Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.59
      1 /*	$NetBSD: genfs_io.c,v 1.59 2015/04/10 13:02:15 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.59 2015/04/10 13:02:15 riastradh Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 
     47 #include <miscfs/genfs/genfs.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <miscfs/specfs/specdev.h>
     50 #include <miscfs/syncfs/syncfs.h>
     51 
     52 #include <uvm/uvm.h>
     53 #include <uvm/uvm_pager.h>
     54 
     55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     56     off_t, enum uio_rw);
     57 static void genfs_dio_iodone(struct buf *);
     58 
     59 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
     60     off_t, bool, bool, bool, bool);
     61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     62     void (*)(struct buf *));
     63 static void genfs_rel_pages(struct vm_page **, unsigned int);
     64 static void genfs_markdirty(struct vnode *);
     65 
     66 int genfs_maxdio = MAXPHYS;
     67 
     68 static void
     69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     70 {
     71 	unsigned int i;
     72 
     73 	for (i = 0; i < npages; i++) {
     74 		struct vm_page *pg = pgs[i];
     75 
     76 		if (pg == NULL || pg == PGO_DONTCARE)
     77 			continue;
     78 		KASSERT(uvm_page_locked_p(pg));
     79 		if (pg->flags & PG_FAKE) {
     80 			pg->flags |= PG_RELEASED;
     81 		}
     82 	}
     83 	mutex_enter(&uvm_pageqlock);
     84 	uvm_page_unbusy(pgs, npages);
     85 	mutex_exit(&uvm_pageqlock);
     86 }
     87 
     88 static void
     89 genfs_markdirty(struct vnode *vp)
     90 {
     91 	struct genfs_node * const gp = VTOG(vp);
     92 
     93 	KASSERT(mutex_owned(vp->v_interlock));
     94 	gp->g_dirtygen++;
     95 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     96 		vn_syncer_add_to_worklist(vp, filedelay);
     97 	}
     98 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
     99 		vp->v_iflag |= VI_WRMAPDIRTY;
    100 	}
    101 }
    102 
    103 /*
    104  * generic VM getpages routine.
    105  * Return PG_BUSY pages for the given range,
    106  * reading from backing store if necessary.
    107  */
    108 
    109 int
    110 genfs_getpages(void *v)
    111 {
    112 	struct vop_getpages_args /* {
    113 		struct vnode *a_vp;
    114 		voff_t a_offset;
    115 		struct vm_page **a_m;
    116 		int *a_count;
    117 		int a_centeridx;
    118 		vm_prot_t a_access_type;
    119 		int a_advice;
    120 		int a_flags;
    121 	} */ * const ap = v;
    122 
    123 	off_t diskeof, memeof;
    124 	int i, error, npages;
    125 	const int flags = ap->a_flags;
    126 	struct vnode * const vp = ap->a_vp;
    127 	struct uvm_object * const uobj = &vp->v_uobj;
    128 	const bool async = (flags & PGO_SYNCIO) == 0;
    129 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    130 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    131 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    132 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    133 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
    134 	bool has_trans_wapbl = false;
    135 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    136 
    137 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    138 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    139 
    140 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    141 	    vp->v_type == VLNK || vp->v_type == VBLK);
    142 
    143 startover:
    144 	error = 0;
    145 	const voff_t origvsize = vp->v_size;
    146 	const off_t origoffset = ap->a_offset;
    147 	const int orignpages = *ap->a_count;
    148 
    149 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    150 	if (flags & PGO_PASTEOF) {
    151 		off_t newsize;
    152 #if defined(DIAGNOSTIC)
    153 		off_t writeeof;
    154 #endif /* defined(DIAGNOSTIC) */
    155 
    156 		newsize = MAX(origvsize,
    157 		    origoffset + (orignpages << PAGE_SHIFT));
    158 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    159 #if defined(DIAGNOSTIC)
    160 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    161 		if (newsize > round_page(writeeof)) {
    162 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    163 			    __func__, newsize, round_page(writeeof));
    164 		}
    165 #endif /* defined(DIAGNOSTIC) */
    166 	} else {
    167 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    168 	}
    169 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    170 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    171 	KASSERT(orignpages > 0);
    172 
    173 	/*
    174 	 * Bounds-check the request.
    175 	 */
    176 
    177 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    178 		if ((flags & PGO_LOCKED) == 0) {
    179 			mutex_exit(uobj->vmobjlock);
    180 		}
    181 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    182 		    origoffset, *ap->a_count, memeof,0);
    183 		error = EINVAL;
    184 		goto out_err;
    185 	}
    186 
    187 	/* uobj is locked */
    188 
    189 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    190 	    (vp->v_type != VBLK ||
    191 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    192 		int updflags = 0;
    193 
    194 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    195 			updflags = GOP_UPDATE_ACCESSED;
    196 		}
    197 		if (memwrite) {
    198 			updflags |= GOP_UPDATE_MODIFIED;
    199 		}
    200 		if (updflags != 0) {
    201 			GOP_MARKUPDATE(vp, updflags);
    202 		}
    203 	}
    204 
    205 	/*
    206 	 * For PGO_LOCKED requests, just return whatever's in memory.
    207 	 */
    208 
    209 	if (flags & PGO_LOCKED) {
    210 		int nfound;
    211 		struct vm_page *pg;
    212 
    213 		KASSERT(!glocked);
    214 		npages = *ap->a_count;
    215 #if defined(DEBUG)
    216 		for (i = 0; i < npages; i++) {
    217 			pg = ap->a_m[i];
    218 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    219 		}
    220 #endif /* defined(DEBUG) */
    221 		nfound = uvn_findpages(uobj, origoffset, &npages,
    222 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    223 		KASSERT(npages == *ap->a_count);
    224 		if (nfound == 0) {
    225 			error = EBUSY;
    226 			goto out_err;
    227 		}
    228 		if (!genfs_node_rdtrylock(vp)) {
    229 			genfs_rel_pages(ap->a_m, npages);
    230 
    231 			/*
    232 			 * restore the array.
    233 			 */
    234 
    235 			for (i = 0; i < npages; i++) {
    236 				pg = ap->a_m[i];
    237 
    238 				if (pg != NULL && pg != PGO_DONTCARE) {
    239 					ap->a_m[i] = NULL;
    240 				}
    241 				KASSERT(ap->a_m[i] == NULL ||
    242 				    ap->a_m[i] == PGO_DONTCARE);
    243 			}
    244 		} else {
    245 			genfs_node_unlock(vp);
    246 		}
    247 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    248 		if (error == 0 && memwrite) {
    249 			genfs_markdirty(vp);
    250 		}
    251 		goto out_err;
    252 	}
    253 	mutex_exit(uobj->vmobjlock);
    254 
    255 	/*
    256 	 * find the requested pages and make some simple checks.
    257 	 * leave space in the page array for a whole block.
    258 	 */
    259 
    260 	const int fs_bshift = (vp->v_type != VBLK) ?
