Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.61
      1 /*	$NetBSD: genfs_io.c,v 1.61 2015/05/06 15:57:08 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.61 2015/05/06 15:57:08 hannken Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 
     47 #include <miscfs/genfs/genfs.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <miscfs/specfs/specdev.h>
     50 
     51 #include <uvm/uvm.h>
     52 #include <uvm/uvm_pager.h>
     53 
     54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     55     off_t, enum uio_rw);
     56 static void genfs_dio_iodone(struct buf *);
     57 
     58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
     59     off_t, bool, bool, bool, bool);
     60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     61     void (*)(struct buf *));
     62 static void genfs_rel_pages(struct vm_page **, unsigned int);
     63 static void genfs_markdirty(struct vnode *);
     64 
     65 int genfs_maxdio = MAXPHYS;
     66 
     67 static void
     68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     69 {
     70 	unsigned int i;
     71 
     72 	for (i = 0; i < npages; i++) {
     73 		struct vm_page *pg = pgs[i];
     74 
     75 		if (pg == NULL || pg == PGO_DONTCARE)
     76 			continue;
     77 		KASSERT(uvm_page_locked_p(pg));
     78 		if (pg->flags & PG_FAKE) {
     79 			pg->flags |= PG_RELEASED;
     80 		}
     81 	}
     82 	mutex_enter(&uvm_pageqlock);
     83 	uvm_page_unbusy(pgs, npages);
     84 	mutex_exit(&uvm_pageqlock);
     85 }
     86 
     87 static void
     88 genfs_markdirty(struct vnode *vp)
     89 {
     90 	struct genfs_node * const gp = VTOG(vp);
     91 
     92 	KASSERT(mutex_owned(vp->v_interlock));
     93 	gp->g_dirtygen++;
     94 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     95 		vn_syncer_add_to_worklist(vp, filedelay);
     96 	}
     97 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
     98 		vp->v_iflag |= VI_WRMAPDIRTY;
     99 	}
    100 }
    101 
    102 /*
    103  * generic VM getpages routine.
    104  * Return PG_BUSY pages for the given range,
    105  * reading from backing store if necessary.
    106  */
    107 
    108 int
    109 genfs_getpages(void *v)
    110 {
    111 	struct vop_getpages_args /* {
    112 		struct vnode *a_vp;
    113 		voff_t a_offset;
    114 		struct vm_page **a_m;
    115 		int *a_count;
    116 		int a_centeridx;
    117 		vm_prot_t a_access_type;
    118 		int a_advice;
    119 		int a_flags;
    120 	} */ * const ap = v;
    121 
    122 	off_t diskeof, memeof;
    123 	int i, error, npages;
    124 	const int flags = ap->a_flags;
    125 	struct vnode * const vp = ap->a_vp;
    126 	struct uvm_object * const uobj = &vp->v_uobj;
    127 	const bool async = (flags & PGO_SYNCIO) == 0;
    128 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    130 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    131 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    132 	const bool need_wapbl = blockalloc && vp->v_mount->mnt_wapbl;
    133 	bool has_trans_wapbl = false;
    134 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    135 
    136 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    137 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    138 
    139 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    140 	    vp->v_type == VLNK || vp->v_type == VBLK);
    141 
    142 startover:
    143 	error = 0;
    144 	const voff_t origvsize = vp->v_size;
    145 	const off_t origoffset = ap->a_offset;
    146 	const int orignpages = *ap->a_count;
    147 
    148 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    149 	if (flags & PGO_PASTEOF) {
    150 		off_t newsize;
    151 #if defined(DIAGNOSTIC)
    152 		off_t writeeof;
    153 #endif /* defined(DIAGNOSTIC) */
    154 
    155 		newsize = MAX(origvsize,
    156 		    origoffset + (orignpages << PAGE_SHIFT));
    157 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    158 #if defined(DIAGNOSTIC)
    159 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    160 		if (newsize > round_page(writeeof)) {
    161 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    162 			    __func__, newsize, round_page(writeeof));
    163 		}
    164 #endif /* defined(DIAGNOSTIC) */
    165 	} else {
    166 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    167 	}
    168 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    169 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    170 	KASSERT(orignpages > 0);
    171 
    172 	/*
    173 	 * Bounds-check the request.
    174 	 */
    175 
    176 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    177 		if ((flags & PGO_LOCKED) == 0) {
    178 			mutex_exit(uobj->vmobjlock);
    179 		}
    180 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    181 		    origoffset, *ap->a_count, memeof,0);
    182 		error = EINVAL;
    183 		goto out_err;
    184 	}
    185 
    186 	/* uobj is locked */
    187 
    188 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    189 	    (vp->v_type != VBLK ||
    190 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    191 		int updflags = 0;
    192 
    193 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    194 			updflags = GOP_UPDATE_ACCESSED;
    195 		}
    196 		if (memwrite) {
    197 			updflags |= GOP_UPDATE_MODIFIED;
    198 		}
    199 		if (updflags != 0) {
    200 			GOP_MARKUPDATE(vp, updflags);
    201 		}
    202 	}
    203 
    204 	/*
    205 	 * For PGO_LOCKED requests, just return whatever's in memory.
    206 	 */
    207 
    208 	if (flags & PGO_LOCKED) {
    209 		int nfound;
    210 		struct vm_page *pg;
    211 
    212 		KASSERT(!glocked);
    213 		npages = *ap->a_count;
    214 #if defined(DEBUG)
    215 		for (i = 0; i < npages; i++) {
    216 			pg = ap->a_m[i];
    217 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    218 		}
    219 #endif /* defined(DEBUG) */
    220 		nfound = uvn_findpages(uobj, origoffset, &npages,
    221 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    222 		KASSERT(npages == *ap->a_count);
    223 		if (nfound == 0) {
    224 			error = EBUSY;
    225 			goto out_err;
    226 		}
    227 		if (!genfs_node_rdtrylock(vp)) {
    228 			genfs_rel_pages(ap->a_m, npages);
    229 
    230 			/*
    231 			 * restore the array.
    232 			 */
    233 
    234 			for (i = 0; i < npages; i++) {
    235 				pg = ap->a_m[i];
    236 
    237 				if (pg != NULL && pg != PGO_DONTCARE) {
    238 					ap->a_m[i] = NULL;
    239 				}
    240 				KASSERT(ap->a_m[i] == NULL ||
    241 				    ap->a_m[i] == PGO_DONTCARE);
    242 			}
    243 		} else {
    244 			genfs_node_unlock(vp);
    245 		}
    246 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    247 		if (error == 0 && memwrite) {
    248 			genfs_markdirty(vp);
    249 		}
    250 		goto out_err;
    251 	}
    252 	mutex_exit(uobj->vmobjlock);
    253 
    254 	/*
    255 	 * find the requested pages and make some simple checks.
    256 	 * leave space in the page array for a whole block.
    257 	 */
    258 
    259 	const int fs_bshift = (vp->v_type != VBLK) ?
