genfs_io.c revision 1.58.6.1 1 /* $NetBSD: genfs_io.c,v 1.58.6.1 2015/06/06 14:40:22 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.58.6.1 2015/06/06 14:40:22 skrll Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
133 bool has_trans_wapbl = false;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 startover:
143 error = 0;
144 const voff_t origvsize = vp->v_size;
145 const off_t origoffset = ap->a_offset;
146 const int orignpages = *ap->a_count;
147
148 GOP_SIZE(vp, origvsize, &diskeof, 0);
149 if (flags & PGO_PASTEOF) {
150 off_t newsize;
151 #if defined(DIAGNOSTIC)
152 off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154
155 newsize = MAX(origvsize,
156 origoffset + (orignpages << PAGE_SHIFT));
157 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 if (newsize > round_page(writeeof)) {
161 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 __func__, newsize, round_page(writeeof));
163 }
164 #endif /* defined(DIAGNOSTIC) */
165 } else {
166 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 }
168 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 KASSERT(orignpages > 0);
171
172 /*
173 * Bounds-check the request.
174 */
175
176 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 if ((flags & PGO_LOCKED) == 0) {
178 mutex_exit(uobj->vmobjlock);
179 }
180 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 origoffset, *ap->a_count, memeof,0);
182 error = EINVAL;
183 goto out_err;
184 }
185
186 /* uobj is locked */
187
188 if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 (vp->v_type != VBLK ||
190 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 int updflags = 0;
192
193 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 updflags = GOP_UPDATE_ACCESSED;
195 }
196 if (memwrite) {
197 updflags |= GOP_UPDATE_MODIFIED;
198 }
199 if (updflags != 0) {
200 GOP_MARKUPDATE(vp, updflags);
201 }
202 }
203
204 /*
205 * For PGO_LOCKED requests, just return whatever's in memory.
206 */
207
208 if (flags & PGO_LOCKED) {
209 int nfound;
210 struct vm_page *pg;
211
212 KASSERT(!glocked);
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 KASSERT(npages == *ap->a_count);
223 if (nfound == 0) {
224 error = EBUSY;
225 goto out_err;
226 }
227 if (!genfs_node_rdtrylock(vp)) {
228 genfs_rel_pages(ap->a_m, npages);
229
230 /*
231 * restore the array.
232 */
233
234 for (i = 0; i < npages; i++) {
235 pg = ap->a_m[i];
236
237 if (pg != NULL && pg != PGO_DONTCARE) {
238 ap->a_m[i] = NULL;
239 }
240 KASSERT(ap->a_m[i] == NULL ||
241 ap->a_m[i] == PGO_DONTCARE);
242 }
243 } else {
244 genfs_node_unlock(vp);
245 }
246 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 if (error == 0 && memwrite) {
248 genfs_markdirty(vp);
249 }
250 goto out_err;
251 }
252 mutex_exit(uobj->vmobjlock);
253
254 /*
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
257 */
258
259 const int fs_bshift = (vp->v_type != VBLK) ?
260 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 const int fs_bsize = 1 << fs_bshift;
262 #define blk_mask (fs_bsize - 1)
263 #define trunc_blk(x) ((x) & ~blk_mask)
264 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
265
266 const int orignmempages = MIN(orignpages,
267 round_page(memeof - origoffset) >> PAGE_SHIFT);
268 npages = orignmempages;
269 const off_t startoffset = trunc_blk(origoffset);
270 const off_t endoffset = MIN(
271 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
272 round_page(memeof));
273 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
274
275 const int pgs_size = sizeof(struct vm_page *) *
276 ((endoffset - startoffset) >> PAGE_SHIFT);
277 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
278
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
285 }
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
289 }
290
291 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
292 ridx, npages, startoffset, endoffset);
293
294 if (!has_trans_wapbl) {
295 fstrans_start(vp->v_mount, FSTRANS_SHARED);
296 /*
297 * XXX: This assumes that we come here only via
298 * the mmio path
299 */
300 if (need_wapbl) {
301 error = WAPBL_BEGIN(vp->v_mount);
302 if (error) {
303 fstrans_done(vp->v_mount);
304 goto out_err_free;
305 }
306 }
307 has_trans_wapbl = true;
308 }
309
310 /*
311 * hold g_glock to prevent a race with truncate.
312 *
313 * check if our idea of v_size is still valid.
314 */
315
316 KASSERT(!glocked || genfs_node_wrlocked(vp));
317 if (!glocked) {
318 if (blockalloc) {
319 genfs_node_wrlock(vp);
320 } else {
321 genfs_node_rdlock(vp);
322 }
323 }
324 mutex_enter(uobj->vmobjlock);
325 if (vp->v_size < origvsize) {
326 if (!glocked) {
327 genfs_node_unlock(vp);
328 }
329 if (pgs != pgs_onstack)
330 kmem_free(pgs, pgs_size);
331 goto startover;
332 }
333
334 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
335 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
336 if (!glocked) {
337 genfs_node_unlock(vp);
338 }
339 KASSERT(async != 0);
340 genfs_rel_pages(&pgs[ridx], orignmempages);
341 mutex_exit(uobj->vmobjlock);
342 error = EBUSY;
343 goto out_err_free;
344 }
345
346 /*
347 * if the pages are already resident, just return them.
348 */
349
350 for (i = 0; i < npages; i++) {
351 struct vm_page *pg = pgs[ridx + i];
352
353 if ((pg->flags & PG_FAKE) ||
354 (blockalloc && (pg->flags & PG_RDONLY))) {
355 break;
356 }
357 }
358 if (i == npages) {
359 if (!glocked) {
360 genfs_node_unlock(vp);
361 }
362 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
363 npages += ridx;
364 goto out;
365 }
366
367 /*
368 * if PGO_OVERWRITE is set, don't bother reading the pages.
369 */
370
371 if (overwrite) {
372 if (!glocked) {
373 genfs_node_unlock(vp);
374 }
375 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
376
377 for (i = 0; i < npages; i++) {
378 struct vm_page *pg = pgs[ridx + i];
379
380 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
381 }
382 npages += ridx;
383 goto out;
384 }
385
386 /*
387 * the page wasn't resident and we're not overwriting,
388 * so we're going to have to do some i/o.