    261 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    262 	const int fs_bsize = 1 << fs_bshift;
    263 #define	blk_mask	(fs_bsize - 1)
    264 #define	trunc_blk(x)	((x) & ~blk_mask)
    265 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    266 
    267 	const int orignmempages = MIN(orignpages,
    268 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    269 	npages = orignmempages;
    270 	const off_t startoffset = trunc_blk(origoffset);
    271 	const off_t endoffset = MIN(
    272 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    273 	    round_page(memeof));
    274 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    275 
    276 	const int pgs_size = sizeof(struct vm_page *) *
    277 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    278 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    279 
    280 	if (pgs_size > sizeof(pgs_onstack)) {
    281 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    282 		if (pgs == NULL) {
    283 			pgs = pgs_onstack;
    284 			error = ENOMEM;
    285 			goto out_err;
    286 		}
    287 	} else {
    288 		pgs = pgs_onstack;
    289 		(void)memset(pgs, 0, pgs_size);
    290 	}
    291 
    292 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    293 	    ridx, npages, startoffset, endoffset);
    294 
    295 	if (!has_trans_wapbl) {
    296 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    297 		/*
    298 		 * XXX: This assumes that we come here only via
    299 		 * the mmio path
    300 		 */
    301 		if (need_wapbl) {
    302 			error = WAPBL_BEGIN(vp->v_mount);
    303 			if (error) {
    304 				fstrans_done(vp->v_mount);
    305 				goto out_err_free;
    306 			}
    307 		}
    308 		has_trans_wapbl = true;
    309 	}
    310 
    311 	/*
    312 	 * hold g_glock to prevent a race with truncate.
    313 	 *
    314 	 * check if our idea of v_size is still valid.
    315 	 */
    316 
    317 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    318 	if (!glocked) {
    319 		if (blockalloc) {
    320 			genfs_node_wrlock(vp);
    321 		} else {
    322 			genfs_node_rdlock(vp);
    323 		}
    324 	}
    325 	mutex_enter(uobj->vmobjlock);
    326 	if (vp->v_size < origvsize) {
    327 		if (!glocked) {
    328 			genfs_node_unlock(vp);
    329 		}
    330 		if (pgs != pgs_onstack)
    331 			kmem_free(pgs, pgs_size);
    332 		goto startover;
    333 	}
    334 
    335 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    336 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    337 		if (!glocked) {
    338 			genfs_node_unlock(vp);
    339 		}
    340 		KASSERT(async != 0);
    341 		genfs_rel_pages(&pgs[ridx], orignmempages);
    342 		mutex_exit(uobj->vmobjlock);
    343 		error = EBUSY;
    344 		goto out_err_free;
    345 	}
    346 
    347 	/*
    348 	 * if the pages are already resident, just return them.
    349 	 */
    350 
    351 	for (i = 0; i < npages; i++) {
    352 		struct vm_page *pg = pgs[ridx + i];
    353 
    354 		if ((pg->flags & PG_FAKE) ||
    355 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    356 			break;
    357 		}
    358 	}
    359 	if (i == npages) {
    360 		if (!glocked) {
    361 			genfs_node_unlock(vp);
    362 		}
    363 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    364 		npages += ridx;
    365 		goto out;
    366 	}
    367 
    368 	/*
    369 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    370 	 */
    371 
    372 	if (overwrite) {
    373 		if (!glocked) {
    374 			genfs_node_unlock(vp);
    375 		}
    376 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    377 
    378 		for (i = 0; i < npages; i++) {
    379 			struct vm_page *pg = pgs[ridx + i];
    380 
    381 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    382 		}
    383 		npages += ridx;
    384 		goto out;
    385 	}
    386 
    387 	/*
    388 	 * the page wasn't resident and we're not overwriting,
    389 	 * so we're going to have to do some i/o.
    390 	 * find any additional pages needed to cover the expanded range.
    391 	 */
    392 
    393 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    394 	if (startoffset != origoffset || npages != orignmempages) {
    395 		int npgs;
    396 
    397 		/*
    398 		 * we need to avoid deadlocks caused by locking
    399 		 * additional pages at lower offsets than pages we
    400 		 * already have locked.  unlock them all and start over.
    401 		 */
    402 
    403 		genfs_rel_pages(&pgs[ridx], orignmempages);
    404 		memset(pgs, 0, pgs_size);
    405 
    406 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    407 		    startoffset, endoffset, 0,0);
    408 		npgs = npages;
    409 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    410 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    411 			if (!glocked) {
    412 				genfs_node_unlock(vp);
    413 			}
    414 			KASSERT(async != 0);
    415 			genfs_rel_pages(pgs, npages);
    416 			mutex_exit(uobj->vmobjlock);
    417 			error = EBUSY;
    418 			goto out_err_free;
    419 		}
    420 	}
    421 
    422 	mutex_exit(uobj->vmobjlock);
    423 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
    424 	    async, memwrite, blockalloc, glocked);
    425 	if (error == 0 && async)
    426 		goto out_err_free;
    427 	if (!glocked) {
    428 		genfs_node_unlock(vp);
    429 	}
    430 	mutex_enter(uobj->vmobjlock);
    431 
    432 	/*
    433 	 * we're almost done!  release the pages...
    434 	 * for errors, we free the pages.
    435 	 * otherwise we activate them and mark them as valid and clean.
    436 	 * also, unbusy pages that were not actually requested.
    437 	 */
    438 
    439 	if (error) {
    440 		genfs_rel_pages(pgs, npages);
    441 		mutex_exit(uobj->vmobjlock);
    442 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    443 		goto out_err_free;
    444 	}
    445 
    446 out:
    447 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    448 	error = 0;
    449 	mutex_enter(&uvm_pageqlock);
    450 	for (i = 0; i < npages; i++) {
    451 		struct vm_page *pg = pgs[i];
    452 		if (pg == NULL) {
    453 			continue;
    454 		}
    455 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    456 		    pg, pg->flags, 0,0);
    457 		if (pg->flags & PG_FAKE && !overwrite) {
    458 			pg->flags &= ~(PG_FAKE);
    459 			pmap_clear_modify(pgs[i]);
    460 		}
    461 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    462 		if (i < ridx || i >= ridx + orignmempages || async) {
    463 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    464 			    pg, pg->offset,0,0);
    465 			if (pg->flags & PG_WANTED) {
    466 				wakeup(pg);
    467 			}
    468 			if (pg->flags & PG_FAKE) {
    469 				KASSERT(overwrite);
    470 				uvm_pagezero(pg);
    471 			}
    472 			if (pg->flags & PG_RELEASED) {
    473 				uvm_pagefree(pg);
    474 				continue;
    475 			}
    476 			uvm_pageenqueue(pg);
    477 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    478 			UVM_PAGE_OWN(pg, NULL);
    479 		}
    480 	}
    481 	mutex_exit(&uvm_pageqlock);
    482 	if (memwrite) {
    483 		genfs_markdirty(vp);
    484 	}
    485 	mutex_exit(uobj->vmobjlock);
    486 	if (ap->a_m != NULL) {
    487 		memcpy(ap->a_m, &pgs[ridx],
    488 		    orignmempages * sizeof(struct vm_page *));
    489 	}
    490 
    491 out_err_free:
    492 	if (pgs != NULL && pgs != pgs_onstack)
    493 		kmem_free(pgs, pgs_size);
    494 out_err:
    495 	if (has_trans_wapbl) {
    496 		if (need_wapbl)
    497 			WAPBL_END(vp->v_mount);
    498 		fstrans_done(vp->v_mount);
    499 	}
    500 	return error;
    501 }
    502 
    503 /*
    504  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
    505  */
    506 static int
    507 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
    508     off_t startoffset, off_t diskeof,
    509     bool async, bool memwrite, bool blockalloc, bool glocked)
    510 {
    511 	struct uvm_object * const uobj = &vp->v_uobj;
    512 	const int fs_bshift = (vp->v_type != VBLK) ?
