genfs_io.c revision 1.66 1 /* $NetBSD: genfs_io.c,v 1.66 2017/03/30 09:12:21 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.66 2017/03/30 09:12:21 hannken Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 bool holds_wapbl = false;
133 struct mount *trans_mount = NULL;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 startover:
143 error = 0;
144 const voff_t origvsize = vp->v_size;
145 const off_t origoffset = ap->a_offset;
146 const int orignpages = *ap->a_count;
147
148 GOP_SIZE(vp, origvsize, &diskeof, 0);
149 if (flags & PGO_PASTEOF) {
150 off_t newsize;
151 #if defined(DIAGNOSTIC)
152 off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154
155 newsize = MAX(origvsize,
156 origoffset + (orignpages << PAGE_SHIFT));
157 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 if (newsize > round_page(writeeof)) {
161 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 __func__, newsize, round_page(writeeof));
163 }
164 #endif /* defined(DIAGNOSTIC) */
165 } else {
166 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 }
168 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 KASSERT(orignpages > 0);
171
172 /*
173 * Bounds-check the request.
174 */
175
176 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 if ((flags & PGO_LOCKED) == 0) {
178 mutex_exit(uobj->vmobjlock);
179 }
180 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 origoffset, *ap->a_count, memeof,0);
182 error = EINVAL;
183 goto out_err;
184 }
185
186 /* uobj is locked */
187
188 if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 (vp->v_type != VBLK ||
190 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 int updflags = 0;
192
193 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 updflags = GOP_UPDATE_ACCESSED;
195 }
196 if (memwrite) {
197 updflags |= GOP_UPDATE_MODIFIED;
198 }
199 if (updflags != 0) {
200 GOP_MARKUPDATE(vp, updflags);
201 }
202 }
203
204 /*
205 * For PGO_LOCKED requests, just return whatever's in memory.
206 */
207
208 if (flags & PGO_LOCKED) {
209 int nfound;
210 struct vm_page *pg;
211
212 KASSERT(!glocked);
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 KASSERT(npages == *ap->a_count);
223 if (nfound == 0) {
224 error = EBUSY;
225 goto out_err;
226 }
227 if (!genfs_node_rdtrylock(vp)) {
228 genfs_rel_pages(ap->a_m, npages);
229
230 /*
231 * restore the array.
232 */
233
234 for (i = 0; i < npages; i++) {
235 pg = ap->a_m[i];
236
237 if (pg != NULL && pg != PGO_DONTCARE) {
238 ap->a_m[i] = NULL;
239 }
240 KASSERT(ap->a_m[i] == NULL ||
241 ap->a_m[i] == PGO_DONTCARE);
242 }
243 } else {
244 genfs_node_unlock(vp);
245 }
246 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 if (error == 0 && memwrite) {
248 genfs_markdirty(vp);
249 }
250 goto out_err;
251 }
252 mutex_exit(uobj->vmobjlock);
253
254 /*
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
257 */
258
259 const int fs_bshift = (vp->v_type != VBLK) ?
260 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 const int fs_bsize = 1 << fs_bshift;
262 #define blk_mask (fs_bsize - 1)
263 #define trunc_blk(x) ((x) & ~blk_mask)
264 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
265
266 const int orignmempages = MIN(orignpages,
267 round_page(memeof - origoffset) >> PAGE_SHIFT);
268 npages = orignmempages;
269 const off_t startoffset = trunc_blk(origoffset);
270 const off_t endoffset = MIN(
271 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
272 round_page(memeof));
273 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
274
275 const int pgs_size = sizeof(struct vm_page *) *
276 ((endoffset - startoffset) >> PAGE_SHIFT);
277 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
278
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
285 }
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
289 }
290
291 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
292 ridx, npages, startoffset, endoffset);
293
294 if (trans_mount == NULL) {
295 trans_mount = vp->v_mount;
296 fstrans_start(trans_mount, FSTRANS_SHARED);
297 /*
298 * check if this vnode is still valid.