389 * find any additional pages needed to cover the expanded range.
390 */
391
392 npages = (endoffset - startoffset) >> PAGE_SHIFT;
393 if (startoffset != origoffset || npages != orignmempages) {
394 int npgs;
395
396 /*
397 * we need to avoid deadlocks caused by locking
398 * additional pages at lower offsets than pages we
399 * already have locked. unlock them all and start over.
400 */
401
402 genfs_rel_pages(&pgs[ridx], orignmempages);
403 memset(pgs, 0, pgs_size);
404
405 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
406 startoffset, endoffset, 0,0);
407 npgs = npages;
408 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
409 async ? UFP_NOWAIT : UFP_ALL) != npages) {
410 if (!glocked) {
411 genfs_node_unlock(vp);
412 }
413 KASSERT(async != 0);
414 genfs_rel_pages(pgs, npages);
415 mutex_exit(uobj->vmobjlock);
416 error = EBUSY;
417 goto out_err_free;
418 }
419 }
420
421 mutex_exit(uobj->vmobjlock);
422 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
423 async, memwrite, blockalloc, glocked);
424 if (error == 0 && async)
425 goto out_err_free;
426 if (!glocked) {
427 genfs_node_unlock(vp);
428 }
429 mutex_enter(uobj->vmobjlock);
430
431 /*
432 * we're almost done! release the pages...
433 * for errors, we free the pages.
434 * otherwise we activate them and mark them as valid and clean.
435 * also, unbusy pages that were not actually requested.
436 */
437
438 if (error) {
439 genfs_rel_pages(pgs, npages);
440 mutex_exit(uobj->vmobjlock);
441 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
442 goto out_err_free;
443 }
444
445 out:
446 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
447 error = 0;
448 mutex_enter(&uvm_pageqlock);
449 for (i = 0; i < npages; i++) {
450 struct vm_page *pg = pgs[i];
451 if (pg == NULL) {
452 continue;
453 }
454 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
455 pg, pg->flags, 0,0);
456 if (pg->flags & PG_FAKE && !overwrite) {
457 pg->flags &= ~(PG_FAKE);
458 pmap_clear_modify(pgs[i]);
459 }
460 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
461 if (i < ridx || i >= ridx + orignmempages || async) {
462 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
463 pg, pg->offset,0,0);
464 if (pg->flags & PG_WANTED) {
465 wakeup(pg);
466 }
467 if (pg->flags & PG_FAKE) {
468 KASSERT(overwrite);
469 uvm_pagezero(pg);
470 }
471 if (pg->flags & PG_RELEASED) {
472 uvm_pagefree(pg);
473 continue;
474 }
475 uvm_pageenqueue(pg);
476 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
477 UVM_PAGE_OWN(pg, NULL);
478 }
479 }
480 mutex_exit(&uvm_pageqlock);
481 if (memwrite) {
482 genfs_markdirty(vp);
483 }
484 mutex_exit(uobj->vmobjlock);
485 if (ap->a_m != NULL) {
486 memcpy(ap->a_m, &pgs[ridx],
487 orignmempages * sizeof(struct vm_page *));
488 }
489
490 out_err_free:
491 if (pgs != NULL && pgs != pgs_onstack)
492 kmem_free(pgs, pgs_size);
493 out_err:
494 if (has_trans_wapbl) {
495 if (need_wapbl)
496 WAPBL_END(vp->v_mount);
497 fstrans_done(vp->v_mount);
498 }
499 return error;
500 }
501
502 /*
503 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
504 */
505 static int
506 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
507 off_t startoffset, off_t diskeof,
508 bool async, bool memwrite, bool blockalloc, bool glocked)
509 {
510 struct uvm_object * const uobj = &vp->v_uobj;
511 const int fs_bshift = (vp->v_type != VBLK) ?
512 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
513 const int dev_bshift = (vp->v_type != VBLK) ?
514 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
515 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
516 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
517 vaddr_t kva;
518 struct buf *bp, *mbp;
519 bool sawhole = false;
520 int i;
521 int error = 0;
522
523 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
524
525 /*
526 * read the desired page(s).
527 */
528
529 totalbytes = npages << PAGE_SHIFT;
530 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
531 tailbytes = totalbytes - bytes;
532 skipbytes = 0;
533
534 kva = uvm_pagermapin(pgs, npages,
535 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
536 if (kva == 0)
537 return EBUSY;
538
539 mbp = getiobuf(vp, true);
540 mbp->b_bufsize = totalbytes;
541 mbp->b_data = (void *)kva;
542 mbp->b_resid = mbp->b_bcount = bytes;
543 mbp->b_cflags = BC_BUSY;
544 if (async) {
545 mbp->b_flags = B_READ | B_ASYNC;
546 mbp->b_iodone = uvm_aio_biodone;
547 } else {
548 mbp->b_flags = B_READ;
549 mbp->b_iodone = NULL;
550 }
551 if (async)
552 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
553 else
554 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
555
556 /*
557 * if EOF is in the middle of the range, zero the part past EOF.
558 * skip over pages which are not PG_FAKE since in that case they have
559 * valid data that we need to preserve.
560 */
561
562 tailstart = bytes;
563 while (tailbytes > 0) {
564 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
565
566 KASSERT(len <= tailbytes);
567 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
568 memset((void *)(kva + tailstart), 0, len);
569 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
570 kva, tailstart, len, 0);
571 }
572 tailstart += len;
573 tailbytes -= len;
574 }
575
576 /*
577 * now loop over the pages, reading as needed.
578 */
579
580 bp = NULL;
581 off_t offset;
582 for (offset = startoffset;
583 bytes > 0;
584 offset += iobytes, bytes -= iobytes) {
585 int run;
586 daddr_t lbn, blkno;
587 int pidx;
588 struct vnode *devvp;
589
590 /*
591 * skip pages which don't need to be read.
