genfs_io.c revision 1.6.2.4 1 /* $NetBSD: genfs_io.c,v 1.6.2.4 2010/08/11 22:54:47 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.6.2.4 2010/08/11 22:54:47 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static void genfs_rel_pages(struct vm_page **, int);
66 static void genfs_markdirty(struct vnode *);
67
68 int genfs_maxdio = MAXPHYS;
69
70 static void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 int i;
74
75 for (i = 0; i < npages; i++) {
76 struct vm_page *pg = pgs[i];
77
78 if (pg == NULL || pg == PGO_DONTCARE)
79 continue;
80 if (pg->flags & PG_FAKE) {
81 pg->flags |= PG_RELEASED;
82 }
83 }
84 mutex_enter(&uvm_pageqlock);
85 uvm_page_unbusy(pgs, npages);
86 mutex_exit(&uvm_pageqlock);
87 }
88
89 static void
90 genfs_markdirty(struct vnode *vp)
91 {
92 struct genfs_node * const gp = VTOG(vp);
93
94 KASSERT(mutex_owned(&vp->v_interlock));
95 gp->g_dirtygen++;
96 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
97 vn_syncer_add_to_worklist(vp, filedelay);
98 }
99 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
100 vp->v_iflag |= VI_WRMAPDIRTY;
101 }
102 }
103
104 /*
105 * generic VM getpages routine.
106 * Return PG_BUSY pages for the given range,
107 * reading from backing store if necessary.
108 */
109
110 int
111 genfs_getpages(void *v)
112 {
113 struct vop_getpages_args /* {
114 struct vnode *a_vp;
115 voff_t a_offset;
116 struct vm_page **a_m;
117 int *a_count;
118 int a_centeridx;
119 vm_prot_t a_access_type;
120 int a_advice;
121 int a_flags;
122 } */ * const ap = v;
123
124 off_t diskeof, memeof;
125 int i, error, npages;
126 const int flags = ap->a_flags;
127 struct vnode * const vp = ap->a_vp;
128 struct genfs_node * const gp = VTOG(vp);
129 struct uvm_object * const uobj = &vp->v_uobj;
130 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
131 const bool async = (flags & PGO_SYNCIO) == 0;
132 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
133 bool has_trans = false;
134 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
135 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
136 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
137
138 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
139 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
140
141 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
142 vp->v_type == VLNK || vp->v_type == VBLK);
143
144 startover:
145 error = 0;
146 const voff_t origvsize = vp->v_size;
147 const off_t origoffset = ap->a_offset;
148 const int orignpages = *ap->a_count;
149
150 GOP_SIZE(vp, origvsize, &diskeof, 0);
151 if (flags & PGO_PASTEOF) {
152 off_t newsize;
153 #if defined(DIAGNOSTIC)
154 off_t writeeof;
155 #endif /* defined(DIAGNOSTIC) */
156
157 newsize = MAX(origvsize,
158 origoffset + (orignpages << PAGE_SHIFT));
159 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
160 #if defined(DIAGNOSTIC)
161 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
162 if (newsize > round_page(writeeof)) {
163 panic("%s: past eof", __func__);
164 }
165 #endif /* defined(DIAGNOSTIC) */
166 } else {
167 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
168 }
169 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
170 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
171 KASSERT(orignpages > 0);
172
173 /*
174 * Bounds-check the request.
175 */
176
177 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
178 if ((flags & PGO_LOCKED) == 0) {
179 mutex_exit(&uobj->vmobjlock);
180 }
181 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
182 origoffset, *ap->a_count, memeof,0);
183 error = EINVAL;
184 goto out_err;
185 }
186
187 /* uobj is locked */
188
189 if ((flags & PGO_NOTIMESTAMP) == 0 &&
190 (vp->v_type != VBLK ||
191 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
192 int updflags = 0;
193
194 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
195 updflags = GOP_UPDATE_ACCESSED;
196 }
197 if (memwrite) {
198 updflags |= GOP_UPDATE_MODIFIED;
199 }
200 if (updflags != 0) {
201 GOP_MARKUPDATE(vp, updflags);
202 }
203 }
204
205 /*
206 * For PGO_LOCKED requests, just return whatever's in memory.
207 */
208
209 if (flags & PGO_LOCKED) {
210 int nfound;
211 struct vm_page *pg;
212
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 KASSERT(npages == *ap->a_count);
223 if (nfound == 0) {
224 error = EBUSY;
225 goto out_err;
226 }
227 if (!genfs_node_rdtrylock(vp)) {
228 genfs_rel_pages(ap->a_m, npages);
229
230 /*
231 * restore the array.
232 */
233
234 for (i = 0; i < npages; i++) {
235 pg = ap->a_m[i];
236
237 if (pg != NULL || pg != PGO_DONTCARE) {
238 ap->a_m[i] = NULL;
239 }
240 }
241 } else {
242 genfs_node_unlock(vp);
243 }
244 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
245 if (error == 0 && memwrite) {
246 genfs_markdirty(vp);
247 }
248 goto out_err;
249 }
250 mutex_exit(&uobj->vmobjlock);
251
252 /*
253 * find the requested pages and make some simple checks.
254 * leave space in the page array for a whole block.
255 */
256
257 const int fs_bshift = (vp->v_type != VBLK) ?
258 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
259 const int dev_bshift = (vp->v_type != VBLK) ?
260 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
261 const int fs_bsize = 1 << fs_bshift;
262 #define blk_mask (fs_bsize - 1)
263 #define trunc_blk(x) ((x) & ~blk_mask)
264 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
265
266 const int orignmempages = MIN(orignpages,
267 round_page(memeof - origoffset) >> PAGE_SHIFT);
268 npages = orignmempages;
269 const off_t startoffset = trunc_blk(origoffset);
270 const off_t endoffset = MIN(
271 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
272 round_page(memeof));
273 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
274
275 const int pgs_size = sizeof(struct vm_page *) *
276 ((endoffset - startoffset) >> PAGE_SHIFT);
277 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
278
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
285 }
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
289 }
290
291 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
292 ridx, npages, startoffset, endoffset);
293
294 if (!has_trans) {
295 fstrans_start(vp->v_mount, FSTRANS_SHARED);
296 has_trans = true;
297 }
298
299 /*
300 * hold g_glock to prevent a race with truncate.