    513 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    514 	const int dev_bshift = (vp->v_type != VBLK) ?
    515 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    516 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    517 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    518 	vaddr_t kva;
    519 	struct buf *bp, *mbp;
    520 	bool sawhole = false;
    521 	int i;
    522 	int error = 0;
    523 
    524 	/*
    525 	 * read the desired page(s).
    526 	 */
    527 
    528 	totalbytes = npages << PAGE_SHIFT;
    529 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    530 	tailbytes = totalbytes - bytes;
    531 	skipbytes = 0;
    532 
    533 	kva = uvm_pagermapin(pgs, npages,
    534 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    535 	if (kva == 0)
    536 		return EBUSY;
    537 
    538 	mbp = getiobuf(vp, true);
    539 	mbp->b_bufsize = totalbytes;
    540 	mbp->b_data = (void *)kva;
    541 	mbp->b_resid = mbp->b_bcount = bytes;
    542 	mbp->b_cflags = BC_BUSY;
    543 	if (async) {
    544 		mbp->b_flags = B_READ | B_ASYNC;
    545 		mbp->b_iodone = uvm_aio_biodone;
    546 	} else {
    547 		mbp->b_flags = B_READ;
    548 		mbp->b_iodone = NULL;
    549 	}
    550 	if (async)
    551 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    552 	else
    553 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    554 
    555 	/*
    556 	 * if EOF is in the middle of the range, zero the part past EOF.
    557 	 * skip over pages which are not PG_FAKE since in that case they have
    558 	 * valid data that we need to preserve.
    559 	 */
    560 
    561 	tailstart = bytes;
    562 	while (tailbytes > 0) {
    563 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    564 
    565 		KASSERT(len <= tailbytes);
    566 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    567 			memset((void *)(kva + tailstart), 0, len);
    568 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    569 			    kva, tailstart, len, 0);
    570 		}
    571 		tailstart += len;
    572 		tailbytes -= len;
    573 	}
    574 
    575 	/*
    576 	 * now loop over the pages, reading as needed.
    577 	 */
    578 
    579 	bp = NULL;
    580 	off_t offset;
    581 	for (offset = startoffset;
    582 	    bytes > 0;
    583 	    offset += iobytes, bytes -= iobytes) {
    584 		int run;
    585 		daddr_t lbn, blkno;
    586 		int pidx;
    587 		struct vnode *devvp;
    588 
    589 		/*
    590 		 * skip pages which don't need to be read.
    591 		 */
    592 
    593 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    594 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    595 			size_t b;
    596 
    597 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    598 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    599 				sawhole = true;
    600 			}
    601 			b = MIN(PAGE_SIZE, bytes);
    602 			offset += b;
    603 			bytes -= b;
    604 			skipbytes += b;
    605 			pidx++;
    606 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    607 			    offset, 0,0,0);
    608 			if (bytes == 0) {
    609 				goto loopdone;
    610 			}
    611 		}
    612 
    613 		/*
    614 		 * bmap the file to find out the blkno to read from and
    615 		 * how much we can read in one i/o.  if bmap returns an error,
    616 		 * skip the rest of the top-level i/o.
    617 		 */
    618 
    619 		lbn = offset >> fs_bshift;
    620 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    621 		if (error) {
    622 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    623 			    lbn,error,0,0);
    624 			skipbytes += bytes;
    625 			bytes = 0;
    626 			goto loopdone;
    627 		}
    628 
    629 		/*
    630 		 * see how many pages can be read with this i/o.
    631 		 * reduce the i/o size if necessary to avoid
    632 		 * overwriting pages with valid data.
    633 		 */
    634 
    635 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    636 		    bytes);
    637 		if (offset + iobytes > round_page(offset)) {
    638 			int pcount;
    639 
    640 			pcount = 1;
    641 			while (pidx + pcount < npages &&
    642 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    643 				pcount++;
    644 			}
    645 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    646 			    (offset - trunc_page(offset)));
    647 		}
    648 
    649 		/*
    650 		 * if this block isn't allocated, zero it instead of
    651 		 * reading it.  unless we are going to allocate blocks,
    652 		 * mark the pages we zeroed PG_RDONLY.
    653 		 */
    654 
    655 		if (blkno == (daddr_t)-1) {
    656 			int holepages = (round_page(offset + iobytes) -
    657 			    trunc_page(offset)) >> PAGE_SHIFT;
    658 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    659 
    660 			sawhole = true;
    661 			memset((char *)kva + (offset - startoffset), 0,
    662 			    iobytes);
    663 			skipbytes += iobytes;
    664 
    665 			mutex_enter(uobj->vmobjlock);
    666 			for (i = 0; i < holepages; i++) {
    667 				if (memwrite) {
    668 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    669 				}
    670 				if (!blockalloc) {
    671 					pgs[pidx + i]->flags |= PG_RDONLY;
    672 				}
    673 			}
    674 			mutex_exit(uobj->vmobjlock);
    675 			continue;
    676 		}
    677 
    678 		/*
    679 		 * allocate a sub-buf for this piece of the i/o
    680 		 * (or just use mbp if there's only 1 piece),
    681 		 * and start it going.
    682 		 */
    683 
    684 		if (offset == startoffset && iobytes == bytes) {
    685 			bp = mbp;
    686 		} else {
    687 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    688 			    vp, bp, vp->v_numoutput, 0);
    689 			bp = getiobuf(vp, true);
    690 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    691 		}
    692 		bp->b_lblkno = 0;
    693 
    694 		/* adjust physical blkno for partial blocks */
    695 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    696 		    dev_bshift);
    697 
    698 		UVMHIST_LOG(ubchist,
    699 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    700 		    bp, offset, bp->b_bcount, bp->b_blkno);
    701 
    702 		VOP_STRATEGY(devvp, bp);
    703 	}
    704 
    705 loopdone:
    706 	nestiobuf_done(mbp, skipbytes, error);
    707 	if (async) {
    708 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    709 		if (!glocked) {
    710 			genfs_node_unlock(vp);
    711 		}
    712 		return 0;
    713 	}
    714 	if (bp != NULL) {
    715 		error = biowait(mbp);
    716 	}
    717 
    718 	/* Remove the mapping (make KVA available as soon as possible) */
    719 	uvm_pagermapout(kva, npages);
    720 
    721 	/*
    722 	 * if this we encountered a hole then we have to do a little more work.
    723 	 * for read faults, we marked the page PG_RDONLY so that future
    724 	 * write accesses to the page will fault again.
    725 	 * for write faults, we must make sure that the backing store for
    726 	 * the page is completely allocated while the pages are locked.
