genfs_io.c revision 1.63.2.1 1 /* $NetBSD: genfs_io.c,v 1.63.2.1 2017/04/21 16:54:03 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.63.2.1 2017/04/21 16:54:03 bouyer Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 bool holds_wapbl = false;
133 struct mount *trans_mount = NULL;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 startover:
143 error = 0;
144 const voff_t origvsize = vp->v_size;
145 const off_t origoffset = ap->a_offset;
146 const int orignpages = *ap->a_count;
147
148 GOP_SIZE(vp, origvsize, &diskeof, 0);
149 if (flags & PGO_PASTEOF) {
150 off_t newsize;
151 #if defined(DIAGNOSTIC)
152 off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154
155 newsize = MAX(origvsize,
156 origoffset + (orignpages << PAGE_SHIFT));
157 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 if (newsize > round_page(writeeof)) {
161 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 __func__, newsize, round_page(writeeof));
163 }
164 #endif /* defined(DIAGNOSTIC) */
165 } else {
166 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 }
168 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 KASSERT(orignpages > 0);
171
172 /*
173 * Bounds-check the request.
174 */
175
176 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 if ((flags & PGO_LOCKED) == 0) {
178 mutex_exit(uobj->vmobjlock);
179 }
180 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 origoffset, *ap->a_count, memeof,0);
182 error = EINVAL;
183 goto out_err;
184 }
185
186 /* uobj is locked */
187
188 if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 (vp->v_type != VBLK ||
190 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 int updflags = 0;
192
193 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 updflags = GOP_UPDATE_ACCESSED;
195 }
196 if (memwrite) {
197 updflags |= GOP_UPDATE_MODIFIED;
198 }
199 if (updflags != 0) {
200 GOP_MARKUPDATE(vp, updflags);
201 }
202 }
203
204 /*
205 * For PGO_LOCKED requests, just return whatever's in memory.
206 */
207
208 if (flags & PGO_LOCKED) {
209 int nfound;
210 struct vm_page *pg;
211
212 KASSERT(!glocked);
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 KASSERT(npages == *ap->a_count);
223 if (nfound == 0) {
224 error = EBUSY;
225 goto out_err;
226 }
227 if (!genfs_node_rdtrylock(vp)) {
228 genfs_rel_pages(ap->a_m, npages);
229
230 /*
231 * restore the array.
232 */
233
234 for (i = 0; i < npages; i++) {
235 pg = ap->a_m[i];
236
237 if (pg != NULL && pg != PGO_DONTCARE) {
238 ap->a_m[i] = NULL;
239 }
240 KASSERT(ap->a_m[i] == NULL ||
241 ap->a_m[i] == PGO_DONTCARE);
242 }
243 } else {
244 genfs_node_unlock(vp);
245 }
246 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 if (error == 0 && memwrite) {
248 genfs_markdirty(vp);
249 }
250 goto out_err;
251 }
252 mutex_exit(uobj->vmobjlock);
253
254 /*
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
257 */
258
259 const int fs_bshift = (vp->v_type != VBLK) ?
260 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 const int fs_bsize = 1 << fs_bshift;
262 #define blk_mask (fs_bsize - 1)
263 #define trunc_blk(x) ((x) & ~blk_mask)
264 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
265
266 const int orignmempages = MIN(orignpages,
267 round_page(memeof - origoffset) >> PAGE_SHIFT);
268 npages = orignmempages;
269 const off_t startoffset = trunc_blk(origoffset);
270 const off_t endoffset = MIN(
271 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
272 round_page(memeof));
273 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
274
275 const int pgs_size = sizeof(struct vm_page *) *
276 ((endoffset - startoffset) >> PAGE_SHIFT);
277 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
278
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
285 }
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
289 }
290
291 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
292 ridx, npages, startoffset, endoffset);
293
294 if (trans_mount == NULL) {
295 trans_mount = vp->v_mount;
296 fstrans_start(trans_mount, FSTRANS_SHARED);
297 /*
298 * check if this vnode is still valid.
299 */
300 mutex_enter(vp->v_interlock);
301 error = vdead_check(vp, 0);
302 mutex_exit(vp->v_interlock);
303 if (error)
304 goto out_err_free;
305 /*
306 * XXX: This assumes that we come here only via
307 * the mmio path
308 */
309 if (blockalloc && vp->v_mount->mnt_wapbl) {
310 error = WAPBL_BEGIN(trans_mount);
311 if (error)
312 goto out_err_free;
313 holds_wapbl = true;
314 }
315 }
316
317 /*
318 * hold g_glock to prevent a race with truncate.
319 *
320 * check if our idea of v_size is still valid.
321 */
322
323 KASSERT(!glocked || genfs_node_wrlocked(vp));
324 if (!glocked) {
325 if (blockalloc) {
326 genfs_node_wrlock(vp);
327 } else {
328 genfs_node_rdlock(vp);
329 }
330 }
331 mutex_enter(uobj->vmobjlock);
332 if (vp->v_size < origvsize) {
333 if (!glocked) {
334 genfs_node_unlock(vp);
335 }
336 if (pgs != pgs_onstack)
337 kmem_free(pgs, pgs_size);
338 goto startover;
339 }
340
341 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
342 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
343 if (!glocked) {
344 genfs_node_unlock(vp);
345 }
346 KASSERT(async != 0);
347 genfs_rel_pages(&pgs[ridx], orignmempages);
348 mutex_exit(uobj->vmobjlock);
349 error = EBUSY;
350 goto out_err_free;
351 }
352
353 /*
354 * if the pages are already resident, just return them.
355 */
356
357 for (i = 0; i < npages; i++) {
358 struct vm_page *pg = pgs[ridx + i];
359
360 if ((pg->flags & PG_FAKE) ||
361 (blockalloc && (pg->flags & PG_RDONLY))) {
362 break;
363 }
364 }
365 if (i == npages) {
366 if (!glocked) {
367 genfs_node_unlock(vp);
368 }
369 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
370 npages += ridx;
371 goto out;
372 }
373
374 /*
375 * if PGO_OVERWRITE is set, don't bother reading the pages.
