Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.6.2.5
      1 /*	$NetBSD: genfs_io.c,v 1.6.2.5 2010/10/09 03:32:34 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.6.2.5 2010/10/09 03:32:34 yamt Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 #include <sys/buf.h>
     51 
     52 #include <miscfs/genfs/genfs.h>
     53 #include <miscfs/genfs/genfs_node.h>
     54 #include <miscfs/specfs/specdev.h>
     55 
     56 #include <uvm/uvm.h>
     57 #include <uvm/uvm_pager.h>
     58 
     59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     60     off_t, enum uio_rw);
     61 static void genfs_dio_iodone(struct buf *);
     62 
     63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     64     void (*)(struct buf *));
     65 static void genfs_rel_pages(struct vm_page **, int);
     66 static void genfs_markdirty(struct vnode *);
     67 
     68 int genfs_maxdio = MAXPHYS;
     69 
     70 static void
     71 genfs_rel_pages(struct vm_page **pgs, int npages)
     72 {
     73 	int i;
     74 
     75 	for (i = 0; i < npages; i++) {
     76 		struct vm_page *pg = pgs[i];
     77 
     78 		if (pg == NULL || pg == PGO_DONTCARE)
     79 			continue;
     80 		if (pg->flags & PG_FAKE) {
     81 			pg->flags |= PG_RELEASED;
     82 		}
     83 	}
     84 	mutex_enter(&uvm_pageqlock);
     85 	uvm_page_unbusy(pgs, npages);
     86 	mutex_exit(&uvm_pageqlock);
     87 }
     88 
     89 static void
     90 genfs_markdirty(struct vnode *vp)
     91 {
     92 	struct genfs_node * const gp = VTOG(vp);
     93 
     94 	KASSERT(mutex_owned(&vp->v_interlock));
     95 	gp->g_dirtygen++;
     96 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     97 		vn_syncer_add_to_worklist(vp, filedelay);
     98 	}
     99 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    100 		vp->v_iflag |= VI_WRMAPDIRTY;
    101 	}
    102 }
    103 
    104 /*
    105  * generic VM getpages routine.
    106  * Return PG_BUSY pages for the given range,
    107  * reading from backing store if necessary.
    108  */
    109 
    110 int
    111 genfs_getpages(void *v)
    112 {
    113 	struct vop_getpages_args /* {
    114 		struct vnode *a_vp;
    115 		voff_t a_offset;
    116 		struct vm_page **a_m;
    117 		int *a_count;
    118 		int a_centeridx;
    119 		vm_prot_t a_access_type;
    120 		int a_advice;
    121 		int a_flags;
    122 	} */ * const ap = v;
    123 
    124 	off_t diskeof, memeof;
    125 	int i, error, npages;
    126 	const int flags = ap->a_flags;
    127 	struct vnode * const vp = ap->a_vp;
    128 	struct uvm_object * const uobj = &vp->v_uobj;
    129 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    130 	const bool async = (flags & PGO_SYNCIO) == 0;
    131 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    132 	bool has_trans = false;
    133 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    134 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    135 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    136 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    137 
    138 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    139 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    140 
    141 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    142 	    vp->v_type == VLNK || vp->v_type == VBLK);
    143 
    144 startover:
    145 	error = 0;
    146 	const voff_t origvsize = vp->v_size;
    147 	const off_t origoffset = ap->a_offset;
    148 	const int orignpages = *ap->a_count;
    149 
    150 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    151 	if (flags & PGO_PASTEOF) {
    152 		off_t newsize;
    153 #if defined(DIAGNOSTIC)
    154 		off_t writeeof;
    155 #endif /* defined(DIAGNOSTIC) */
    156 
    157 		newsize = MAX(origvsize,
    158 		    origoffset + (orignpages << PAGE_SHIFT));
    159 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    160 #if defined(DIAGNOSTIC)
    161 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    162 		if (newsize > round_page(writeeof)) {
    163 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    164 			    __func__, newsize, round_page(writeeof));
    165 		}
    166 #endif /* defined(DIAGNOSTIC) */
    167 	} else {
    168 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    169 	}
    170 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    171 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    172 	KASSERT(orignpages > 0);
    173 
    174 	/*
    175 	 * Bounds-check the request.
    176 	 */
    177 
    178 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    179 		if ((flags & PGO_LOCKED) == 0) {
    180 			mutex_exit(&uobj->vmobjlock);
    181 		}
    182 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    183 		    origoffset, *ap->a_count, memeof,0);
    184 		error = EINVAL;
    185 		goto out_err;
    186 	}
    187 
    188 	/* uobj is locked */
    189 
    190 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    191 	    (vp->v_type != VBLK ||
    192 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    193 		int updflags = 0;
    194 
    195 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    196 			updflags = GOP_UPDATE_ACCESSED;
    197 		}
    198 		if (memwrite) {
    199 			updflags |= GOP_UPDATE_MODIFIED;
    200 		}
    201 		if (updflags != 0) {
    202 			GOP_MARKUPDATE(vp, updflags);
    203 		}
    204 	}
    205 
    206 	/*
    207 	 * For PGO_LOCKED requests, just return whatever's in memory.
    208 	 */
    209 
    210 	if (flags & PGO_LOCKED) {
    211 		int nfound;
    212 		struct vm_page *pg;
    213 
    214 		KASSERT(!glocked);
    215 		npages = *ap->a_count;
    216 #if defined(DEBUG)
    217 		for (i = 0; i < npages; i++) {
    218 			pg = ap->a_m[i];
    219 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    220 		}
    221 #endif /* defined(DEBUG) */
    222 		nfound = uvn_findpages(uobj, origoffset, &npages,
    223 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    224 		KASSERT(npages == *ap->a_count);
    225 		if (nfound == 0) {
    226 			error = EBUSY;
    227 			goto out_err;
    228 		}
    229 		if (!genfs_node_rdtrylock(vp)) {
    230 			genfs_rel_pages(ap->a_m, npages);
    231 
    232 			/*
    233 			 * restore the array.
    234 			 */
    235 
    236 			for (i = 0; i < npages; i++) {
    237 				pg = ap->a_m[i];
    238 
    239 				if (pg != NULL || pg != PGO_DONTCARE) {
    240 					ap->a_m[i] = NULL;
    241 				}
    242 			}
    243 		} else {
    244 			genfs_node_unlock(vp);
    245 		}
    246 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    247 		if (error == 0 && memwrite) {
    248 			genfs_markdirty(vp);
    249 		}
    250 		goto out_err;
    251 	}
    252 	mutex_exit(&uobj->vmobjlock);
    253 
    254 	/*
    255 	 * find the requested pages and make some simple checks.
    256 	 * leave space in the page array for a whole block.
    257 	 */
    258 
    259 	const int fs_bshift = (vp->v_type != VBLK) ?
    260 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    261 	const int dev_bshift = (vp->v_type != VBLK) ?