299 */
300 mutex_enter(vp->v_interlock);
301 error = vdead_check(vp, 0);
302 mutex_exit(vp->v_interlock);
303 if (error)
304 goto out_err_free;
305 /*
306 * XXX: This assumes that we come here only via
307 * the mmio path
308 */
309 if (blockalloc && vp->v_mount->mnt_wapbl) {
310 error = WAPBL_BEGIN(trans_mount);
311 if (error)
312 goto out_err_free;
313 holds_wapbl = true;
314 }
315 }
316
317 /*
318 * hold g_glock to prevent a race with truncate.
319 *
320 * check if our idea of v_size is still valid.
321 */
322
323 KASSERT(!glocked || genfs_node_wrlocked(vp));
324 if (!glocked) {
325 if (blockalloc) {
326 genfs_node_wrlock(vp);
327 } else {
328 genfs_node_rdlock(vp);
329 }
330 }
331 mutex_enter(uobj->vmobjlock);
332 if (vp->v_size < origvsize) {
333 if (!glocked) {
334 genfs_node_unlock(vp);
335 }
336 if (pgs != pgs_onstack)
337 kmem_free(pgs, pgs_size);
338 goto startover;
339 }
340
341 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
342 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
343 if (!glocked) {
344 genfs_node_unlock(vp);
345 }
346 KASSERT(async != 0);
347 genfs_rel_pages(&pgs[ridx], orignmempages);
348 mutex_exit(uobj->vmobjlock);
349 error = EBUSY;
350 goto out_err_free;
351 }
352
353 /*
354 * if the pages are already resident, just return them.
355 */
356
357 for (i = 0; i < npages; i++) {
358 struct vm_page *pg = pgs[ridx + i];
359
360 if ((pg->flags & PG_FAKE) ||
361 (blockalloc && (pg->flags & PG_RDONLY))) {
362 break;
363 }
364 }
365 if (i == npages) {
366 if (!glocked) {
367 genfs_node_unlock(vp);
368 }
369 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
370 npages += ridx;
371 goto out;
372 }
373
374 /*
375 * if PGO_OVERWRITE is set, don't bother reading the pages.
376 */
377
378 if (overwrite) {
379 if (!glocked) {
380 genfs_node_unlock(vp);
381 }
382 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
383
384 for (i = 0; i < npages; i++) {
385 struct vm_page *pg = pgs[ridx + i];
386
387 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
388 }
389 npages += ridx;
390 goto out;
391 }
392
393 /*
394 * the page wasn't resident and we're not overwriting,
395 * so we're going to have to do some i/o.
396 * find any additional pages needed to cover the expanded range.
397 */
398
399 npages = (endoffset - startoffset) >> PAGE_SHIFT;
400 if (startoffset != origoffset || npages != orignmempages) {
401 int npgs;
402
403 /*
404 * we need to avoid deadlocks caused by locking
405 * additional pages at lower offsets than pages we
406 * already have locked. unlock them all and start over.
407 */
408
409 genfs_rel_pages(&pgs[ridx], orignmempages);
410 memset(pgs, 0, pgs_size);
411
412 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
413 startoffset, endoffset, 0,0);
414 npgs = npages;
415 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
416 async ? UFP_NOWAIT : UFP_ALL) != npages) {
417 if (!glocked) {
418 genfs_node_unlock(vp);
419 }
420 KASSERT(async != 0);
421 genfs_rel_pages(pgs, npages);
422 mutex_exit(uobj->vmobjlock);
423 error = EBUSY;
424 goto out_err_free;
425 }
426 }
427
428 mutex_exit(uobj->vmobjlock);
429 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
430 async, memwrite, blockalloc, glocked);
431 if (error == 0 && async)
432 goto out_err_free;
433 if (!glocked) {
434 genfs_node_unlock(vp);
435 }
436 mutex_enter(uobj->vmobjlock);
437
438 /*
439 * we're almost done! release the pages...
440 * for errors, we free the pages.
441 * otherwise we activate them and mark them as valid and clean.
442 * also, unbusy pages that were not actually requested.