    260 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    261 	const int fs_bsize = 1 << fs_bshift;
    262 #define	blk_mask	(fs_bsize - 1)
    263 #define	trunc_blk(x)	((x) & ~blk_mask)
    264 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    265 
    266 	const int orignmempages = MIN(orignpages,
    267 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    268 	npages = orignmempages;
    269 	const off_t startoffset = trunc_blk(origoffset);
    270 	const off_t endoffset = MIN(
    271 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    272 	    round_page(memeof));
    273 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    274 
    275 	const int pgs_size = sizeof(struct vm_page *) *
    276 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    277 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    278 
    279 	if (pgs_size > sizeof(pgs_onstack)) {
    280 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    281 		if (pgs == NULL) {
    282 			pgs = pgs_onstack;
    283 			error = ENOMEM;
    284 			goto out_err;
    285 		}
    286 	} else {
    287 		pgs = pgs_onstack;
    288 		(void)memset(pgs, 0, pgs_size);
    289 	}
    290 
    291 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    292 	    ridx, npages, startoffset, endoffset);
    293 
    294 	if (!has_trans_wapbl) {
    295 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    296 		/*
    297 		 * XXX: This assumes that we come here only via
    298 		 * the mmio path
    299 		 */
    300 		if (need_wapbl) {
    301 			error = WAPBL_BEGIN(vp->v_mount);
    302 			if (error) {
    303 				fstrans_done(vp->v_mount);
    304 				goto out_err_free;
    305 			}
    306 		}
    307 		has_trans_wapbl = true;
    308 	}
    309 
    310 	/*
    311 	 * hold g_glock to prevent a race with truncate.
    312 	 *
    313 	 * check if our idea of v_size is still valid.
    314 	 */
    315 
    316 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    317 	if (!glocked) {
    318 		if (blockalloc) {
    319 			genfs_node_wrlock(vp);
    320 		} else {
    321 			genfs_node_rdlock(vp);
    322 		}
    323 	}
    324 	mutex_enter(uobj->vmobjlock);
    325 	if (vp->v_size < origvsize) {
    326 		if (!glocked) {
    327 			genfs_node_unlock(vp);
    328 		}
    329 		if (pgs != pgs_onstack)
    330 			kmem_free(pgs, pgs_size);
    331 		goto startover;
    332 	}
    333 
    334 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    335 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    336 		if (!glocked) {
    337 			genfs_node_unlock(vp);
    338 		}
    339 		KASSERT(async != 0);
    340 		genfs_rel_pages(&pgs[ridx], orignmempages);
    341 		mutex_exit(uobj->vmobjlock);
    342 		error = EBUSY;
    343 		goto out_err_free;
    344 	}
    345 
    346 	/*
    347 	 * if the pages are already resident, just return them.
    348 	 */
    349 
    350 	for (i = 0; i < npages; i++) {
    351 		struct vm_page *pg = pgs[ridx + i];
    352 
    353 		if ((pg->flags & PG_FAKE) ||
    354 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    355 			break;
    356 		}
    357 	}
    358 	if (i == npages) {
    359 		if (!glocked) {
    360 			genfs_node_unlock(vp);
    361 		}
    362 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    363 		npages += ridx;
    364 		goto out;
    365 	}
    366 
    367 	/*
    368 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    369 	 */
    370 
    371 	if (overwrite) {
    372 		if (!glocked) {
    373 			genfs_node_unlock(vp);
    374 		}
    375 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    376 
    377 		for (i = 0; i < npages; i++) {
    378 			struct vm_page *pg = pgs[ridx + i];
    379 
    380 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    381 		}
    382 		npages += ridx;
    383 		goto out;
    384 	}
    385 
    386 	/*
    387 	 * the page wasn't resident and we're not overwriting,
    388 	 * so we're going to have to do some i/o.
    389 	 * find any additional pages needed to cover the expanded range.
    390 	 */
    391 
    392 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    393 	if (startoffset != origoffset || npages != orignmempages) {
    394 		int npgs;
    395 
    396 		/*
    397 		 * we need to avoid deadlocks caused by locking
    398 		 * additional pages at lower offsets than pages we
    399 		 * already have locked.  unlock them all and start over.
    400 		 */
    401 
    402 		genfs_rel_pages(&pgs[ridx], orignmempages);
    403 		memset(pgs, 0, pgs_size);
    404 
    405 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    406 		    startoffset, endoffset, 0,0);
    407 		npgs = npages;
    408 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    409 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    410 			if (!glocked) {
    411 				genfs_node_unlock(vp);
    412 			}
    413 			KASSERT(async != 0);
    414 			genfs_rel_pages(pgs, npages);
    415 			mutex_exit(uobj->vmobjlock);
    416 			error = EBUSY;
    417 			goto out_err_free;
    418 		}
    419 	}
    420 
    421 	mutex_exit(uobj->vmobjlock);
    422 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
    423 	    async, memwrite, blockalloc, glocked);
    424 	if (error == 0 && async)
    425 		goto out_err_free;
    426 	if (!glocked) {
    427 		genfs_node_unlock(vp);
    428 	}
    429 	mutex_enter(uobj->vmobjlock);
    430 
    431 	/*
    432 	 * we're almost done!  release the pages...
    433 	 * for errors, we free the pages.
    434 	 * otherwise we activate them and mark them as valid and clean.
    435 	 * also, unbusy pages that were not actually requested.
    436 	 */
    437 
    438 	if (error) {
    439 		genfs_rel_pages(pgs, npages);
    440 		mutex_exit(uobj->vmobjlock);
    441 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    442 		goto out_err_free;
    443 	}
    444 
    445 out:
    446 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    447 	error = 0;
    448 	mutex_enter(&uvm_pageqlock);
    449 	for (i = 0; i < npages; i++) {
    450 		struct vm_page *pg = pgs[i];
    451 		if (pg == NULL) {
    452 			continue;
    453 		}
    454 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    455 		    pg, pg->flags, 0,0);
    456 		if (pg->flags & PG_FAKE && !overwrite) {
    457 			pg->flags &= ~(PG_FAKE);
    458 			pmap_clear_modify(pgs[i]);
    459 		}
    460 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    461 		if (i < ridx || i >= ridx + orignmempages || async) {
    462 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    463 			    pg, pg->offset,0,0);
    464 			if (pg->flags & PG_WANTED) {
    465 				wakeup(pg);
    466 			}
    467 			if (pg->flags & PG_FAKE) {
    468 				KASSERT(overwrite);
    469 				uvm_pagezero(pg);
    470 			}
    471 			if (pg->flags & PG_RELEASED) {
    472 				uvm_pagefree(pg);
    473 				continue;
    474 			}
    475 			uvm_pageenqueue(pg);
    476 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    477 			UVM_PAGE_OWN(pg, NULL);
    478 		}
    479 	}
    480 	mutex_exit(&uvm_pageqlock);
    481 	if (memwrite) {
    482 		genfs_markdirty(vp);
    483 	}
    484 	mutex_exit(uobj->vmobjlock);
    485 	if (ap->a_m != NULL) {
    486 		memcpy(ap->a_m, &pgs[ridx],
    487 		    orignmempages * sizeof(struct vm_page *));
    488 	}
    489 
    490 out_err_free:
    491 	if (pgs != NULL && pgs != pgs_onstack)
    492 		kmem_free(pgs, pgs_size);
    493 out_err:
    494 	if (has_trans_wapbl) {
    495 		if (need_wapbl)
    496 			WAPBL_END(vp->v_mount);
    497 		fstrans_done(vp->v_mount);
    498 	}
    499 	return error;
    500 }
    501 
    502 /*
    503  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
    504  */
    505 static int
    506 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
    507     off_t startoffset, off_t diskeof,
    508     bool async, bool memwrite, bool blockalloc, bool glocked)
    509 {
    510 	struct uvm_object * const uobj = &vp->v_uobj;
    511 	const int fs_bshift = (vp->v_type != VBLK) ?