376 */
377
378 if (overwrite) {
379 if (!glocked) {
380 genfs_node_unlock(vp);
381 }
382 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
383
384 for (i = 0; i < npages; i++) {
385 struct vm_page *pg = pgs[ridx + i];
386
387 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
388 }
389 npages += ridx;
390 goto out;
391 }
392
393 /*
394 * the page wasn't resident and we're not overwriting,
395 * so we're going to have to do some i/o.
396 * find any additional pages needed to cover the expanded range.
397 */
398
399 npages = (endoffset - startoffset) >> PAGE_SHIFT;
400 if (startoffset != origoffset || npages != orignmempages) {
401 int npgs;
402
403 /*
404 * we need to avoid deadlocks caused by locking
405 * additional pages at lower offsets than pages we
406 * already have locked. unlock them all and start over.
407 */
408
409 genfs_rel_pages(&pgs[ridx], orignmempages);
410 memset(pgs, 0, pgs_size);
411
412 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
413 startoffset, endoffset, 0,0);
414 npgs = npages;
415 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
416 async ? UFP_NOWAIT : UFP_ALL) != npages) {
417 if (!glocked) {
418 genfs_node_unlock(vp);
419 }
420 KASSERT(async != 0);
421 genfs_rel_pages(pgs, npages);
422 mutex_exit(uobj->vmobjlock);
423 error = EBUSY;
424 goto out_err_free;
425 }
426 }
427
428 mutex_exit(uobj->vmobjlock);
429 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
430 async, memwrite, blockalloc, glocked);
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 if (error == 0 && async)
435 goto out_err_free;
436 mutex_enter(uobj->vmobjlock);
437
438 /*
439 * we're almost done! release the pages...
440 * for errors, we free the pages.
441 * otherwise we activate them and mark them as valid and clean.
442 * also, unbusy pages that were not actually requested.
443 */
444
445 if (error) {
446 genfs_rel_pages(pgs, npages);
447 mutex_exit(uobj->vmobjlock);
448 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
449 goto out_err_free;
450 }
451
452 out:
453 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
454 error = 0;
455 mutex_enter(&uvm_pageqlock);
456 for (i = 0; i < npages; i++) {
457 struct vm_page *pg = pgs[i];
458 if (pg == NULL) {
459 continue;
460 }
461 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
462 pg, pg->flags, 0,0);
463 if (pg->flags & PG_FAKE && !overwrite) {
464 pg->flags &= ~(PG_FAKE);
465 pmap_clear_modify(pgs[i]);
466 }
467 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
468 if (i < ridx || i >= ridx + orignmempages || async) {
469 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
470 pg, pg->offset,0,0);
471 if (pg->flags & PG_WANTED) {
472 wakeup(pg);
473 }
474 if (pg->flags & PG_FAKE) {
475 KASSERT(overwrite);
476 uvm_pagezero(pg);
477 }
478 if (pg->flags & PG_RELEASED) {
479 uvm_pagefree(pg);
480 continue;
481 }
482 uvm_pageenqueue(pg);
483 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
484 UVM_PAGE_OWN(pg, NULL);
485 }
486 }
487 mutex_exit(&uvm_pageqlock);
488 if (memwrite) {
489 genfs_markdirty(vp);
490 }
491 mutex_exit(uobj->vmobjlock);
492 if (ap->a_m != NULL) {
493 memcpy(ap->a_m, &pgs[ridx],
494 orignmempages * sizeof(struct vm_page *));
495 }
496
497 out_err_free:
498 if (pgs != NULL && pgs != pgs_onstack)
499 kmem_free(pgs, pgs_size);
500 out_err:
501 if (trans_mount != NULL) {
502 if (holds_wapbl)
503 WAPBL_END(trans_mount);
504 fstrans_done(trans_mount);
505 }
506 return error;
507 }
508
509 /*
510 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
511 *
512 * "glocked" (which is currently not actually used) tells us not whether
513 * the genfs_node is locked on entry (it always is) but whether it was
514 * locked on entry to genfs_getpages.
515 */
516 static int
517 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
518 off_t startoffset, off_t diskeof,
519 bool async, bool memwrite, bool blockalloc, bool glocked)
520 {
521 struct uvm_object * const uobj = &vp->v_uobj;
522 const int fs_bshift = (vp->v_type != VBLK) ?
523 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
524 const int dev_bshift = (vp->v_type != VBLK) ?
525 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
526 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
527 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
528 vaddr_t kva;
529 struct buf *bp, *mbp;
530 bool sawhole = false;
531 int i;
532 int error = 0;
533
534 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
535
536 /*
537 * read the desired page(s).
538 */
539
540 totalbytes = npages << PAGE_SHIFT;
541 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
542 tailbytes = totalbytes - bytes;
543 skipbytes = 0;
544
545 kva = uvm_pagermapin(pgs, npages,
546 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
547 if (kva == 0)
548 return EBUSY;
549
550 mbp = getiobuf(vp, true);
551 mbp->b_bufsize = totalbytes;
552 mbp->b_data = (void *)kva;
553 mbp->b_resid = mbp->b_bcount = bytes;
554 mbp->b_cflags = BC_BUSY;
555 if (async) {
556 mbp->b_flags = B_READ | B_ASYNC;
557 mbp->b_iodone = uvm_aio_biodone;
558 } else {
559 mbp->b_flags = B_READ;
560 mbp->b_iodone = NULL;
561 }
562 if (async)
563 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
564 else
565 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
566
567 /*
568 * if EOF is in the middle of the range, zero the part past EOF.
569 * skip over pages which are not PG_FAKE since in that case they have
570 * valid data that we need to preserve.
571 */
572
573 tailstart = bytes;
574 while (tailbytes > 0) {
575 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
576
577 KASSERT(len <= tailbytes);
578 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
579 memset((void *)(kva + tailstart), 0, len);
580 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
581 kva, tailstart, len, 0);
582 }
583 tailstart += len;
584 tailbytes -= len;
585 }
586
587 /*
588 * now loop over the pages, reading as needed.
589 */
590
591 bp = NULL;
592 off_t offset;
593 for (offset = startoffset;
594 bytes > 0;
595 offset += iobytes, bytes -= iobytes) {
596 int run;
597 daddr_t lbn, blkno;
598 int pidx;
599 struct vnode *devvp;
600
601 /*
602 * skip pages which don't need to be read.