443 */
444
445 if (error) {
446 genfs_rel_pages(pgs, npages);
447 mutex_exit(uobj->vmobjlock);
448 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
449 goto out_err_free;
450 }
451
452 out:
453 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
454 error = 0;
455 mutex_enter(&uvm_pageqlock);
456 for (i = 0; i < npages; i++) {
457 struct vm_page *pg = pgs[i];
458 if (pg == NULL) {
459 continue;
460 }
461 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
462 pg, pg->flags, 0,0);
463 if (pg->flags & PG_FAKE && !overwrite) {
464 pg->flags &= ~(PG_FAKE);
465 pmap_clear_modify(pgs[i]);
466 }
467 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
468 if (i < ridx || i >= ridx + orignmempages || async) {
469 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
470 pg, pg->offset,0,0);
471 if (pg->flags & PG_WANTED) {
472 wakeup(pg);
473 }
474 if (pg->flags & PG_FAKE) {
475 KASSERT(overwrite);
476 uvm_pagezero(pg);
477 }
478 if (pg->flags & PG_RELEASED) {
479 uvm_pagefree(pg);
480 continue;
481 }
482 uvm_pageenqueue(pg);
483 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
484 UVM_PAGE_OWN(pg, NULL);
485 }
486 }
487 mutex_exit(&uvm_pageqlock);
488 if (memwrite) {
489 genfs_markdirty(vp);
490 }
491 mutex_exit(uobj->vmobjlock);
492 if (ap->a_m != NULL) {
493 memcpy(ap->a_m, &pgs[ridx],
494 orignmempages * sizeof(struct vm_page *));
495 }
496
497 out_err_free:
498 if (pgs != NULL && pgs != pgs_onstack)
499 kmem_free(pgs, pgs_size);
500 out_err:
501 if (trans_mount != NULL) {
502 if (holds_wapbl)
503 WAPBL_END(trans_mount);
504 fstrans_done(trans_mount);
505 }
506 return error;
507 }
508
509 /*
510 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
511 */
512 static int
513 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
514 off_t startoffset, off_t diskeof,
515 bool async, bool memwrite, bool blockalloc, bool glocked)
516 {
517 struct uvm_object * const uobj = &vp->v_uobj;
518 const int fs_bshift = (vp->v_type != VBLK) ?
519 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
520 const int dev_bshift = (vp->v_type != VBLK) ?
521 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
522 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
523 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
524 vaddr_t kva;
525 struct buf *bp, *mbp;
526 bool sawhole = false;
527 int i;
528 int error = 0;
529
530 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
531
532 /*
533 * read the desired page(s).
534 */
535
536 totalbytes = npages << PAGE_SHIFT;
537 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
538 tailbytes = totalbytes - bytes;
539 skipbytes = 0;
540
541 kva = uvm_pagermapin(pgs, npages,
542 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
543 if (kva == 0)
544 return EBUSY;
545
546 mbp = getiobuf(vp, true);
547 mbp->b_bufsize = totalbytes;
548 mbp->b_data = (void *)kva;
549 mbp->b_resid = mbp->b_bcount = bytes;
550 mbp->b_cflags = BC_BUSY;
551 if (async) {
552 mbp->b_flags = B_READ | B_ASYNC;
553 mbp->b_iodone = uvm_aio_biodone;
554 } else {
555 mbp->b_flags = B_READ;
556 mbp->b_iodone = NULL;
557 }
558 if (async)
559 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
560 else
561 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
562
563 /*
564 * if EOF is in the middle of the range, zero the part past EOF.
565 * skip over pages which are not PG_FAKE since in that case they have
566 * valid data that we need to preserve.
567 */
568
569 tailstart = bytes;
570 while (tailbytes > 0) {
571 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
572
573 KASSERT(len <= tailbytes);
574 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
575 memset((void *)(kva + tailstart), 0, len);
576 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
577 kva, tailstart, len, 0);
578 }
579 tailstart += len;
580 tailbytes -= len;
581 }
582
583 /*
584 * now loop over the pages, reading as needed.