301 *
302 * check if our idea of v_size is still valid.
303 */
304
305 if (blockalloc) {
306 rw_enter(&gp->g_glock, RW_WRITER);
307 } else {
308 rw_enter(&gp->g_glock, RW_READER);
309 }
310 mutex_enter(&uobj->vmobjlock);
311 if (vp->v_size < origvsize) {
312 genfs_node_unlock(vp);
313 if (pgs != pgs_onstack)
314 kmem_free(pgs, pgs_size);
315 goto startover;
316 }
317
318 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
319 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
320 genfs_node_unlock(vp);
321 KASSERT(async != 0);
322 genfs_rel_pages(&pgs[ridx], orignmempages);
323 mutex_exit(&uobj->vmobjlock);
324 error = EBUSY;
325 goto out_err_free;
326 }
327
328 /*
329 * if the pages are already resident, just return them.
330 */
331
332 for (i = 0; i < npages; i++) {
333 struct vm_page *pg = pgs[ridx + i];
334
335 if ((pg->flags & PG_FAKE) ||
336 (blockalloc && (pg->flags & PG_RDONLY))) {
337 break;
338 }
339 }
340 if (i == npages) {
341 genfs_node_unlock(vp);
342 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
343 npages += ridx;
344 goto out;
345 }
346
347 /*
348 * if PGO_OVERWRITE is set, don't bother reading the pages.
349 */
350
351 if (overwrite) {
352 genfs_node_unlock(vp);
353 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
354
355 for (i = 0; i < npages; i++) {
356 struct vm_page *pg = pgs[ridx + i];
357
358 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
359 }
360 npages += ridx;
361 goto out;
362 }
363
364 /*
365 * the page wasn't resident and we're not overwriting,
366 * so we're going to have to do some i/o.
367 * find any additional pages needed to cover the expanded range.
368 */
369
370 npages = (endoffset - startoffset) >> PAGE_SHIFT;
371 if (startoffset != origoffset || npages != orignmempages) {
372 int npgs;
373
374 /*
375 * we need to avoid deadlocks caused by locking
376 * additional pages at lower offsets than pages we
377 * already have locked. unlock them all and start over.
378 */
379
380 genfs_rel_pages(&pgs[ridx], orignmempages);
381 memset(pgs, 0, pgs_size);
382
383 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
384 startoffset, endoffset, 0,0);
385 npgs = npages;
386 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
387 async ? UFP_NOWAIT : UFP_ALL) != npages) {
388 genfs_node_unlock(vp);
389 KASSERT(async != 0);
390 genfs_rel_pages(pgs, npages);
391 mutex_exit(&uobj->vmobjlock);
392 error = EBUSY;
393 goto out_err_free;
394 }
395 }
396
397 mutex_exit(&uobj->vmobjlock);
398
399 {
400 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
401 vaddr_t kva;
402 struct buf *bp, *mbp;
403 bool sawhole = false;
404
405 /*
406 * read the desired page(s).
407 */
408
409 totalbytes = npages << PAGE_SHIFT;
410 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
411 tailbytes = totalbytes - bytes;
412 skipbytes = 0;
413
414 kva = uvm_pagermapin(pgs, npages,
415 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
416
417 mbp = getiobuf(vp, true);
418 mbp->b_bufsize = totalbytes;
419 mbp->b_data = (void *)kva;
420 mbp->b_resid = mbp->b_bcount = bytes;
421 mbp->b_cflags = BC_BUSY;
422 if (async) {
423 mbp->b_flags = B_READ | B_ASYNC;
424 mbp->b_iodone = uvm_aio_biodone;
425 } else {
426 mbp->b_flags = B_READ;
427 mbp->b_iodone = NULL;
428 }
429 if (async)
430 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
431 else
432 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
433
434 /*
435 * if EOF is in the middle of the range, zero the part past EOF.
436 * skip over pages which are not PG_FAKE since in that case they have
437 * valid data that we need to preserve.
438 */
439
440 tailstart = bytes;
441 while (tailbytes > 0) {
442 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
443
444 KASSERT(len <= tailbytes);
445 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
446 memset((void *)(kva + tailstart), 0, len);
447 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
448 kva, tailstart, len, 0);
449 }
450 tailstart += len;
451 tailbytes -= len;
452 }
453
454 /*
455 * now loop over the pages, reading as needed.
456 */
457
458 bp = NULL;
459 off_t offset;
460 for (offset = startoffset;
461 bytes > 0;
462 offset += iobytes, bytes -= iobytes) {
463 int run;
464 daddr_t lbn, blkno;
465 int pidx;
466 struct vnode *devvp;
467
468 /*
469 * skip pages which don't need to be read.
470 */
471
472 pidx = (offset - startoffset) >> PAGE_SHIFT;
473 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
474 size_t b;
475
476 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
477 if ((pgs[pidx]->flags & PG_RDONLY)) {
478 sawhole = true;
479 }
480 b = MIN(PAGE_SIZE, bytes);
481 offset += b;
482 bytes -= b;
483 skipbytes += b;
484 pidx++;
485 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
486 offset, 0,0,0);
487 if (bytes == 0) {
488 goto loopdone;
489 }
490 }
491
492 /*
493 * bmap the file to find out the blkno to read from and
494 * how much we can read in one i/o. if bmap returns an error,
495 * skip the rest of the top-level i/o.
496 */
497
498 lbn = offset >> fs_bshift;
499 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
500 if (error) {
501 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
502 lbn,error,0,0);
503 skipbytes += bytes;
504 bytes = 0;
505 goto loopdone;
506 }
507
508 /*
509 * see how many pages can be read with this i/o.
510 * reduce the i/o size if necessary to avoid
511 * overwriting pages with valid data.
512 */
513
514 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
515 bytes);
516 if (offset + iobytes > round_page(offset)) {
517 int pcount;
518
519 pcount = 1;
520 while (pidx + pcount < npages &&
521 pgs[pidx + pcount]->flags & PG_FAKE) {
522 pcount++;
523 }
524 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
525 (offset - trunc_page(offset)));
526 }
527
528 /*
529 * if this block isn't allocated, zero it instead of
530 * reading it. unless we are going to allocate blocks,
531 * mark the pages we zeroed PG_RDONLY.