    727 	 */
    728 
    729 	if (!error && sawhole && blockalloc) {
    730 		error = GOP_ALLOC(vp, startoffset,
    731 		    npages << PAGE_SHIFT, 0, cred);
    732 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    733 		    startoffset, npages << PAGE_SHIFT, error,0);
    734 		if (!error) {
    735 			mutex_enter(uobj->vmobjlock);
    736 			for (i = 0; i < npages; i++) {
    737 				struct vm_page *pg = pgs[i];
    738 
    739 				if (pg == NULL) {
    740 					continue;
    741 				}
    742 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    743 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    744 				    pg,0,0,0);
    745 			}
    746 			mutex_exit(uobj->vmobjlock);
    747 		}
    748 	}
    749 
    750 	putiobuf(mbp);
    751 	return error;
    752 }
    753 
    754 /*
    755  * generic VM putpages routine.
    756  * Write the given range of pages to backing store.
    757  *
    758  * => "offhi == 0" means flush all pages at or after "offlo".
    759  * => object should be locked by caller.  we return with the
    760  *      object unlocked.
    761  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    762  *	thus, a caller might want to unlock higher level resources
    763  *	(e.g. vm_map) before calling flush.
    764  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    765  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    766  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    767  *	that new pages are inserted on the tail end of the list.   thus,
    768  *	we can make a complete pass through the object in one go by starting
    769  *	at the head and working towards the tail (new pages are put in
    770  *	front of us).
    771  * => NOTE: we are allowed to lock the page queues, so the caller
    772  *	must not be holding the page queue lock.
    773  *
    774  * note on "cleaning" object and PG_BUSY pages:
    775  *	this routine is holding the lock on the object.   the only time
    776  *	that it can run into a PG_BUSY page that it does not own is if
    777  *	some other process has started I/O on the page (e.g. either
    778  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    779  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    780  *	had a chance to modify it yet.    if the PG_BUSY page is being
    781  *	paged out then it means that someone else has already started
    782  *	cleaning the page for us (how nice!).    in this case, if we
    783  *	have syncio specified, then after we make our pass through the
    784  *	object we need to wait for the other PG_BUSY pages to clear
    785  *	off (i.e. we need to do an iosync).   also note that once a
    786  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    787  *
    788  * note on page traversal:
    789  *	we can traverse the pages in an object either by going down the
    790  *	linked list in "uobj->memq", or we can go over the address range
    791  *	by page doing hash table lookups for each address.    depending
    792  *	on how many pages are in the object it may be cheaper to do one
    793  *	or the other.   we set "by_list" to true if we are using memq.
    794  *	if the cost of a hash lookup was equal to the cost of the list
    795  *	traversal we could compare the number of pages in the start->stop
    796  *	range to the total number of pages in the object.   however, it
    797  *	seems that a hash table lookup is more expensive than the linked
    798  *	list traversal, so we multiply the number of pages in the
    799  *	range by an estimate of the relatively higher cost of the hash lookup.
    800  */
    801 
    802 int
    803 genfs_putpages(void *v)
    804 {
    805 	struct vop_putpages_args /* {
    806 		struct vnode *a_vp;
    807 		voff_t a_offlo;
    808 		voff_t a_offhi;
    809 		int a_flags;
    810 	} */ * const ap = v;
    811 
    812 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    813 	    ap->a_flags, NULL);
    814 }
    815 
    816 int
    817 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    818     int origflags, struct vm_page **busypg)
    819 {
    820 	struct uvm_object * const uobj = &vp->v_uobj;
    821 	kmutex_t * const slock = uobj->vmobjlock;
    822 	off_t off;
    823 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    824 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    825 	int i, error, npages, nback;
    826 	int freeflag;
    827 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    828 	bool wasclean, by_list, needs_clean, yld;
    829 	bool async = (origflags & PGO_SYNCIO) == 0;
    830 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    831 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    832 	struct genfs_node * const gp = VTOG(vp);
    833 	int flags;
    834 	int dirtygen;
    835 	bool modified;
    836 	bool need_wapbl;
    837 	bool has_trans;
    838 	bool cleanall;
    839 	bool onworklst;
    840 
    841 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    842 
    843 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    844 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    845 	KASSERT(startoff < endoff || endoff == 0);
    846 
    847 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    848 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    849 
    850 	has_trans = false;
    851 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    852 	    (origflags & PGO_JOURNALLOCKED) == 0);
    853 
    854 retry:
    855 	modified = false;
    856 	flags = origflags;
    857 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    858 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    859 	if (uobj->uo_npages == 0) {
    860 		if (vp->v_iflag & VI_ONWORKLST) {
    861 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    862 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    863 				vn_syncer_remove_from_worklist(vp);
    864 		}
    865 		if (has_trans) {
    866 			if (need_wapbl)
    867 				WAPBL_END(vp->v_mount);
    868 			fstrans_done(vp->v_mount);
    869 		}
    870 		mutex_exit(slock);
    871 		return (0);
    872 	}
    873 
    874 	/*
    875 	 * the vnode has pages, set up to process the request.
    876 	 */
    877 
    878 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    879 		mutex_exit(slock);
    880 		if (pagedaemon) {
    881 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    882 			if (error)
    883 				return error;
    884 		} else
    885 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    886 		if (need_wapbl) {
    887 			error = WAPBL_BEGIN(vp->v_mount);
    888 			if (error) {
    889 				fstrans_done(vp->v_mount);
    890 				return error;
    891 			}
    892 		}
    893 		has_trans = true;
    894 		mutex_enter(slock);
    895 		goto retry;
    896 	}
    897 
    898 	error = 0;
    899 	wasclean = (vp->v_numoutput == 0);
    900 	off = startoff;
    901 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    902 		endoff = trunc_page(LLONG_MAX);
    903 	}
    904 	by_list = (uobj->uo_npages <=
    905 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    906 
    907 	/*
    908 	 * if this vnode is known not to have dirty pages,
    909 	 * don't bother to clean it out.
    910 	 */
    911 
    912 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    913 #if !defined(DEBUG)
    914 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    915 			goto skip_scan;
    916 		}
    917 #endif /* !defined(DEBUG) */
    918 		flags &= ~PGO_CLEANIT;
    919 	}
    920 
    921 	/*
    922 	 * start the loop.  when scanning by list, hold the last page
    923 	 * in the list before we start.  pages allocated after we start
    924 	 * will be added to the end of the list, so we can stop at the
    925 	 * current last page.
    926 	 */
    927 
    928 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    929 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    930 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    931 	dirtygen = gp->g_dirtygen;
    932 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    933 	if (by_list) {
    934 		curmp.flags = PG_MARKER;
    935 		endmp.flags = PG_MARKER;
    936 		pg = TAILQ_FIRST(&uobj->memq);
    937 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    938 	} else {
    939 		pg = uvm_pagelookup(uobj, off);
    940 	}
    941 	nextpg = NULL;
    942 	while (by_list || off < endoff) {
    943 
    944 		/*
    945 		 * if the current page is not interesting, move on to the next.
