const int brw = iowrite ? B_WRITE : B_READ;
1328 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1329
1330 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1331 vp, kva, len, flags);
1332
1333 KASSERT(vp->v_size <= vp->v_writesize);
1334 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1335 if (vp->v_type != VBLK) {
1336 fs_bshift = vp->v_mount->mnt_fs_bshift;
1337 dev_bshift = vp->v_mount->mnt_dev_bshift;
1338 } else {
1339 fs_bshift = DEV_BSHIFT;
1340 dev_bshift = DEV_BSHIFT;
1341 }
1342 error = 0;
1343 startoffset = off;
1344 bytes = MIN(len, eof - startoffset);
1345 skipbytes = 0;
1346 KASSERT(bytes != 0);
1347
1348 if (iowrite) {
1349 mutex_enter(vp->v_interlock);
1350 vp->v_numoutput += 2;
1351 mutex_exit(vp->v_interlock);
1352 }
1353 mbp = getiobuf(vp, true);
1354 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1355 vp, mbp, vp->v_numoutput, bytes);
1356 mbp->b_bufsize = len;
1357 mbp->b_data = (void *)kva;
1358 mbp->b_resid = mbp->b_bcount = bytes;
1359 mbp->b_cflags = BC_BUSY | BC_AGE;
1360 if (async) {
1361 mbp->b_flags = brw | B_ASYNC;
1362 mbp->b_iodone = iodone;
1363 } else {
1364 mbp->b_flags = brw;
1365 mbp->b_iodone = NULL;
1366 }
1367 if (curlwp == uvm.pagedaemon_lwp)
1368 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1369 else if (async || lazy)
1370 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1371 else
1372 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1373
1374 bp = NULL;
1375 for (offset = startoffset;
1376 bytes > 0;
1377 offset += iobytes, bytes -= iobytes) {
1378 int run;
1379 daddr_t lbn, blkno;
1380 struct vnode *devvp;
1381
1382 /*
1383 * bmap the file to find out the blkno to read from and
1384 * how much we can read in one i/o. if bmap returns an error,
1385 * skip the rest of the top-level i/o.
1386 */
1387
1388 lbn = offset >> fs_bshift;
1389 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1390 if (error) {
1391 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1392 lbn,error,0,0);
1393 skipbytes += bytes;
1394 bytes = 0;
1395 goto loopdone;
1396 }
1397
1398 /*
1399 * see how many pages can be read with this i/o.
1400 * reduce the i/o size if necessary to avoid
1401 * overwriting pages with valid data.
1402 */
1403
1404 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1405 bytes);
1406
1407 /*
1408 * if this block isn't allocated, zero it instead of
1409 * reading it. unless we are going to allocate blocks,
1410 * mark the pages we zeroed PG_RDONLY.
1411 */
1412
1413 if (blkno == (daddr_t)-1) {
1414 if (!iowrite) {
1415 memset((char *)kva + (offset - startoffset), 0,
1416 iobytes);
1417 }
1418 skipbytes += iobytes;
1419 continue;
1420 }
1421
1422 /*
1423 * allocate a sub-buf for this piece of the i/o
1424 * (or just use mbp if there's only 1 piece),
1425 * and start it going.
1426 */
1427
1428 if (offset == startoffset && iobytes == bytes) {
1429 bp = mbp;
1430 } else {
1431 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1432 vp, bp, vp->v_numoutput, 0);
1433 bp = getiobuf(vp, true);
1434 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1435 }
1436 bp->b_lblkno = 0;
1437
1438 /* adjust physical blkno for partial blocks */
1439 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1440 dev_bshift);
1441
1442 UVMHIST_LOG(ubchist,
1443 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1444 bp, offset, bp->b_bcount, bp->b_blkno);
1445
1446 VOP_STRATEGY(devvp, bp);
1447 }
1448
1449 loopdone:
1450 if (skipbytes) {
1451 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1452 }
1453 nestiobuf_done(mbp, skipbytes, error);
1454 if (async) {
1455 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1456 return (0);
1457 }
1458 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1459 error = biowait(mbp);
1460 s = splbio();
1461 (*iodone)(mbp);
1462 splx(s);
1463 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1464 return (error);
1465 }
1466
1467 int
1468 genfs_compat_getpages(void *v)
1469 {
1470 struct vop_getpages_args /* {
1471 struct vnode *a_vp;
1472 voff_t a_offset;
1473 struct vm_page **a_m;
1474 int *a_count;
1475 int a_centeridx;
1476 vm_prot_t a_access_type;
1477 int a_advice;
1478 int a_flags;
1479 } */ *ap = v;
1480
1481 off_t origoffset;
1482 struct vnode *vp = ap->a_vp;
1483 struct uvm_object *uobj = &vp->v_uobj;
1484 struct vm_page *pg, **pgs;
1485 vaddr_t kva;
1486 int i, error, orignpages, npages;
1487 struct iovec iov;