    262 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    263 	const int fs_bsize = 1 << fs_bshift;
    264 #define	blk_mask	(fs_bsize - 1)
    265 #define	trunc_blk(x)	((x) & ~blk_mask)
    266 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    267 
    268 	const int orignmempages = MIN(orignpages,
    269 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    270 	npages = orignmempages;
    271 	const off_t startoffset = trunc_blk(origoffset);
    272 	const off_t endoffset = MIN(
    273 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    274 	    round_page(memeof));
    275 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    276 
    277 	const int pgs_size = sizeof(struct vm_page *) *
    278 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    279 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    280 
    281 	if (pgs_size > sizeof(pgs_onstack)) {
    282 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    283 		if (pgs == NULL) {
    284 			pgs = pgs_onstack;
    285 			error = ENOMEM;
    286 			goto out_err;
    287 		}
    288 	} else {
    289 		pgs = pgs_onstack;
    290 		(void)memset(pgs, 0, pgs_size);
    291 	}
    292 
    293 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    294 	    ridx, npages, startoffset, endoffset);
    295 
    296 	if (!has_trans) {
    297 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    298 		has_trans = true;
    299 	}
    300 
    301 	/*
    302 	 * hold g_glock to prevent a race with truncate.
    303 	 *
    304 	 * check if our idea of v_size is still valid.
    305 	 */
    306 
    307 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    308 	if (!glocked) {
    309 		if (blockalloc) {
    310 			genfs_node_wrlock(vp);
    311 		} else {
    312 			genfs_node_rdlock(vp);
    313 		}
    314 	}
    315 	mutex_enter(&uobj->vmobjlock);
    316 	if (vp->v_size < origvsize) {
    317 		if (!glocked) {
    318 			genfs_node_unlock(vp);
    319 		}
    320 		if (pgs != pgs_onstack)
    321 			kmem_free(pgs, pgs_size);
    322 		goto startover;
    323 	}
    324 
    325 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    326 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    327 		if (!glocked) {
    328 			genfs_node_unlock(vp);
    329 		}
    330 		KASSERT(async != 0);
    331 		genfs_rel_pages(&pgs[ridx], orignmempages);
    332 		mutex_exit(&uobj->vmobjlock);
    333 		error = EBUSY;
    334 		goto out_err_free;
    335 	}
    336 
    337 	/*
    338 	 * if the pages are already resident, just return them.
    339 	 */
    340 
    341 	for (i = 0; i < npages; i++) {
    342 		struct vm_page *pg = pgs[ridx + i];
    343 
    344 		if ((pg->flags & PG_FAKE) ||
    345 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    346 			break;
    347 		}
    348 	}
    349 	if (i == npages) {
    350 		if (!glocked) {
    351 			genfs_node_unlock(vp);
    352 		}
    353 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    354 		npages += ridx;
    355 		goto out;
    356 	}
    357 
    358 	/*
    359 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    360 	 */
    361 
    362 	if (overwrite) {
    363 		if (!glocked) {
    364 			genfs_node_unlock(vp);
    365 		}
    366 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    367 
    368 		for (i = 0; i < npages; i++) {
    369 			struct vm_page *pg = pgs[ridx + i];
    370 
    371 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    372 		}
    373 		npages += ridx;
    374 		goto out;
    375 	}
    376 
    377 	/*
    378 	 * the page wasn't resident and we're not overwriting,
    379 	 * so we're going to have to do some i/o.
    380 	 * find any additional pages needed to cover the expanded range.
    381 	 */
    382 
    383 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    384 	if (startoffset != origoffset || npages != orignmempages) {
    385 		int npgs;
    386 
    387 		/*
    388 		 * we need to avoid deadlocks caused by locking
    389 		 * additional pages at lower offsets than pages we
    390 		 * already have locked.  unlock them all and start over.
    391 		 */
    392 
    393 		genfs_rel_pages(&pgs[ridx], orignmempages);
    394 		memset(pgs, 0, pgs_size);
    395 
    396 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    397 		    startoffset, endoffset, 0,0);
    398 		npgs = npages;
    399 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    400 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    401 			if (!glocked) {
    402 				genfs_node_unlock(vp);
    403 			}
    404 			KASSERT(async != 0);
    405 			genfs_rel_pages(pgs, npages);
    406 			mutex_exit(&uobj->vmobjlock);
    407 			error = EBUSY;
    408 			goto out_err_free;
    409 		}
    410 	}
    411 
    412 	mutex_exit(&uobj->vmobjlock);
    413 
    414     {
    415 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    416 	vaddr_t kva;
    417 	struct buf *bp, *mbp;
    418 	bool sawhole = false;
    419 
    420 	/*
    421 	 * read the desired page(s).
    422 	 */
    423 
    424 	totalbytes = npages << PAGE_SHIFT;
    425 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    426 	tailbytes = totalbytes - bytes;
    427 	skipbytes = 0;
    428 
    429 	kva = uvm_pagermapin(pgs, npages,
    430 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    431 
    432 	mbp = getiobuf(vp, true);
    433 	mbp->b_bufsize = totalbytes;
    434 	mbp->b_data = (void *)kva;
    435 	mbp->b_resid = mbp->b_bcount = bytes;
    436 	mbp->b_cflags = BC_BUSY;
    437 	if (async) {
    438 		mbp->b_flags = B_READ | B_ASYNC;
    439 		mbp->b_iodone = uvm_aio_biodone;
    440 	} else {
    441 		mbp->b_flags = B_READ;
    442 		mbp->b_iodone = NULL;
    443 	}
    444 	if (async)
    445 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    446 	else
    447 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    448 
    449 	/*
    450 	 * if EOF is in the middle of the range, zero the part past EOF.
    451 	 * skip over pages which are not PG_FAKE since in that case they have
    452 	 * valid data that we need to preserve.
    453 	 */
    454 
    455 	tailstart = bytes;
    456 	while (tailbytes > 0) {
    457 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    458 
    459 		KASSERT(len <= tailbytes);
    460 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    461 			memset((void *)(kva + tailstart), 0, len);
    462 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    463 			    kva, tailstart, len, 0);
    464 		}
    465 		tailstart += len;
    466 		tailbytes -= len;
    467 	}
    468 
    469 	/*
    470 	 * now loop over the pages, reading as needed.
    471 	 */
    472 
    473 	bp = NULL;
    474 	off_t offset;
    475 	for (offset = startoffset;
    476 	    bytes > 0;
    477 	    offset += iobytes, bytes -= iobytes) {
    478 		int run;
    479 		daddr_t lbn, blkno;
    480 		int pidx;
    481 		struct vnode *devvp;
    482 
    483 		/*
    484 		 * skip pages which don't need to be read.
    485 		 */
    486 
    487 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    488 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    489 			size_t b;
    490 
    491 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    492 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    493 				sawhole = true;
    494 			}
    495 			b = MIN(PAGE_SIZE, bytes);
    496 			offset += b;
    497 			bytes -= b;
    498 			skipbytes += b;
    499 			pidx++;
    500 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    501 			    offset, 0,0,0);
    502 			if (bytes == 0) {
    503 				goto loopdone;
    504 			}
    505 		}
    506 
    507 		/*
    508 		 * bmap the file to find out the blkno to read from and
    509 		 * how much we can read in one i/o.  if bmap returns an error,
    510 		 * skip the rest of the top-level i/o.