    512 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    513 	const int dev_bshift = (vp->v_type != VBLK) ?
    514 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    515 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    516 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    517 	vaddr_t kva;
    518 	struct buf *bp, *mbp;
    519 	bool sawhole = false;
    520 	int i;
    521 	int error = 0;
    522 
    523 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
    524 
    525 	/*
    526 	 * read the desired page(s).
    527 	 */
    528 
    529 	totalbytes = npages << PAGE_SHIFT;
    530 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    531 	tailbytes = totalbytes - bytes;
    532 	skipbytes = 0;
    533 
    534 	kva = uvm_pagermapin(pgs, npages,
    535 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    536 	if (kva == 0)
    537 		return EBUSY;
    538 
    539 	mbp = getiobuf(vp, true);
    540 	mbp->b_bufsize = totalbytes;
    541 	mbp->b_data = (void *)kva;
    542 	mbp->b_resid = mbp->b_bcount = bytes;
    543 	mbp->b_cflags = BC_BUSY;
    544 	if (async) {
    545 		mbp->b_flags = B_READ | B_ASYNC;
    546 		mbp->b_iodone = uvm_aio_biodone;
    547 	} else {
    548 		mbp->b_flags = B_READ;
    549 		mbp->b_iodone = NULL;
    550 	}
    551 	if (async)
    552 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    553 	else
    554 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    555 
    556 	/*
    557 	 * if EOF is in the middle of the range, zero the part past EOF.
    558 	 * skip over pages which are not PG_FAKE since in that case they have
    559 	 * valid data that we need to preserve.
    560 	 */
    561 
    562 	tailstart = bytes;
    563 	while (tailbytes > 0) {
    564 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    565 
    566 		KASSERT(len <= tailbytes);
    567 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    568 			memset((void *)(kva + tailstart), 0, len);
    569 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    570 			    kva, tailstart, len, 0);
    571 		}
    572 		tailstart += len;
    573 		tailbytes -= len;
    574 	}
    575 
    576 	/*
    577 	 * now loop over the pages, reading as needed.
    578 	 */
    579 
    580 	bp = NULL;
    581 	off_t offset;
    582 	for (offset = startoffset;
    583 	    bytes > 0;
    584 	    offset += iobytes, bytes -= iobytes) {
    585 		int run;
    586 		daddr_t lbn, blkno;
    587 		int pidx;
    588 		struct vnode *devvp;
    589 
    590 		/*
    591 		 * skip pages which don't need to be read.
    592 		 */
    593 
    594 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    595 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    596 			size_t b;
    597 
    598 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    599 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    600 				sawhole = true;
    601 			}
    602 			b = MIN(PAGE_SIZE, bytes);
    603 			offset += b;
    604 			bytes -= b;
    605 			skipbytes += b;
    606 			pidx++;
    607 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    608 			    offset, 0,0,0);
    609 			if (bytes == 0) {
    610 				goto loopdone;
    611 			}
    612 		}
    613 
    614 		/*
    615 		 * bmap the file to find out the blkno to read from and
    616 		 * how much we can read in one i/o.  if bmap returns an error,
    617 		 * skip the rest of the top-level i/o.
    618 		 */
    619 
    620 		lbn = offset >> fs_bshift;
    621 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    622 		if (error) {
    623 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    624 			    lbn,error,0,0);
    625 			skipbytes += bytes;
    626 			bytes = 0;
    627 			goto loopdone;
    628 		}
    629 
    630 		/*
    631 		 * see how many pages can be read with this i/o.
    632 		 * reduce the i/o size if necessary to avoid
    633 		 * overwriting pages with valid data.
    634 		 */
    635 
    636 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    637 		    bytes);
    638 		if (offset + iobytes > round_page(offset)) {
    639 			int pcount;
    640 
    641 			pcount = 1;
    642 			while (pidx + pcount < npages &&
    643 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    644 				pcount++;
    645 			}
    646 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    647 			    (offset - trunc_page(offset)));
    648 		}
    649 
    650 		/*
    651 		 * if this block isn't allocated, zero it instead of
    652 		 * reading it.  unless we are going to allocate blocks,
    653 		 * mark the pages we zeroed PG_RDONLY.
    654 		 */
    655 
    656 		if (blkno == (daddr_t)-1) {
    657 			int holepages = (round_page(offset + iobytes) -
    658 			    trunc_page(offset)) >> PAGE_SHIFT;
    659 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    660 
    661 			sawhole = true;
    662 			memset((char *)kva + (offset - startoffset), 0,
    663 			    iobytes);
    664 			skipbytes += iobytes;
    665 
    666 			mutex_enter(uobj->vmobjlock);
    667 			for (i = 0; i < holepages; i++) {
    668 				if (memwrite) {
    669 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    670 				}
    671 				if (!blockalloc) {
    672 					pgs[pidx + i]->flags |= PG_RDONLY;
    673 				}
    674 			}
    675 			mutex_exit(uobj->vmobjlock);
    676 			continue;
    677 		}
    678 
    679 		/*
    680 		 * allocate a sub-buf for this piece of the i/o
    681 		 * (or just use mbp if there's only 1 piece),
    682 		 * and start it going.
    683 		 */
    684 
    685 		if (offset == startoffset && iobytes == bytes) {
    686 			bp = mbp;
    687 		} else {
    688 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    689 			    vp, bp, vp->v_numoutput, 0);
    690 			bp = getiobuf(vp, true);
    691 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    692 		}
    693 		bp->b_lblkno = 0;
    694 
    695 		/* adjust physical blkno for partial blocks */
    696 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    697 		    dev_bshift);
    698 
    699 		UVMHIST_LOG(ubchist,
    700 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    701 		    bp, offset, bp->b_bcount, bp->b_blkno);
    702 
    703 		VOP_STRATEGY(devvp, bp);
    704 	}
    705 
    706 loopdone:
    707 	nestiobuf_done(mbp, skipbytes, error);
    708 	if (async) {
    709 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    710 		if (!glocked) {
    711 			genfs_node_unlock(vp);
    712 		}
    713 		return 0;
    714 	}
    715 	if (bp != NULL) {
    716 		error = biowait(mbp);
    717 	}
    718 
    719 	/* Remove the mapping (make KVA available as soon as possible) */
    720 	uvm_pagermapout(kva, npages);
    721 
    722 	/*
    723 	 * if this we encountered a hole then we have to do a little more work.
    724 	 * for read faults, we marked the page PG_RDONLY so that future
    725 	 * write accesses to the page will fault again.
    726 	 * for write faults, we must make sure that the backing store for
    727 	 * the page is completely allocated while the pages are locked.