1488 struct uio uio;
1489 kauth_cred_t cred = curlwp->l_cred;
1490 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1491
1492 error = 0;
1493 origoffset = ap->a_offset;
1494 orignpages = *ap->a_count;
1495 pgs = ap->a_m;
1496
1497 if (ap->a_flags & PGO_LOCKED) {
1498 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1499 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1500
1501 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1502 if (error == 0 && memwrite) {
1503 genfs_markdirty(vp);
1504 }
1505 return error;
1506 }
1507 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1508 mutex_exit(uobj->vmobjlock);
1509 return EINVAL;
1510 }
1511 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1512 mutex_exit(uobj->vmobjlock);
1513 return 0;
1514 }
1515 npages = orignpages;
1516 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1517 mutex_exit(uobj->vmobjlock);
1518 kva = uvm_pagermapin(pgs, npages,
1519 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1520 for (i = 0; i < npages; i++) {
1521 pg = pgs[i];
1522 if ((pg->flags & PG_FAKE) == 0) {
1523 continue;
1524 }
1525 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1526 iov.iov_len = PAGE_SIZE;
1527 uio.uio_iov = &iov;
1528 uio.uio_iovcnt = 1;
1529 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1530 uio.uio_rw = UIO_READ;
1531 uio.uio_resid = PAGE_SIZE;
1532 UIO_SETUP_SYSSPACE(&uio);
1533 /* XXX vn_lock */
1534 error = VOP_READ(vp, &uio, 0, cred);
1535 if (error) {
1536 break;
1537 }
1538 if (uio.uio_resid) {
1539 memset(iov.iov_base, 0, uio.uio_resid);
1540 }
1541 }
1542 uvm_pagermapout(kva, npages);
1543 mutex_enter(uobj->vmobjlock);
1544 mutex_enter(&uvm_pageqlock);
1545 for (i = 0; i < npages; i++) {
1546 pg = pgs[i];
1547 if (error && (pg->flags & PG_FAKE) != 0) {
1548 pg->flags |= PG_RELEASED;
1549 } else {
1550 pmap_clear_modify(pg);
1551 uvm_pageactivate(pg);
1552 }
1553 }
1554 if (error) {
1555 uvm_page_unbusy(pgs, npages);
1556 }
1557 mutex_exit(&uvm_pageqlock);
1558 if (error == 0 && memwrite) {
1559 genfs_markdirty(vp);
1560 }
1561 mutex_exit(uobj->vmobjlock);
1562 return error;
1563 }
1564
1565 int
1566 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1567 int flags)
1568 {
1569 off_t offset;
1570 struct iovec iov;
1571 struct uio uio;
1572 kauth_cred_t cred = curlwp->l_cred;
1573 struct buf *bp;
1574 vaddr_t kva;
1575 int error;
1576
1577 offset = pgs[0]->offset;
1578 kva = uvm_pagermapin(pgs, npages,
1579 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1580
1581 iov.iov_base = (void *)kva;
1582 iov.iov_len = npages << PAGE_SHIFT;
1583 uio.uio_iov = &iov;
1584 uio.uio_iovcnt = 1;
1585 uio.uio_offset = offset;
1586 uio.uio_rw = UIO_WRITE;
1587 uio.uio_resid = npages << PAGE_SHIFT;
1588 UIO_SETUP_SYSSPACE(&uio);
1589 /* XXX vn_lock */
1590 error = VOP_WRITE(vp, &uio, 0, cred);
1591
1592 mutex_enter(vp->v_interlock);
1593 vp->v_numoutput++;
1594 mutex_exit(vp->v_interlock);
1595
1596 bp = getiobuf(vp, true);
1597 bp->b_cflags = BC_BUSY | BC_AGE;
1598 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1599 bp->b_data = (char *)kva;
1600 bp->b_bcount = npages << PAGE_SHIFT;
1601 bp->b_bufsize = npages << PAGE_SHIFT;
1602 bp->b_resid = 0;
1603 bp->b_error = error;
1604 uvm_aio_aiodone(bp);
1605 return (error);
1606 }
1607
1608 /*
1609 * Process a uio using direct I/O. If we reach a part of the request
1610 * which cannot be processed in this fashion for some reason, just return.
1611 * The caller must handle some additional part of the request using
1612 * buffered I/O before trying direct I/O again.
1613 */
1614
1615 void
1616 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1617 {
1618 struct vmspace *vs;
1619 struct iovec *iov;
1620 vaddr_t va;
1621 size_t len;
1622 const int mask = DEV_BSIZE - 1;
1623 int error;
1624 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1625 (ioflag & IO_JOURNALLOCKED) == 0);
1626
1627 /*
1628 * We only support direct I/O to user space for now.
1629 */
1630
1631 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1632 return;
1633 }
1634
1635 /*
1636 * If the vnode is mapped, we would need to get the getpages lock
1637 * to stabilize the bmap, but then we would get into trouble while
1638 * locking the pages if the pages belong to this same vnode (or a
1639 * multi-vnode cascade to the same effect). Just fall back to
1640 * buffered I/O if the vnode is mapped to avoid this mess.