592 */
593
594 pidx = (offset - startoffset) >> PAGE_SHIFT;
595 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
596 size_t b;
597
598 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
599 if ((pgs[pidx]->flags & PG_RDONLY)) {
600 sawhole = true;
601 }
602 b = MIN(PAGE_SIZE, bytes);
603 offset += b;
604 bytes -= b;
605 skipbytes += b;
606 pidx++;
607 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
608 offset, 0,0,0);
609 if (bytes == 0) {
610 goto loopdone;
611 }
612 }
613
614 /*
615 * bmap the file to find out the blkno to read from and
616 * how much we can read in one i/o. if bmap returns an error,
617 * skip the rest of the top-level i/o.
618 */
619
620 lbn = offset >> fs_bshift;
621 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
622 if (error) {
623 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
624 lbn,error,0,0);
625 skipbytes += bytes;
626 bytes = 0;
627 goto loopdone;
628 }
629
630 /*
631 * see how many pages can be read with this i/o.
632 * reduce the i/o size if necessary to avoid
633 * overwriting pages with valid data.
634 */
635
636 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
637 bytes);
638 if (offset + iobytes > round_page(offset)) {
639 int pcount;
640
641 pcount = 1;
642 while (pidx + pcount < npages &&
643 pgs[pidx + pcount]->flags & PG_FAKE) {
644 pcount++;
645 }
646 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
647 (offset - trunc_page(offset)));
648 }
649
650 /*
651 * if this block isn't allocated, zero it instead of
652 * reading it. unless we are going to allocate blocks,
653 * mark the pages we zeroed PG_RDONLY.
654 */
655
656 if (blkno == (daddr_t)-1) {
657 int holepages = (round_page(offset + iobytes) -
658 trunc_page(offset)) >> PAGE_SHIFT;
659 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
660
661 sawhole = true;
662 memset((char *)kva + (offset - startoffset), 0,
663 iobytes);
664 skipbytes += iobytes;
665
666 mutex_enter(uobj->vmobjlock);
667 for (i = 0; i < holepages; i++) {
668 if (memwrite) {
669 pgs[pidx + i]->flags &= ~PG_CLEAN;
670 }
671 if (!blockalloc) {
672 pgs[pidx + i]->flags |= PG_RDONLY;
673 }
674 }
675 mutex_exit(uobj->vmobjlock);
676 continue;
677 }
678
679 /*
680 * allocate a sub-buf for this piece of the i/o
681 * (or just use mbp if there's only 1 piece),
682 * and start it going.
683 */
684
685 if (offset == startoffset && iobytes == bytes) {
686 bp = mbp;
687 } else {
688 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
689 vp, bp, vp->v_numoutput, 0);
690 bp = getiobuf(vp, true);
691 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
692 }
693 bp->b_lblkno = 0;
694
695 /* adjust physical blkno for partial blocks */
696 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
697 dev_bshift);
698
699 UVMHIST_LOG(ubchist,
700 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
701 bp, offset, bp->b_bcount, bp->b_blkno);
702
703 VOP_STRATEGY(devvp, bp);
704 }
705
706 loopdone:
707 nestiobuf_done(mbp, skipbytes, error);
708 if (async) {
709 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
710 if (!glocked) {
711 genfs_node_unlock(vp);
712 }
713 return 0;
714 }
715 if (bp != NULL) {
716 error = biowait(mbp);
717 }
718
719 /* Remove the mapping (make KVA available as soon as possible) */
720 uvm_pagermapout(kva, npages);
721
722 /*
723 * if this we encountered a hole then we have to do a little more work.
724 * for read faults, we marked the page PG_RDONLY so that future
725 * write accesses to the page will fault again.
726 * for write faults, we must make sure that the backing store for
727 * the page is completely allocated while the pages are locked.
728 */
729
730 if (!error && sawhole && blockalloc) {
731 error = GOP_ALLOC(vp, startoffset,
732 npages << PAGE_SHIFT, 0, cred);
733 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
734 startoffset, npages << PAGE_SHIFT, error,0);
735 if (!error) {
736 mutex_enter(uobj->vmobjlock);
737 for (i = 0; i < npages; i++) {
738 struct vm_page *pg = pgs[i];
739
740 if (pg == NULL) {
741 continue;
742 }
743 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
744 UVMHIST_LOG(ubchist, "mark dirty pg %p",
745 pg,0,0,0);
746 }
747 mutex_exit(uobj->vmobjlock);
748 }
749 }
750
751 putiobuf(mbp);
752 return error;
753 }
754
755 /*
756 * generic VM putpages routine.
757 * Write the given range of pages to backing store.
758 *
759 * => "offhi == 0" means flush all pages at or after "offlo".
760 * => object should be locked by caller. we return with the
761 * object unlocked.
762 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
763 * thus, a caller might want to unlock higher level resources
764 * (e.g. vm_map) before calling flush.
765 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
766 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
767 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
768 * that new pages are inserted on the tail end of the list. thus,
769 * we can make a complete pass through the object in one go by starting
770 * at the head and working towards the tail (new pages are put in
771 * front of us).
772 * => NOTE: we are allowed to lock the page queues, so the caller
773 * must not be holding the page queue lock.
774 *
775 * note on "cleaning" object and PG_BUSY pages:
776 * this routine is holding the lock on the object. the only time
777 * that it can run into a PG_BUSY page that it does not own is if
778 * some other process has started I/O on the page (e.g. either
779 * a pagein, or a pageout). if the PG_BUSY page is being paged
780 * in, then it can not be dirty (!PG_CLEAN) because no one has
781 * had a chance to modify it yet. if the PG_BUSY page is being
782 * paged out then it means that someone else has already started
783 * cleaning the page for us (how nice!). in this case, if we
784 * have syncio specified, then after we make our pass through the
785 * object we need to wait for the other PG_BUSY pages to clear
786 * off (i.e. we need to do an iosync). also note that once a
787 * page is PG_BUSY it must stay in its object until it is un-busyed.
788 *
789 * note on page traversal:
790 * we can traverse the pages in an object either by going down the
791 * linked list in "uobj->memq", or we can go over the address range
792 * by page doing hash table lookups for each address. depending
793 * on how many pages are in the object it may be cheaper to do one
794 * or the other. we set "by_list" to true if we are using memq.