    511 		 */
    512 
    513 		lbn = offset >> fs_bshift;
    514 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    515 		if (error) {
    516 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    517 			    lbn,error,0,0);
    518 			skipbytes += bytes;
    519 			bytes = 0;
    520 			goto loopdone;
    521 		}
    522 
    523 		/*
    524 		 * see how many pages can be read with this i/o.
    525 		 * reduce the i/o size if necessary to avoid
    526 		 * overwriting pages with valid data.
    527 		 */
    528 
    529 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    530 		    bytes);
    531 		if (offset + iobytes > round_page(offset)) {
    532 			int pcount;
    533 
    534 			pcount = 1;
    535 			while (pidx + pcount < npages &&
    536 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    537 				pcount++;
    538 			}
    539 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    540 			    (offset - trunc_page(offset)));
    541 		}
    542 
    543 		/*
    544 		 * if this block isn't allocated, zero it instead of
    545 		 * reading it.  unless we are going to allocate blocks,
    546 		 * mark the pages we zeroed PG_RDONLY.
    547 		 */
    548 
    549 		if (blkno == (daddr_t)-1) {
    550 			int holepages = (round_page(offset + iobytes) -
    551 			    trunc_page(offset)) >> PAGE_SHIFT;
    552 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    553 
    554 			sawhole = true;
    555 			memset((char *)kva + (offset - startoffset), 0,
    556 			    iobytes);
    557 			skipbytes += iobytes;
    558 
    559 			for (i = 0; i < holepages; i++) {
    560 				if (memwrite) {
    561 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    562 				}
    563 				if (!blockalloc) {
    564 					pgs[pidx + i]->flags |= PG_RDONLY;
    565 				}
    566 			}
    567 			continue;
    568 		}
    569 
    570 		/*
    571 		 * allocate a sub-buf for this piece of the i/o
    572 		 * (or just use mbp if there's only 1 piece),
    573 		 * and start it going.
    574 		 */
    575 
    576 		if (offset == startoffset && iobytes == bytes) {
    577 			bp = mbp;
    578 		} else {
    579 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    580 			    vp, bp, vp->v_numoutput, 0);
    581 			bp = getiobuf(vp, true);
    582 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    583 		}
    584 		bp->b_lblkno = 0;
    585 
    586 		/* adjust physical blkno for partial blocks */
    587 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    588 		    dev_bshift);
    589 
    590 		UVMHIST_LOG(ubchist,
    591 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    592 		    bp, offset, bp->b_bcount, bp->b_blkno);
    593 
    594 		VOP_STRATEGY(devvp, bp);
    595 	}
    596 
    597 loopdone:
    598 	nestiobuf_done(mbp, skipbytes, error);
    599 	if (async) {
    600 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    601 		if (!glocked) {
    602 			genfs_node_unlock(vp);
    603 		}
    604 		error = 0;
    605 		goto out_err_free;
    606 	}
    607 	if (bp != NULL) {
    608 		error = biowait(mbp);
    609 	}
    610 
    611 	/* Remove the mapping (make KVA available as soon as possible) */
    612 	uvm_pagermapout(kva, npages);
    613 
    614 	/*
    615 	 * if this we encountered a hole then we have to do a little more work.
    616 	 * for read faults, we marked the page PG_RDONLY so that future
    617 	 * write accesses to the page will fault again.
    618 	 * for write faults, we must make sure that the backing store for
    619 	 * the page is completely allocated while the pages are locked.
    620 	 */
    621 
    622 	if (!error && sawhole && blockalloc) {
    623 		/*
    624 		 * XXX: This assumes that we come here only via
    625 		 * the mmio path
    626 		 */
    627 		if (vp->v_mount->mnt_wapbl) {
    628 			error = WAPBL_BEGIN(vp->v_mount);
    629 		}
    630 
    631 		if (!error) {
    632 			error = GOP_ALLOC(vp, startoffset,
    633 			    npages << PAGE_SHIFT, 0, cred);
    634 			if (vp->v_mount->mnt_wapbl) {
    635 				WAPBL_END(vp->v_mount);
    636 			}
    637 		}
    638 
    639 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    640 		    startoffset, npages << PAGE_SHIFT, error,0);
    641 		if (!error) {
    642 			for (i = 0; i < npages; i++) {
    643 				struct vm_page *pg = pgs[i];
    644 
    645 				if (pg == NULL) {
    646 					continue;
    647 				}
    648 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    649 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    650 				    pg,0,0,0);
    651 			}
    652 		}
    653 	}
    654 	if (!glocked) {
    655 		genfs_node_unlock(vp);
    656 	}
    657 
    658 	putiobuf(mbp);
    659     }
    660 
    661 	mutex_enter(&uobj->vmobjlock);
    662 
    663 	/*
    664 	 * we're almost done!  release the pages...
    665 	 * for errors, we free the pages.
    666 	 * otherwise we activate them and mark them as valid and clean.
    667 	 * also, unbusy pages that were not actually requested.
    668 	 */
    669 
    670 	if (error) {
    671 		for (i = 0; i < npages; i++) {
    672 			struct vm_page *pg = pgs[i];
    673 
    674 			if (pg == NULL) {
    675 				continue;
    676 			}
    677 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    678 			    pg, pg->flags, 0,0);
    679 			if (pg->flags & PG_FAKE) {
    680 				pg->flags |= PG_RELEASED;
    681 			}
    682 		}
    683 		mutex_enter(&uvm_pageqlock);
    684 		uvm_page_unbusy(pgs, npages);
    685 		mutex_exit(&uvm_pageqlock);
    686 		mutex_exit(&uobj->vmobjlock);
    687 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    688 		goto out_err_free;
    689 	}
    690 
    691 out:
    692 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    693 	error = 0;
    694 	mutex_enter(&uvm_pageqlock);
    695 	for (i = 0; i < npages; i++) {
    696 		struct vm_page *pg = pgs[i];
    697 		if (pg == NULL) {
    698 			continue;
    699 		}
    700 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    701 		    pg, pg->flags, 0,0);
    702 		if (pg->flags & PG_FAKE && !overwrite) {
    703 			pg->flags &= ~(PG_FAKE);
    704 			pmap_clear_modify(pgs[i]);
    705 		}
    706 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    707 		if (i < ridx || i >= ridx + orignmempages || async) {
    708 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    709 			    pg, pg->offset,0,0);
    710 			if (pg->flags & PG_WANTED) {
    711 				wakeup(pg);
    712 			}
    713 			if (pg->flags & PG_FAKE) {
    714 				KASSERT(overwrite);
    715 				uvm_pagezero(pg);
    716 			}
    717 			if (pg->flags & PG_RELEASED) {
    718 				uvm_pagefree(pg);
    719 				continue;
    720 			}
    721 			uvm_pageenqueue(pg);
    722 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    723 			UVM_PAGE_OWN(pg, NULL);
    724 		}
    725 	}
    726 	mutex_exit(&uvm_pageqlock);
    727 	if (memwrite) {
    728 		genfs_markdirty(vp);
    729 	}
    730 	mutex_exit(&uobj->vmobjlock);
    731 	if (ap->a_m != NULL) {
    732 		memcpy(ap->a_m, &pgs[ridx],
    733 		    orignmempages * sizeof(struct vm_page *));
    734 	}
    735 
    736 out_err_free:
    737 	if (pgs != NULL && pgs != pgs_onstack)
    738 		kmem_free(pgs, pgs_size);
    739 out_err:
    740 	if (has_trans)
    741 		fstrans_done(vp->v_mount);
    742 	return error;
    743 }
    744 
    745 /*
    746  * generic VM putpages routine.