585 */
586
587 bp = NULL;
588 off_t offset;
589 for (offset = startoffset;
590 bytes > 0;
591 offset += iobytes, bytes -= iobytes) {
592 int run;
593 daddr_t lbn, blkno;
594 int pidx;
595 struct vnode *devvp;
596
597 /*
598 * skip pages which don't need to be read.
599 */
600
601 pidx = (offset - startoffset) >> PAGE_SHIFT;
602 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
603 size_t b;
604
605 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
606 if ((pgs[pidx]->flags & PG_RDONLY)) {
607 sawhole = true;
608 }
609 b = MIN(PAGE_SIZE, bytes);
610 offset += b;
611 bytes -= b;
612 skipbytes += b;
613 pidx++;
614 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
615 offset, 0,0,0);
616 if (bytes == 0) {
617 goto loopdone;
618 }
619 }
620
621 /*
622 * bmap the file to find out the blkno to read from and
623 * how much we can read in one i/o. if bmap returns an error,
624 * skip the rest of the top-level i/o.
625 */
626
627 lbn = offset >> fs_bshift;
628 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
629 if (error) {
630 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
631 lbn,error,0,0);
632 skipbytes += bytes;
633 bytes = 0;
634 goto loopdone;
635 }
636
637 /*
638 * see how many pages can be read with this i/o.
639 * reduce the i/o size if necessary to avoid
640 * overwriting pages with valid data.
641 */
642
643 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
644 bytes);
645 if (offset + iobytes > round_page(offset)) {
646 int pcount;
647
648 pcount = 1;
649 while (pidx + pcount < npages &&
650 pgs[pidx + pcount]->flags & PG_FAKE) {
651 pcount++;
652 }
653 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
654 (offset - trunc_page(offset)));
655 }
656
657 /*
658 * if this block isn't allocated, zero it instead of
659 * reading it. unless we are going to allocate blocks,
660 * mark the pages we zeroed PG_RDONLY.
661 */
662
663 if (blkno == (daddr_t)-1) {
664 int holepages = (round_page(offset + iobytes) -
665 trunc_page(offset)) >> PAGE_SHIFT;
666 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
667
668 sawhole = true;
669 memset((char *)kva + (offset - startoffset), 0,
670 iobytes);
671 skipbytes += iobytes;
672
673 mutex_enter(uobj->vmobjlock);
674 for (i = 0; i < holepages; i++) {
675 if (memwrite) {
676 pgs[pidx + i]->flags &= ~PG_CLEAN;
677 }
678 if (!blockalloc) {
679 pgs[pidx + i]->flags |= PG_RDONLY;
680 }
681 }
682 mutex_exit(uobj->vmobjlock);
683 continue;
684 }
685
686 /*
687 * allocate a sub-buf for this piece of the i/o
688 * (or just use mbp if there's only 1 piece),
689 * and start it going.
690 */
691
692 if (offset == startoffset && iobytes == bytes) {
693 bp = mbp;
694 } else {
695 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
696 vp, bp, vp->v_numoutput, 0);
697 bp = getiobuf(vp, true);
698 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
699 }
700 bp->b_lblkno = 0;
701
702 /* adjust physical blkno for partial blocks */
703 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
704 dev_bshift);
705
706 UVMHIST_LOG(ubchist,
707 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
708 bp, offset, bp->b_bcount, bp->b_blkno);
709
710 VOP_STRATEGY(devvp, bp);
711 }
712
713 loopdone:
714 nestiobuf_done(mbp, skipbytes, error);
715 if (async) {
716 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
717 if (!glocked) {
718 genfs_node_unlock(vp);
719 }
720 return 0;
721 }
722 if (bp != NULL) {
723 error = biowait(mbp);
724 }
725
726 /* Remove the mapping (make KVA available as soon as possible) */
727 uvm_pagermapout(kva, npages);
728
729 /*
730 * if this we encountered a hole then we have to do a little more work.
731 * for read faults, we marked the page PG_RDONLY so that future
732 * write accesses to the page will fault again.
733 * for write faults, we must make sure that the backing store for
734 * the page is completely allocated while the pages are locked.