532 */
533
534 if (blkno == (daddr_t)-1) {
535 int holepages = (round_page(offset + iobytes) -
536 trunc_page(offset)) >> PAGE_SHIFT;
537 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
538
539 sawhole = true;
540 memset((char *)kva + (offset - startoffset), 0,
541 iobytes);
542 skipbytes += iobytes;
543
544 for (i = 0; i < holepages; i++) {
545 if (memwrite) {
546 pgs[pidx + i]->flags &= ~PG_CLEAN;
547 }
548 if (!blockalloc) {
549 pgs[pidx + i]->flags |= PG_RDONLY;
550 }
551 }
552 continue;
553 }
554
555 /*
556 * allocate a sub-buf for this piece of the i/o
557 * (or just use mbp if there's only 1 piece),
558 * and start it going.
559 */
560
561 if (offset == startoffset && iobytes == bytes) {
562 bp = mbp;
563 } else {
564 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
565 vp, bp, vp->v_numoutput, 0);
566 bp = getiobuf(vp, true);
567 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
568 }
569 bp->b_lblkno = 0;
570
571 /* adjust physical blkno for partial blocks */
572 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
573 dev_bshift);
574
575 UVMHIST_LOG(ubchist,
576 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
577 bp, offset, bp->b_bcount, bp->b_blkno);
578
579 VOP_STRATEGY(devvp, bp);
580 }
581
582 loopdone:
583 nestiobuf_done(mbp, skipbytes, error);
584 if (async) {
585 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
586 genfs_node_unlock(vp);
587 error = 0;
588 goto out_err_free;
589 }
590 if (bp != NULL) {
591 error = biowait(mbp);
592 }
593
594 /* Remove the mapping (make KVA available as soon as possible) */
595 uvm_pagermapout(kva, npages);
596
597 /*
598 * if this we encountered a hole then we have to do a little more work.
599 * for read faults, we marked the page PG_RDONLY so that future
600 * write accesses to the page will fault again.
601 * for write faults, we must make sure that the backing store for
602 * the page is completely allocated while the pages are locked.
603 */
604
605 if (!error && sawhole && blockalloc) {
606 /*
607 * XXX: This assumes that we come here only via
608 * the mmio path
609 */
610 if (vp->v_mount->mnt_wapbl) {
611 error = WAPBL_BEGIN(vp->v_mount);
612 }
613
614 if (!error) {
615 error = GOP_ALLOC(vp, startoffset,
616 npages << PAGE_SHIFT, 0, cred);
617 if (vp->v_mount->mnt_wapbl) {
618 WAPBL_END(vp->v_mount);
619 }
620 }
621
622 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
623 startoffset, npages << PAGE_SHIFT, error,0);
624 if (!error) {
625 for (i = 0; i < npages; i++) {
626 struct vm_page *pg = pgs[i];
627
628 if (pg == NULL) {
629 continue;
630 }
631 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
632 UVMHIST_LOG(ubchist, "mark dirty pg %p",
633 pg,0,0,0);
634 }
635 }
636 }
637 genfs_node_unlock(vp);
638
639 putiobuf(mbp);
640 }
641
642 mutex_enter(&uobj->vmobjlock);
643
644 /*
645 * we're almost done! release the pages...
646 * for errors, we free the pages.
647 * otherwise we activate them and mark them as valid and clean.
648 * also, unbusy pages that were not actually requested.
649 */
650
651 if (error) {
652 for (i = 0; i < npages; i++) {
653 struct vm_page *pg = pgs[i];
654
655 if (pg == NULL) {
656 continue;
657 }
658 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
659 pg, pg->flags, 0,0);
660 if (pg->flags & PG_FAKE) {
661 pg->flags |= PG_RELEASED;
662 }
663 }
664 mutex_enter(&uvm_pageqlock);
665 uvm_page_unbusy(pgs, npages);
666 mutex_exit(&uvm_pageqlock);
667 mutex_exit(&uobj->vmobjlock);
668 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
669 goto out_err_free;
670 }
671
672 out:
673 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
674 error = 0;
675 mutex_enter(&uvm_pageqlock);
676 for (i = 0; i < npages; i++) {
677 struct vm_page *pg = pgs[i];
678 if (pg == NULL) {
679 continue;
680 }
681 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
682 pg, pg->flags, 0,0);
683 if (pg->flags & PG_FAKE && !overwrite) {
684 pg->flags &= ~(PG_FAKE);
685 pmap_clear_modify(pgs[i]);
686 }
687 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
688 if (i < ridx || i >= ridx + orignmempages || async) {
689 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
690 pg, pg->offset,0,0);
691 if (pg->flags & PG_WANTED) {
692 wakeup(pg);
693 }
694 if (pg->flags & PG_FAKE) {
695 KASSERT(overwrite);
696 uvm_pagezero(pg);
697 }
698 if (pg->flags & PG_RELEASED) {
699 uvm_pagefree(pg);
700 continue;
701 }
702 uvm_pageenqueue(pg);
703 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
704 UVM_PAGE_OWN(pg, NULL);
705 }
706 }
707 mutex_exit(&uvm_pageqlock);
708 if (memwrite) {
709 genfs_markdirty(vp);
710 }
711 mutex_exit(&uobj->vmobjlock);
712 if (ap->a_m != NULL) {
713 memcpy(ap->a_m, &pgs[ridx],
714 orignmempages * sizeof(struct vm_page *));
715 }
716
717 out_err_free:
718 if (pgs != NULL && pgs != pgs_onstack)
719 kmem_free(pgs, pgs_size);
720 out_err:
721 if (has_trans)
722 fstrans_done(vp->v_mount);
723 return error;
724 }
725
726 /*
727 * generic VM putpages routine.
728 * Write the given range of pages to backing store.
729 *
730 * => "offhi == 0" means flush all pages at or after "offlo".
731 * => object should be locked by caller. we return with the
732 * object unlocked.
733 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
734 * thus, a caller might want to unlock higher level resources
735 * (e.g. vm_map) before calling flush.
736 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
737 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
738 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
739 * that new pages are inserted on the tail end of the list. thus,
740 * we can make a complete pass through the object in one go by starting
741 * at the head and working towards the tail (new pages are put in
742 * front of us).
743 * => NOTE: we are allowed to lock the page queues, so the caller
744 * must not be holding the page queue lock.