    747  * Write the given range of pages to backing store.
    748  *
    749  * => "offhi == 0" means flush all pages at or after "offlo".
    750  * => object should be locked by caller.  we return with the
    751  *      object unlocked.
    752  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    753  *	thus, a caller might want to unlock higher level resources
    754  *	(e.g. vm_map) before calling flush.
    755  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    756  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    757  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    758  *	that new pages are inserted on the tail end of the list.   thus,
    759  *	we can make a complete pass through the object in one go by starting
    760  *	at the head and working towards the tail (new pages are put in
    761  *	front of us).
    762  * => NOTE: we are allowed to lock the page queues, so the caller
    763  *	must not be holding the page queue lock.
    764  *
    765  * note on "cleaning" object and PG_BUSY pages:
    766  *	this routine is holding the lock on the object.   the only time
    767  *	that it can run into a PG_BUSY page that it does not own is if
    768  *	some other process has started I/O on the page (e.g. either
    769  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    770  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    771  *	had a chance to modify it yet.    if the PG_BUSY page is being
    772  *	paged out then it means that someone else has already started
    773  *	cleaning the page for us (how nice!).    in this case, if we
    774  *	have syncio specified, then after we make our pass through the
    775  *	object we need to wait for the other PG_BUSY pages to clear
    776  *	off (i.e. we need to do an iosync).   also note that once a
    777  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    778  *
    779  * note on page traversal:
    780  *	we can traverse the pages in an object either by going down the
    781  *	linked list in "uobj->memq", or we can go over the address range
    782  *	by page doing hash table lookups for each address.    depending
    783  *	on how many pages are in the object it may be cheaper to do one
    784  *	or the other.   we set "by_list" to true if we are using memq.
    785  *	if the cost of a hash lookup was equal to the cost of the list
    786  *	traversal we could compare the number of pages in the start->stop
    787  *	range to the total number of pages in the object.   however, it
    788  *	seems that a hash table lookup is more expensive than the linked
    789  *	list traversal, so we multiply the number of pages in the
    790  *	range by an estimate of the relatively higher cost of the hash lookup.
    791  */
    792 
    793 int
    794 genfs_putpages(void *v)
    795 {
    796 	struct vop_putpages_args /* {
    797 		struct vnode *a_vp;
    798 		voff_t a_offlo;
    799 		voff_t a_offhi;
    800 		int a_flags;
    801 	} */ * const ap = v;
    802 
    803 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    804 	    ap->a_flags, NULL);
    805 }
    806 
    807 int
    808 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    809     int origflags, struct vm_page **busypg)
    810 {
    811 	struct uvm_object * const uobj = &vp->v_uobj;
    812 	kmutex_t * const slock = &uobj->vmobjlock;
    813 	off_t off;
    814 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    815 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    816 	int i, error, npages, nback;
    817 	int freeflag;
    818 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    819 	bool wasclean, by_list, needs_clean, yld;
    820 	bool async = (origflags & PGO_SYNCIO) == 0;
    821 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    822 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    823 	struct genfs_node * const gp = VTOG(vp);
    824 	int flags;
    825 	int dirtygen;
    826 	bool modified;
    827 	bool need_wapbl;
    828 	bool has_trans;
    829 	bool cleanall;
    830 	bool onworklst;
    831 
    832 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    833 
    834 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    835 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    836 	KASSERT(startoff < endoff || endoff == 0);
    837 
    838 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    839 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    840 
    841 	has_trans = false;
    842 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    843 	    (origflags & PGO_JOURNALLOCKED) == 0);
    844 
    845 retry:
    846 	modified = false;
    847 	flags = origflags;
    848 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    849 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    850 	if (uobj->uo_npages == 0) {
    851 		if (vp->v_iflag & VI_ONWORKLST) {
    852 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    853 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    854 				vn_syncer_remove_from_worklist(vp);
    855 		}
    856 		if (has_trans) {
    857 			if (need_wapbl)
    858 				WAPBL_END(vp->v_mount);
    859 			fstrans_done(vp->v_mount);
    860 		}
    861 		mutex_exit(slock);
    862 		return (0);
    863 	}
    864 
    865 	/*
    866 	 * the vnode has pages, set up to process the request.
    867 	 */
    868 
    869 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    870 		mutex_exit(slock);
    871 		if (pagedaemon) {
    872 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    873 			if (error)
    874 				return error;
    875 		} else
    876 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    877 		if (need_wapbl) {
    878 			error = WAPBL_BEGIN(vp->v_mount);
    879 			if (error) {
    880 				fstrans_done(vp->v_mount);
    881 				return error;
    882 			}
    883 		}
    884 		has_trans = true;
    885 		mutex_enter(slock);
    886 		goto retry;
    887 	}
    888 
    889 	error = 0;
    890 	wasclean = (vp->v_numoutput == 0);
    891 	off = startoff;
    892 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    893 		endoff = trunc_page(LLONG_MAX);
    894 	}
    895 	by_list = (uobj->uo_npages <=
    896 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    897 
    898 #if !defined(DEBUG)
    899 	/*
    900 	 * if this vnode is known not to have dirty pages,
    901 	 * don't bother to clean it out.
    902 	 */
    903 
    904 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    905 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    906 			goto skip_scan;
    907 		}
    908 		flags &= ~PGO_CLEANIT;
    909 	}
    910 #endif /* !defined(DEBUG) */
    911 
    912 	/*
    913 	 * start the loop.  when scanning by list, hold the last page
    914 	 * in the list before we start.  pages allocated after we start
    915 	 * will be added to the end of the list, so we can stop at the
    916 	 * current last page.
    917 	 */
    918 
    919 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    920 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    921 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    922 	dirtygen = gp->g_dirtygen;
    923 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    924 	if (by_list) {
    925 		curmp.flags = PG_MARKER;
    926 		endmp.flags = PG_MARKER;
    927 		pg = TAILQ_FIRST(&uobj->memq);
    928 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    929 	} else {
    930 		pg = uvm_pagelookup(uobj, off);
    931 	}
    932 	nextpg = NULL;
    933 	while (by_list || off < endoff) {
    934 
    935 		/*
    936 		 * if the current page is not interesting, move on to the next.