735 */
736
737 if (!error && sawhole && blockalloc) {
738 error = GOP_ALLOC(vp, startoffset,
739 npages << PAGE_SHIFT, 0, cred);
740 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
741 startoffset, npages << PAGE_SHIFT, error,0);
742 if (!error) {
743 mutex_enter(uobj->vmobjlock);
744 for (i = 0; i < npages; i++) {
745 struct vm_page *pg = pgs[i];
746
747 if (pg == NULL) {
748 continue;
749 }
750 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
751 UVMHIST_LOG(ubchist, "mark dirty pg %p",
752 pg,0,0,0);
753 }
754 mutex_exit(uobj->vmobjlock);
755 }
756 }
757
758 putiobuf(mbp);
759 return error;
760 }
761
762 /*
763 * generic VM putpages routine.
764 * Write the given range of pages to backing store.
765 *
766 * => "offhi == 0" means flush all pages at or after "offlo".
767 * => object should be locked by caller. we return with the
768 * object unlocked.
769 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
770 * thus, a caller might want to unlock higher level resources
771 * (e.g. vm_map) before calling flush.
772 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
773 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
774 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
775 * that new pages are inserted on the tail end of the list. thus,
776 * we can make a complete pass through the object in one go by starting
777 * at the head and working towards the tail (new pages are put in
778 * front of us).
779 * => NOTE: we are allowed to lock the page queues, so the caller
780 * must not be holding the page queue lock.
781 *
782 * note on "cleaning" object and PG_BUSY pages:
783 * this routine is holding the lock on the object. the only time
784 * that it can run into a PG_BUSY page that it does not own is if
785 * some other process has started I/O on the page (e.g. either
786 * a pagein, or a pageout). if the PG_BUSY page is being paged
787 * in, then it can not be dirty (!PG_CLEAN) because no one has
788 * had a chance to modify it yet. if the PG_BUSY page is being
789 * paged out then it means that someone else has already started
790 * cleaning the page for us (how nice!). in this case, if we
791 * have syncio specified, then after we make our pass through the
792 * object we need to wait for the other PG_BUSY pages to clear
793 * off (i.e. we need to do an iosync). also note that once a
794 * page is PG_BUSY it must stay in its object until it is un-busyed.
795 *
796 * note on page traversal:
797 * we can traverse the pages in an object either by going down the
798 * linked list in "uobj->memq", or we can go over the address range
799 * by page doing hash table lookups for each address. depending
800 * on how many pages are in the object it may be cheaper to do one
801 * or the other. we set "by_list" to true if we are using memq.
802 * if the cost of a hash lookup was equal to the cost of the list
803 * traversal we could compare the number of pages in the start->stop
804 * range to the total number of pages in the object. however, it
805 * seems that a hash table lookup is more expensive than the linked
806 * list traversal, so we multiply the number of pages in the
807 * range by an estimate of the relatively higher cost of the hash lookup.
808 */
809
810 int
811 genfs_putpages(void *v)
812 {
813 struct vop_putpages_args /* {
814 struct vnode *a_vp;
815 voff_t a_offlo;
816 voff_t a_offhi;
817 int a_flags;
818 } */ * const ap = v;
819
820 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
821 ap->a_flags, NULL);
822 }
823
824 int
825 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
826 int origflags, struct vm_page **busypg)
827 {
828 struct uvm_object * const uobj = &vp->v_uobj;
829 kmutex_t * const slock = uobj->vmobjlock;
830 off_t off;
831 int i, error, npages, nback;
832 int freeflag;
833 /*
834 * This array is larger than it should so that it's size is constant.
835 * The right size is MAXPAGES.