795 * if the cost of a hash lookup was equal to the cost of the list
796 * traversal we could compare the number of pages in the start->stop
797 * range to the total number of pages in the object. however, it
798 * seems that a hash table lookup is more expensive than the linked
799 * list traversal, so we multiply the number of pages in the
800 * range by an estimate of the relatively higher cost of the hash lookup.
801 */
802
803 int
804 genfs_putpages(void *v)
805 {
806 struct vop_putpages_args /* {
807 struct vnode *a_vp;
808 voff_t a_offlo;
809 voff_t a_offhi;
810 int a_flags;
811 } */ * const ap = v;
812
813 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
814 ap->a_flags, NULL);
815 }
816
817 int
818 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
819 int origflags, struct vm_page **busypg)
820 {
821 struct uvm_object * const uobj = &vp->v_uobj;
822 kmutex_t * const slock = uobj->vmobjlock;
823 off_t off;
824 /* Even for strange MAXPHYS, the shift rounds down to a page */
825 #define maxpages (MAXPHYS >> PAGE_SHIFT)
826 int i, error, npages, nback;
827 int freeflag;
828 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
829 bool wasclean, by_list, needs_clean, yld;
830 bool async = (origflags & PGO_SYNCIO) == 0;
831 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
832 struct lwp * const l = curlwp ? curlwp : &lwp0;
833 struct genfs_node * const gp = VTOG(vp);
834 int flags;
835 int dirtygen;
836 bool modified;
837 bool need_wapbl;
838 bool has_trans;
839 bool cleanall;
840 bool onworklst;
841
842 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
843
844 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
845 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
846 KASSERT(startoff < endoff || endoff == 0);
847
848 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
849 vp, uobj->uo_npages, startoff, endoff - startoff);
850
851 has_trans = false;
852 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
853 (origflags & PGO_JOURNALLOCKED) == 0);
854
855 retry:
856 modified = false;
857 flags = origflags;
858 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
859 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
860 if (uobj->uo_npages == 0) {
861 if (vp->v_iflag & VI_ONWORKLST) {
862 vp->v_iflag &= ~VI_WRMAPDIRTY;
863 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
864 vn_syncer_remove_from_worklist(vp);
865 }
866 if (has_trans) {
867 if (need_wapbl)
868 WAPBL_END(vp->v_mount);
869 fstrans_done(vp->v_mount);
870 }
871 mutex_exit(slock);
872 return (0);
873 }
874
875 /*
876 * the vnode has pages, set up to process the request.
877 */
878
879 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
880 mutex_exit(slock);
881 if (pagedaemon) {
882 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
883 if (error)
884 return error;
885 } else
886 fstrans_start(vp->v_mount, FSTRANS_LAZY);
887 if (need_wapbl) {
888 error = WAPBL_BEGIN(vp->v_mount);
889 if (error) {
890 fstrans_done(vp->v_mount);
891 return error;
892 }
893 }
894 has_trans = true;
895 mutex_enter(slock);
896 goto retry;
897 }
898
899 error = 0;
900 wasclean = (vp->v_numoutput == 0);
901 off = startoff;
902 if (endoff == 0 || flags & PGO_ALLPAGES) {
903 endoff = trunc_page(LLONG_MAX);
904 }
905 by_list = (uobj->uo_npages <=
906 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
907
908 /*
909 * if this vnode is known not to have dirty pages,
910 * don't bother to clean it out.
911 */
912
913 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
914 #if !defined(DEBUG)
915 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
916 goto skip_scan;
917 }
918 #endif /* !defined(DEBUG) */
919 flags &= ~PGO_CLEANIT;
920 }
921
922 /*
923 * start the loop. when scanning by list, hold the last page
924 * in the list before we start. pages allocated after we start
925 * will be added to the end of the list, so we can stop at the
926 * current last page.
927 */
928
929 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
930 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
931 (vp->v_iflag & VI_ONWORKLST) != 0;
932 dirtygen = gp->g_dirtygen;
933 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
934 if (by_list) {
935 curmp.flags = PG_MARKER;
936 endmp.flags = PG_MARKER;
937 pg = TAILQ_FIRST(&uobj->memq);
938 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
939 } else {
940 pg = uvm_pagelookup(uobj, off);
941 }
942 nextpg = NULL;
943 while (by_list || off < endoff) {
944
945 /*
946 * if the current page is not interesting, move on to the next.
947 */
948
949 KASSERT(pg == NULL || pg->uobject == uobj ||
950 (pg->flags & PG_MARKER) != 0);
951 KASSERT(pg == NULL ||
952 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
953 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
954 if (by_list) {
955 if (pg == &endmp) {
956 break;
957 }
958 if (pg->flags & PG_MARKER) {
959 pg = TAILQ_NEXT(pg, listq.queue);
960 continue;
961 }
962 if (pg->offset < startoff || pg->offset >= endoff ||
963 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
964 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
965 wasclean = false;
966 }
967 pg = TAILQ_NEXT(pg, listq.queue);
968 continue;
969 }
970 off = pg->offset;
971 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
972 if (pg != NULL) {
973 wasclean = false;
974 }
975 off += PAGE_SIZE;
976 if (off < endoff) {
977 pg = uvm_pagelookup(uobj, off);
978 }
979 continue;
980 }
981
982 /*
983 * if the current page needs to be cleaned and it's busy,
984 * wait for it to become unbusy.
985 */
986
987 yld = (l->l_cpu->ci_schedstate.spc_flags &
988 SPCF_SHOULDYIELD) && !pagedaemon;
989 if (pg->flags & PG_BUSY || yld) {
990 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
991 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
992 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
993 error = EDEADLK;
994 if (busypg != NULL)
995 *busypg = pg;
996 break;
997 }
998 if (pagedaemon) {
999 /*
1000 * someone has taken the page while we
1001 * dropped the lock for fstrans_start.