745 *
746 * note on "cleaning" object and PG_BUSY pages:
747 * this routine is holding the lock on the object. the only time
748 * that it can run into a PG_BUSY page that it does not own is if
749 * some other process has started I/O on the page (e.g. either
750 * a pagein, or a pageout). if the PG_BUSY page is being paged
751 * in, then it can not be dirty (!PG_CLEAN) because no one has
752 * had a chance to modify it yet. if the PG_BUSY page is being
753 * paged out then it means that someone else has already started
754 * cleaning the page for us (how nice!). in this case, if we
755 * have syncio specified, then after we make our pass through the
756 * object we need to wait for the other PG_BUSY pages to clear
757 * off (i.e. we need to do an iosync). also note that once a
758 * page is PG_BUSY it must stay in its object until it is un-busyed.
759 *
760 * note on page traversal:
761 * we can traverse the pages in an object either by going down the
762 * linked list in "uobj->memq", or we can go over the address range
763 * by page doing hash table lookups for each address. depending
764 * on how many pages are in the object it may be cheaper to do one
765 * or the other. we set "by_list" to true if we are using memq.
766 * if the cost of a hash lookup was equal to the cost of the list
767 * traversal we could compare the number of pages in the start->stop
768 * range to the total number of pages in the object. however, it
769 * seems that a hash table lookup is more expensive than the linked
770 * list traversal, so we multiply the number of pages in the
771 * range by an estimate of the relatively higher cost of the hash lookup.
772 */
773
774 int
775 genfs_putpages(void *v)
776 {
777 struct vop_putpages_args /* {
778 struct vnode *a_vp;
779 voff_t a_offlo;
780 voff_t a_offhi;
781 int a_flags;
782 } */ * const ap = v;
783
784 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
785 ap->a_flags, NULL);
786 }
787
788 int
789 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
790 int origflags, struct vm_page **busypg)
791 {
792 struct uvm_object * const uobj = &vp->v_uobj;
793 kmutex_t * const slock = &uobj->vmobjlock;
794 off_t off;
795 /* Even for strange MAXPHYS, the shift rounds down to a page */
796 #define maxpages (MAXPHYS >> PAGE_SHIFT)
797 int i, error, npages, nback;
798 int freeflag;
799 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
800 bool wasclean, by_list, needs_clean, yld;
801 bool async = (origflags & PGO_SYNCIO) == 0;
802 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
803 struct lwp * const l = curlwp ? curlwp : &lwp0;
804 struct genfs_node * const gp = VTOG(vp);
805 int flags;
806 int dirtygen;
807 bool modified;
808 bool need_wapbl;
809 bool has_trans;
810 bool cleanall;
811 bool onworklst;
812
813 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
814
815 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
816 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
817 KASSERT(startoff < endoff || endoff == 0);
818
819 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
820 vp, uobj->uo_npages, startoff, endoff - startoff);
821
822 has_trans = false;
823 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
824 (origflags & PGO_JOURNALLOCKED) == 0);
825
826 retry:
827 modified = false;
828 flags = origflags;
829 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
830 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
831 if (uobj->uo_npages == 0) {
832 if (vp->v_iflag & VI_ONWORKLST) {
833 vp->v_iflag &= ~VI_WRMAPDIRTY;
834 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
835 vn_syncer_remove_from_worklist(vp);
836 }
837 if (has_trans) {
838 if (need_wapbl)
839 WAPBL_END(vp->v_mount);
840 fstrans_done(vp->v_mount);
841 }
842 mutex_exit(slock);
843 return (0);
844 }
845
846 /*
847 * the vnode has pages, set up to process the request.
848 */
849
850 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
851 mutex_exit(slock);
852 if (pagedaemon) {
853 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
854 if (error)
855 return error;
856 } else
857 fstrans_start(vp->v_mount, FSTRANS_LAZY);
858 if (need_wapbl) {
859 error = WAPBL_BEGIN(vp->v_mount);
860 if (error) {
861 fstrans_done(vp->v_mount);
862 return error;
863 }
864 }
865 has_trans = true;
866 mutex_enter(slock);
867 goto retry;
868 }
869
870 error = 0;
871 wasclean = (vp->v_numoutput == 0);
872 off = startoff;
873 if (endoff == 0 || flags & PGO_ALLPAGES) {
874 endoff = trunc_page(LLONG_MAX);
875 }
876 by_list = (uobj->uo_npages <=
877 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
878
879 #if !defined(DEBUG)
880 /*
881 * if this vnode is known not to have dirty pages,
882 * don't bother to clean it out.
883 */
884
885 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
886 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
887 goto skip_scan;
888 }
889 flags &= ~PGO_CLEANIT;
890 }
891 #endif /* !defined(DEBUG) */
892
893 /*
894 * start the loop. when scanning by list, hold the last page
895 * in the list before we start. pages allocated after we start
896 * will be added to the end of the list, so we can stop at the
897 * current last page.
898 */
899
900 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
901 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
902 (vp->v_iflag & VI_ONWORKLST) != 0;
903 dirtygen = gp->g_dirtygen;
904 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
905 if (by_list) {
906 curmp.flags = PG_MARKER;
907 endmp.flags = PG_MARKER;
908 pg = TAILQ_FIRST(&uobj->memq);
909 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
910 } else {
911 pg = uvm_pagelookup(uobj, off);
912 }
913 nextpg = NULL;
914 while (by_list || off < endoff) {
915
916 /*
917 * if the current page is not interesting, move on to the next.
918 */
919
920 KASSERT(pg == NULL || pg->uobject == uobj ||
921 (pg->flags & PG_MARKER) != 0);
922 KASSERT(pg == NULL ||
923 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
924 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
925 if (by_list) {
926 if (pg == &endmp) {
927 break;
928 }
929 if (pg->flags & PG_MARKER) {
930 pg = TAILQ_NEXT(pg, listq.queue);
931 continue;
932 }
933 if (pg->offset < startoff || pg->offset >= endoff ||
934 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
935 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
936 wasclean = false;
937 }
938 pg = TAILQ_NEXT(pg, listq.queue);
939 continue;
940 }
941 off = pg->offset;
942 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
943 if (pg != NULL) {
944 wasclean = false;
945 }
946 off += PAGE_SIZE;
947 if (off < endoff) {
948 pg = uvm_pagelookup(uobj, off);
949 }
950 continue;
951 }
952
953 /*
954 * if the current page needs to be cleaned and it's busy,
955 * wait for it to become unbusy.