836 */
837 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
838 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
839 struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
840 bool wasclean, by_list, needs_clean, yld;
841 bool async = (origflags & PGO_SYNCIO) == 0;
842 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
843 struct lwp * const l = curlwp ? curlwp : &lwp0;
844 struct genfs_node * const gp = VTOG(vp);
845 struct mount *trans_mp;
846 int flags;
847 int dirtygen;
848 bool modified;
849 bool holds_wapbl;
850 bool cleanall;
851 bool onworklst;
852
853 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
854
855 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
856 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
857 KASSERT(startoff < endoff || endoff == 0);
858
859 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
860 vp, uobj->uo_npages, startoff, endoff - startoff);
861
862 trans_mp = NULL;
863 holds_wapbl = false;
864
865 retry:
866 modified = false;
867 flags = origflags;
868 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
869 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
870 if (uobj->uo_npages == 0) {
871 if (vp->v_iflag & VI_ONWORKLST) {
872 vp->v_iflag &= ~VI_WRMAPDIRTY;
873 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
874 vn_syncer_remove_from_worklist(vp);
875 }
876 if (trans_mp) {
877 if (holds_wapbl)
878 WAPBL_END(trans_mp);
879 fstrans_done(trans_mp);
880 }
881 mutex_exit(slock);
882 return (0);
883 }
884
885 /*
886 * the vnode has pages, set up to process the request.
887 */
888
889 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
890 if (pagedaemon) {
891 /* Pagedaemon must not sleep here. */
892 trans_mp = vp->v_mount;
893 error = fstrans_start_nowait(trans_mp, FSTRANS_SHARED);
894 if (error) {
895 mutex_exit(slock);
896 return error;
897 }
898 } else {
899 /*
900 * Cannot use vdeadcheck() here as this operation
901 * usually gets used from VOP_RECLAIM(). Test for
902 * change of v_mount instead and retry on change.
903 */
904 mutex_exit(slock);
905 trans_mp = vp->v_mount;
906 fstrans_start(trans_mp, FSTRANS_SHARED);
907 if (vp->v_mount != trans_mp) {
908 fstrans_done(trans_mp);
909 trans_mp = NULL;
910 } else {
911 holds_wapbl = (trans_mp->mnt_wapbl &&
912 (origflags & PGO_JOURNALLOCKED) == 0);
913 if (holds_wapbl) {
914 error = WAPBL_BEGIN(trans_mp);
915 if (error) {
916 fstrans_done(trans_mp);
917 return error;
918 }
919 }
920 }
921 mutex_enter(slock);
922 goto retry;
923 }
924 }
925
926 error = 0;
927 wasclean = (vp->v_numoutput == 0);
928 off = startoff;
929 if (endoff == 0 || flags & PGO_ALLPAGES) {
930 endoff = trunc_page(LLONG_MAX);
931 }
932 by_list = (uobj->uo_npages <=
933 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
934
935 /*
936 * if this vnode is known not to have dirty pages,
937 * don't bother to clean it out.
938 */
939
940 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
941 #if !defined(DEBUG)
942 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
943 goto skip_scan;
944 }
945 #endif /* !defined(DEBUG) */
946 flags &= ~PGO_CLEANIT;
947 }
948
949 /*
950 * start the loop. when scanning by list, hold the last page
951 * in the list before we start. pages allocated after we start
952 * will be added to the end of the list, so we can stop at the
953 * current last page.
954 */
955
956 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
957 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
958 (vp->v_iflag & VI_ONWORKLST) != 0;
959 dirtygen = gp->g_dirtygen;
960 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
961 if (by_list) {
962 curmp.flags = PG_MARKER;
963 endmp.flags = PG_MARKER;
964 pg = TAILQ_FIRST(&uobj->memq);
965 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
966 } else {
967 pg = uvm_pagelookup(uobj, off);
968 }
969 nextpg = NULL;
970 while (by_list || off < endoff) {
971
972 /*
973 * if the current page is not interesting, move on to the next.