    946 		 */
    947 
    948 		KASSERT(pg == NULL || pg->uobject == uobj ||
    949 		    (pg->flags & PG_MARKER) != 0);
    950 		KASSERT(pg == NULL ||
    951 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    952 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
    953 		if (by_list) {
    954 			if (pg == &endmp) {
    955 				break;
    956 			}
    957 			if (pg->flags & PG_MARKER) {
    958 				pg = TAILQ_NEXT(pg, listq.queue);
    959 				continue;
    960 			}
    961 			if (pg->offset < startoff || pg->offset >= endoff ||
    962 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    963 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    964 					wasclean = false;
    965 				}
    966 				pg = TAILQ_NEXT(pg, listq.queue);
    967 				continue;
    968 			}
    969 			off = pg->offset;
    970 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    971 			if (pg != NULL) {
    972 				wasclean = false;
    973 			}
    974 			off += PAGE_SIZE;
    975 			if (off < endoff) {
    976 				pg = uvm_pagelookup(uobj, off);
    977 			}
    978 			continue;
    979 		}
    980 
    981 		/*
    982 		 * if the current page needs to be cleaned and it's busy,
    983 		 * wait for it to become unbusy.
    984 		 */
    985 
    986 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    987 		    SPCF_SHOULDYIELD) && !pagedaemon;
    988 		if (pg->flags & PG_BUSY || yld) {
    989 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    990 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    991 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    992 				error = EDEADLK;
    993 				if (busypg != NULL)
    994 					*busypg = pg;
    995 				break;
    996 			}
    997 			if (pagedaemon) {
    998 				/*
    999 				 * someone has taken the page while we
   1000 				 * dropped the lock for fstrans_start.
   1001 				 */
   1002 				break;
   1003 			}
   1004 			if (by_list) {
   1005 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1006 				UVMHIST_LOG(ubchist, "curmp next %p",
   1007 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1008 			}
   1009 			if (yld) {
   1010 				mutex_exit(slock);
   1011 				preempt();
   1012 				mutex_enter(slock);
   1013 			} else {
   1014 				pg->flags |= PG_WANTED;
   1015 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1016 				mutex_enter(slock);
   1017 			}
   1018 			if (by_list) {
   1019 				UVMHIST_LOG(ubchist, "after next %p",
   1020 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1021 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1022 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1023 			} else {
   1024 				pg = uvm_pagelookup(uobj, off);
   1025 			}
   1026 			continue;
   1027 		}
   1028 
   1029 		/*
   1030 		 * if we're freeing, remove all mappings of the page now.
   1031 		 * if we're cleaning, check if the page is needs to be cleaned.
   1032 		 */
   1033 
   1034 		if (flags & PGO_FREE) {
   1035 			pmap_page_protect(pg, VM_PROT_NONE);
   1036 		} else if (flags & PGO_CLEANIT) {
   1037 
   1038 			/*
   1039 			 * if we still have some hope to pull this vnode off
   1040 			 * from the syncer queue, write-protect the page.
   1041 			 */
   1042 
   1043 			if (cleanall && wasclean &&
   1044 			    gp->g_dirtygen == dirtygen) {
   1045 
   1046 				/*
   1047 				 * uobj pages get wired only by uvm_fault
   1048 				 * where uobj is locked.
   1049 				 */
   1050 
   1051 				if (pg->wire_count == 0) {
   1052 					pmap_page_protect(pg,
   1053 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1054 				} else {
   1055 					cleanall = false;
   1056 				}
   1057 			}
   1058 		}
   1059 
   1060 		if (flags & PGO_CLEANIT) {
   1061 			needs_clean = pmap_clear_modify(pg) ||
   1062 			    (pg->flags & PG_CLEAN) == 0;
   1063 			pg->flags |= PG_CLEAN;
   1064 		} else {
   1065 			needs_clean = false;
   1066 		}
   1067 
   1068 		/*
   1069 		 * if we're cleaning, build a cluster.
   1070 		 * the cluster will consist of pages which are currently dirty,
   1071 		 * but they will be returned to us marked clean.
   1072 		 * if not cleaning, just operate on the one page.
   1073 		 */
   1074 
   1075 		if (needs_clean) {
   1076 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1077 			wasclean = false;
   1078 			memset(pgs, 0, sizeof(pgs));
   1079 			pg->flags |= PG_BUSY;
   1080 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1081 
   1082 			/*
   1083 			 * first look backward.
   1084 			 */
   1085 
   1086 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1087 			nback = npages;
   1088 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1089 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1090 			if (nback) {
   1091 				memmove(&pgs[0], &pgs[npages - nback],
   1092 				    nback * sizeof(pgs[0]));
   1093 				if (npages - nback < nback)
   1094 					memset(&pgs[nback], 0,
   1095 					    (npages - nback) * sizeof(pgs[0]));
   1096 				else
   1097 					memset(&pgs[npages - nback], 0,
   1098 					    nback * sizeof(pgs[0]));
   1099 			}
   1100 
   1101 			/*
   1102 			 * then plug in our page of interest.
   1103 			 */
   1104 
   1105 			pgs[nback] = pg;
   1106 
   1107 			/*
   1108 			 * then look forward to fill in the remaining space in
   1109 			 * the array of pages.
   1110 			 */
   1111 
   1112 			npages = maxpages - nback - 1;
   1113 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1114 			    &pgs[nback + 1],
   1115 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1116 			npages += nback + 1;
   1117 		} else {
   1118 			pgs[0] = pg;
   1119 			npages = 1;
   1120 			nback = 0;
   1121 		}
   1122 
   1123 		/*
   1124 		 * apply FREE or DEACTIVATE options if requested.
   1125 		 */
   1126 
   1127 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1128 			mutex_enter(&uvm_pageqlock);
   1129 		}
   1130 		for (i = 0; i < npages; i++) {
   1131 			tpg = pgs[i];
   1132 			KASSERT(tpg->uobject == uobj);
   1133 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1134 				pg = tpg;
   1135 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1136 				continue;
   1137 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1138 				uvm_pagedeactivate(tpg);
   1139 			} else if (flags & PGO_FREE) {
   1140 				pmap_page_protect(tpg, VM_PROT_NONE);
   1141 				if (tpg->flags & PG_BUSY) {
   1142 					tpg->flags |= freeflag;
   1143 					if (pagedaemon) {
   1144 						uvm_pageout_start(1);
   1145 						uvm_pagedequeue(tpg);
   1146 					}
   1147 				} else {
   1148 
   1149 					/*
   1150 					 * ``page is not busy''
   1151 					 * implies that npages is 1
   1152 					 * and needs_clean is false.
   1153 					 */
   1154 
   1155 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1156 					uvm_pagefree(tpg);
   1157 					if (pagedaemon)
   1158 						uvmexp.pdfreed++;
   1159 				}
   1160 			}
   1161 		}
   1162 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1163 			mutex_exit(&uvm_pageqlock);
   1164 		}
   1165 		if (needs_clean) {
   1166 			modified = true;
   1167 
   1168 			/*
   1169 			 * start the i/o.  if we're traversing by list,
   1170 			 * keep our place in the list with a marker page.