956 */
957
958 yld = (l->l_cpu->ci_schedstate.spc_flags &
959 SPCF_SHOULDYIELD) && !pagedaemon;
960 if (pg->flags & PG_BUSY || yld) {
961 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
962 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
963 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
964 error = EDEADLK;
965 if (busypg != NULL)
966 *busypg = pg;
967 break;
968 }
969 if (pagedaemon) {
970 /*
971 * someone has taken the page while we
972 * dropped the lock for fstrans_start.
973 */
974 break;
975 }
976 if (by_list) {
977 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
978 UVMHIST_LOG(ubchist, "curmp next %p",
979 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
980 }
981 if (yld) {
982 mutex_exit(slock);
983 preempt();
984 mutex_enter(slock);
985 } else {
986 pg->flags |= PG_WANTED;
987 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
988 mutex_enter(slock);
989 }
990 if (by_list) {
991 UVMHIST_LOG(ubchist, "after next %p",
992 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
993 pg = TAILQ_NEXT(&curmp, listq.queue);
994 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
995 } else {
996 pg = uvm_pagelookup(uobj, off);
997 }
998 continue;
999 }
1000
1001 /*
1002 * if we're freeing, remove all mappings of the page now.
1003 * if we're cleaning, check if the page is needs to be cleaned.
1004 */
1005
1006 if (flags & PGO_FREE) {
1007 pmap_page_protect(pg, VM_PROT_NONE);
1008 } else if (flags & PGO_CLEANIT) {
1009
1010 /*
1011 * if we still have some hope to pull this vnode off
1012 * from the syncer queue, write-protect the page.
1013 */
1014
1015 if (cleanall && wasclean &&
1016 gp->g_dirtygen == dirtygen) {
1017
1018 /*
1019 * uobj pages get wired only by uvm_fault
1020 * where uobj is locked.
1021 */
1022
1023 if (pg->wire_count == 0) {
1024 pmap_page_protect(pg,
1025 VM_PROT_READ|VM_PROT_EXECUTE);
1026 } else {
1027 cleanall = false;
1028 }
1029 }
1030 }
1031
1032 if (flags & PGO_CLEANIT) {
1033 needs_clean = pmap_clear_modify(pg) ||
1034 (pg->flags & PG_CLEAN) == 0;
1035 pg->flags |= PG_CLEAN;
1036 } else {
1037 needs_clean = false;
1038 }
1039
1040 /*
1041 * if we're cleaning, build a cluster.
1042 * the cluster will consist of pages which are currently dirty,
1043 * but they will be returned to us marked clean.
1044 * if not cleaning, just operate on the one page.
1045 */
1046
1047 if (needs_clean) {
1048 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1049 wasclean = false;
1050 memset(pgs, 0, sizeof(pgs));
1051 pg->flags |= PG_BUSY;
1052 UVM_PAGE_OWN(pg, "genfs_putpages");
1053
1054 /*
1055 * first look backward.
1056 */
1057
1058 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1059 nback = npages;
1060 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1061 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1062 if (nback) {
1063 memmove(&pgs[0], &pgs[npages - nback],
1064 nback * sizeof(pgs[0]));
1065 if (npages - nback < nback)
1066 memset(&pgs[nback], 0,
1067 (npages - nback) * sizeof(pgs[0]));
1068 else
1069 memset(&pgs[npages - nback], 0,
1070 nback * sizeof(pgs[0]));
1071 }
1072
1073 /*
1074 * then plug in our page of interest.
1075 */
1076
1077 pgs[nback] = pg;
1078
1079 /*
1080 * then look forward to fill in the remaining space in
1081 * the array of pages.
1082 */
1083
1084 npages = maxpages - nback - 1;
1085 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1086 &pgs[nback + 1],
1087 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1088 npages += nback + 1;
1089 } else {
1090 pgs[0] = pg;
1091 npages = 1;
1092 nback = 0;
1093 }
1094
1095 /*
1096 * apply FREE or DEACTIVATE options if requested.
1097 */
1098
1099 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1100 mutex_enter(&uvm_pageqlock);
1101 }
1102 for (i = 0; i < npages; i++) {
1103 tpg = pgs[i];
1104 KASSERT(tpg->uobject == uobj);
1105 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1106 pg = tpg;
1107 if (tpg->offset < startoff || tpg->offset >= endoff)
1108 continue;
1109 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1110 uvm_pagedeactivate(tpg);
1111 } else if (flags & PGO_FREE) {
1112 pmap_page_protect(tpg, VM_PROT_NONE);
1113 if (tpg->flags & PG_BUSY) {
1114 tpg->flags |= freeflag;
1115 if (pagedaemon) {
1116 uvm_pageout_start(1);
1117 uvm_pagedequeue(tpg);
1118 }
1119 } else {
1120
1121 /*
1122 * ``page is not busy''
1123 * implies that npages is 1
1124 * and needs_clean is false.
1125 */
1126
1127 nextpg = TAILQ_NEXT(tpg, listq.queue);
1128 uvm_pagefree(tpg);
1129 if (pagedaemon)
1130 uvmexp.pdfreed++;
1131 }
1132 }
1133 }
1134 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1135 mutex_exit(&uvm_pageqlock);
1136 }
1137 if (needs_clean) {
1138 modified = true;
1139
1140 /*
1141 * start the i/o. if we're traversing by list,
1142 * keep our place in the list with a marker page.
1143 */
1144
1145 if (by_list) {
1146 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1147 listq.queue);
1148 }
1149 mutex_exit(slock);
1150 error = GOP_WRITE(vp, pgs, npages, flags);
1151 mutex_enter(slock);
1152 if (by_list) {
1153 pg = TAILQ_NEXT(&curmp, listq.queue);
1154 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1155 }
1156 if (error) {
1157 break;
1158 }
1159 if (by_list) {
1160 continue;
1161 }
1162 }
1163
1164 /*
1165 * find the next page and continue if there was no error.