974 */
975
976 KASSERT(pg == NULL || pg->uobject == uobj ||
977 (pg->flags & PG_MARKER) != 0);
978 KASSERT(pg == NULL ||
979 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
980 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
981 if (by_list) {
982 if (pg == &endmp) {
983 break;
984 }
985 if (pg->flags & PG_MARKER) {
986 pg = TAILQ_NEXT(pg, listq.queue);
987 continue;
988 }
989 if (pg->offset < startoff || pg->offset >= endoff ||
990 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
991 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
992 wasclean = false;
993 }
994 pg = TAILQ_NEXT(pg, listq.queue);
995 continue;
996 }
997 off = pg->offset;
998 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
999 if (pg != NULL) {
1000 wasclean = false;
1001 }
1002 off += PAGE_SIZE;
1003 if (off < endoff) {
1004 pg = uvm_pagelookup(uobj, off);
1005 }
1006 continue;
1007 }
1008
1009 /*
1010 * if the current page needs to be cleaned and it's busy,
1011 * wait for it to become unbusy.
1012 */
1013
1014 yld = (l->l_cpu->ci_schedstate.spc_flags &
1015 SPCF_SHOULDYIELD) && !pagedaemon;
1016 if (pg->flags & PG_BUSY || yld) {
1017 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1018 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1019 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1020 error = EDEADLK;
1021 if (busypg != NULL)
1022 *busypg = pg;
1023 break;
1024 }
1025 if (pagedaemon) {
1026 /*
1027 * someone has taken the page while we
1028 * dropped the lock for fstrans_start.
1029 */
1030 break;
1031 }
1032 if (by_list) {
1033 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1034 UVMHIST_LOG(ubchist, "curmp next %p",
1035 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1036 }
1037 if (yld) {
1038 mutex_exit(slock);
1039 preempt();
1040 mutex_enter(slock);
1041 } else {
1042 pg->flags |= PG_WANTED;
1043 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1044 mutex_enter(slock);
1045 }
1046 if (by_list) {
1047 UVMHIST_LOG(ubchist, "after next %p",
1048 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1049 pg = TAILQ_NEXT(&curmp, listq.queue);
1050 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1051 } else {
1052 pg = uvm_pagelookup(uobj, off);
1053 }
1054 continue;
1055 }
1056
1057 /*
1058 * if we're freeing, remove all mappings of the page now.
1059 * if we're cleaning, check if the page is needs to be cleaned.
1060 */
1061
1062 if (flags & PGO_FREE) {
1063 pmap_page_protect(pg, VM_PROT_NONE);
1064 } else if (flags & PGO_CLEANIT) {
1065
1066 /*
1067 * if we still have some hope to pull this vnode off
1068 * from the syncer queue, write-protect the page.
1069 */
1070
1071 if (cleanall && wasclean &&
1072 gp->g_dirtygen == dirtygen) {
1073
1074 /*
1075 * uobj pages get wired only by uvm_fault
1076 * where uobj is locked.
1077 */
1078
1079 if (pg->wire_count == 0) {
1080 pmap_page_protect(pg,
1081 VM_PROT_READ|VM_PROT_EXECUTE);
1082 } else {
1083 cleanall = false;
1084 }
1085 }
1086 }
1087
1088 if (flags & PGO_CLEANIT) {
1089 needs_clean = pmap_clear_modify(pg) ||
1090 (pg->flags & PG_CLEAN) == 0;
1091 pg->flags |= PG_CLEAN;
1092 } else {
1093 needs_clean = false;
1094 }
1095
1096 /*
1097 * if we're cleaning, build a cluster.
1098 * the cluster will consist of pages which are currently dirty,
1099 * but they will be returned to us marked clean.
1100 * if not cleaning, just operate on the one page.
1101 */
1102
1103 if (needs_clean) {
1104 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1105 wasclean = false;
1106 memset(pgs, 0, sizeof(pgs));
1107 pg->flags |= PG_BUSY;
1108 UVM_PAGE_OWN(pg, "genfs_putpages");
1109
1110 /*
1111 * first look backward.
1112 */
1113
1114 npages = MIN(MAXPAGES >> 1, off >> PAGE_SHIFT);
1115 nback = npages;
1116 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1117 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1118 if (nback) {
1119 memmove(&pgs[0], &pgs[npages - nback],
1120 nback * sizeof(pgs[0]));
1121 if (npages - nback < nback)
1122 memset(&pgs[nback], 0,
1123 (npages - nback) * sizeof(pgs[0]));
1124 else
1125 memset(&pgs[npages - nback], 0,
1126 nback * sizeof(pgs[0]));
1127 }
1128
1129 /*
1130 * then plug in our page of interest.