1641 */
1642
1643 if (vp->v_vflag & VV_MAPPED) {
1644 return;
1645 }
1646
1647 if (need_wapbl) {
1648 error = WAPBL_BEGIN(vp->v_mount);
1649 if (error)
1650 return;
1651 }
1652
1653 /*
1654 * Do as much of the uio as possible with direct I/O.
1655 */
1656
1657 vs = uio->uio_vmspace;
1658 while (uio->uio_resid) {
1659 iov = uio->uio_iov;
1660 if (iov->iov_len == 0) {
1661 uio->uio_iov++;
1662 uio->uio_iovcnt--;
1663 continue;
1664 }
1665 va = (vaddr_t)iov->iov_base;
1666 len = MIN(iov->iov_len, genfs_maxdio);
1667 len &= ~mask;
1668
1669 /*
1670 * If the next chunk is smaller than DEV_BSIZE or extends past
1671 * the current EOF, then fall back to buffered I/O.
1672 */
1673
1674 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1675 break;
1676 }
1677
1678 /*
1679 * Check alignment. The file offset must be at least
1680 * sector-aligned. The exact constraint on memory alignment
1681 * is very hardware-dependent, but requiring sector-aligned
1682 * addresses there too is safe.
1683 */
1684
1685 if (uio->uio_offset & mask || va & mask) {
1686 break;
1687 }
1688 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1689 uio->uio_rw);
1690 if (error) {
1691 break;
1692 }
1693 iov->iov_base = (char *)iov->iov_base + len;
1694 iov->iov_len -= len;
1695 uio->uio_offset += len;
1696 uio->uio_resid -= len;
1697 }
1698
1699 if (need_wapbl)
1700 WAPBL_END(vp->v_mount);
1701 }
1702
1703 /*
1704 * Iodone routine for direct I/O. We don't do much here since the request is
1705 * always synchronous, so the caller will do most of the work after biowait().
1706 */
1707
1708 static void
1709 genfs_dio_iodone(struct buf *bp)
1710 {
1711
1712 KASSERT((bp->b_flags & B_ASYNC) == 0);
1713 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1714 mutex_enter(bp->b_objlock);
1715 vwakeup(bp);
1716 mutex_exit(bp->b_objlock);
1717 }
1718 putiobuf(bp);
1719 }
1720
1721 /*
1722 * Process one chunk of a direct I/O request.
1723 */
1724
1725 static int
1726 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1727 off_t off, enum uio_rw rw)
1728 {
1729 struct vm_map *map;
1730 struct pmap *upm, *kpm __unused;
1731 size_t klen = round_page(uva + len) - trunc_page(uva);
1732 off_t spoff, epoff;
1733 vaddr_t kva, puva;
1734 paddr_t pa;
1735 vm_prot_t prot;
1736 int error, rv __diagused, poff, koff;
1737 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1738 (rw == UIO_WRITE ? PGO_FREE : 0);
1739
1740 /*
1741 * For writes, verify that this range of the file already has fully
1742 * allocated backing store. If there are any holes, just punt and
1743 * make the caller take the buffered write path.
1744 */
1745
1746 if (rw == UIO_WRITE) {
1747 daddr_t lbn, elbn, blkno;
1748 int bsize, bshift, run;
1749
1750 bshift = vp->v_mount->mnt_fs_bshift;
1751 bsize = 1 << bshift;
1752 lbn = off >> bshift;
1753 elbn = (off + len + bsize - 1) >> bshift;
1754 while (lbn < elbn) {
1755 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1756 if (error) {
1757 return error;
1758 }
1759 if (blkno == (daddr_t)-1) {
1760 return ENOSPC;
1761 }
1762 lbn += 1 + run;
1763 }
1764 }
1765
1766 /*
1767 * Flush any cached pages for parts of the file that we're about to
1768 * access. If we're writing, invalidate pages as well.
1769 */
1770
1771 spoff = trunc_page(off);
1772 epoff = round_page(off + len);
1773 mutex_enter(vp->v_interlock);
1774 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1775 if (error) {
1776 return error;
1777 }
1778
1779 /*
1780 * Wire the user pages and remap them into kernel memory.
1781 */
1782
1783 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1784 error = uvm_vslock(vs, (void *)uva, len, prot);
1785 if (error) {
1786 return error;
1787 }
1788
1789 map = &vs->vm_map;
1790 upm = vm_map_pmap(map);
1791 kpm = vm_map_pmap(kernel_map);
1792 puva = trunc_page(uva);
1793 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1794 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1795 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1796 rv = pmap_extract(upm, puva + poff, &pa);
1797 KASSERT(rv);
1798 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1799 }
1800 pmap_update(kpm);
1801
1802 /*
1803 * Do the I/O.
1804 */
1805
1806 koff = uva - trunc_page(uva);
1807 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1808 genfs_dio_iodone);
1809
1810 /*
1811 * Tear down the kernel mapping.
1812 */
1813
1814 pmap_kremove(kva, klen);
1815 pmap_update(kpm);
1816 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1817
1818 /*
1819 * Unwire the user pages.
1820 */
1821
1822 uvm_vsunlock(vs, (void *)uva, len);
1823 return error;
1824 }
1825