1166 */
1167
1168 if (by_list) {
1169 if (nextpg) {
1170 pg = nextpg;
1171 nextpg = NULL;
1172 } else {
1173 pg = TAILQ_NEXT(pg, listq.queue);
1174 }
1175 } else {
1176 off += (npages - nback) << PAGE_SHIFT;
1177 if (off < endoff) {
1178 pg = uvm_pagelookup(uobj, off);
1179 }
1180 }
1181 }
1182 if (by_list) {
1183 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1184 }
1185
1186 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1187 (vp->v_type != VBLK ||
1188 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1189 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1190 }
1191
1192 /*
1193 * if we're cleaning and there was nothing to clean,
1194 * take us off the syncer list. if we started any i/o
1195 * and we're doing sync i/o, wait for all writes to finish.
1196 */
1197
1198 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1199 (vp->v_iflag & VI_ONWORKLST) != 0) {
1200 #if defined(DEBUG)
1201 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1202 if ((pg->flags & PG_MARKER) != 0) {
1203 continue;
1204 }
1205 if ((pg->flags & PG_CLEAN) == 0) {
1206 printf("%s: %p: !CLEAN\n", __func__, pg);
1207 }
1208 if (pmap_is_modified(pg)) {
1209 printf("%s: %p: modified\n", __func__, pg);
1210 }
1211 }
1212 #endif /* defined(DEBUG) */
1213 vp->v_iflag &= ~VI_WRMAPDIRTY;
1214 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1215 vn_syncer_remove_from_worklist(vp);
1216 }
1217
1218 #if !defined(DEBUG)
1219 skip_scan:
1220 #endif /* !defined(DEBUG) */
1221
1222 /* Wait for output to complete. */
1223 if (!wasclean && !async && vp->v_numoutput != 0) {
1224 while (vp->v_numoutput != 0)
1225 cv_wait(&vp->v_cv, slock);
1226 }
1227 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1228 mutex_exit(slock);
1229
1230 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1231 /*
1232 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1233 * retrying is not a big deal because, in many cases,
1234 * uobj->uo_npages is already 0 here.
1235 */
1236 mutex_enter(slock);
1237 goto retry;
1238 }
1239
1240 if (has_trans) {
1241 if (need_wapbl)
1242 WAPBL_END(vp->v_mount);
1243 fstrans_done(vp->v_mount);
1244 }
1245
1246 return (error);
1247 }
1248
1249 int
1250 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1251 {
1252 off_t off;
1253 vaddr_t kva;
1254 size_t len;
1255 int error;
1256 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1257
1258 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1259 vp, pgs, npages, flags);
1260
1261 off = pgs[0]->offset;
1262 kva = uvm_pagermapin(pgs, npages,
1263 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1264 len = npages << PAGE_SHIFT;
1265
1266 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1267 uvm_aio_biodone);
1268
1269 return error;
1270 }
1271
1272 int
1273 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1274 {
1275 off_t off;
1276 vaddr_t kva;
1277 size_t len;
1278 int error;
1279 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1280
1281 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1282 vp, pgs, npages, flags);
1283
1284 off = pgs[0]->offset;
1285 kva = uvm_pagermapin(pgs, npages,
1286 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1287 len = npages << PAGE_SHIFT;
1288
1289 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1290 uvm_aio_biodone);
1291
1292 return error;
1293 }
1294
1295 /*
1296 * Backend routine for doing I/O to vnode pages. Pages are already locked
1297 * and mapped into kernel memory. Here we just look up the underlying
1298 * device block addresses and call the strategy routine.
1299 */
1300
1301 static int
1302 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1303 enum uio_rw rw, void (*iodone)(struct buf *))
1304 {
1305 int s, error;
1306 int fs_bshift, dev_bshift;
1307 off_t eof, offset, startoffset;
1308 size_t bytes, iobytes, skipbytes;
1309 struct buf *mbp, *bp;
1310 const bool async = (flags & PGO_SYNCIO) == 0;
1311 const bool iowrite = rw == UIO_WRITE;
1312 const int brw = iowrite ? B_WRITE : B_READ;
1313 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1314
1315 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1316 vp, kva, len, flags);
1317
1318 KASSERT(vp->v_size <= vp->v_writesize);
1319 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1320 if (vp->v_type != VBLK) {
1321 fs_bshift = vp->v_mount->mnt_fs_bshift;
1322 dev_bshift = vp->v_mount->mnt_dev_bshift;
1323 } else {
1324 fs_bshift = DEV_BSHIFT;
1325 dev_bshift = DEV_BSHIFT;
1326 }
1327 error = 0;
1328 startoffset = off;
1329 bytes = MIN(len, eof - startoffset);
1330 skipbytes = 0;
1331 KASSERT(bytes != 0);
1332
1333 if (iowrite) {
1334 mutex_enter(&vp->v_interlock);
1335 vp->v_numoutput += 2;
1336 mutex_exit(&vp->v_interlock);
1337 }
1338 mbp = getiobuf(vp, true);
1339 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1340 vp, mbp, vp->v_numoutput, bytes);
1341 mbp->b_bufsize = len;
1342 mbp->b_data = (void *)kva;
1343 mbp->b_resid = mbp->b_bcount = bytes;
1344 mbp->b_cflags = BC_BUSY | BC_AGE;
1345 if (async) {
1346 mbp->b_flags = brw | B_ASYNC;
1347 mbp->b_iodone = iodone;
1348 } else {
1349 mbp->b_flags = brw;
1350 mbp->b_iodone = NULL;
1351 }
1352 if (curlwp == uvm.pagedaemon_lwp)
1353 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1354 else if (async)
1355 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1356 else
1357 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1358
1359 bp = NULL;
1360 for (offset = startoffset;
1361 bytes > 0;
1362 offset += iobytes, bytes -= iobytes) {
1363 int run;
1364 daddr_t lbn, blkno;
1365 struct vnode *devvp;
1366
1367 /*
1368 * bmap the file to find out the blkno to read from and
1369 * how much we can read in one i/o. if bmap returns an error,
1370 * skip the rest of the top-level i/o.
1371 */
1372
1373 lbn = offset >> fs_bshift;
1374 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1375 if (error) {
1376 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1377 lbn,error,0,0);
1378 skipbytes += bytes;
1379 bytes = 0;
1380 goto loopdone;
1381 }
1382
1383 /*
1384 * see how many pages can be read with this i/o.
1385 * reduce the i/o size if necessary to avoid
1386 * overwriting pages with valid data.