   1171 			 */
   1172 
   1173 			if (by_list) {
   1174 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1175 				    listq.queue);
   1176 			}
   1177 			mutex_exit(slock);
   1178 			error = GOP_WRITE(vp, pgs, npages, flags);
   1179 			mutex_enter(slock);
   1180 			if (by_list) {
   1181 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1182 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1183 			}
   1184 			if (error) {
   1185 				break;
   1186 			}
   1187 			if (by_list) {
   1188 				continue;
   1189 			}
   1190 		}
   1191 
   1192 		/*
   1193 		 * find the next page and continue if there was no error.
   1194 		 */
   1195 
   1196 		if (by_list) {
   1197 			if (nextpg) {
   1198 				pg = nextpg;
   1199 				nextpg = NULL;
   1200 			} else {
   1201 				pg = TAILQ_NEXT(pg, listq.queue);
   1202 			}
   1203 		} else {
   1204 			off += (npages - nback) << PAGE_SHIFT;
   1205 			if (off < endoff) {
   1206 				pg = uvm_pagelookup(uobj, off);
   1207 			}
   1208 		}
   1209 	}
   1210 	if (by_list) {
   1211 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1212 	}
   1213 
   1214 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1215 	    (vp->v_type != VBLK ||
   1216 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1217 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1218 	}
   1219 
   1220 	/*
   1221 	 * if we're cleaning and there was nothing to clean,
   1222 	 * take us off the syncer list.  if we started any i/o
   1223 	 * and we're doing sync i/o, wait for all writes to finish.
   1224 	 */
   1225 
   1226 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1227 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1228 #if defined(DEBUG)
   1229 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1230 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
   1231 				continue;
   1232 			}
   1233 			if ((pg->flags & PG_CLEAN) == 0) {
   1234 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1235 			}
   1236 			if (pmap_is_modified(pg)) {
   1237 				printf("%s: %p: modified\n", __func__, pg);
   1238 			}
   1239 		}
   1240 #endif /* defined(DEBUG) */
   1241 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1242 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1243 			vn_syncer_remove_from_worklist(vp);
   1244 	}
   1245 
   1246 #if !defined(DEBUG)
   1247 skip_scan:
   1248 #endif /* !defined(DEBUG) */
   1249 
   1250 	/* Wait for output to complete. */
   1251 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1252 		while (vp->v_numoutput != 0)
   1253 			cv_wait(&vp->v_cv, slock);
   1254 	}
   1255 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1256 	mutex_exit(slock);
   1257 
   1258 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1259 		/*
   1260 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1261 		 * retrying is not a big deal because, in many cases,
   1262 		 * uobj->uo_npages is already 0 here.
   1263 		 */
   1264 		mutex_enter(slock);
   1265 		goto retry;
   1266 	}
   1267 
   1268 	if (has_trans) {
   1269 		if (need_wapbl)
   1270 			WAPBL_END(vp->v_mount);
   1271 		fstrans_done(vp->v_mount);
   1272 	}
   1273 
   1274 	return (error);
   1275 }
   1276 
   1277 int
   1278 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1279 {
   1280 	off_t off;
   1281 	vaddr_t kva;
   1282 	size_t len;
   1283 	int error;
   1284 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1285 
   1286 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1287 	    vp, pgs, npages, flags);
   1288 
   1289 	off = pgs[0]->offset;
   1290 	kva = uvm_pagermapin(pgs, npages,
   1291 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1292 	len = npages << PAGE_SHIFT;
   1293 
   1294 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1295 			    uvm_aio_biodone);
   1296 
   1297 	return error;
   1298 }
   1299 
   1300 int
   1301 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1302 {
   1303 	off_t off;
   1304 	vaddr_t kva;
   1305 	size_t len;
   1306 	int error;
   1307 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1308 
   1309 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1310 	    vp, pgs, npages, flags);
   1311 
   1312 	off = pgs[0]->offset;
   1313 	kva = uvm_pagermapin(pgs, npages,
   1314 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1315 	len = npages << PAGE_SHIFT;
   1316 
   1317 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1318 			    uvm_aio_biodone);
   1319 
   1320 	return error;
   1321 }
   1322 
   1323 /*
   1324  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1325  * and mapped into kernel memory.  Here we just look up the underlying
   1326  * device block addresses and call the strategy routine.
   1327  */
   1328 
   1329 static int
   1330 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1331     enum uio_rw rw, void (*iodone)(struct buf *))
   1332 {
   1333 	int s, error;
   1334 	int fs_bshift, dev_bshift;
   1335 	off_t eof, offset, startoffset;
   1336 	size_t bytes, iobytes, skipbytes;
   1337 	struct buf *mbp, *bp;
   1338 	const bool async = (flags & PGO_SYNCIO) == 0;
   1339 	const bool lazy = (flags & PGO_LAZY) == 0;
   1340 	const bool iowrite = rw == UIO_WRITE;
   1341 	const int brw = iowrite ? B_WRITE : B_READ;
   1342 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1343 
   1344 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1345 	    vp, kva, len, flags);
   1346 
   1347 	KASSERT(vp->v_size <= vp->v_writesize);
   1348 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1349 	if (vp->v_type != VBLK) {
   1350 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1351 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1352 	} else {
   1353 		fs_bshift = DEV_BSHIFT;
   1354 		dev_bshift = DEV_BSHIFT;
   1355 	}
   1356 	error = 0;
   1357 	startoffset = off;
   1358 	bytes = MIN(len, eof - startoffset);
   1359 	skipbytes = 0;
   1360 	KASSERT(bytes != 0);
   1361 
   1362 	if (iowrite) {
   1363 		mutex_enter(vp->v_interlock);
   1364 		vp->v_numoutput += 2;
   1365 		mutex_exit(vp->v_interlock);
   1366 	}
   1367 	mbp = getiobuf(vp, true);
   1368 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1369 	    vp, mbp, vp->v_numoutput, bytes);
   1370 	mbp->b_bufsize = len;
   1371 	mbp->b_data = (void *)kva;
   1372 	mbp->b_resid = mbp->b_bcount = bytes;
   1373 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1374 	if (async) {
   1375 		mbp->b_flags = brw | B_ASYNC;
   1376 		mbp->b_iodone = iodone;
   1377 	} else {
   1378 		mbp->b_flags = brw;
   1379 		mbp->b_iodone = NULL;
   1380 	}
   1381 	if (curlwp == uvm.pagedaemon_lwp)
   1382 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1383 	else if (async || lazy)
   1384 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1385 	else
   1386 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1387 
   1388 	bp = NULL;
   1389 	for (offset = startoffset;
   1390 	    bytes > 0;
   1391 	    offset += iobytes, bytes -= iobytes) {
   1392 		int run;
   1393 		daddr_t lbn, blkno;
   1394 		struct vnode *devvp;
   1395 
   1396 		/*
   1397 		 * bmap the file to find out the blkno to read from and
   1398 		 * how much we can read in one i/o.  if bmap returns an error,
   1399 		 * skip the rest of the top-level i/o.
   1400 		 */
   1401 
   1402 		lbn = offset >> fs_bshift;
   1403 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1404 		if (error) {
   1405 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1406 			    lbn,error,0,0);
   1407 			skipbytes += bytes;
   1408 			bytes = 0;
   1409 			goto loopdone;
   1410 		}
   1411 
   1412 		/*
   1413 		 * see how many pages can be read with this i/o.