1002 */
1003 break;
1004 }
1005 if (by_list) {
1006 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1007 UVMHIST_LOG(ubchist, "curmp next %p",
1008 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1009 }
1010 if (yld) {
1011 mutex_exit(slock);
1012 preempt();
1013 mutex_enter(slock);
1014 } else {
1015 pg->flags |= PG_WANTED;
1016 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1017 mutex_enter(slock);
1018 }
1019 if (by_list) {
1020 UVMHIST_LOG(ubchist, "after next %p",
1021 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1022 pg = TAILQ_NEXT(&curmp, listq.queue);
1023 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1024 } else {
1025 pg = uvm_pagelookup(uobj, off);
1026 }
1027 continue;
1028 }
1029
1030 /*
1031 * if we're freeing, remove all mappings of the page now.
1032 * if we're cleaning, check if the page is needs to be cleaned.
1033 */
1034
1035 if (flags & PGO_FREE) {
1036 pmap_page_protect(pg, VM_PROT_NONE);
1037 } else if (flags & PGO_CLEANIT) {
1038
1039 /*
1040 * if we still have some hope to pull this vnode off
1041 * from the syncer queue, write-protect the page.
1042 */
1043
1044 if (cleanall && wasclean &&
1045 gp->g_dirtygen == dirtygen) {
1046
1047 /*
1048 * uobj pages get wired only by uvm_fault
1049 * where uobj is locked.
1050 */
1051
1052 if (pg->wire_count == 0) {
1053 pmap_page_protect(pg,
1054 VM_PROT_READ|VM_PROT_EXECUTE);
1055 } else {
1056 cleanall = false;
1057 }
1058 }
1059 }
1060
1061 if (flags & PGO_CLEANIT) {
1062 needs_clean = pmap_clear_modify(pg) ||
1063 (pg->flags & PG_CLEAN) == 0;
1064 pg->flags |= PG_CLEAN;
1065 } else {
1066 needs_clean = false;
1067 }
1068
1069 /*
1070 * if we're cleaning, build a cluster.
1071 * the cluster will consist of pages which are currently dirty,
1072 * but they will be returned to us marked clean.
1073 * if not cleaning, just operate on the one page.
1074 */
1075
1076 if (needs_clean) {
1077 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1078 wasclean = false;
1079 memset(pgs, 0, sizeof(pgs));
1080 pg->flags |= PG_BUSY;
1081 UVM_PAGE_OWN(pg, "genfs_putpages");
1082
1083 /*
1084 * first look backward.
1085 */
1086
1087 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1088 nback = npages;
1089 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1090 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1091 if (nback) {
1092 memmove(&pgs[0], &pgs[npages - nback],
1093 nback * sizeof(pgs[0]));
1094 if (npages - nback < nback)
1095 memset(&pgs[nback], 0,
1096 (npages - nback) * sizeof(pgs[0]));
1097 else
1098 memset(&pgs[npages - nback], 0,
1099 nback * sizeof(pgs[0]));
1100 }
1101
1102 /*
1103 * then plug in our page of interest.
1104 */
1105
1106 pgs[nback] = pg;
1107
1108 /*
1109 * then look forward to fill in the remaining space in
1110 * the array of pages.
1111 */
1112
1113 npages = maxpages - nback - 1;
1114 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1115 &pgs[nback + 1],
1116 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1117 npages += nback + 1;
1118 } else {
1119 pgs[0] = pg;
1120 npages = 1;
1121 nback = 0;
1122 }
1123
1124 /*
1125 * apply FREE or DEACTIVATE options if requested.
1126 */
1127
1128 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1129 mutex_enter(&uvm_pageqlock);
1130 }
1131 for (i = 0; i < npages; i++) {
1132 tpg = pgs[i];
1133 KASSERT(tpg->uobject == uobj);
1134 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1135 pg = tpg;
1136 if (tpg->offset < startoff || tpg->offset >= endoff)
1137 continue;
1138 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1139 uvm_pagedeactivate(tpg);
1140 } else if (flags & PGO_FREE) {
1141 pmap_page_protect(tpg, VM_PROT_NONE);
1142 if (tpg->flags & PG_BUSY) {
1143 tpg->flags |= freeflag;
1144 if (pagedaemon) {
1145 uvm_pageout_start(1);
1146 uvm_pagedequeue(tpg);
1147 }
1148 } else {
1149
1150 /*
1151 * ``page is not busy''
1152 * implies that npages is 1
1153 * and needs_clean is false.
1154 */
1155
1156 nextpg = TAILQ_NEXT(tpg, listq.queue);
1157 uvm_pagefree(tpg);
1158 if (pagedaemon)
1159 uvmexp.pdfreed++;
1160 }
1161 }
1162 }
1163 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1164 mutex_exit(&uvm_pageqlock);
1165 }
1166 if (needs_clean) {
1167 modified = true;
1168
1169 /*
1170 * start the i/o. if we're traversing by list,
1171 * keep our place in the list with a marker page.
1172 */
1173
1174 if (by_list) {
1175 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1176 listq.queue);
1177 }
1178 mutex_exit(slock);
1179 error = GOP_WRITE(vp, pgs, npages, flags);
1180 mutex_enter(slock);
1181 if (by_list) {
1182 pg = TAILQ_NEXT(&curmp, listq.queue);
1183 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1184 }
1185 if (error) {
1186 break;
1187 }
1188 if (by_list) {
1189 continue;
1190 }
1191 }
1192
1193 /*
1194 * find the next page and continue if there was no error.
1195 */
1196
1197 if (by_list) {
1198 if (nextpg) {
1199 pg = nextpg;
1200 nextpg = NULL;
1201 } else {
1202 pg = TAILQ_NEXT(pg, listq.queue);
1203 }
1204 } else {
1205 off += (npages - nback) << PAGE_SHIFT;
1206 if (off < endoff) {
1207 pg = uvm_pagelookup(uobj, off);
1208 }
1209 }
1210 }
1211 if (by_list) {
1212 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1213 }
1214
1215 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1216 (vp->v_type != VBLK ||
1217 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1218 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1219 }
1220
1221 /*
1222 * if we're cleaning and there was nothing to clean,
1223 * take us off the syncer list. if we started any i/o
1224 * and we're doing sync i/o, wait for all writes to finish.