    937 		 */
    938 
    939 		KASSERT(pg == NULL || pg->uobject == uobj ||
    940 		    (pg->flags & PG_MARKER) != 0);
    941 		KASSERT(pg == NULL ||
    942 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    943 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
    944 		if (by_list) {
    945 			if (pg == &endmp) {
    946 				break;
    947 			}
    948 			if (pg->flags & PG_MARKER) {
    949 				pg = TAILQ_NEXT(pg, listq.queue);
    950 				continue;
    951 			}
    952 			if (pg->offset < startoff || pg->offset >= endoff ||
    953 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    954 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    955 					wasclean = false;
    956 				}
    957 				pg = TAILQ_NEXT(pg, listq.queue);
    958 				continue;
    959 			}
    960 			off = pg->offset;
    961 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    962 			if (pg != NULL) {
    963 				wasclean = false;
    964 			}
    965 			off += PAGE_SIZE;
    966 			if (off < endoff) {
    967 				pg = uvm_pagelookup(uobj, off);
    968 			}
    969 			continue;
    970 		}
    971 
    972 		/*
    973 		 * if the current page needs to be cleaned and it's busy,
    974 		 * wait for it to become unbusy.
    975 		 */
    976 
    977 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    978 		    SPCF_SHOULDYIELD) && !pagedaemon;
    979 		if (pg->flags & PG_BUSY || yld) {
    980 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    981 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    982 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    983 				error = EDEADLK;
    984 				if (busypg != NULL)
    985 					*busypg = pg;
    986 				break;
    987 			}
    988 			if (pagedaemon) {
    989 				/*
    990 				 * someone has taken the page while we
    991 				 * dropped the lock for fstrans_start.
    992 				 */
    993 				break;
    994 			}
    995 			if (by_list) {
    996 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    997 				UVMHIST_LOG(ubchist, "curmp next %p",
    998 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    999 			}
   1000 			if (yld) {
   1001 				mutex_exit(slock);
   1002 				preempt();
   1003 				mutex_enter(slock);
   1004 			} else {
   1005 				pg->flags |= PG_WANTED;
   1006 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1007 				mutex_enter(slock);
   1008 			}
   1009 			if (by_list) {
   1010 				UVMHIST_LOG(ubchist, "after next %p",
   1011 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1012 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1013 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1014 			} else {
   1015 				pg = uvm_pagelookup(uobj, off);
   1016 			}
   1017 			continue;
   1018 		}
   1019 
   1020 		/*
   1021 		 * if we're freeing, remove all mappings of the page now.
   1022 		 * if we're cleaning, check if the page is needs to be cleaned.
   1023 		 */
   1024 
   1025 		if (flags & PGO_FREE) {
   1026 			pmap_page_protect(pg, VM_PROT_NONE);
   1027 		} else if (flags & PGO_CLEANIT) {
   1028 
   1029 			/*
   1030 			 * if we still have some hope to pull this vnode off
   1031 			 * from the syncer queue, write-protect the page.
   1032 			 */
   1033 
   1034 			if (cleanall && wasclean &&
   1035 			    gp->g_dirtygen == dirtygen) {
   1036 
   1037 				/*
   1038 				 * uobj pages get wired only by uvm_fault
   1039 				 * where uobj is locked.
   1040 				 */
   1041 
   1042 				if (pg->wire_count == 0) {
   1043 					pmap_page_protect(pg,
   1044 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1045 				} else {
   1046 					cleanall = false;
   1047 				}
   1048 			}
   1049 		}
   1050 
   1051 		if (flags & PGO_CLEANIT) {
   1052 			needs_clean = pmap_clear_modify(pg) ||
   1053 			    (pg->flags & PG_CLEAN) == 0;
   1054 			pg->flags |= PG_CLEAN;
   1055 		} else {
   1056 			needs_clean = false;
   1057 		}
   1058 
   1059 		/*
   1060 		 * if we're cleaning, build a cluster.
   1061 		 * the cluster will consist of pages which are currently dirty,
   1062 		 * but they will be returned to us marked clean.
   1063 		 * if not cleaning, just operate on the one page.
   1064 		 */
   1065 
   1066 		if (needs_clean) {
   1067 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1068 			wasclean = false;
   1069 			memset(pgs, 0, sizeof(pgs));
   1070 			pg->flags |= PG_BUSY;
   1071 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1072 
   1073 			/*
   1074 			 * first look backward.
   1075 			 */
   1076 
   1077 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1078 			nback = npages;
   1079 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1080 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1081 			if (nback) {
   1082 				memmove(&pgs[0], &pgs[npages - nback],
   1083 				    nback * sizeof(pgs[0]));
   1084 				if (npages - nback < nback)
   1085 					memset(&pgs[nback], 0,
   1086 					    (npages - nback) * sizeof(pgs[0]));
   1087 				else
   1088 					memset(&pgs[npages - nback], 0,
   1089 					    nback * sizeof(pgs[0]));
   1090 			}
   1091 
   1092 			/*
   1093 			 * then plug in our page of interest.
   1094 			 */
   1095 
   1096 			pgs[nback] = pg;
   1097 
   1098 			/*
   1099 			 * then look forward to fill in the remaining space in
   1100 			 * the array of pages.
   1101 			 */
   1102 
   1103 			npages = maxpages - nback - 1;
   1104 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1105 			    &pgs[nback + 1],
   1106 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1107 			npages += nback + 1;
   1108 		} else {
   1109 			pgs[0] = pg;
   1110 			npages = 1;
   1111 			nback = 0;
   1112 		}
   1113 
   1114 		/*
   1115 		 * apply FREE or DEACTIVATE options if requested.
   1116 		 */
   1117 
   1118 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1119 			mutex_enter(&uvm_pageqlock);
   1120 		}
   1121 		for (i = 0; i < npages; i++) {
   1122 			tpg = pgs[i];
   1123 			KASSERT(tpg->uobject == uobj);
   1124 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1125 				pg = tpg;
   1126 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1127 				continue;
   1128 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1129 				uvm_pagedeactivate(tpg);
   1130 			} else if (flags & PGO_FREE) {
   1131 				pmap_page_protect(tpg, VM_PROT_NONE);
   1132 				if (tpg->flags & PG_BUSY) {
   1133 					tpg->flags |= freeflag;
   1134 					if (pagedaemon) {
   1135 						uvm_pageout_start(1);
   1136 						uvm_pagedequeue(tpg);
   1137 					}
   1138 				} else {
   1139 
   1140 					/*
   1141 					 * ``page is not busy''
   1142 					 * implies that npages is 1
   1143 					 * and needs_clean is false.
   1144 					 */
   1145 
   1146 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1147 					uvm_pagefree(tpg);
   1148 					if (pagedaemon)
   1149 						uvmexp.pdfreed++;
   1150 				}
   1151 			}
   1152 		}
   1153 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1154 			mutex_exit(&uvm_pageqlock);
   1155 		}
   1156 		if (needs_clean) {
   1157 			modified = true;
   1158 
   1159 			/*
   1160 			 * start the i/o.  if we're traversing by list,
   1161 			 * keep our place in the list with a marker page.