603 */
604
605 pidx = (offset - startoffset) >> PAGE_SHIFT;
606 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
607 size_t b;
608
609 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
610 if ((pgs[pidx]->flags & PG_RDONLY)) {
611 sawhole = true;
612 }
613 b = MIN(PAGE_SIZE, bytes);
614 offset += b;
615 bytes -= b;
616 skipbytes += b;
617 pidx++;
618 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
619 offset, 0,0,0);
620 if (bytes == 0) {
621 goto loopdone;
622 }
623 }
624
625 /*
626 * bmap the file to find out the blkno to read from and
627 * how much we can read in one i/o. if bmap returns an error,
628 * skip the rest of the top-level i/o.
629 */
630
631 lbn = offset >> fs_bshift;
632 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
633 if (error) {
634 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
635 lbn,error,0,0);
636 skipbytes += bytes;
637 bytes = 0;
638 goto loopdone;
639 }
640
641 /*
642 * see how many pages can be read with this i/o.
643 * reduce the i/o size if necessary to avoid
644 * overwriting pages with valid data.
645 */
646
647 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
648 bytes);
649 if (offset + iobytes > round_page(offset)) {
650 int pcount;
651
652 pcount = 1;
653 while (pidx + pcount < npages &&
654 pgs[pidx + pcount]->flags & PG_FAKE) {
655 pcount++;
656 }
657 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
658 (offset - trunc_page(offset)));
659 }
660
661 /*
662 * if this block isn't allocated, zero it instead of
663 * reading it. unless we are going to allocate blocks,
664 * mark the pages we zeroed PG_RDONLY.
665 */
666
667 if (blkno == (daddr_t)-1) {
668 int holepages = (round_page(offset + iobytes) -
669 trunc_page(offset)) >> PAGE_SHIFT;
670 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
671
672 sawhole = true;
673 memset((char *)kva + (offset - startoffset), 0,
674 iobytes);
675 skipbytes += iobytes;
676
677 mutex_enter(uobj->vmobjlock);
678 for (i = 0; i < holepages; i++) {
679 if (memwrite) {
680 pgs[pidx + i]->flags &= ~PG_CLEAN;
681 }
682 if (!blockalloc) {
683 pgs[pidx + i]->flags |= PG_RDONLY;
684 }
685 }
686 mutex_exit(uobj->vmobjlock);
687 continue;
688 }
689
690 /*
691 * allocate a sub-buf for this piece of the i/o
692 * (or just use mbp if there's only 1 piece),
693 * and start it going.
694 */
695
696 if (offset == startoffset && iobytes == bytes) {
697 bp = mbp;
698 } else {
699 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
700 vp, bp, vp->v_numoutput, 0);
701 bp = getiobuf(vp, true);
702 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
703 }
704 bp->b_lblkno = 0;
705
706 /* adjust physical blkno for partial blocks */
707 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
708 dev_bshift);
709
710 UVMHIST_LOG(ubchist,
711 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
712 bp, offset, bp->b_bcount, bp->b_blkno);
713
714 VOP_STRATEGY(devvp, bp);
715 }
716
717 loopdone:
718 nestiobuf_done(mbp, skipbytes, error);
719 if (async) {
720 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
721 return 0;
722 }
723 if (bp != NULL) {
724 error = biowait(mbp);
725 }
726
727 /* Remove the mapping (make KVA available as soon as possible) */
728 uvm_pagermapout(kva, npages);
729
730 /*
731 * if this we encountered a hole then we have to do a little more work.
732 * for read faults, we marked the page PG_RDONLY so that future
733 * write accesses to the page will fault again.
734 * for write faults, we must make sure that the backing store for
735 * the page is completely allocated while the pages are locked.
736 */
737
738 if (!error && sawhole && blockalloc) {
739 error = GOP_ALLOC(vp, startoffset,
740 npages << PAGE_SHIFT, 0, cred);
741 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
742 startoffset, npages << PAGE_SHIFT, error,0);
743 if (!error) {
744 mutex_enter(uobj->vmobjlock);
745 for (i = 0; i < npages; i++) {
746 struct vm_page *pg = pgs[i];
747
748 if (pg == NULL) {
749 continue;
750 }
751 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
752 UVMHIST_LOG(ubchist, "mark dirty pg %p",
753 pg,0,0,0);
754 }
755 mutex_exit(uobj->vmobjlock);
756 }
757 }
758
759 putiobuf(mbp);
760 return error;
761 }
762
763 /*
764 * generic VM putpages routine.
765 * Write the given range of pages to backing store.
766 *
767 * => "offhi == 0" means flush all pages at or after "offlo".
768 * => object should be locked by caller. we return with the
769 * object unlocked.
770 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
771 * thus, a caller might want to unlock higher level resources
772 * (e.g. vm_map) before calling flush.
773 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
774 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
775 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
776 * that new pages are inserted on the tail end of the list. thus,
777 * we can make a complete pass through the object in one go by starting
778 * at the head and working towards the tail (new pages are put in
779 * front of us).
780 * => NOTE: we are allowed to lock the page queues, so the caller
781 * must not be holding the page queue lock.
782 *
783 * note on "cleaning" object and PG_BUSY pages:
784 * this routine is holding the lock on the object. the only time
785 * that it can run into a PG_BUSY page that it does not own is if
786 * some other process has started I/O on the page (e.g. either
787 * a pagein, or a pageout). if the PG_BUSY page is being paged
788 * in, then it can not be dirty (!PG_CLEAN) because no one has
789 * had a chance to modify it yet. if the PG_BUSY page is being
790 * paged out then it means that someone else has already started
791 * cleaning the page for us (how nice!). in this case, if we
792 * have syncio specified, then after we make our pass through the
793 * object we need to wait for the other PG_BUSY pages to clear
794 * off (i.e. we need to do an iosync). also note that once a
795 * page is PG_BUSY it must stay in its object until it is un-busyed.
796 *
797 * note on page traversal:
798 * we can traverse the pages in an object either by going down the
799 * linked list in "uobj->memq", or we can go over the address range
800 * by page doing hash table lookups for each address. depending
801 * on how many pages are in the object it may be cheaper to do one
802 * or the other. we set "by_list" to true if we are using memq.