   1414 		 * reduce the i/o size if necessary to avoid
   1415 		 * overwriting pages with valid data.
   1416 		 */
   1417 
   1418 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1419 		    bytes);
   1420 
   1421 		/*
   1422 		 * if this block isn't allocated, zero it instead of
   1423 		 * reading it.  unless we are going to allocate blocks,
   1424 		 * mark the pages we zeroed PG_RDONLY.
   1425 		 */
   1426 
   1427 		if (blkno == (daddr_t)-1) {
   1428 			if (!iowrite) {
   1429 				memset((char *)kva + (offset - startoffset), 0,
   1430 				    iobytes);
   1431 			}
   1432 			skipbytes += iobytes;
   1433 			continue;
   1434 		}
   1435 
   1436 		/*
   1437 		 * allocate a sub-buf for this piece of the i/o
   1438 		 * (or just use mbp if there's only 1 piece),
   1439 		 * and start it going.
   1440 		 */
   1441 
   1442 		if (offset == startoffset && iobytes == bytes) {
   1443 			bp = mbp;
   1444 		} else {
   1445 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1446 			    vp, bp, vp->v_numoutput, 0);
   1447 			bp = getiobuf(vp, true);
   1448 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1449 		}
   1450 		bp->b_lblkno = 0;
   1451 
   1452 		/* adjust physical blkno for partial blocks */
   1453 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1454 		    dev_bshift);
   1455 
   1456 		UVMHIST_LOG(ubchist,
   1457 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1458 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1459 
   1460 		VOP_STRATEGY(devvp, bp);
   1461 	}
   1462 
   1463 loopdone:
   1464 	if (skipbytes) {
   1465 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1466 	}
   1467 	nestiobuf_done(mbp, skipbytes, error);
   1468 	if (async) {
   1469 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1470 		return (0);
   1471 	}
   1472 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1473 	error = biowait(mbp);
   1474 	s = splbio();
   1475 	(*iodone)(mbp);
   1476 	splx(s);
   1477 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1478 	return (error);
   1479 }
   1480 
   1481 int
   1482 genfs_compat_getpages(void *v)
   1483 {
   1484 	struct vop_getpages_args /* {
   1485 		struct vnode *a_vp;
   1486 		voff_t a_offset;
   1487 		struct vm_page **a_m;
   1488 		int *a_count;
   1489 		int a_centeridx;
   1490 		vm_prot_t a_access_type;
   1491 		int a_advice;
   1492 		int a_flags;
   1493 	} */ *ap = v;
   1494 
   1495 	off_t origoffset;
   1496 	struct vnode *vp = ap->a_vp;
   1497 	struct uvm_object *uobj = &vp->v_uobj;
   1498 	struct vm_page *pg, **pgs;
   1499 	vaddr_t kva;
   1500 	int i, error, orignpages, npages;
   1501 	struct iovec iov;
   1502 	struct uio uio;
   1503 	kauth_cred_t cred = curlwp->l_cred;
   1504 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1505 
   1506 	error = 0;
   1507 	origoffset = ap->a_offset;
   1508 	orignpages = *ap->a_count;
   1509 	pgs = ap->a_m;
   1510 
   1511 	if (ap->a_flags & PGO_LOCKED) {
   1512 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1513 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1514 
   1515 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1516 		if (error == 0 && memwrite) {
   1517 			genfs_markdirty(vp);
   1518 		}
   1519 		return error;
   1520 	}
   1521 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1522 		mutex_exit(uobj->vmobjlock);
   1523 		return EINVAL;
   1524 	}
   1525 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1526 		mutex_exit(uobj->vmobjlock);
   1527 		return 0;
   1528 	}
   1529 	npages = orignpages;
   1530 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1531 	mutex_exit(uobj->vmobjlock);
   1532 	kva = uvm_pagermapin(pgs, npages,
   1533 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1534 	for (i = 0; i < npages; i++) {
   1535 		pg = pgs[i];
   1536 		if ((pg->flags & PG_FAKE) == 0) {
   1537 			continue;
   1538 		}
   1539 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1540 		iov.iov_len = PAGE_SIZE;
   1541 		uio.uio_iov = &iov;
   1542 		uio.uio_iovcnt = 1;
   1543 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1544 		uio.uio_rw = UIO_READ;
   1545 		uio.uio_resid = PAGE_SIZE;
   1546 		UIO_SETUP_SYSSPACE(&uio);
   1547 		/* XXX vn_lock */
   1548 		error = VOP_READ(vp, &uio, 0, cred);
   1549 		if (error) {
   1550 			break;
   1551 		}
   1552 		if (uio.uio_resid) {
   1553 			memset(iov.iov_base, 0, uio.uio_resid);
   1554 		}
   1555 	}
   1556 	uvm_pagermapout(kva, npages);
   1557 	mutex_enter(uobj->vmobjlock);
   1558 	mutex_enter(&uvm_pageqlock);
   1559 	for (i = 0; i < npages; i++) {
   1560 		pg = pgs[i];
   1561 		if (error && (pg->flags & PG_FAKE) != 0) {
   1562 			pg->flags |= PG_RELEASED;
   1563 		} else {
   1564 			pmap_clear_modify(pg);
   1565 			uvm_pageactivate(pg);
   1566 		}
   1567 	}
   1568 	if (error) {
   1569 		uvm_page_unbusy(pgs, npages);
   1570 	}
   1571 	mutex_exit(&uvm_pageqlock);
   1572 	if (error == 0 && memwrite) {
   1573 		genfs_markdirty(vp);
   1574 	}
   1575 	mutex_exit(uobj->vmobjlock);
   1576 	return error;
   1577 }
   1578 
   1579 int
   1580 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1581     int flags)
   1582 {
   1583 	off_t offset;
   1584 	struct iovec iov;
   1585 	struct uio uio;
   1586 	kauth_cred_t cred = curlwp->l_cred;
   1587 	struct buf *bp;
   1588 	vaddr_t kva;
   1589 	int error;
   1590 
   1591 	offset = pgs[0]->offset;
   1592 	kva = uvm_pagermapin(pgs, npages,
   1593 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1594 
   1595 	iov.iov_base = (void *)kva;
   1596 	iov.iov_len = npages << PAGE_SHIFT;
   1597 	uio.uio_iov = &iov;
   1598 	uio.uio_iovcnt = 1;
   1599 	uio.uio_offset = offset;
   1600 	uio.uio_rw = UIO_WRITE;
   1601 	uio.uio_resid = npages << PAGE_SHIFT;
   1602 	UIO_SETUP_SYSSPACE(&uio);
   1603 	/* XXX vn_lock */
   1604 	error = VOP_WRITE(vp, &uio, 0, cred);
   1605 
   1606 	mutex_enter(vp->v_interlock);
   1607 	vp->v_numoutput++;
   1608 	mutex_exit(vp->v_interlock);
   1609 
   1610 	bp = getiobuf(vp, true);
   1611 	bp->b_cflags = BC_BUSY | BC_AGE;
   1612 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1613 	bp->b_data = (char *)kva;
   1614 	bp->b_bcount = npages << PAGE_SHIFT;
   1615 	bp->b_bufsize = npages << PAGE_SHIFT;
   1616 	bp->b_resid = 0;
   1617 	bp->b_error = error;
   1618 	uvm_aio_aiodone(bp);
   1619 	return (error);
   1620 }
   1621 
   1622 /*
   1623  * Process a uio using direct I/O.  If we reach a part of the request
   1624  * which cannot be processed in this fashion for some reason, just return.