1225 */
1226
1227 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1228 (vp->v_iflag & VI_ONWORKLST) != 0) {
1229 #if defined(DEBUG)
1230 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1231 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1232 continue;
1233 }
1234 if ((pg->flags & PG_CLEAN) == 0) {
1235 printf("%s: %p: !CLEAN\n", __func__, pg);
1236 }
1237 if (pmap_is_modified(pg)) {
1238 printf("%s: %p: modified\n", __func__, pg);
1239 }
1240 }
1241 #endif /* defined(DEBUG) */
1242 vp->v_iflag &= ~VI_WRMAPDIRTY;
1243 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1244 vn_syncer_remove_from_worklist(vp);
1245 }
1246
1247 #if !defined(DEBUG)
1248 skip_scan:
1249 #endif /* !defined(DEBUG) */
1250
1251 /* Wait for output to complete. */
1252 if (!wasclean && !async && vp->v_numoutput != 0) {
1253 while (vp->v_numoutput != 0)
1254 cv_wait(&vp->v_cv, slock);
1255 }
1256 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1257 mutex_exit(slock);
1258
1259 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1260 /*
1261 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1262 * retrying is not a big deal because, in many cases,
1263 * uobj->uo_npages is already 0 here.
1264 */
1265 mutex_enter(slock);
1266 goto retry;
1267 }
1268
1269 if (has_trans) {
1270 if (need_wapbl)
1271 WAPBL_END(vp->v_mount);
1272 fstrans_done(vp->v_mount);
1273 }
1274
1275 return (error);
1276 }
1277
1278 int
1279 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1280 {
1281 off_t off;
1282 vaddr_t kva;
1283 size_t len;
1284 int error;
1285 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1286
1287 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1288 vp, pgs, npages, flags);
1289
1290 off = pgs[0]->offset;
1291 kva = uvm_pagermapin(pgs, npages,
1292 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1293 len = npages << PAGE_SHIFT;
1294
1295 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1296 uvm_aio_biodone);
1297
1298 return error;
1299 }
1300
1301 int
1302 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1303 {
1304 off_t off;
1305 vaddr_t kva;
1306 size_t len;
1307 int error;
1308 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1309
1310 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1311 vp, pgs, npages, flags);
1312
1313 off = pgs[0]->offset;
1314 kva = uvm_pagermapin(pgs, npages,
1315 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1316 len = npages << PAGE_SHIFT;
1317
1318 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1319 uvm_aio_biodone);
1320
1321 return error;
1322 }
1323
1324 /*
1325 * Backend routine for doing I/O to vnode pages. Pages are already locked
1326 * and mapped into kernel memory. Here we just look up the underlying
1327 * device block addresses and call the strategy routine.
1328 */
1329
1330 static int
1331 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1332 enum uio_rw rw, void (*iodone)(struct buf *))
1333 {
1334 int s, error;
1335 int fs_bshift, dev_bshift;
1336 off_t eof, offset, startoffset;
1337 size_t bytes, iobytes, skipbytes;
1338 struct buf *mbp, *bp;
1339 const bool async = (flags & PGO_SYNCIO) == 0;
1340 const bool lazy = (flags & PGO_LAZY) == 0;
1341 const bool iowrite = rw == UIO_WRITE;
1342 const int brw = iowrite ? B_WRITE : B_READ;
1343 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1344
1345 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1346 vp, kva, len, flags);
1347
1348 KASSERT(vp->v_size <= vp->v_writesize);
1349 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1350 if (vp->v_type != VBLK) {
1351 fs_bshift = vp->v_mount->mnt_fs_bshift;
1352 dev_bshift = vp->v_mount->mnt_dev_bshift;
1353 } else {
1354 fs_bshift = DEV_BSHIFT;
1355 dev_bshift = DEV_BSHIFT;
1356 }
1357 error = 0;
1358 startoffset = off;
1359 bytes = MIN(len, eof - startoffset);
1360 skipbytes = 0;
1361 KASSERT(bytes != 0);
1362
1363 if (iowrite) {
1364 mutex_enter(vp->v_interlock);
1365 vp->v_numoutput += 2;
1366 mutex_exit(vp->v_interlock);
1367 }
1368 mbp = getiobuf(vp, true);
1369 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1370 vp, mbp, vp->v_numoutput, bytes);
1371 mbp->b_bufsize = len;
1372 mbp->b_data = (void *)kva;
1373 mbp->b_resid = mbp->b_bcount = bytes;
1374 mbp->b_cflags = BC_BUSY | BC_AGE;
1375 if (async) {
1376 mbp->b_flags = brw | B_ASYNC;
1377 mbp->b_iodone = iodone;
1378 } else {
1379 mbp->b_flags = brw;
1380 mbp->b_iodone = NULL;
1381 }
1382 if (curlwp == uvm.pagedaemon_lwp)
1383 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1384 else if (async || lazy)
1385 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1386 else
1387 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1388
1389 bp = NULL;
1390 for (offset = startoffset;
1391 bytes > 0;
1392 offset += iobytes, bytes -= iobytes) {
1393 int run;
1394 daddr_t lbn, blkno;
1395 struct vnode *devvp;
1396
1397 /*
1398 * bmap the file to find out the blkno to read from and
1399 * how much we can read in one i/o. if bmap returns an error,
1400 * skip the rest of the top-level i/o.
1401 */
1402
1403 lbn = offset >> fs_bshift;
1404 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1405 if (error) {
1406 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1407 lbn,error,0,0);
1408 skipbytes += bytes;
1409 bytes = 0;
1410 goto loopdone;
1411 }
1412
1413 /*
1414 * see how many pages can be read with this i/o.
1415 * reduce the i/o size if necessary to avoid
1416 * overwriting pages with valid data.
1417 */
1418
1419 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1420 bytes);
1421
1422 /*
1423 * if this block isn't allocated, zero it instead of
1424 * reading it. unless we are going to allocate blocks,
1425 * mark the pages we zeroed PG_RDONLY.