    728 	 */
    729 
    730 	if (!error && sawhole && blockalloc) {
    731 		error = GOP_ALLOC(vp, startoffset,
    732 		    npages << PAGE_SHIFT, 0, cred);
    733 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    734 		    startoffset, npages << PAGE_SHIFT, error,0);
    735 		if (!error) {
    736 			mutex_enter(uobj->vmobjlock);
    737 			for (i = 0; i < npages; i++) {
    738 				struct vm_page *pg = pgs[i];
    739 
    740 				if (pg == NULL) {
    741 					continue;
    742 				}
    743 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    744 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    745 				    pg,0,0,0);
    746 			}
    747 			mutex_exit(uobj->vmobjlock);
    748 		}
    749 	}
    750 
    751 	putiobuf(mbp);
    752 	return error;
    753 }
    754 
    755 /*
    756  * generic VM putpages routine.
    757  * Write the given range of pages to backing store.
    758  *
    759  * => "offhi == 0" means flush all pages at or after "offlo".
    760  * => object should be locked by caller.  we return with the
    761  *      object unlocked.
    762  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    763  *	thus, a caller might want to unlock higher level resources
    764  *	(e.g. vm_map) before calling flush.
    765  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    766  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    767  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    768  *	that new pages are inserted on the tail end of the list.   thus,
    769  *	we can make a complete pass through the object in one go by starting
    770  *	at the head and working towards the tail (new pages are put in
    771  *	front of us).
    772  * => NOTE: we are allowed to lock the page queues, so the caller
    773  *	must not be holding the page queue lock.
    774  *
    775  * note on "cleaning" object and PG_BUSY pages:
    776  *	this routine is holding the lock on the object.   the only time
    777  *	that it can run into a PG_BUSY page that it does not own is if
    778  *	some other process has started I/O on the page (e.g. either
    779  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    780  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    781  *	had a chance to modify it yet.    if the PG_BUSY page is being
    782  *	paged out then it means that someone else has already started
    783  *	cleaning the page for us (how nice!).    in this case, if we
    784  *	have syncio specified, then after we make our pass through the
    785  *	object we need to wait for the other PG_BUSY pages to clear
    786  *	off (i.e. we need to do an iosync).   also note that once a
    787  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    788  *
    789  * note on page traversal:
    790  *	we can traverse the pages in an object either by going down the
    791  *	linked list in "uobj->memq", or we can go over the address range
    792  *	by page doing hash table lookups for each address.    depending
    793  *	on how many pages are in the object it may be cheaper to do one
    794  *	or the other.   we set "by_list" to true if we are using memq.
    795  *	if the cost of a hash lookup was equal to the cost of the list
    796  *	traversal we could compare the number of pages in the start->stop
    797  *	range to the total number of pages in the object.   however, it
    798  *	seems that a hash table lookup is more expensive than the linked
    799  *	list traversal, so we multiply the number of pages in the
    800  *	range by an estimate of the relatively higher cost of the hash lookup.
    801  */
    802 
    803 int
    804 genfs_putpages(void *v)
    805 {
    806 	struct vop_putpages_args /* {
    807 		struct vnode *a_vp;
    808 		voff_t a_offlo;
    809 		voff_t a_offhi;
    810 		int a_flags;
    811 	} */ * const ap = v;
    812 
    813 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    814 	    ap->a_flags, NULL);
    815 }
    816 
    817 int
    818 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    819     int origflags, struct vm_page **busypg)
    820 {
    821 	struct uvm_object * const uobj = &vp->v_uobj;
    822 	kmutex_t * const slock = uobj->vmobjlock;
    823 	off_t off;
    824 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    825 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    826 	int i, error, npages, nback;
    827 	int freeflag;
    828 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    829 	bool wasclean, by_list, needs_clean, yld;
    830 	bool async = (origflags & PGO_SYNCIO) == 0;
    831 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    832 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    833 	struct genfs_node * const gp = VTOG(vp);
    834 	int flags;
    835 	int dirtygen;
    836 	bool modified;
    837 	bool need_wapbl;
    838 	bool has_trans;
    839 	bool cleanall;
    840 	bool onworklst;
    841 
    842 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    843 
    844 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    845 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    846 	KASSERT(startoff < endoff || endoff == 0);
    847 
    848 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    849 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    850 
    851 	has_trans = false;
    852 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    853 	    (origflags & PGO_JOURNALLOCKED) == 0);
    854 
    855 retry:
    856 	modified = false;
    857 	flags = origflags;
    858 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    859 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    860 	if (uobj->uo_npages == 0) {
    861 		if (vp->v_iflag & VI_ONWORKLST) {
    862 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    863 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    864 				vn_syncer_remove_from_worklist(vp);
    865 		}
    866 		if (has_trans) {
    867 			if (need_wapbl)
    868 				WAPBL_END(vp->v_mount);
    869 			fstrans_done(vp->v_mount);
    870 		}
    871 		mutex_exit(slock);
    872 		return (0);
    873 	}
    874 
    875 	/*
    876 	 * the vnode has pages, set up to process the request.
    877 	 */
    878 
    879 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    880 		mutex_exit(slock);
    881 		if (pagedaemon) {
    882 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    883 			if (error)
    884 				return error;
    885 		} else
    886 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    887 		if (need_wapbl) {
    888 			error = WAPBL_BEGIN(vp->v_mount);
    889 			if (error) {
    890 				fstrans_done(vp->v_mount);
    891 				return error;
    892 			}
    893 		}
    894 		has_trans = true;
    895 		mutex_enter(slock);
    896 		goto retry;
    897 	}
    898 
    899 	error = 0;
    900 	wasclean = (vp->v_numoutput == 0);
    901 	off = startoff;
    902 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    903 		endoff = trunc_page(LLONG_MAX);
    904 	}
    905 	by_list = (uobj->uo_npages <=
    906 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    907 
    908 	/*
    909 	 * if this vnode is known not to have dirty pages,
    910 	 * don't bother to clean it out.
    911 	 */
    912 
    913 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    914 #if !defined(DEBUG)
    915 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    916 			goto skip_scan;
    917 		}
    918 #endif /* !defined(DEBUG) */
    919 		flags &= ~PGO_CLEANIT;
    920 	}
    921 
    922 	/*
    923 	 * start the loop.  when scanning by list, hold the last page
    924 	 * in the list before we start.  pages allocated after we start
    925 	 * will be added to the end of the list, so we can stop at the
    926 	 * current last page.
    927 	 */
    928 
    929 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    930 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    931 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    932 	dirtygen = gp->g_dirtygen;
    933 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    934 	if (by_list) {
    935 		curmp.flags = PG_MARKER;
    936 		endmp.flags = PG_MARKER;
    937 		pg = TAILQ_FIRST(&uobj->memq);
    938 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    939 	} else {
    940 		pg = uvm_pagelookup(uobj, off);
    941 	}
    942 	nextpg = NULL;
    943 	while (by_list || off < endoff) {
    944 
    945 		/*
    946 		 * if the current page is not interesting, move on to the next.