   1162 			 */
   1163 
   1164 			if (by_list) {
   1165 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1166 				    listq.queue);
   1167 			}
   1168 			mutex_exit(slock);
   1169 			error = GOP_WRITE(vp, pgs, npages, flags);
   1170 			mutex_enter(slock);
   1171 			if (by_list) {
   1172 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1173 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1174 			}
   1175 			if (error) {
   1176 				break;
   1177 			}
   1178 			if (by_list) {
   1179 				continue;
   1180 			}
   1181 		}
   1182 
   1183 		/*
   1184 		 * find the next page and continue if there was no error.
   1185 		 */
   1186 
   1187 		if (by_list) {
   1188 			if (nextpg) {
   1189 				pg = nextpg;
   1190 				nextpg = NULL;
   1191 			} else {
   1192 				pg = TAILQ_NEXT(pg, listq.queue);
   1193 			}
   1194 		} else {
   1195 			off += (npages - nback) << PAGE_SHIFT;
   1196 			if (off < endoff) {
   1197 				pg = uvm_pagelookup(uobj, off);
   1198 			}
   1199 		}
   1200 	}
   1201 	if (by_list) {
   1202 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1203 	}
   1204 
   1205 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1206 	    (vp->v_type != VBLK ||
   1207 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1208 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1209 	}
   1210 
   1211 	/*
   1212 	 * if we're cleaning and there was nothing to clean,
   1213 	 * take us off the syncer list.  if we started any i/o
   1214 	 * and we're doing sync i/o, wait for all writes to finish.
   1215 	 */
   1216 
   1217 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1218 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1219 #if defined(DEBUG)
   1220 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1221 			if ((pg->flags & PG_MARKER) != 0) {
   1222 				continue;
   1223 			}
   1224 			if ((pg->flags & PG_CLEAN) == 0) {
   1225 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1226 			}
   1227 			if (pmap_is_modified(pg)) {
   1228 				printf("%s: %p: modified\n", __func__, pg);
   1229 			}
   1230 		}
   1231 #endif /* defined(DEBUG) */
   1232 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1233 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1234 			vn_syncer_remove_from_worklist(vp);
   1235 	}
   1236 
   1237 #if !defined(DEBUG)
   1238 skip_scan:
   1239 #endif /* !defined(DEBUG) */
   1240 
   1241 	/* Wait for output to complete. */
   1242 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1243 		while (vp->v_numoutput != 0)
   1244 			cv_wait(&vp->v_cv, slock);
   1245 	}
   1246 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1247 	mutex_exit(slock);
   1248 
   1249 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1250 		/*
   1251 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1252 		 * retrying is not a big deal because, in many cases,
   1253 		 * uobj->uo_npages is already 0 here.
   1254 		 */
   1255 		mutex_enter(slock);
   1256 		goto retry;
   1257 	}
   1258 
   1259 	if (has_trans) {
   1260 		if (need_wapbl)
   1261 			WAPBL_END(vp->v_mount);
   1262 		fstrans_done(vp->v_mount);
   1263 	}
   1264 
   1265 	return (error);
   1266 }
   1267 
   1268 int
   1269 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1270 {
   1271 	off_t off;
   1272 	vaddr_t kva;
   1273 	size_t len;
   1274 	int error;
   1275 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1276 
   1277 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1278 	    vp, pgs, npages, flags);
   1279 
   1280 	off = pgs[0]->offset;
   1281 	kva = uvm_pagermapin(pgs, npages,
   1282 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1283 	len = npages << PAGE_SHIFT;
   1284 
   1285 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1286 			    uvm_aio_biodone);
   1287 
   1288 	return error;
   1289 }
   1290 
   1291 int
   1292 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1293 {
   1294 	off_t off;
   1295 	vaddr_t kva;
   1296 	size_t len;
   1297 	int error;
   1298 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1299 
   1300 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1301 	    vp, pgs, npages, flags);
   1302 
   1303 	off = pgs[0]->offset;
   1304 	kva = uvm_pagermapin(pgs, npages,
   1305 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1306 	len = npages << PAGE_SHIFT;
   1307 
   1308 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1309 			    uvm_aio_biodone);
   1310 
   1311 	return error;
   1312 }
   1313 
   1314 /*
   1315  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1316  * and mapped into kernel memory.  Here we just look up the underlying
   1317  * device block addresses and call the strategy routine.
   1318  */
   1319 
   1320 static int
   1321 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1322     enum uio_rw rw, void (*iodone)(struct buf *))
   1323 {
   1324 	int s, error;
   1325 	int fs_bshift, dev_bshift;
   1326 	off_t eof, offset, startoffset;
   1327 	size_t bytes, iobytes, skipbytes;
   1328 	struct buf *mbp, *bp;
   1329 	const bool async = (flags & PGO_SYNCIO) == 0;
   1330 	const bool iowrite = rw == UIO_WRITE;
   1331 	const int brw = iowrite ? B_WRITE : B_READ;
   1332 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1333 
   1334 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1335 	    vp, kva, len, flags);
   1336 
   1337 	KASSERT(vp->v_size <= vp->v_writesize);
   1338 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1339 	if (vp->v_type != VBLK) {
   1340 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1341 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1342 	} else {
   1343 		fs_bshift = DEV_BSHIFT;
   1344 		dev_bshift = DEV_BSHIFT;
   1345 	}
   1346 	error = 0;
   1347 	startoffset = off;
   1348 	bytes = MIN(len, eof - startoffset);
   1349 	skipbytes = 0;
   1350 	KASSERT(bytes != 0);
   1351 
   1352 	if (iowrite) {
   1353 		mutex_enter(&vp->v_interlock);
   1354 		vp->v_numoutput += 2;
   1355 		mutex_exit(&vp->v_interlock);
   1356 	}
   1357 	mbp = getiobuf(vp, true);
   1358 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1359 	    vp, mbp, vp->v_numoutput, bytes);
   1360 	mbp->b_bufsize = len;
   1361 	mbp->b_data = (void *)kva;
   1362 	mbp->b_resid = mbp->b_bcount = bytes;
   1363 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1364 	if (async) {
   1365 		mbp->b_flags = brw | B_ASYNC;
   1366 		mbp->b_iodone = iodone;
   1367 	} else {
   1368 		mbp->b_flags = brw;
   1369 		mbp->b_iodone = NULL;
   1370 	}
   1371 	if (curlwp == uvm.pagedaemon_lwp)
   1372 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1373 	else if (async)
   1374 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1375 	else
   1376 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1377 
   1378 	bp = NULL;
   1379 	for (offset = startoffset;
   1380 	    bytes > 0;
   1381 	    offset += iobytes, bytes -= iobytes) {
   1382 		int run;
   1383 		daddr_t lbn, blkno;
   1384 		struct vnode *devvp;
   1385 
   1386 		/*
   1387 		 * bmap the file to find out the blkno to read from and
   1388 		 * how much we can read in one i/o.  if bmap returns an error,
   1389 		 * skip the rest of the top-level i/o.
   1390 		 */
   1391 
   1392 		lbn = offset >> fs_bshift;
   1393 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1394 		if (error) {
   1395 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1396 			    lbn,error,0,0);
   1397 			skipbytes += bytes;
   1398 			bytes = 0;
   1399 			goto loopdone;
   1400 		}
   1401 
   1402 		/*
   1403 		 * see how many pages can be read with this i/o.