1426 */
1427
1428 if (blkno == (daddr_t)-1) {
1429 if (!iowrite) {
1430 memset((char *)kva + (offset - startoffset), 0,
1431 iobytes);
1432 }
1433 skipbytes += iobytes;
1434 continue;
1435 }
1436
1437 /*
1438 * allocate a sub-buf for this piece of the i/o
1439 * (or just use mbp if there's only 1 piece),
1440 * and start it going.
1441 */
1442
1443 if (offset == startoffset && iobytes == bytes) {
1444 bp = mbp;
1445 } else {
1446 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1447 vp, bp, vp->v_numoutput, 0);
1448 bp = getiobuf(vp, true);
1449 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1450 }
1451 bp->b_lblkno = 0;
1452
1453 /* adjust physical blkno for partial blocks */
1454 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1455 dev_bshift);
1456
1457 UVMHIST_LOG(ubchist,
1458 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1459 bp, offset, bp->b_bcount, bp->b_blkno);
1460
1461 VOP_STRATEGY(devvp, bp);
1462 }
1463
1464 loopdone:
1465 if (skipbytes) {
1466 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1467 }
1468 nestiobuf_done(mbp, skipbytes, error);
1469 if (async) {
1470 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1471 return (0);
1472 }
1473 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1474 error = biowait(mbp);
1475 s = splbio();
1476 (*iodone)(mbp);
1477 splx(s);
1478 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1479 return (error);
1480 }
1481
1482 int
1483 genfs_compat_getpages(void *v)
1484 {
1485 struct vop_getpages_args /* {
1486 struct vnode *a_vp;
1487 voff_t a_offset;
1488 struct vm_page **a_m;
1489 int *a_count;
1490 int a_centeridx;
1491 vm_prot_t a_access_type;
1492 int a_advice;
1493 int a_flags;
1494 } */ *ap = v;
1495
1496 off_t origoffset;
1497 struct vnode *vp = ap->a_vp;
1498 struct uvm_object *uobj = &vp->v_uobj;
1499 struct vm_page *pg, **pgs;
1500 vaddr_t kva;
1501 int i, error, orignpages, npages;
1502 struct iovec iov;
1503 struct uio uio;
1504 kauth_cred_t cred = curlwp->l_cred;
1505 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1506
1507 error = 0;
1508 origoffset = ap->a_offset;
1509 orignpages = *ap->a_count;
1510 pgs = ap->a_m;
1511
1512 if (ap->a_flags & PGO_LOCKED) {
1513 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1514 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1515
1516 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1517 if (error == 0 && memwrite) {
1518 genfs_markdirty(vp);
1519 }
1520 return error;
1521 }
1522 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1523 mutex_exit(uobj->vmobjlock);
1524 return EINVAL;
1525 }
1526 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1527 mutex_exit(uobj->vmobjlock);
1528 return 0;
1529 }
1530 npages = orignpages;
1531 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1532 mutex_exit(uobj->vmobjlock);
1533 kva = uvm_pagermapin(pgs, npages,
1534 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1535 for (i = 0; i < npages; i++) {
1536 pg = pgs[i];
1537 if ((pg->flags & PG_FAKE) == 0) {
1538 continue;
1539 }
1540 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1541 iov.iov_len = PAGE_SIZE;
1542 uio.uio_iov = &iov;
1543 uio.uio_iovcnt = 1;
1544 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1545 uio.uio_rw = UIO_READ;
1546 uio.uio_resid = PAGE_SIZE;
1547 UIO_SETUP_SYSSPACE(&uio);
1548 /* XXX vn_lock */
1549 error = VOP_READ(vp, &uio, 0, cred);
1550 if (error) {
1551 break;
1552 }
1553 if (uio.uio_resid) {
1554 memset(iov.iov_base, 0, uio.uio_resid);
1555 }
1556 }
1557 uvm_pagermapout(kva, npages);
1558 mutex_enter(uobj->vmobjlock);
1559 mutex_enter(&uvm_pageqlock);
1560 for (i = 0; i < npages; i++) {
1561 pg = pgs[i];
1562 if (error && (pg->flags & PG_FAKE) != 0) {
1563 pg->flags |= PG_RELEASED;
1564 } else {
1565 pmap_clear_modify(pg);
1566 uvm_pageactivate(pg);
1567 }
1568 }
1569 if (error) {
1570 uvm_page_unbusy(pgs, npages);
1571 }
1572 mutex_exit(&uvm_pageqlock);
1573 if (error == 0 && memwrite) {
1574 genfs_markdirty(vp);
1575 }
1576 mutex_exit(uobj->vmobjlock);
1577 return error;
1578 }
1579
1580 int
1581 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1582 int flags)
1583 {
1584 off_t offset;
1585 struct iovec iov;
1586 struct uio uio;
1587 kauth_cred_t cred = curlwp->l_cred;
1588 struct buf *bp;
1589 vaddr_t kva;
1590 int error;
1591
1592 offset = pgs[0]->offset;
1593 kva = uvm_pagermapin(pgs, npages,
1594 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1595
1596 iov.iov_base = (void *)kva;
1597 iov.iov_len = npages << PAGE_SHIFT;
1598 uio.uio_iov = &iov;
1599 uio.uio_iovcnt = 1;
1600 uio.uio_offset = offset;
1601 uio.uio_rw = UIO_WRITE;
1602 uio.uio_resid = npages << PAGE_SHIFT;
1603 UIO_SETUP_SYSSPACE(&uio);
1604 /* XXX vn_lock */
1605 error = VOP_WRITE(vp, &uio, 0, cred);
1606
1607 mutex_enter(vp->v_interlock);
1608 vp->v_numoutput++;
1609 mutex_exit(vp->v_interlock);
1610
1611 bp = getiobuf(vp, true);
1612 bp->b_cflags = BC_BUSY | BC_AGE;
1613 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1614 bp->b_data = (char *)kva;
1615 bp->b_bcount = npages << PAGE_SHIFT;
1616 bp->b_bufsize = npages << PAGE_SHIFT;
1617 bp->b_resid = 0;
1618 bp->b_error = error;
1619 uvm_aio_aiodone(bp);
1620 return (error);
1621 }
1622
1623 /*
1624 * Process a uio using direct I/O. If we reach a part of the request
1625 * which cannot be processed in this fashion for some reason, just return.