    947 		 */
    948 
    949 		KASSERT(pg == NULL || pg->uobject == uobj ||
    950 		    (pg->flags & PG_MARKER) != 0);
    951 		KASSERT(pg == NULL ||
    952 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    953 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
    954 		if (by_list) {
    955 			if (pg == &endmp) {
    956 				break;
    957 			}
    958 			if (pg->flags & PG_MARKER) {
    959 				pg = TAILQ_NEXT(pg, listq.queue);
    960 				continue;
    961 			}
    962 			if (pg->offset < startoff || pg->offset >= endoff ||
    963 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    964 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    965 					wasclean = false;
    966 				}
    967 				pg = TAILQ_NEXT(pg, listq.queue);
    968 				continue;
    969 			}
    970 			off = pg->offset;
    971 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    972 			if (pg != NULL) {
    973 				wasclean = false;
    974 			}
    975 			off += PAGE_SIZE;
    976 			if (off < endoff) {
    977 				pg = uvm_pagelookup(uobj, off);
    978 			}
    979 			continue;
    980 		}
    981 
    982 		/*
    983 		 * if the current page needs to be cleaned and it's busy,
    984 		 * wait for it to become unbusy.
    985 		 */
    986 
    987 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    988 		    SPCF_SHOULDYIELD) && !pagedaemon;
    989 		if (pg->flags & PG_BUSY || yld) {
    990 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    991 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    992 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    993 				error = EDEADLK;
    994 				if (busypg != NULL)
    995 					*busypg = pg;
    996 				break;
    997 			}
    998 			if (pagedaemon) {
    999 				/*
   1000 				 * someone has taken the page while we
   1001 				 * dropped the lock for fstrans_start.
   1002 				 */
   1003 				break;
   1004 			}
   1005 			if (by_list) {
   1006 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1007 				UVMHIST_LOG(ubchist, "curmp next %p",
   1008 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1009 			}
   1010 			if (yld) {
   1011 				mutex_exit(slock);
   1012 				preempt();
   1013 				mutex_enter(slock);
   1014 			} else {
   1015 				pg->flags |= PG_WANTED;
   1016 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1017 				mutex_enter(slock);
   1018 			}
   1019 			if (by_list) {
   1020 				UVMHIST_LOG(ubchist, "after next %p",
   1021 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1022 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1023 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1024 			} else {
   1025 				pg = uvm_pagelookup(uobj, off);
   1026 			}
   1027 			continue;
   1028 		}
   1029 
   1030 		/*
   1031 		 * if we're freeing, remove all mappings of the page now.
   1032 		 * if we're cleaning, check if the page is needs to be cleaned.
   1033 		 */
   1034 
   1035 		if (flags & PGO_FREE) {
   1036 			pmap_page_protect(pg, VM_PROT_NONE);
   1037 		} else if (flags & PGO_CLEANIT) {
   1038 
   1039 			/*
   1040 			 * if we still have some hope to pull this vnode off
   1041 			 * from the syncer queue, write-protect the page.
   1042 			 */
   1043 
   1044 			if (cleanall && wasclean &&
   1045 			    gp->g_dirtygen == dirtygen) {
   1046 
   1047 				/*
   1048 				 * uobj pages get wired only by uvm_fault
   1049 				 * where uobj is locked.
   1050 				 */
   1051 
   1052 				if (pg->wire_count == 0) {
   1053 					pmap_page_protect(pg,
   1054 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1055 				} else {
   1056 					cleanall = false;
   1057 				}
   1058 			}
   1059 		}
   1060 
   1061 		if (flags & PGO_CLEANIT) {
   1062 			needs_clean = pmap_clear_modify(pg) ||
   1063 			    (pg->flags & PG_CLEAN) == 0;
   1064 			pg->flags |= PG_CLEAN;
   1065 		} else {
   1066 			needs_clean = false;
   1067 		}
   1068 
   1069 		/*
   1070 		 * if we're cleaning, build a cluster.
   1071 		 * the cluster will consist of pages which are currently dirty,
   1072 		 * but they will be returned to us marked clean.
   1073 		 * if not cleaning, just operate on the one page.
   1074 		 */
   1075 
   1076 		if (needs_clean) {
   1077 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1078 			wasclean = false;
   1079 			memset(pgs, 0, sizeof(pgs));
   1080 			pg->flags |= PG_BUSY;
   1081 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1082 
   1083 			/*
   1084 			 * first look backward.
   1085 			 */
   1086 
   1087 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1088 			nback = npages;
   1089 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1090 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1091 			if (nback) {
   1092 				memmove(&pgs[0], &pgs[npages - nback],
   1093 				    nback * sizeof(pgs[0]));
   1094 				if (npages - nback < nback)
   1095 					memset(&pgs[nback], 0,
   1096 					    (npages - nback) * sizeof(pgs[0]));
   1097 				else
   1098 					memset(&pgs[npages - nback], 0,
   1099 					    nback * sizeof(pgs[0]));
   1100 			}
   1101 
   1102 			/*
   1103 			 * then plug in our page of interest.
   1104 			 */
   1105 
   1106 			pgs[nback] = pg;
   1107 
   1108 			/*
   1109 			 * then look forward to fill in the remaining space in
   1110 			 * the array of pages.
   1111 			 */
   1112 
   1113 			npages = maxpages - nback - 1;
   1114 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1115 			    &pgs[nback + 1],
   1116 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1117 			npages += nback + 1;
   1118 		} else {
   1119 			pgs[0] = pg;
   1120 			npages = 1;
   1121 			nback = 0;
   1122 		}
   1123 
   1124 		/*
   1125 		 * apply FREE or DEACTIVATE options if requested.
   1126 		 */
   1127 
   1128 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1129 			mutex_enter(&uvm_pageqlock);
   1130 		}
   1131 		for (i = 0; i < npages; i++) {
   1132 			tpg = pgs[i];
   1133 			KASSERT(tpg->uobject == uobj);
   1134 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1135 				pg = tpg;
   1136 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1137 				continue;
   1138 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1139 				uvm_pagedeactivate(tpg);
   1140 			} else if (flags & PGO_FREE) {
   1141 				pmap_page_protect(tpg, VM_PROT_NONE);
   1142 				if (tpg->flags & PG_BUSY) {
   1143 					tpg->flags |= freeflag;
   1144 					if (pagedaemon) {
   1145 						uvm_pageout_start(1);
   1146 						uvm_pagedequeue(tpg);
   1147 					}
   1148 				} else {
   1149 
   1150 					/*
   1151 					 * ``page is not busy''
   1152 					 * implies that npages is 1
   1153 					 * and needs_clean is false.
   1154 					 */
   1155 
   1156 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1157 					uvm_pagefree(tpg);
   1158 					if (pagedaemon)
   1159 						uvmexp.pdfreed++;
   1160 				}
   1161 			}
   1162 		}
   1163 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1164 			mutex_exit(&uvm_pageqlock);
   1165 		}
   1166 		if (needs_clean) {
   1167 			modified = true;
   1168 
   1169 			/*
   1170 			 * start the i/o.  if we're traversing by list,
   1171 			 * keep our place in the list with a marker page.