   1404 		 * reduce the i/o size if necessary to avoid
   1405 		 * overwriting pages with valid data.
   1406 		 */
   1407 
   1408 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1409 		    bytes);
   1410 
   1411 		/*
   1412 		 * if this block isn't allocated, zero it instead of
   1413 		 * reading it.  unless we are going to allocate blocks,
   1414 		 * mark the pages we zeroed PG_RDONLY.
   1415 		 */
   1416 
   1417 		if (blkno == (daddr_t)-1) {
   1418 			if (!iowrite) {
   1419 				memset((char *)kva + (offset - startoffset), 0,
   1420 				    iobytes);
   1421 			}
   1422 			skipbytes += iobytes;
   1423 			continue;
   1424 		}
   1425 
   1426 		/*
   1427 		 * allocate a sub-buf for this piece of the i/o
   1428 		 * (or just use mbp if there's only 1 piece),
   1429 		 * and start it going.
   1430 		 */
   1431 
   1432 		if (offset == startoffset && iobytes == bytes) {
   1433 			bp = mbp;
   1434 		} else {
   1435 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1436 			    vp, bp, vp->v_numoutput, 0);
   1437 			bp = getiobuf(vp, true);
   1438 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1439 		}
   1440 		bp->b_lblkno = 0;
   1441 
   1442 		/* adjust physical blkno for partial blocks */
   1443 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1444 		    dev_bshift);
   1445 
   1446 		UVMHIST_LOG(ubchist,
   1447 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1448 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1449 
   1450 		VOP_STRATEGY(devvp, bp);
   1451 	}
   1452 
   1453 loopdone:
   1454 	if (skipbytes) {
   1455 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1456 	}
   1457 	nestiobuf_done(mbp, skipbytes, error);
   1458 	if (async) {
   1459 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1460 		return (0);
   1461 	}
   1462 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1463 	error = biowait(mbp);
   1464 	s = splbio();
   1465 	(*iodone)(mbp);
   1466 	splx(s);
   1467 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1468 	return (error);
   1469 }
   1470 
   1471 int
   1472 genfs_compat_getpages(void *v)
   1473 {
   1474 	struct vop_getpages_args /* {
   1475 		struct vnode *a_vp;
   1476 		voff_t a_offset;
   1477 		struct vm_page **a_m;
   1478 		int *a_count;
   1479 		int a_centeridx;
   1480 		vm_prot_t a_access_type;
   1481 		int a_advice;
   1482 		int a_flags;
   1483 	} */ *ap = v;
   1484 
   1485 	off_t origoffset;
   1486 	struct vnode *vp = ap->a_vp;
   1487 	struct uvm_object *uobj = &vp->v_uobj;
   1488 	struct vm_page *pg, **pgs;
   1489 	vaddr_t kva;
   1490 	int i, error, orignpages, npages;
   1491 	struct iovec iov;
   1492 	struct uio uio;
   1493 	kauth_cred_t cred = curlwp->l_cred;
   1494 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1495 
   1496 	error = 0;
   1497 	origoffset = ap->a_offset;
   1498 	orignpages = *ap->a_count;
   1499 	pgs = ap->a_m;
   1500 
   1501 	if (ap->a_flags & PGO_LOCKED) {
   1502 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1503 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1504 
   1505 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1506 		if (error == 0 && memwrite) {
   1507 			genfs_markdirty(vp);
   1508 		}
   1509 		return error;
   1510 	}
   1511 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1512 		mutex_exit(&uobj->vmobjlock);
   1513 		return EINVAL;
   1514 	}
   1515 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1516 		mutex_exit(&uobj->vmobjlock);
   1517 		return 0;
   1518 	}
   1519 	npages = orignpages;
   1520 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1521 	mutex_exit(&uobj->vmobjlock);
   1522 	kva = uvm_pagermapin(pgs, npages,
   1523 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1524 	for (i = 0; i < npages; i++) {
   1525 		pg = pgs[i];
   1526 		if ((pg->flags & PG_FAKE) == 0) {
   1527 			continue;
   1528 		}
   1529 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1530 		iov.iov_len = PAGE_SIZE;
   1531 		uio.uio_iov = &iov;
   1532 		uio.uio_iovcnt = 1;
   1533 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1534 		uio.uio_rw = UIO_READ;
   1535 		uio.uio_resid = PAGE_SIZE;
   1536 		UIO_SETUP_SYSSPACE(&uio);
   1537 		/* XXX vn_lock */
   1538 		error = VOP_READ(vp, &uio, 0, cred);
   1539 		if (error) {
   1540 			break;
   1541 		}
   1542 		if (uio.uio_resid) {
   1543 			memset(iov.iov_base, 0, uio.uio_resid);
   1544 		}
   1545 	}
   1546 	uvm_pagermapout(kva, npages);
   1547 	mutex_enter(&uobj->vmobjlock);
   1548 	mutex_enter(&uvm_pageqlock);
   1549 	for (i = 0; i < npages; i++) {
   1550 		pg = pgs[i];
   1551 		if (error && (pg->flags & PG_FAKE) != 0) {
   1552 			pg->flags |= PG_RELEASED;
   1553 		} else {
   1554 			pmap_clear_modify(pg);
   1555 			uvm_pageactivate(pg);
   1556 		}
   1557 	}
   1558 	if (error) {
   1559 		uvm_page_unbusy(pgs, npages);
   1560 	}
   1561 	mutex_exit(&uvm_pageqlock);
   1562 	if (error == 0 && memwrite) {
   1563 		genfs_markdirty(vp);
   1564 	}
   1565 	mutex_exit(&uobj->vmobjlock);
   1566 	return error;
   1567 }
   1568 
   1569 int
   1570 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1571     int flags)
   1572 {
   1573 	off_t offset;
   1574 	struct iovec iov;
   1575 	struct uio uio;
   1576 	kauth_cred_t cred = curlwp->l_cred;
   1577 	struct buf *bp;
   1578 	vaddr_t kva;
   1579 	int error;
   1580 
   1581 	offset = pgs[0]->offset;
   1582 	kva = uvm_pagermapin(pgs, npages,
   1583 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1584 
   1585 	iov.iov_base = (void *)kva;
   1586 	iov.iov_len = npages << PAGE_SHIFT;
   1587 	uio.uio_iov = &iov;
   1588 	uio.uio_iovcnt = 1;
   1589 	uio.uio_offset = offset;
   1590 	uio.uio_rw = UIO_WRITE;
   1591 	uio.uio_resid = npages << PAGE_SHIFT;
   1592 	UIO_SETUP_SYSSPACE(&uio);
   1593 	/* XXX vn_lock */
   1594 	error = VOP_WRITE(vp, &uio, 0, cred);
   1595 
   1596 	mutex_enter(&vp->v_interlock);
   1597 	vp->v_numoutput++;
   1598 	mutex_exit(&vp->v_interlock);
   1599 
   1600 	bp = getiobuf(vp, true);
   1601 	bp->b_cflags = BC_BUSY | BC_AGE;
   1602 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1603 	bp->b_data = (char *)kva;
   1604 	bp->b_bcount = npages << PAGE_SHIFT;
   1605 	bp->b_bufsize = npages << PAGE_SHIFT;
   1606 	bp->b_resid = 0;
   1607 	bp->b_error = error;
   1608 	uvm_aio_aiodone(bp);
   1609 	return (error);
   1610 }
   1611 
   1612 /*
   1613  * Process a uio using direct I/O.  If we reach a part of the request
   1614  * which cannot be processed in this fashion for some reason, just return.