803 * if the cost of a hash lookup was equal to the cost of the list
804 * traversal we could compare the number of pages in the start->stop
805 * range to the total number of pages in the object. however, it
806 * seems that a hash table lookup is more expensive than the linked
807 * list traversal, so we multiply the number of pages in the
808 * range by an estimate of the relatively higher cost of the hash lookup.
809 */
810
811 int
812 genfs_putpages(void *v)
813 {
814 struct vop_putpages_args /* {
815 struct vnode *a_vp;
816 voff_t a_offlo;
817 voff_t a_offhi;
818 int a_flags;
819 } */ * const ap = v;
820
821 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
822 ap->a_flags, NULL);
823 }
824
825 int
826 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
827 int origflags, struct vm_page **busypg)
828 {
829 struct uvm_object * const uobj = &vp->v_uobj;
830 kmutex_t * const slock = uobj->vmobjlock;
831 off_t off;
832 int i, error, npages, nback;
833 int freeflag;
834 /*
835 * This array is larger than it should so that it's size is constant.
836 * The right size is MAXPAGES.
837 */
838 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
839 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
840 struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
841 bool wasclean, by_list, needs_clean, yld;
842 bool async = (origflags & PGO_SYNCIO) == 0;
843 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
844 struct lwp * const l = curlwp ? curlwp : &lwp0;
845 struct genfs_node * const gp = VTOG(vp);
846 struct mount *trans_mp;
847 int flags;
848 int dirtygen;
849 bool modified;
850 bool holds_wapbl;
851 bool cleanall;
852 bool onworklst;
853
854 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
855
856 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
857 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
858 KASSERT(startoff < endoff || endoff == 0);
859
860 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
861 vp, uobj->uo_npages, startoff, endoff - startoff);
862
863 trans_mp = NULL;
864 holds_wapbl = false;
865
866 retry:
867 modified = false;
868 flags = origflags;
869 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
870 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
871 if (uobj->uo_npages == 0) {
872 if (vp->v_iflag & VI_ONWORKLST) {
873 vp->v_iflag &= ~VI_WRMAPDIRTY;
874 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
875 vn_syncer_remove_from_worklist(vp);
876 }
877 if (trans_mp) {
878 if (holds_wapbl)
879 WAPBL_END(trans_mp);
880 fstrans_done(trans_mp);
881 }
882 mutex_exit(slock);
883 return (0);
884 }
885
886 /*
887 * the vnode has pages, set up to process the request.
888 */
889
890 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
891 if (pagedaemon) {
892 /* Pagedaemon must not sleep here. */
893 trans_mp = vp->v_mount;
894 error = fstrans_start_nowait(trans_mp, FSTRANS_SHARED);
895 if (error) {
896 mutex_exit(slock);
897 return error;
898 }
899 } else {
900 /*
901 * Cannot use vdeadcheck() here as this operation
902 * usually gets used from VOP_RECLAIM(). Test for
903 * change of v_mount instead and retry on change.
904 */
905 mutex_exit(slock);
906 trans_mp = vp->v_mount;
907 fstrans_start(trans_mp, FSTRANS_SHARED);
908 if (vp->v_mount != trans_mp) {
909 fstrans_done(trans_mp);
910 trans_mp = NULL;
911 } else {
912 holds_wapbl = (trans_mp->mnt_wapbl &&
913 (origflags & PGO_JOURNALLOCKED) == 0);
914 if (holds_wapbl) {
915 error = WAPBL_BEGIN(trans_mp);
916 if (error) {
917 fstrans_done(trans_mp);
918 return error;
919 }
920 }
921 }
922 mutex_enter(slock);
923 goto retry;
924 }
925 }
926
927 error = 0;
928 wasclean = (vp->v_numoutput == 0);
929 off = startoff;
930 if (endoff == 0 || flags & PGO_ALLPAGES) {
931 endoff = trunc_page(LLONG_MAX);
932 }
933 by_list = (uobj->uo_npages <=
934 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
935
936 /*
937 * if this vnode is known not to have dirty pages,
938 * don't bother to clean it out.
939 */
940
941 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
942 #if !defined(DEBUG)
943 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
944 goto skip_scan;
945 }
946 #endif /* !defined(DEBUG) */
947 flags &= ~PGO_CLEANIT;
948 }
949
950 /*
951 * start the loop. when scanning by list, hold the last page
952 * in the list before we start. pages allocated after we start
953 * will be added to the end of the list, so we can stop at the
954 * current last page.
955 */
956
957 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
958 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
959 (vp->v_iflag & VI_ONWORKLST) != 0;
960 dirtygen = gp->g_dirtygen;
961 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
962 if (by_list) {
963 curmp.flags = PG_MARKER;
964 endmp.flags = PG_MARKER;
965 pg = TAILQ_FIRST(&uobj->memq);
966 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
967 } else {
968 pg = uvm_pagelookup(uobj, off);
969 }
970 nextpg = NULL;
971 while (by_list || off < endoff) {
972
973 /*
974 * if the current page is not interesting, move on to the next.
975 */
976
977 KASSERT(pg == NULL || pg->uobject == uobj ||
978 (pg->flags & PG_MARKER) != 0);
979 KASSERT(pg == NULL ||
980 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
981 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
982 if (by_list) {
983 if (pg == &endmp) {
984 break;
985 }
986 if (pg->flags & PG_MARKER) {
987 pg = TAILQ_NEXT(pg, listq.queue);
988 continue;
989 }
990 if (pg->offset < startoff || pg->offset >= endoff ||
991 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
992 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
993 wasclean = false;
994 }
995 pg = TAILQ_NEXT(pg, listq.queue);
996 continue;
997 }
998 off = pg->offset;
999 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1000 if (pg != NULL) {
1001 wasclean = false;
1002 }
1003 off += PAGE_SIZE;
1004 if (off < endoff) {
1005 pg = uvm_pagelookup(uobj, off);
1006 }
1007 continue;
1008 }
1009
1010 /*
1011 * if the current page needs to be cleaned and it's busy,
1012 * wait for it to become unbusy.
1013 */
1014
1015 yld = (l->l_cpu->ci_schedstate.spc_flags &
1016 SPCF_SHOULDYIELD) && !pagedaemon;
1017 if (pg->flags & PG_BUSY || yld) {
1018 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1019 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1020 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1021 error = EDEADLK;
1022 if (busypg != NULL)
1023 *busypg = pg;
1024 break;
1025 }
1026 if (pagedaemon) {
1027 /*
1028 * someone has taken the page while we
1029 * dropped the lock for fstrans_start.