   1172 			 */
   1173 
   1174 			if (by_list) {
   1175 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1176 				    listq.queue);
   1177 			}
   1178 			mutex_exit(slock);
   1179 			error = GOP_WRITE(vp, pgs, npages, flags);
   1180 			mutex_enter(slock);
   1181 			if (by_list) {
   1182 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1183 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1184 			}
   1185 			if (error) {
   1186 				break;
   1187 			}
   1188 			if (by_list) {
   1189 				continue;
   1190 			}
   1191 		}
   1192 
   1193 		/*
   1194 		 * find the next page and continue if there was no error.
   1195 		 */
   1196 
   1197 		if (by_list) {
   1198 			if (nextpg) {
   1199 				pg = nextpg;
   1200 				nextpg = NULL;
   1201 			} else {
   1202 				pg = TAILQ_NEXT(pg, listq.queue);
   1203 			}
   1204 		} else {
   1205 			off += (npages - nback) << PAGE_SHIFT;
   1206 			if (off < endoff) {
   1207 				pg = uvm_pagelookup(uobj, off);
   1208 			}
   1209 		}
   1210 	}
   1211 	if (by_list) {
   1212 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1213 	}
   1214 
   1215 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1216 	    (vp->v_type != VBLK ||
   1217 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1218 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1219 	}
   1220 
   1221 	/*
   1222 	 * if we're cleaning and there was nothing to clean,
   1223 	 * take us off the syncer list.  if we started any i/o
   1224 	 * and we're doing sync i/o, wait for all writes to finish.
   1225 	 */
   1226 
   1227 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1228 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1229 #if defined(DEBUG)
   1230 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1231 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
   1232 				continue;
   1233 			}
   1234 			if ((pg->flags & PG_CLEAN) == 0) {
   1235 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1236 			}
   1237 			if (pmap_is_modified(pg)) {
   1238 				printf("%s: %p: modified\n", __func__, pg);
   1239 			}
   1240 		}
   1241 #endif /* defined(DEBUG) */
   1242 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1243 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1244 			vn_syncer_remove_from_worklist(vp);
   1245 	}
   1246 
   1247 #if !defined(DEBUG)
   1248 skip_scan:
   1249 #endif /* !defined(DEBUG) */
   1250 
   1251 	/* Wait for output to complete. */
   1252 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1253 		while (vp->v_numoutput != 0)
   1254 			cv_wait(&vp->v_cv, slock);
   1255 	}
   1256 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1257 	mutex_exit(slock);
   1258 
   1259 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1260 		/*
   1261 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1262 		 * retrying is not a big deal because, in many cases,
   1263 		 * uobj->uo_npages is already 0 here.
   1264 		 */
   1265 		mutex_enter(slock);
   1266 		goto retry;
   1267 	}
   1268 
   1269 	if (has_trans) {
   1270 		if (need_wapbl)
   1271 			WAPBL_END(vp->v_mount);
   1272 		fstrans_done(vp->v_mount);
   1273 	}
   1274 
   1275 	return (error);
   1276 }
   1277 
   1278 int
   1279 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1280 {
   1281 	off_t off;
   1282 	vaddr_t kva;
   1283 	size_t len;
   1284 	int error;
   1285 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1286 
   1287 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1288 	    vp, pgs, npages, flags);
   1289 
   1290 	off = pgs[0]->offset;
   1291 	kva = uvm_pagermapin(pgs, npages,
   1292 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1293 	len = npages << PAGE_SHIFT;
   1294 
   1295 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1296 			    uvm_aio_biodone);
   1297 
   1298 	return error;
   1299 }
   1300 
   1301 int
   1302 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1303 {
   1304 	off_t off;
   1305 	vaddr_t kva;
   1306 	size_t len;
   1307 	int error;
   1308 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1309 
   1310 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1311 	    vp, pgs, npages, flags);
   1312 
   1313 	off = pgs[0]->offset;
   1314 	kva = uvm_pagermapin(pgs, npages,
   1315 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1316 	len = npages << PAGE_SHIFT;
   1317 
   1318 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1319 			    uvm_aio_biodone);
   1320 
   1321 	return error;
   1322 }
   1323 
   1324 /*
   1325  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1326  * and mapped into kernel memory.  Here we just look up the underlying
   1327  * device block addresses and call the strategy routine.
   1328  */
   1329 
   1330 static int
   1331 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1332     enum uio_rw rw, void (*iodone)(struct buf *))
   1333 {
   1334 	int s, error;
   1335 	int fs_bshift, dev_bshift;
   1336 	off_t eof, offset, startoffset;
   1337 	size_t bytes, iobytes, skipbytes;
   1338 	struct buf *mbp, *bp;
   1339 	const bool async = (flags & PGO_SYNCIO) == 0;
   1340 	const bool lazy = (flags & PGO_LAZY) == 0;
   1341 	const bool iowrite = rw == UIO_WRITE;
   1342 	const int brw = iowrite ? B_WRITE : B_READ;
   1343 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1344 
   1345 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1346 	    vp, kva, len, flags);
   1347 
   1348 	KASSERT(vp->v_size <= vp->v_writesize);
   1349 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1350 	if (vp->v_type != VBLK) {
   1351 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1352 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1353 	} else {
   1354 		fs_bshift = DEV_BSHIFT;
   1355 		dev_bshift = DEV_BSHIFT;
   1356 	}
   1357 	error = 0;
   1358 	startoffset = off;
   1359 	bytes = MIN(len, eof - startoffset);
   1360 	skipbytes = 0;
   1361 	KASSERT(bytes != 0);
   1362 
   1363 	if (iowrite) {
   1364 		mutex_enter(vp->v_interlock);
   1365 		vp->v_numoutput += 2;
   1366 		mutex_exit(vp->v_interlock);
   1367 	}
   1368 	mbp = getiobuf(vp, true);
   1369 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1370 	    vp, mbp, vp->v_numoutput, bytes);
   1371 	mbp->b_bufsize = len;
   1372 	mbp->b_data = (void *)kva;
   1373 	mbp->b_resid = mbp->b_bcount = bytes;
   1374 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1375 	if (async) {
   1376 		mbp->b_flags = brw | B_ASYNC;
   1377 		mbp->b_iodone = iodone;
   1378 	} else {
   1379 		mbp->b_flags = brw;
   1380 		mbp->b_iodone = NULL;
   1381 	}
   1382 	if (curlwp == uvm.pagedaemon_lwp)
   1383 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1384 	else if (async || lazy)
   1385 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1386 	else
   1387 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1388 
   1389 	bp = NULL;
   1390 	for (offset = startoffset;
   1391 	    bytes > 0;
   1392 	    offset += iobytes, bytes -= iobytes) {
   1393 		int run;
   1394 		daddr_t lbn, blkno;
   1395 		struct vnode *devvp;
   1396 
   1397 		/*
   1398 		 * bmap the file to find out the blkno to read from and
   1399 		 * how much we can read in one i/o.  if bmap returns an error,
   1400 		 * skip the rest of the top-level i/o.
   1401 		 */
   1402 
   1403 		lbn = offset >> fs_bshift;
   1404 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1405 		if (error) {
   1406 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1407 			    lbn,error,0,0);
   1408 			skipbytes += bytes;
   1409 			bytes = 0;
   1410 			goto loopdone;
   1411 		}
   1412 
   1413 		/*
   1414 		 * see how many pages can be read with this i/o.