1626 * The caller must handle some additional part of the request using
1627 * buffered I/O before trying direct I/O again.
1628 */
1629
1630 void
1631 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1632 {
1633 struct vmspace *vs;
1634 struct iovec *iov;
1635 vaddr_t va;
1636 size_t len;
1637 const int mask = DEV_BSIZE - 1;
1638 int error;
1639 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1640 (ioflag & IO_JOURNALLOCKED) == 0);
1641
1642 /*
1643 * We only support direct I/O to user space for now.
1644 */
1645
1646 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1647 return;
1648 }
1649
1650 /*
1651 * If the vnode is mapped, we would need to get the getpages lock
1652 * to stabilize the bmap, but then we would get into trouble while
1653 * locking the pages if the pages belong to this same vnode (or a
1654 * multi-vnode cascade to the same effect). Just fall back to
1655 * buffered I/O if the vnode is mapped to avoid this mess.
1656 */
1657
1658 if (vp->v_vflag & VV_MAPPED) {
1659 return;
1660 }
1661
1662 if (need_wapbl) {
1663 error = WAPBL_BEGIN(vp->v_mount);
1664 if (error)
1665 return;
1666 }
1667
1668 /*
1669 * Do as much of the uio as possible with direct I/O.
1670 */
1671
1672 vs = uio->uio_vmspace;
1673 while (uio->uio_resid) {
1674 iov = uio->uio_iov;
1675 if (iov->iov_len == 0) {
1676 uio->uio_iov++;
1677 uio->uio_iovcnt--;
1678 continue;
1679 }
1680 va = (vaddr_t)iov->iov_base;
1681 len = MIN(iov->iov_len, genfs_maxdio);
1682 len &= ~mask;
1683
1684 /*
1685 * If the next chunk is smaller than DEV_BSIZE or extends past
1686 * the current EOF, then fall back to buffered I/O.
1687 */
1688
1689 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1690 break;
1691 }
1692
1693 /*
1694 * Check alignment. The file offset must be at least
1695 * sector-aligned. The exact constraint on memory alignment
1696 * is very hardware-dependent, but requiring sector-aligned
1697 * addresses there too is safe.
1698 */
1699
1700 if (uio->uio_offset & mask || va & mask) {
1701 break;
1702 }
1703 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1704 uio->uio_rw);
1705 if (error) {
1706 break;
1707 }
1708 iov->iov_base = (char *)iov->iov_base + len;
1709 iov->iov_len -= len;
1710 uio->uio_offset += len;
1711 uio->uio_resid -= len;
1712 }
1713
1714 if (need_wapbl)
1715 WAPBL_END(vp->v_mount);
1716 }
1717
1718 /*
1719 * Iodone routine for direct I/O. We don't do much here since the request is
1720 * always synchronous, so the caller will do most of the work after biowait().
1721 */
1722
1723 static void
1724 genfs_dio_iodone(struct buf *bp)
1725 {
1726
1727 KASSERT((bp->b_flags & B_ASYNC) == 0);
1728 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1729 mutex_enter(bp->b_objlock);
1730 vwakeup(bp);
1731 mutex_exit(bp->b_objlock);
1732 }
1733 putiobuf(bp);
1734 }
1735
1736 /*
1737 * Process one chunk of a direct I/O request.
1738 */
1739
1740 static int
1741 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1742 off_t off, enum uio_rw rw)
1743 {
1744 struct vm_map *map;
1745 struct pmap *upm, *kpm __unused;
1746 size_t klen = round_page(uva + len) - trunc_page(uva);
1747 off_t spoff, epoff;
1748 vaddr_t kva, puva;
1749 paddr_t pa;
1750 vm_prot_t prot;
1751 int error, rv __diagused, poff, koff;
1752 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1753 (rw == UIO_WRITE ? PGO_FREE : 0);
1754
1755 /*
1756 * For writes, verify that this range of the file already has fully
1757 * allocated backing store. If there are any holes, just punt and
1758 * make the caller take the buffered write path.
1759 */
1760
1761 if (rw == UIO_WRITE) {
1762 daddr_t lbn, elbn, blkno;
1763 int bsize, bshift, run;
1764
1765 bshift = vp->v_mount->mnt_fs_bshift;
1766 bsize = 1 << bshift;
1767 lbn = off >> bshift;
1768 elbn = (off + len + bsize - 1) >> bshift;
1769 while (lbn < elbn) {
1770 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1771 if (error) {
1772 return error;
1773 }
1774 if (blkno == (daddr_t)-1) {
1775 return ENOSPC;
1776 }
1777 lbn += 1 + run;
1778 }
1779 }
1780
1781 /*
1782 * Flush any cached pages for parts of the file that we're about to
1783 * access. If we're writing, invalidate pages as well.
1784 */
1785
1786 spoff = trunc_page(off);
1787 epoff = round_page(off + len);
1788 mutex_enter(vp->v_interlock);
1789 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1790 if (error) {
1791 return error;
1792 }
1793
1794 /*
1795 * Wire the user pages and remap them into kernel memory.
1796 */
1797
1798 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1799 error = uvm_vslock(vs, (void *)uva, len, prot);
1800 if (error) {
1801 return error;
1802 }
1803
1804 map = &vs->vm_map;
1805 upm = vm_map_pmap(map);
1806 kpm = vm_map_pmap(kernel_map);
1807 puva = trunc_page(uva);
1808 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1809 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1810 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1811 rv = pmap_extract(upm, puva + poff, &pa);
1812 KASSERT(rv);
1813 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1814 }
1815 pmap_update(kpm);
1816
1817 /*
1818 * Do the I/O.
1819 */
1820
1821 koff = uva - trunc_page(uva);
1822 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1823 genfs_dio_iodone);
1824
1825 /*
1826 * Tear down the kernel mapping.
1827 */
1828
1829 pmap_kremove(kva, klen);
1830 pmap_update(kpm);
1831 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1832
1833 /*
1834 * Unwire the user pages.
1835 */
1836
1837 uvm_vsunlock(vs, (void *)uva, len);
1838 return error;
1839 }
1840