1030 */
1031 break;
1032 }
1033 if (by_list) {
1034 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1035 UVMHIST_LOG(ubchist, "curmp next %p",
1036 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1037 }
1038 if (yld) {
1039 mutex_exit(slock);
1040 preempt();
1041 mutex_enter(slock);
1042 } else {
1043 pg->flags |= PG_WANTED;
1044 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1045 mutex_enter(slock);
1046 }
1047 if (by_list) {
1048 UVMHIST_LOG(ubchist, "after next %p",
1049 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1050 pg = TAILQ_NEXT(&curmp, listq.queue);
1051 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1052 } else {
1053 pg = uvm_pagelookup(uobj, off);
1054 }
1055 continue;
1056 }
1057
1058 /*
1059 * if we're freeing, remove all mappings of the page now.
1060 * if we're cleaning, check if the page is needs to be cleaned.
1061 */
1062
1063 if (flags & PGO_FREE) {
1064 pmap_page_protect(pg, VM_PROT_NONE);
1065 } else if (flags & PGO_CLEANIT) {
1066
1067 /*
1068 * if we still have some hope to pull this vnode off
1069 * from the syncer queue, write-protect the page.
1070 */
1071
1072 if (cleanall && wasclean &&
1073 gp->g_dirtygen == dirtygen) {
1074
1075 /*
1076 * uobj pages get wired only by uvm_fault
1077 * where uobj is locked.
1078 */
1079
1080 if (pg->wire_count == 0) {
1081 pmap_page_protect(pg,
1082 VM_PROT_READ|VM_PROT_EXECUTE);
1083 } else {
1084 cleanall = false;
1085 }
1086 }
1087 }
1088
1089 if (flags & PGO_CLEANIT) {
1090 needs_clean = pmap_clear_modify(pg) ||
1091 (pg->flags & PG_CLEAN) == 0;
1092 pg->flags |= PG_CLEAN;
1093 } else {
1094 needs_clean = false;
1095 }
1096
1097 /*
1098 * if we're cleaning, build a cluster.
1099 * the cluster will consist of pages which are currently dirty,
1100 * but they will be returned to us marked clean.
1101 * if not cleaning, just operate on the one page.
1102 */
1103
1104 if (needs_clean) {
1105 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1106 wasclean = false;
1107 memset(pgs, 0, sizeof(pgs));
1108 pg->flags |= PG_BUSY;
1109 UVM_PAGE_OWN(pg, "genfs_putpages");
1110
1111 /*
1112 * first look backward.
1113 */
1114
1115 npages = MIN(MAXPAGES >> 1, off >> PAGE_SHIFT);
1116 nback = npages;
1117 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1118 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1119 if (nback) {
1120 memmove(&pgs[0], &pgs[npages - nback],
1121 nback * sizeof(pgs[0]));
1122 if (npages - nback < nback)
1123 memset(&pgs[nback], 0,
1124 (npages - nback) * sizeof(pgs[0]));
1125 else
1126 memset(&pgs[npages - nback], 0,
1127 nback * sizeof(pgs[0]));
1128 }
1129
1130 /*
1131 * then plug in our page of interest.
1132 */
1133
1134 pgs[nback] = pg;
1135
1136 /*
1137 * then look forward to fill in the remaining space in
1138 * the array of pages.
1139 */
1140
1141 npages = MAXPAGES - nback - 1;
1142 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1143 &pgs[nback + 1],
1144 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1145 npages += nback + 1;
1146 } else {
1147 pgs[0] = pg;
1148 npages = 1;
1149 nback = 0;
1150 }
1151
1152 /*
1153 * apply FREE or DEACTIVATE options if requested.
1154 */
1155
1156 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1157 mutex_enter(&uvm_pageqlock);
1158 }
1159 for (i = 0; i < npages; i++) {
1160 tpg = pgs[i];
1161 KASSERT(tpg->uobject == uobj);
1162 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1163 pg = tpg;
1164 if (tpg->offset < startoff || tpg->offset >= endoff)
1165 continue;
1166 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1167 uvm_pagedeactivate(tpg);
1168 } else if (flags & PGO_FREE) {
1169 pmap_page_protect(tpg, VM_PROT_NONE);
1170 if (tpg->flags & PG_BUSY) {
1171 tpg->flags |= freeflag;
1172 if (pagedaemon) {
1173 uvm_pageout_start(1);
1174 uvm_pagedequeue(tpg);
1175 }
1176 } else {
1177
1178 /*
1179 * ``page is not busy''
1180 * implies that npages is 1
1181 * and needs_clean is false.
1182 */
1183
1184 nextpg = TAILQ_NEXT(tpg, listq.queue);
1185 uvm_pagefree(tpg);
1186 if (pagedaemon)
1187 uvmexp.pdfreed++;
1188 }
1189 }
1190 }
1191 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1192 mutex_exit(&uvm_pageqlock);
1193 }
1194 if (needs_clean) {
1195 modified = true;
1196
1197 /*
1198 * start the i/o. if we're traversing by list,
1199 * keep our place in the list with a marker page.
1200 */
1201
1202 if (by_list) {
1203 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1204 listq.queue);
1205 }
1206 mutex_exit(slock);
1207 error = GOP_WRITE(vp, pgs, npages, flags);
1208 mutex_enter(slock);
1209 if (by_list) {
1210 pg = TAILQ_NEXT(&curmp, listq.queue);
1211 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1212 }
1213 if (error) {
1214 break;
1215 }
1216 if (by_list) {
1217 continue;
1218 }
1219 }
1220
1221 /*
1222 * find the next page and continue if there was no error.
1223 */
1224
1225 if (by_list) {
1226 if (nextpg) {
1227 pg = nextpg;
1228 nextpg = NULL;
1229 } else {
1230 pg = TAILQ_NEXT(pg, listq.queue);
1231 }
1232 } else {
1233 off += (npages - nback) << PAGE_SHIFT;
1234 if (off < endoff) {
1235 pg = uvm_pagelookup(uobj, off);
1236 }
1237 }
1238 }
1239 if (by_list) {
1240 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1241 }
1242
1243 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1244 (vp->v_type != VBLK ||
1245 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1246 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1247 }
1248
1249 /*
1250 * if we're cleaning and there was nothing to clean,
1251 * take us off the syncer list. if we started any i/o
1252 * and we're doing sync i/o, wait for all writes to finish.