1387 */
1388
1389 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1390 bytes);
1391
1392 /*
1393 * if this block isn't allocated, zero it instead of
1394 * reading it. unless we are going to allocate blocks,
1395 * mark the pages we zeroed PG_RDONLY.
1396 */
1397
1398 if (blkno == (daddr_t)-1) {
1399 if (!iowrite) {
1400 memset((char *)kva + (offset - startoffset), 0,
1401 iobytes);
1402 }
1403 skipbytes += iobytes;
1404 continue;
1405 }
1406
1407 /*
1408 * allocate a sub-buf for this piece of the i/o
1409 * (or just use mbp if there's only 1 piece),
1410 * and start it going.
1411 */
1412
1413 if (offset == startoffset && iobytes == bytes) {
1414 bp = mbp;
1415 } else {
1416 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1417 vp, bp, vp->v_numoutput, 0);
1418 bp = getiobuf(vp, true);
1419 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1420 }
1421 bp->b_lblkno = 0;
1422
1423 /* adjust physical blkno for partial blocks */
1424 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1425 dev_bshift);
1426
1427 UVMHIST_LOG(ubchist,
1428 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1429 bp, offset, bp->b_bcount, bp->b_blkno);
1430
1431 VOP_STRATEGY(devvp, bp);
1432 }
1433
1434 loopdone:
1435 if (skipbytes) {
1436 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1437 }
1438 nestiobuf_done(mbp, skipbytes, error);
1439 if (async) {
1440 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1441 return (0);
1442 }
1443 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1444 error = biowait(mbp);
1445 s = splbio();
1446 (*iodone)(mbp);
1447 splx(s);
1448 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1449 return (error);
1450 }
1451
1452 int
1453 genfs_compat_getpages(void *v)
1454 {
1455 struct vop_getpages_args /* {
1456 struct vnode *a_vp;
1457 voff_t a_offset;
1458 struct vm_page **a_m;
1459 int *a_count;
1460 int a_centeridx;
1461 vm_prot_t a_access_type;
1462 int a_advice;
1463 int a_flags;
1464 } */ *ap = v;
1465
1466 off_t origoffset;
1467 struct vnode *vp = ap->a_vp;
1468 struct uvm_object *uobj = &vp->v_uobj;
1469 struct vm_page *pg, **pgs;
1470 vaddr_t kva;
1471 int i, error, orignpages, npages;
1472 struct iovec iov;
1473 struct uio uio;
1474 kauth_cred_t cred = curlwp->l_cred;
1475 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1476
1477 error = 0;
1478 origoffset = ap->a_offset;
1479 orignpages = *ap->a_count;
1480 pgs = ap->a_m;
1481
1482 if (ap->a_flags & PGO_LOCKED) {
1483 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1484 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1485
1486 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1487 if (error == 0 && memwrite) {
1488 genfs_markdirty(vp);
1489 }
1490 return error;
1491 }
1492 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1493 mutex_exit(&uobj->vmobjlock);
1494 return EINVAL;
1495 }
1496 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1497 mutex_exit(&uobj->vmobjlock);
1498 return 0;
1499 }
1500 npages = orignpages;
1501 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1502 mutex_exit(&uobj->vmobjlock);
1503 kva = uvm_pagermapin(pgs, npages,
1504 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1505 for (i = 0; i < npages; i++) {
1506 pg = pgs[i];
1507 if ((pg->flags & PG_FAKE) == 0) {
1508 continue;
1509 }
1510 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1511 iov.iov_len = PAGE_SIZE;
1512 uio.uio_iov = &iov;
1513 uio.uio_iovcnt = 1;
1514 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1515 uio.uio_rw = UIO_READ;
1516 uio.uio_resid = PAGE_SIZE;
1517 UIO_SETUP_SYSSPACE(&uio);
1518 /* XXX vn_lock */
1519 error = VOP_READ(vp, &uio, 0, cred);
1520 if (error) {
1521 break;
1522 }
1523 if (uio.uio_resid) {
1524 memset(iov.iov_base, 0, uio.uio_resid);
1525 }
1526 }
1527 uvm_pagermapout(kva, npages);
1528 mutex_enter(&uobj->vmobjlock);
1529 mutex_enter(&uvm_pageqlock);
1530 for (i = 0; i < npages; i++) {
1531 pg = pgs[i];
1532 if (error && (pg->flags & PG_FAKE) != 0) {
1533 pg->flags |= PG_RELEASED;
1534 } else {
1535 pmap_clear_modify(pg);
1536 uvm_pageactivate(pg);
1537 }
1538 }
1539 if (error) {
1540 uvm_page_unbusy(pgs, npages);
1541 }
1542 mutex_exit(&uvm_pageqlock);
1543 if (error == 0 && memwrite) {
1544 genfs_markdirty(vp);
1545 }
1546 mutex_exit(&uobj->vmobjlock);
1547 return error;
1548 }
1549
1550 int
1551 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1552 int flags)
1553 {
1554 off_t offset;
1555 struct iovec iov;
1556 struct uio uio;
1557 kauth_cred_t cred = curlwp->l_cred;
1558 struct buf *bp;
1559 vaddr_t kva;
1560 int error;
1561
1562 offset = pgs[0]->offset;
1563 kva = uvm_pagermapin(pgs, npages,
1564 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1565
1566 iov.iov_base = (void *)kva;
1567 iov.iov_len = npages << PAGE_SHIFT;
1568 uio.uio_iov = &iov;
1569 uio.uio_iovcnt = 1;
1570 uio.uio_offset = offset;
1571 uio.uio_rw = UIO_WRITE;
1572 uio.uio_resid = npages << PAGE_SHIFT;
1573 UIO_SETUP_SYSSPACE(&uio);
1574 /* XXX vn_lock */
1575 error = VOP_WRITE(vp, &uio, 0, cred);
1576
1577 mutex_enter(&vp->v_interlock);
1578 vp->v_numoutput++;
1579 mutex_exit(&vp->v_interlock);
1580
1581 bp = getiobuf(vp, true);
1582 bp->b_cflags = BC_BUSY | BC_AGE;
1583 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1584 bp->b_data = (char *)kva;
1585 bp->b_bcount = npages << PAGE_SHIFT;
1586 bp->b_bufsize = npages << PAGE_SHIFT;
1587 bp->b_resid = 0;
1588 bp->b_error = error;
1589 uvm_aio_aiodone(bp);
1590 return (error);
1591 }
1592
1593 /*
1594 * Process a uio using direct I/O. If we reach a part of the request
1595 * which cannot be processed in this fashion for some reason, just return.