   1415 		 * reduce the i/o size if necessary to avoid
   1416 		 * overwriting pages with valid data.
   1417 		 */
   1418 
   1419 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1420 		    bytes);
   1421 
   1422 		/*
   1423 		 * if this block isn't allocated, zero it instead of
   1424 		 * reading it.  unless we are going to allocate blocks,
   1425 		 * mark the pages we zeroed PG_RDONLY.
   1426 		 */
   1427 
   1428 		if (blkno == (daddr_t)-1) {
   1429 			if (!iowrite) {
   1430 				memset((char *)kva + (offset - startoffset), 0,
   1431 				    iobytes);
   1432 			}
   1433 			skipbytes += iobytes;
   1434 			continue;
   1435 		}
   1436 
   1437 		/*
   1438 		 * allocate a sub-buf for this piece of the i/o
   1439 		 * (or just use mbp if there's only 1 piece),
   1440 		 * and start it going.
   1441 		 */
   1442 
   1443 		if (offset == startoffset && iobytes == bytes) {
   1444 			bp = mbp;
   1445 		} else {
   1446 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1447 			    vp, bp, vp->v_numoutput, 0);
   1448 			bp = getiobuf(vp, true);
   1449 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1450 		}
   1451 		bp->b_lblkno = 0;
   1452 
   1453 		/* adjust physical blkno for partial blocks */
   1454 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1455 		    dev_bshift);
   1456 
   1457 		UVMHIST_LOG(ubchist,
   1458 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1459 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1460 
   1461 		VOP_STRATEGY(devvp, bp);
   1462 	}
   1463 
   1464 loopdone:
   1465 	if (skipbytes) {
   1466 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1467 	}
   1468 	nestiobuf_done(mbp, skipbytes, error);
   1469 	if (async) {
   1470 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1471 		return (0);
   1472 	}
   1473 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1474 	error = biowait(mbp);
   1475 	s = splbio();
   1476 	(*iodone)(mbp);
   1477 	splx(s);
   1478 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1479 	return (error);
   1480 }
   1481 
   1482 int
   1483 genfs_compat_getpages(void *v)
   1484 {
   1485 	struct vop_getpages_args /* {
   1486 		struct vnode *a_vp;
   1487 		voff_t a_offset;
   1488 		struct vm_page **a_m;
   1489 		int *a_count;
   1490 		int a_centeridx;
   1491 		vm_prot_t a_access_type;
   1492 		int a_advice;
   1493 		int a_flags;
   1494 	} */ *ap = v;
   1495 
   1496 	off_t origoffset;
   1497 	struct vnode *vp = ap->a_vp;
   1498 	struct uvm_object *uobj = &vp->v_uobj;
   1499 	struct vm_page *pg, **pgs;
   1500 	vaddr_t kva;
   1501 	int i, error, orignpages, npages;
   1502 	struct iovec iov;
   1503 	struct uio uio;
   1504 	kauth_cred_t cred = curlwp->l_cred;
   1505 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1506 
   1507 	error = 0;
   1508 	origoffset = ap->a_offset;
   1509 	orignpages = *ap->a_count;
   1510 	pgs = ap->a_m;
   1511 
   1512 	if (ap->a_flags & PGO_LOCKED) {
   1513 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1514 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1515 
   1516 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1517 		if (error == 0 && memwrite) {
   1518 			genfs_markdirty(vp);
   1519 		}
   1520 		return error;
   1521 	}
   1522 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1523 		mutex_exit(uobj->vmobjlock);
   1524 		return EINVAL;
   1525 	}
   1526 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1527 		mutex_exit(uobj->vmobjlock);
   1528 		return 0;
   1529 	}
   1530 	npages = orignpages;
   1531 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1532 	mutex_exit(uobj->vmobjlock);
   1533 	kva = uvm_pagermapin(pgs, npages,
   1534 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1535 	for (i = 0; i < npages; i++) {
   1536 		pg = pgs[i];
   1537 		if ((pg->flags & PG_FAKE) == 0) {
   1538 			continue;
   1539 		}
   1540 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1541 		iov.iov_len = PAGE_SIZE;
   1542 		uio.uio_iov = &iov;
   1543 		uio.uio_iovcnt = 1;
   1544 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1545 		uio.uio_rw = UIO_READ;
   1546 		uio.uio_resid = PAGE_SIZE;
   1547 		UIO_SETUP_SYSSPACE(&uio);
   1548 		/* XXX vn_lock */
   1549 		error = VOP_READ(vp, &uio, 0, cred);
   1550 		if (error) {
   1551 			break;
   1552 		}
   1553 		if (uio.uio_resid) {
   1554 			memset(iov.iov_base, 0, uio.uio_resid);
   1555 		}
   1556 	}
   1557 	uvm_pagermapout(kva, npages);
   1558 	mutex_enter(uobj->vmobjlock);
   1559 	mutex_enter(&uvm_pageqlock);
   1560 	for (i = 0; i < npages; i++) {
   1561 		pg = pgs[i];
   1562 		if (error && (pg->flags & PG_FAKE) != 0) {
   1563 			pg->flags |= PG_RELEASED;
   1564 		} else {
   1565 			pmap_clear_modify(pg);
   1566 			uvm_pageactivate(pg);
   1567 		}
   1568 	}
   1569 	if (error) {
   1570 		uvm_page_unbusy(pgs, npages);
   1571 	}
   1572 	mutex_exit(&uvm_pageqlock);
   1573 	if (error == 0 && memwrite) {
   1574 		genfs_markdirty(vp);
   1575 	}
   1576 	mutex_exit(uobj->vmobjlock);
   1577 	return error;
   1578 }
   1579 
   1580 int
   1581 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1582     int flags)
   1583 {
   1584 	off_t offset;
   1585 	struct iovec iov;
   1586 	struct uio uio;
   1587 	kauth_cred_t cred = curlwp->l_cred;
   1588 	struct buf *bp;
   1589 	vaddr_t kva;
   1590 	int error;
   1591 
   1592 	offset = pgs[0]->offset;
   1593 	kva = uvm_pagermapin(pgs, npages,
   1594 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1595 
   1596 	iov.iov_base = (void *)kva;
   1597 	iov.iov_len = npages << PAGE_SHIFT;
   1598 	uio.uio_iov = &iov;
   1599 	uio.uio_iovcnt = 1;
   1600 	uio.uio_offset = offset;
   1601 	uio.uio_rw = UIO_WRITE;
   1602 	uio.uio_resid = npages << PAGE_SHIFT;
   1603 	UIO_SETUP_SYSSPACE(&uio);
   1604 	/* XXX vn_lock */
   1605 	error = VOP_WRITE(vp, &uio, 0, cred);
   1606 
   1607 	mutex_enter(vp->v_interlock);
   1608 	vp->v_numoutput++;
   1609 	mutex_exit(vp->v_interlock);
   1610 
   1611 	bp = getiobuf(vp, true);
   1612 	bp->b_cflags = BC_BUSY | BC_AGE;
   1613 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1614 	bp->b_data = (char *)kva;
   1615 	bp->b_bcount = npages << PAGE_SHIFT;
   1616 	bp->b_bufsize = npages << PAGE_SHIFT;
   1617 	bp->b_resid = 0;
   1618 	bp->b_error = error;
   1619 	uvm_aio_aiodone(bp);
   1620 	return (error);
   1621 }
   1622 
   1623 /*
   1624  * Process a uio using direct I/O.  If we reach a part of the request
   1625  * which cannot be processed in this fashion for some reason, just return.