1253 */
1254
1255 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1256 (vp->v_iflag & VI_ONWORKLST) != 0) {
1257 #if defined(DEBUG)
1258 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1259 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1260 continue;
1261 }
1262 if ((pg->flags & PG_CLEAN) == 0) {
1263 printf("%s: %p: !CLEAN\n", __func__, pg);
1264 }
1265 if (pmap_is_modified(pg)) {
1266 printf("%s: %p: modified\n", __func__, pg);
1267 }
1268 }
1269 #endif /* defined(DEBUG) */
1270 vp->v_iflag &= ~VI_WRMAPDIRTY;
1271 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1272 vn_syncer_remove_from_worklist(vp);
1273 }
1274
1275 #if !defined(DEBUG)
1276 skip_scan:
1277 #endif /* !defined(DEBUG) */
1278
1279 /* Wait for output to complete. */
1280 if (!wasclean && !async && vp->v_numoutput != 0) {
1281 while (vp->v_numoutput != 0)
1282 cv_wait(&vp->v_cv, slock);
1283 }
1284 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1285 mutex_exit(slock);
1286
1287 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1288 /*
1289 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1290 * retrying is not a big deal because, in many cases,
1291 * uobj->uo_npages is already 0 here.
1292 */
1293 mutex_enter(slock);
1294 goto retry;
1295 }
1296
1297 if (trans_mp) {
1298 if (holds_wapbl)
1299 WAPBL_END(trans_mp);
1300 fstrans_done(trans_mp);
1301 }
1302
1303 return (error);
1304 }
1305
1306 int
1307 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1308 {
1309 off_t off;
1310 vaddr_t kva;
1311 size_t len;
1312 int error;
1313 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1314
1315 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1316 vp, pgs, npages, flags);
1317
1318 off = pgs[0]->offset;
1319 kva = uvm_pagermapin(pgs, npages,
1320 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1321 len = npages << PAGE_SHIFT;
1322
1323 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1324 uvm_aio_biodone);
1325
1326 return error;
1327 }
1328
1329 int
1330 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1331 {
1332 off_t off;
1333 vaddr_t kva;
1334 size_t len;
1335 int error;
1336 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1337
1338 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1339 vp, pgs, npages, flags);
1340
1341 off = pgs[0]->offset;
1342 kva = uvm_pagermapin(pgs, npages,
1343 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1344 len = npages << PAGE_SHIFT;
1345
1346 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1347 uvm_aio_biodone);
1348
1349 return error;
1350 }
1351
1352 /*
1353 * Backend routine for doing I/O to vnode pages. Pages are already locked
1354 * and mapped into kernel memory. Here we just look up the underlying
1355 * device block addresses and call the strategy routine.
1356 */
1357
1358 static int
1359 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1360 enum uio_rw rw, void (*iodone)(struct buf *))
1361 {
1362 int s, error;
1363 int fs_bshift, dev_bshift;
1364 off_t eof, offset, startoffset;
1365 size_t bytes, iobytes, skipbytes;
1366 struct buf *mbp, *bp;
1367 const bool async = (flags & PGO_SYNCIO) == 0;
1368 const bool lazy = (flags & PGO_LAZY) == 0;
1369 const bool iowrite = rw == UIO_WRITE;
1370 const int brw = iowrite ? B_WRITE : B_READ;
1371 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1372
1373 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1374 vp, kva, len, flags);
1375
1376 KASSERT(vp->v_size <= vp->v_writesize);
1377 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1378 if (vp->v_type != VBLK) {
1379 fs_bshift = vp->v_mount->mnt_fs_bshift;
1380 dev_bshift = vp->v_mount->mnt_dev_bshift;
1381 } else {
1382 fs_bshift = DEV_BSHIFT;
1383 dev_bshift = DEV_BSHIFT;
1384 }
1385 error = 0;
1386 startoffset = off;
1387 bytes = MIN(len, eof - startoffset);
1388 skipbytes = 0;
1389 KASSERT(bytes != 0);
1390
1391 if (iowrite) {
1392 mutex_enter(vp->v_interlock);
1393 vp->v_numoutput += 2;
1394 mutex_exit(vp->v_interlock);
1395 }
1396 mbp = getiobuf(vp, true);
1397 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1398 vp, mbp, vp->v_numoutput, bytes);
1399 mbp->b_bufsize = len;
1400 mbp->b_data = (void *)kva;
1401 mbp->b_resid = mbp->b_bcount = bytes;
1402 mbp->b_cflags = BC_BUSY | BC_AGE;
1403 if (async) {
1404 mbp->b_flags = brw | B_ASYNC;
1405 mbp->b_iodone = iodone;
1406 } else {
1407 mbp->b_flags = brw;
1408 mbp->b_iodone = NULL;
1409 }
1410 if (curlwp == uvm.pagedaemon_lwp)
1411 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1412 else if (async || lazy)
1413 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1414 else
1415 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1416
1417 bp = NULL;
1418 for (offset = startoffset;
1419 bytes > 0;
1420 offset += iobytes, bytes -= iobytes) {
1421 int run;
1422 daddr_t lbn, blkno;
1423 struct vnode *devvp;
1424
1425 /*
1426 * bmap the file to find out the blkno to read from and
1427 * how much we can read in one i/o. if bmap returns an error,
1428 * skip the rest of the top-level i/o.
1429 */
1430
1431 lbn = offset >> fs_bshift;
1432 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1433 if (error) {
1434 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1435 lbn,error,0,0);
1436 skipbytes += bytes;
1437 bytes = 0;
1438 goto loopdone;
1439 }
1440
1441 /*
1442 * see how many pages can be read with this i/o.
1443 * reduce the i/o size if necessary to avoid
1444 * overwriting pages with valid data.
1445 */
1446
1447 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1448 bytes);
1449
1450 /*
1451 * if this block isn't allocated, zero it instead of
1452 * reading it. unless we are going to allocate blocks,
1453 * mark the pages we zeroed PG_RDONLY.