1596 * The caller must handle some additional part of the request using
1597 * buffered I/O before trying direct I/O again.
1598 */
1599
1600 void
1601 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1602 {
1603 struct vmspace *vs;
1604 struct iovec *iov;
1605 vaddr_t va;
1606 size_t len;
1607 const int mask = DEV_BSIZE - 1;
1608 int error;
1609 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1610 (ioflag & IO_JOURNALLOCKED) == 0);
1611
1612 /*
1613 * We only support direct I/O to user space for now.
1614 */
1615
1616 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1617 return;
1618 }
1619
1620 /*
1621 * If the vnode is mapped, we would need to get the getpages lock
1622 * to stabilize the bmap, but then we would get into trouble whil e
1623 * locking the pages if the pages belong to this same vnode (or a
1624 * multi-vnode cascade to the same effect). Just fall back to
1625 * buffered I/O if the vnode is mapped to avoid this mess.
1626 */
1627
1628 if (vp->v_vflag & VV_MAPPED) {
1629 return;
1630 }
1631
1632 if (need_wapbl) {
1633 error = WAPBL_BEGIN(vp->v_mount);
1634 if (error)
1635 return;
1636 }
1637
1638 /*
1639 * Do as much of the uio as possible with direct I/O.
1640 */
1641
1642 vs = uio->uio_vmspace;
1643 while (uio->uio_resid) {
1644 iov = uio->uio_iov;
1645 if (iov->iov_len == 0) {
1646 uio->uio_iov++;
1647 uio->uio_iovcnt--;
1648 continue;
1649 }
1650 va = (vaddr_t)iov->iov_base;
1651 len = MIN(iov->iov_len, genfs_maxdio);
1652 len &= ~mask;
1653
1654 /*
1655 * If the next chunk is smaller than DEV_BSIZE or extends past
1656 * the current EOF, then fall back to buffered I/O.
1657 */
1658
1659 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1660 break;
1661 }
1662
1663 /*
1664 * Check alignment. The file offset must be at least
1665 * sector-aligned. The exact constraint on memory alignment
1666 * is very hardware-dependent, but requiring sector-aligned
1667 * addresses there too is safe.
1668 */
1669
1670 if (uio->uio_offset & mask || va & mask) {
1671 break;
1672 }
1673 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1674 uio->uio_rw);
1675 if (error) {
1676 break;
1677 }
1678 iov->iov_base = (char *)iov->iov_base + len;
1679 iov->iov_len -= len;
1680 uio->uio_offset += len;
1681 uio->uio_resid -= len;
1682 }
1683
1684 if (need_wapbl)
1685 WAPBL_END(vp->v_mount);
1686 }
1687
1688 /*
1689 * Iodone routine for direct I/O. We don't do much here since the request is
1690 * always synchronous, so the caller will do most of the work after biowait().
1691 */
1692
1693 static void
1694 genfs_dio_iodone(struct buf *bp)
1695 {
1696
1697 KASSERT((bp->b_flags & B_ASYNC) == 0);
1698 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1699 mutex_enter(bp->b_objlock);
1700 vwakeup(bp);
1701 mutex_exit(bp->b_objlock);
1702 }
1703 putiobuf(bp);
1704 }
1705
1706 /*
1707 * Process one chunk of a direct I/O request.
1708 */
1709
1710 static int
1711 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1712 off_t off, enum uio_rw rw)
1713 {
1714 struct vm_map *map;
1715 struct pmap *upm, *kpm;
1716 size_t klen = round_page(uva + len) - trunc_page(uva);
1717 off_t spoff, epoff;
1718 vaddr_t kva, puva;
1719 paddr_t pa;
1720 vm_prot_t prot;
1721 int error, rv, poff, koff;
1722 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1723 (rw == UIO_WRITE ? PGO_FREE : 0);
1724
1725 /*
1726 * For writes, verify that this range of the file already has fully
1727 * allocated backing store. If there are any holes, just punt and
1728 * make the caller take the buffered write path.
1729 */
1730
1731 if (rw == UIO_WRITE) {
1732 daddr_t lbn, elbn, blkno;
1733 int bsize, bshift, run;
1734
1735 bshift = vp->v_mount->mnt_fs_bshift;
1736 bsize = 1 << bshift;
1737 lbn = off >> bshift;
1738 elbn = (off + len + bsize - 1) >> bshift;
1739 while (lbn < elbn) {
1740 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1741 if (error) {
1742 return error;
1743 }
1744 if (blkno == (daddr_t)-1) {
1745 return ENOSPC;
1746 }
1747 lbn += 1 + run;
1748 }
1749 }
1750
1751 /*
1752 * Flush any cached pages for parts of the file that we're about to
1753 * access. If we're writing, invalidate pages as well.
1754 */
1755
1756 spoff = trunc_page(off);
1757 epoff = round_page(off + len);
1758 mutex_enter(&vp->v_interlock);
1759 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1760 if (error) {
1761 return error;
1762 }
1763
1764 /*
1765 * Wire the user pages and remap them into kernel memory.
1766 */
1767
1768 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1769 error = uvm_vslock(vs, (void *)uva, len, prot);
1770 if (error) {
1771 return error;
1772 }
1773
1774 map = &vs->vm_map;
1775 upm = vm_map_pmap(map);
1776 kpm = vm_map_pmap(kernel_map);
1777 kva = uvm_km_alloc(kernel_map, klen, 0,
1778 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1779 puva = trunc_page(uva);
1780 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1781 rv = pmap_extract(upm, puva + poff, &pa);
1782 KASSERT(rv);
1783 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1784 }
1785 pmap_update(kpm);
1786
1787 /*
1788 * Do the I/O.
1789 */
1790
1791 koff = uva - trunc_page(uva);
1792 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1793 genfs_dio_iodone);
1794
1795 /*
1796 * Tear down the kernel mapping.
1797 */
1798
1799 pmap_remove(kpm, kva, kva + klen);
1800 pmap_update(kpm);
1801 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1802
1803 /*
1804 * Unwire the user pages.
1805 */
1806
1807 uvm_vsunlock(vs, (void *)uva, len);
1808 return error;
1809 }
1810
1811