   1626  * The caller must handle some additional part of the request using
   1627  * buffered I/O before trying direct I/O again.
   1628  */
   1629 
   1630 void
   1631 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1632 {
   1633 	struct vmspace *vs;
   1634 	struct iovec *iov;
   1635 	vaddr_t va;
   1636 	size_t len;
   1637 	const int mask = DEV_BSIZE - 1;
   1638 	int error;
   1639 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1640 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1641 
   1642 	/*
   1643 	 * We only support direct I/O to user space for now.
   1644 	 */
   1645 
   1646 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1647 		return;
   1648 	}
   1649 
   1650 	/*
   1651 	 * If the vnode is mapped, we would need to get the getpages lock
   1652 	 * to stabilize the bmap, but then we would get into trouble while
   1653 	 * locking the pages if the pages belong to this same vnode (or a
   1654 	 * multi-vnode cascade to the same effect).  Just fall back to
   1655 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1656 	 */
   1657 
   1658 	if (vp->v_vflag & VV_MAPPED) {
   1659 		return;
   1660 	}
   1661 
   1662 	if (need_wapbl) {
   1663 		error = WAPBL_BEGIN(vp->v_mount);
   1664 		if (error)
   1665 			return;
   1666 	}
   1667 
   1668 	/*
   1669 	 * Do as much of the uio as possible with direct I/O.
   1670 	 */
   1671 
   1672 	vs = uio->uio_vmspace;
   1673 	while (uio->uio_resid) {
   1674 		iov = uio->uio_iov;
   1675 		if (iov->iov_len == 0) {
   1676 			uio->uio_iov++;
   1677 			uio->uio_iovcnt--;
   1678 			continue;
   1679 		}
   1680 		va = (vaddr_t)iov->iov_base;
   1681 		len = MIN(iov->iov_len, genfs_maxdio);
   1682 		len &= ~mask;
   1683 
   1684 		/*
   1685 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1686 		 * the current EOF, then fall back to buffered I/O.
   1687 		 */
   1688 
   1689 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1690 			break;
   1691 		}
   1692 
   1693 		/*
   1694 		 * Check alignment.  The file offset must be at least
   1695 		 * sector-aligned.  The exact constraint on memory alignment
   1696 		 * is very hardware-dependent, but requiring sector-aligned
   1697 		 * addresses there too is safe.
   1698 		 */
   1699 
   1700 		if (uio->uio_offset & mask || va & mask) {
   1701 			break;
   1702 		}
   1703 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1704 					  uio->uio_rw);
   1705 		if (error) {
   1706 			break;
   1707 		}
   1708 		iov->iov_base = (char *)iov->iov_base + len;
   1709 		iov->iov_len -= len;
   1710 		uio->uio_offset += len;
   1711 		uio->uio_resid -= len;
   1712 	}
   1713 
   1714 	if (need_wapbl)
   1715 		WAPBL_END(vp->v_mount);
   1716 }
   1717 
   1718 /*
   1719  * Iodone routine for direct I/O.  We don't do much here since the request is
   1720  * always synchronous, so the caller will do most of the work after biowait().
   1721  */
   1722 
   1723 static void
   1724 genfs_dio_iodone(struct buf *bp)
   1725 {
   1726 
   1727 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1728 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1729 		mutex_enter(bp->b_objlock);
   1730 		vwakeup(bp);
   1731 		mutex_exit(bp->b_objlock);
   1732 	}
   1733 	putiobuf(bp);
   1734 }
   1735 
   1736 /*
   1737  * Process one chunk of a direct I/O request.
   1738  */
   1739 
   1740 static int
   1741 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1742     off_t off, enum uio_rw rw)
   1743 {
   1744 	struct vm_map *map;
   1745 	struct pmap *upm, *kpm __unused;
   1746 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1747 	off_t spoff, epoff;
   1748 	vaddr_t kva, puva;
   1749 	paddr_t pa;
   1750 	vm_prot_t prot;
   1751 	int error, rv __diagused, poff, koff;
   1752 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1753 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1754 
   1755 	/*
   1756 	 * For writes, verify that this range of the file already has fully
   1757 	 * allocated backing store.  If there are any holes, just punt and
   1758 	 * make the caller take the buffered write path.
   1759 	 */
   1760 
   1761 	if (rw == UIO_WRITE) {
   1762 		daddr_t lbn, elbn, blkno;
   1763 		int bsize, bshift, run;
   1764 
   1765 		bshift = vp->v_mount->mnt_fs_bshift;
   1766 		bsize = 1 << bshift;
   1767 		lbn = off >> bshift;
   1768 		elbn = (off + len + bsize - 1) >> bshift;
   1769 		while (lbn < elbn) {
   1770 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1771 			if (error) {
   1772 				return error;
   1773 			}
   1774 			if (blkno == (daddr_t)-1) {
   1775 				return ENOSPC;
   1776 			}
   1777 			lbn += 1 + run;
   1778 		}
   1779 	}
   1780 
   1781 	/*
   1782 	 * Flush any cached pages for parts of the file that we're about to
   1783 	 * access.  If we're writing, invalidate pages as well.
   1784 	 */
   1785 
   1786 	spoff = trunc_page(off);
   1787 	epoff = round_page(off + len);
   1788 	mutex_enter(vp->v_interlock);
   1789 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1790 	if (error) {
   1791 		return error;
   1792 	}
   1793 
   1794 	/*
   1795 	 * Wire the user pages and remap them into kernel memory.
   1796 	 */
   1797 
   1798 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1799 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1800 	if (error) {
   1801 		return error;
   1802 	}
   1803 
   1804 	map = &vs->vm_map;
   1805 	upm = vm_map_pmap(map);
   1806 	kpm = vm_map_pmap(kernel_map);
   1807 	puva = trunc_page(uva);
   1808 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1809 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1810 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1811 		rv = pmap_extract(upm, puva + poff, &pa);
   1812 		KASSERT(rv);
   1813 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1814 	}
   1815 	pmap_update(kpm);
   1816 
   1817 	/*
   1818 	 * Do the I/O.
   1819 	 */
   1820 
   1821 	koff = uva - trunc_page(uva);
   1822 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1823 			    genfs_dio_iodone);
   1824 
   1825 	/*
   1826 	 * Tear down the kernel mapping.
   1827 	 */
   1828 
   1829 	pmap_kremove(kva, klen);
   1830 	pmap_update(kpm);
   1831 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1832 
   1833 	/*
   1834 	 * Unwire the user pages.
   1835 	 */
   1836 
   1837 	uvm_vsunlock(vs, (void *)uva, len);
   1838 	return error;
   1839 }
   1840