1454 */
1455
1456 if (blkno == (daddr_t)-1) {
1457 if (!iowrite) {
1458 memset((char *)kva + (offset - startoffset), 0,
1459 iobytes);
1460 }
1461 skipbytes += iobytes;
1462 continue;
1463 }
1464
1465 /*
1466 * allocate a sub-buf for this piece of the i/o
1467 * (or just use mbp if there's only 1 piece),
1468 * and start it going.
1469 */
1470
1471 if (offset == startoffset && iobytes == bytes) {
1472 bp = mbp;
1473 } else {
1474 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1475 vp, bp, vp->v_numoutput, 0);
1476 bp = getiobuf(vp, true);
1477 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1478 }
1479 bp->b_lblkno = 0;
1480
1481 /* adjust physical blkno for partial blocks */
1482 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1483 dev_bshift);
1484
1485 UVMHIST_LOG(ubchist,
1486 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1487 bp, offset, bp->b_bcount, bp->b_blkno);
1488
1489 VOP_STRATEGY(devvp, bp);
1490 }
1491
1492 loopdone:
1493 if (skipbytes) {
1494 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1495 }
1496 nestiobuf_done(mbp, skipbytes, error);
1497 if (async) {
1498 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1499 return (0);
1500 }
1501 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1502 error = biowait(mbp);
1503 s = splbio();
1504 (*iodone)(mbp);
1505 splx(s);
1506 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1507 return (error);
1508 }
1509
1510 int
1511 genfs_compat_getpages(void *v)
1512 {
1513 struct vop_getpages_args /* {
1514 struct vnode *a_vp;
1515 voff_t a_offset;
1516 struct vm_page **a_m;
1517 int *a_count;
1518 int a_centeridx;
1519 vm_prot_t a_access_type;
1520 int a_advice;
1521 int a_flags;
1522 } */ *ap = v;
1523
1524 off_t origoffset;
1525 struct vnode *vp = ap->a_vp;
1526 struct uvm_object *uobj = &vp->v_uobj;
1527 struct vm_page *pg, **pgs;
1528 vaddr_t kva;
1529 int i, error, orignpages, npages;
1530 struct iovec iov;
1531 struct uio uio;
1532 kauth_cred_t cred = curlwp->l_cred;
1533 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1534
1535 error = 0;
1536 origoffset = ap->a_offset;
1537 orignpages = *ap->a_count;
1538 pgs = ap->a_m;
1539
1540 if (ap->a_flags & PGO_LOCKED) {
1541 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1542 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1543
1544 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1545 if (error == 0 && memwrite) {
1546 genfs_markdirty(vp);
1547 }
1548 return error;
1549 }
1550 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1551 mutex_exit(uobj->vmobjlock);
1552 return EINVAL;
1553 }
1554 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1555 mutex_exit(uobj->vmobjlock);
1556 return 0;
1557 }
1558 npages = orignpages;
1559 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1560 mutex_exit(uobj->vmobjlock);
1561 kva = uvm_pagermapin(pgs, npages,
1562 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1563 for (i = 0; i < npages; i++) {
1564 pg = pgs[i];
1565 if ((pg->flags & PG_FAKE) == 0) {
1566 continue;
1567 }
1568 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1569 iov.iov_len = PAGE_SIZE;
1570 uio.uio_iov = &iov;
1571 uio.uio_iovcnt = 1;
1572 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1573 uio.uio_rw = UIO_READ;
1574 uio.uio_resid = PAGE_SIZE;
1575 UIO_SETUP_SYSSPACE(&uio);
1576 /* XXX vn_lock */
1577 error = VOP_READ(vp, &uio, 0, cred);
1578 if (error) {
1579 break;
1580 }
1581 if (uio.uio_resid) {
1582 memset(iov.iov_base, 0, uio.uio_resid);
1583 }
1584 }
1585 uvm_pagermapout(kva, npages);
1586 mutex_enter(uobj->vmobjlock);
1587 mutex_enter(&uvm_pageqlock);
1588 for (i = 0; i < npages; i++) {
1589 pg = pgs[i];
1590 if (error && (pg->flags & PG_FAKE) != 0) {
1591 pg->flags |= PG_RELEASED;
1592 } else {
1593 pmap_clear_modify(pg);
1594 uvm_pageactivate(pg);
1595 }
1596 }
1597 if (error) {
1598 uvm_page_unbusy(pgs, npages);
1599 }
1600 mutex_exit(&uvm_pageqlock);
1601 if (error == 0 && memwrite) {
1602 genfs_markdirty(vp);
1603 }
1604 mutex_exit(uobj->vmobjlock);
1605 return error;
1606 }
1607
1608 int
1609 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1610 int flags)
1611 {
1612 off_t offset;
1613 struct iovec iov;
1614 struct uio uio;
1615 kauth_cred_t cred = curlwp->l_cred;
1616 struct buf *bp;
1617 vaddr_t kva;
1618 int error;
1619
1620 offset = pgs[0]->offset;
1621 kva = uvm_pagermapin(pgs, npages,
1622 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1623
1624 iov.iov_base = (void *)kva;
1625 iov.iov_len = npages << PAGE_SHIFT;
1626 uio.uio_iov = &iov;
1627 uio.uio_iovcnt = 1;
1628 uio.uio_offset = offset;
1629 uio.uio_rw = UIO_WRITE;
1630 uio.uio_resid = npages << PAGE_SHIFT;
1631 UIO_SETUP_SYSSPACE(&uio);
1632 /* XXX vn_lock */
1633 error = VOP_WRITE(vp, &uio, 0, cred);
1634
1635 mutex_enter(vp->v_interlock);
1636 vp->v_numoutput++;
1637 mutex_exit(vp->v_interlock);
1638
1639 bp = getiobuf(vp, true);
1640 bp->b_cflags = BC_BUSY | BC_AGE;
1641 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1642 bp->b_data = (char *)kva;
1643 bp->b_bcount = npages << PAGE_SHIFT;
1644 bp->b_bufsize = npages << PAGE_SHIFT;
1645 bp->b_resid = 0;
1646 bp->b_error = error;
1647 uvm_aio_aiodone(bp);
1648 return (error);
1649 }
1650
1651 /*
1652 * Process a uio using direct I/O. If we reach a part of the request
1653 * which cannot be processed in this fashion for some reason, just return.