   1615  * The caller must handle some additional part of the request using
   1616  * buffered I/O before trying direct I/O again.
   1617  */
   1618 
   1619 void
   1620 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1621 {
   1622 	struct vmspace *vs;
   1623 	struct iovec *iov;
   1624 	vaddr_t va;
   1625 	size_t len;
   1626 	const int mask = DEV_BSIZE - 1;
   1627 	int error;
   1628 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1629 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1630 
   1631 	/*
   1632 	 * We only support direct I/O to user space for now.
   1633 	 */
   1634 
   1635 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1636 		return;
   1637 	}
   1638 
   1639 	/*
   1640 	 * If the vnode is mapped, we would need to get the getpages lock
   1641 	 * to stabilize the bmap, but then we would get into trouble whil e
   1642 	 * locking the pages if the pages belong to this same vnode (or a
   1643 	 * multi-vnode cascade to the same effect).  Just fall back to
   1644 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1645 	 */
   1646 
   1647 	if (vp->v_vflag & VV_MAPPED) {
   1648 		return;
   1649 	}
   1650 
   1651 	if (need_wapbl) {
   1652 		error = WAPBL_BEGIN(vp->v_mount);
   1653 		if (error)
   1654 			return;
   1655 	}
   1656 
   1657 	/*
   1658 	 * Do as much of the uio as possible with direct I/O.
   1659 	 */
   1660 
   1661 	vs = uio->uio_vmspace;
   1662 	while (uio->uio_resid) {
   1663 		iov = uio->uio_iov;
   1664 		if (iov->iov_len == 0) {
   1665 			uio->uio_iov++;
   1666 			uio->uio_iovcnt--;
   1667 			continue;
   1668 		}
   1669 		va = (vaddr_t)iov->iov_base;
   1670 		len = MIN(iov->iov_len, genfs_maxdio);
   1671 		len &= ~mask;
   1672 
   1673 		/*
   1674 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1675 		 * the current EOF, then fall back to buffered I/O.
   1676 		 */
   1677 
   1678 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1679 			break;
   1680 		}
   1681 
   1682 		/*
   1683 		 * Check alignment.  The file offset must be at least
   1684 		 * sector-aligned.  The exact constraint on memory alignment
   1685 		 * is very hardware-dependent, but requiring sector-aligned
   1686 		 * addresses there too is safe.
   1687 		 */
   1688 
   1689 		if (uio->uio_offset & mask || va & mask) {
   1690 			break;
   1691 		}
   1692 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1693 					  uio->uio_rw);
   1694 		if (error) {
   1695 			break;
   1696 		}
   1697 		iov->iov_base = (char *)iov->iov_base + len;
   1698 		iov->iov_len -= len;
   1699 		uio->uio_offset += len;
   1700 		uio->uio_resid -= len;
   1701 	}
   1702 
   1703 	if (need_wapbl)
   1704 		WAPBL_END(vp->v_mount);
   1705 }
   1706 
   1707 /*
   1708  * Iodone routine for direct I/O.  We don't do much here since the request is
   1709  * always synchronous, so the caller will do most of the work after biowait().
   1710  */
   1711 
   1712 static void
   1713 genfs_dio_iodone(struct buf *bp)
   1714 {
   1715 
   1716 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1717 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1718 		mutex_enter(bp->b_objlock);
   1719 		vwakeup(bp);
   1720 		mutex_exit(bp->b_objlock);
   1721 	}
   1722 	putiobuf(bp);
   1723 }
   1724 
   1725 /*
   1726  * Process one chunk of a direct I/O request.
   1727  */
   1728 
   1729 static int
   1730 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1731     off_t off, enum uio_rw rw)
   1732 {
   1733 	struct vm_map *map;
   1734 	struct pmap *upm, *kpm;
   1735 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1736 	off_t spoff, epoff;
   1737 	vaddr_t kva, puva;
   1738 	paddr_t pa;
   1739 	vm_prot_t prot;
   1740 	int error, rv, poff, koff;
   1741 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1742 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1743 
   1744 	/*
   1745 	 * For writes, verify that this range of the file already has fully
   1746 	 * allocated backing store.  If there are any holes, just punt and
   1747 	 * make the caller take the buffered write path.
   1748 	 */
   1749 
   1750 	if (rw == UIO_WRITE) {
   1751 		daddr_t lbn, elbn, blkno;
   1752 		int bsize, bshift, run;
   1753 
   1754 		bshift = vp->v_mount->mnt_fs_bshift;
   1755 		bsize = 1 << bshift;
   1756 		lbn = off >> bshift;
   1757 		elbn = (off + len + bsize - 1) >> bshift;
   1758 		while (lbn < elbn) {
   1759 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1760 			if (error) {
   1761 				return error;
   1762 			}
   1763 			if (blkno == (daddr_t)-1) {
   1764 				return ENOSPC;
   1765 			}
   1766 			lbn += 1 + run;
   1767 		}
   1768 	}
   1769 
   1770 	/*
   1771 	 * Flush any cached pages for parts of the file that we're about to
   1772 	 * access.  If we're writing, invalidate pages as well.
   1773 	 */
   1774 
   1775 	spoff = trunc_page(off);
   1776 	epoff = round_page(off + len);
   1777 	mutex_enter(&vp->v_interlock);
   1778 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1779 	if (error) {
   1780 		return error;
   1781 	}
   1782 
   1783 	/*
   1784 	 * Wire the user pages and remap them into kernel memory.
   1785 	 */
   1786 
   1787 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1788 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1789 	if (error) {
   1790 		return error;
   1791 	}
   1792 
   1793 	map = &vs->vm_map;
   1794 	upm = vm_map_pmap(map);
   1795 	kpm = vm_map_pmap(kernel_map);
   1796 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1797 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1798 	puva = trunc_page(uva);
   1799 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1800 		rv = pmap_extract(upm, puva + poff, &pa);
   1801 		KASSERT(rv);
   1802 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1803 	}
   1804 	pmap_update(kpm);
   1805 
   1806 	/*
   1807 	 * Do the I/O.
   1808 	 */
   1809 
   1810 	koff = uva - trunc_page(uva);
   1811 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1812 			    genfs_dio_iodone);
   1813 
   1814 	/*
   1815 	 * Tear down the kernel mapping.
   1816 	 */
   1817 
   1818 	pmap_remove(kpm, kva, kva + klen);
   1819 	pmap_update(kpm);
   1820 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1821 
   1822 	/*
   1823 	 * Unwire the user pages.
   1824 	 */
   1825 
   1826 	uvm_vsunlock(vs, (void *)uva, len);
   1827 	return error;
   1828 }
   1829 
   1830