   1625  * The caller must handle some additional part of the request using
   1626  * buffered I/O before trying direct I/O again.
   1627  */
   1628 
   1629 void
   1630 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1631 {
   1632 	struct vmspace *vs;
   1633 	struct iovec *iov;
   1634 	vaddr_t va;
   1635 	size_t len;
   1636 	const int mask = DEV_BSIZE - 1;
   1637 	int error;
   1638 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1639 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1640 
   1641 	/*
   1642 	 * We only support direct I/O to user space for now.
   1643 	 */
   1644 
   1645 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1646 		return;
   1647 	}
   1648 
   1649 	/*
   1650 	 * If the vnode is mapped, we would need to get the getpages lock
   1651 	 * to stabilize the bmap, but then we would get into trouble while
   1652 	 * locking the pages if the pages belong to this same vnode (or a
   1653 	 * multi-vnode cascade to the same effect).  Just fall back to
   1654 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1655 	 */
   1656 
   1657 	if (vp->v_vflag & VV_MAPPED) {
   1658 		return;
   1659 	}
   1660 
   1661 	if (need_wapbl) {
   1662 		error = WAPBL_BEGIN(vp->v_mount);
   1663 		if (error)
   1664 			return;
   1665 	}
   1666 
   1667 	/*
   1668 	 * Do as much of the uio as possible with direct I/O.
   1669 	 */
   1670 
   1671 	vs = uio->uio_vmspace;
   1672 	while (uio->uio_resid) {
   1673 		iov = uio->uio_iov;
   1674 		if (iov->iov_len == 0) {
   1675 			uio->uio_iov++;
   1676 			uio->uio_iovcnt--;
   1677 			continue;
   1678 		}
   1679 		va = (vaddr_t)iov->iov_base;
   1680 		len = MIN(iov->iov_len, genfs_maxdio);
   1681 		len &= ~mask;
   1682 
   1683 		/*
   1684 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1685 		 * the current EOF, then fall back to buffered I/O.
   1686 		 */
   1687 
   1688 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1689 			break;
   1690 		}
   1691 
   1692 		/*
   1693 		 * Check alignment.  The file offset must be at least
   1694 		 * sector-aligned.  The exact constraint on memory alignment
   1695 		 * is very hardware-dependent, but requiring sector-aligned
   1696 		 * addresses there too is safe.
   1697 		 */
   1698 
   1699 		if (uio->uio_offset & mask || va & mask) {
   1700 			break;
   1701 		}
   1702 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1703 					  uio->uio_rw);
   1704 		if (error) {
   1705 			break;
   1706 		}
   1707 		iov->iov_base = (char *)iov->iov_base + len;
   1708 		iov->iov_len -= len;
   1709 		uio->uio_offset += len;
   1710 		uio->uio_resid -= len;
   1711 	}
   1712 
   1713 	if (need_wapbl)
   1714 		WAPBL_END(vp->v_mount);
   1715 }
   1716 
   1717 /*
   1718  * Iodone routine for direct I/O.  We don't do much here since the request is
   1719  * always synchronous, so the caller will do most of the work after biowait().
   1720  */
   1721 
   1722 static void
   1723 genfs_dio_iodone(struct buf *bp)
   1724 {
   1725 
   1726 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1727 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1728 		mutex_enter(bp->b_objlock);
   1729 		vwakeup(bp);
   1730 		mutex_exit(bp->b_objlock);
   1731 	}
   1732 	putiobuf(bp);
   1733 }
   1734 
   1735 /*
   1736  * Process one chunk of a direct I/O request.
   1737  */
   1738 
   1739 static int
   1740 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1741     off_t off, enum uio_rw rw)
   1742 {
   1743 	struct vm_map *map;
   1744 	struct pmap *upm, *kpm __unused;
   1745 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1746 	off_t spoff, epoff;
   1747 	vaddr_t kva, puva;
   1748 	paddr_t pa;
   1749 	vm_prot_t prot;
   1750 	int error, rv __diagused, poff, koff;
   1751 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1752 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1753 
   1754 	/*
   1755 	 * For writes, verify that this range of the file already has fully
   1756 	 * allocated backing store.  If there are any holes, just punt and
   1757 	 * make the caller take the buffered write path.
   1758 	 */
   1759 
   1760 	if (rw == UIO_WRITE) {
   1761 		daddr_t lbn, elbn, blkno;
   1762 		int bsize, bshift, run;
   1763 
   1764 		bshift = vp->v_mount->mnt_fs_bshift;
   1765 		bsize = 1 << bshift;
   1766 		lbn = off >> bshift;
   1767 		elbn = (off + len + bsize - 1) >> bshift;
   1768 		while (lbn < elbn) {
   1769 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1770 			if (error) {
   1771 				return error;
   1772 			}
   1773 			if (blkno == (daddr_t)-1) {
   1774 				return ENOSPC;
   1775 			}
   1776 			lbn += 1 + run;
   1777 		}
   1778 	}
   1779 
   1780 	/*
   1781 	 * Flush any cached pages for parts of the file that we're about to
   1782 	 * access.  If we're writing, invalidate pages as well.
   1783 	 */
   1784 
   1785 	spoff = trunc_page(off);
   1786 	epoff = round_page(off + len);
   1787 	mutex_enter(vp->v_interlock);
   1788 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1789 	if (error) {
   1790 		return error;
   1791 	}
   1792 
   1793 	/*
   1794 	 * Wire the user pages and remap them into kernel memory.
   1795 	 */
   1796 
   1797 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1798 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1799 	if (error) {
   1800 		return error;
   1801 	}
   1802 
   1803 	map = &vs->vm_map;
   1804 	upm = vm_map_pmap(map);
   1805 	kpm = vm_map_pmap(kernel_map);
   1806 	puva = trunc_page(uva);
   1807 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1808 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1809 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1810 		rv = pmap_extract(upm, puva + poff, &pa);
   1811 		KASSERT(rv);
   1812 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1813 	}
   1814 	pmap_update(kpm);
   1815 
   1816 	/*
   1817 	 * Do the I/O.
   1818 	 */
   1819 
   1820 	koff = uva - trunc_page(uva);
   1821 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1822 			    genfs_dio_iodone);
   1823 
   1824 	/*
   1825 	 * Tear down the kernel mapping.
   1826 	 */
   1827 
   1828 	pmap_kremove(kva, klen);
   1829 	pmap_update(kpm);
   1830 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1831 
   1832 	/*
   1833 	 * Unwire the user pages.
   1834 	 */
   1835 
   1836 	uvm_vsunlock(vs, (void *)uva, len);
   1837 	return error;
   1838 }
   1839