1654 * The caller must handle some additional part of the request using
1655 * buffered I/O before trying direct I/O again.
1656 */
1657
1658 void
1659 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1660 {
1661 struct vmspace *vs;
1662 struct iovec *iov;
1663 vaddr_t va;
1664 size_t len;
1665 const int mask = DEV_BSIZE - 1;
1666 int error;
1667 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1668 (ioflag & IO_JOURNALLOCKED) == 0);
1669
1670 /*
1671 * We only support direct I/O to user space for now.
1672 */
1673
1674 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1675 return;
1676 }
1677
1678 /*
1679 * If the vnode is mapped, we would need to get the getpages lock
1680 * to stabilize the bmap, but then we would get into trouble while
1681 * locking the pages if the pages belong to this same vnode (or a
1682 * multi-vnode cascade to the same effect). Just fall back to
1683 * buffered I/O if the vnode is mapped to avoid this mess.
1684 */
1685
1686 if (vp->v_vflag & VV_MAPPED) {
1687 return;
1688 }
1689
1690 if (need_wapbl) {
1691 error = WAPBL_BEGIN(vp->v_mount);
1692 if (error)
1693 return;
1694 }
1695
1696 /*
1697 * Do as much of the uio as possible with direct I/O.
1698 */
1699
1700 vs = uio->uio_vmspace;
1701 while (uio->uio_resid) {
1702 iov = uio->uio_iov;
1703 if (iov->iov_len == 0) {
1704 uio->uio_iov++;
1705 uio->uio_iovcnt--;
1706 continue;
1707 }
1708 va = (vaddr_t)iov->iov_base;
1709 len = MIN(iov->iov_len, genfs_maxdio);
1710 len &= ~mask;
1711
1712 /*
1713 * If the next chunk is smaller than DEV_BSIZE or extends past
1714 * the current EOF, then fall back to buffered I/O.
1715 */
1716
1717 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1718 break;
1719 }
1720
1721 /*
1722 * Check alignment. The file offset must be at least
1723 * sector-aligned. The exact constraint on memory alignment
1724 * is very hardware-dependent, but requiring sector-aligned
1725 * addresses there too is safe.
1726 */
1727
1728 if (uio->uio_offset & mask || va & mask) {
1729 break;
1730 }
1731 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1732 uio->uio_rw);
1733 if (error) {
1734 break;
1735 }
1736 iov->iov_base = (char *)iov->iov_base + len;
1737 iov->iov_len -= len;
1738 uio->uio_offset += len;
1739 uio->uio_resid -= len;
1740 }
1741
1742 if (need_wapbl)
1743 WAPBL_END(vp->v_mount);
1744 }
1745
1746 /*
1747 * Iodone routine for direct I/O. We don't do much here since the request is
1748 * always synchronous, so the caller will do most of the work after biowait().
1749 */
1750
1751 static void
1752 genfs_dio_iodone(struct buf *bp)
1753 {
1754
1755 KASSERT((bp->b_flags & B_ASYNC) == 0);
1756 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1757 mutex_enter(bp->b_objlock);
1758 vwakeup(bp);
1759 mutex_exit(bp->b_objlock);
1760 }
1761 putiobuf(bp);
1762 }
1763
1764 /*
1765 * Process one chunk of a direct I/O request.
1766 */
1767
1768 static int
1769 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1770 off_t off, enum uio_rw rw)
1771 {
1772 struct vm_map *map;
1773 struct pmap *upm, *kpm __unused;
1774 size_t klen = round_page(uva + len) - trunc_page(uva);
1775 off_t spoff, epoff;
1776 vaddr_t kva, puva;
1777 paddr_t pa;
1778 vm_prot_t prot;
1779 int error, rv __diagused, poff, koff;
1780 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1781 (rw == UIO_WRITE ? PGO_FREE : 0);
1782
1783 /*
1784 * For writes, verify that this range of the file already has fully
1785 * allocated backing store. If there are any holes, just punt and
1786 * make the caller take the buffered write path.
1787 */
1788
1789 if (rw == UIO_WRITE) {
1790 daddr_t lbn, elbn, blkno;
1791 int bsize, bshift, run;
1792
1793 bshift = vp->v_mount->mnt_fs_bshift;
1794 bsize = 1 << bshift;
1795 lbn = off >> bshift;
1796 elbn = (off + len + bsize - 1) >> bshift;
1797 while (lbn < elbn) {
1798 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1799 if (error) {
1800 return error;
1801 }
1802 if (blkno == (daddr_t)-1) {
1803 return ENOSPC;
1804 }
1805 lbn += 1 + run;
1806 }
1807 }
1808
1809 /*
1810 * Flush any cached pages for parts of the file that we're about to
1811 * access. If we're writing, invalidate pages as well.
1812 */
1813
1814 spoff = trunc_page(off);
1815 epoff = round_page(off + len);
1816 mutex_enter(vp->v_interlock);
1817 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1818 if (error) {
1819 return error;
1820 }
1821
1822 /*
1823 * Wire the user pages and remap them into kernel memory.
1824 */
1825
1826 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1827 error = uvm_vslock(vs, (void *)uva, len, prot);
1828 if (error) {
1829 return error;
1830 }
1831
1832 map = &vs->vm_map;
1833 upm = vm_map_pmap(map);
1834 kpm = vm_map_pmap(kernel_map);
1835 puva = trunc_page(uva);
1836 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1837 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1838 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1839 rv = pmap_extract(upm, puva + poff, &pa);
1840 KASSERT(rv);
1841 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1842 }
1843 pmap_update(kpm);
1844
1845 /*
1846 * Do the I/O.
1847 */
1848
1849 koff = uva - trunc_page(uva);
1850 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1851 genfs_dio_iodone);
1852
1853 /*
1854 * Tear down the kernel mapping.
1855 */
1856
1857 pmap_kremove(kva, klen);
1858 pmap_update(kpm);
1859 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1860
1861 /*
1862 * Unwire the user pages.
1863 */
1864
1865 uvm_vsunlock(vs, (void *)uva, len);
1866 return error;
1867 }
1868