1131 */
1132
1133 pgs[nback] = pg;
1134
1135 /*
1136 * then look forward to fill in the remaining space in
1137 * the array of pages.
1138 */
1139
1140 npages = MAXPAGES - nback - 1;
1141 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1142 &pgs[nback + 1],
1143 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1144 npages += nback + 1;
1145 } else {
1146 pgs[0] = pg;
1147 npages = 1;
1148 nback = 0;
1149 }
1150
1151 /*
1152 * apply FREE or DEACTIVATE options if requested.
1153 */
1154
1155 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1156 mutex_enter(&uvm_pageqlock);
1157 }
1158 for (i = 0; i < npages; i++) {
1159 tpg = pgs[i];
1160 KASSERT(tpg->uobject == uobj);
1161 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1162 pg = tpg;
1163 if (tpg->offset < startoff || tpg->offset >= endoff)
1164 continue;
1165 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1166 uvm_pagedeactivate(tpg);
1167 } else if (flags & PGO_FREE) {
1168 pmap_page_protect(tpg, VM_PROT_NONE);
1169 if (tpg->flags & PG_BUSY) {
1170 tpg->flags |= freeflag;
1171 if (pagedaemon) {
1172 uvm_pageout_start(1);
1173 uvm_pagedequeue(tpg);
1174 }
1175 } else {
1176
1177 /*
1178 * ``page is not busy''
1179 * implies that npages is 1
1180 * and needs_clean is false.
1181 */
1182
1183 nextpg = TAILQ_NEXT(tpg, listq.queue);
1184 uvm_pagefree(tpg);
1185 if (pagedaemon)
1186 uvmexp.pdfreed++;
1187 }
1188 }
1189 }
1190 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1191 mutex_exit(&uvm_pageqlock);
1192 }
1193 if (needs_clean) {
1194 modified = true;
1195
1196 /*
1197 * start the i/o. if we're traversing by list,
1198 * keep our place in the list with a marker page.
1199 */
1200
1201 if (by_list) {
1202 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1203 listq.queue);
1204 }
1205 mutex_exit(slock);
1206 error = GOP_WRITE(vp, pgs, npages, flags);
1207 mutex_enter(slock);
1208 if (by_list) {
1209 pg = TAILQ_NEXT(&curmp, listq.queue);
1210 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1211 }
1212 if (error) {
1213 break;
1214 }
1215 if (by_list) {
1216 continue;
1217 }
1218 }
1219
1220 /*
1221 * find the next page and continue if there was no error.
1222 */
1223
1224 if (by_list) {
1225 if (nextpg) {
1226 pg = nextpg;
1227 nextpg = NULL;
1228 } else {
1229 pg = TAILQ_NEXT(pg, listq.queue);
1230 }
1231 } else {
1232 off += (npages - nback) << PAGE_SHIFT;
1233 if (off < endoff) {
1234 pg = uvm_pagelookup(uobj, off);
1235 }
1236 }
1237 }
1238 if (by_list) {
1239 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1240 }
1241
1242 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1243 (vp->v_type != VBLK ||
1244 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1245 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1246 }
1247
1248 /*
1249 * if we're cleaning and there was nothing to clean,
1250 * take us off the syncer list. if we started any i/o
1251 * and we're doing sync i/o, wait for all writes to finish.
1252 */
1253
1254 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1255 (vp->v_iflag & VI_ONWORKLST) != 0) {
1256 #if defined(DEBUG)
1257 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1258 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1259 continue;
1260 }
1261 if ((pg->flags & PG_CLEAN) == 0) {
1262 printf("%s: %p: !CLEAN\n", __func__, pg);
1263 }
1264 if (pmap_is_modified(pg)) {
1265 printf("%s: %p: modified\n", __func__, pg);
1266 }
1267 }
1268 #endif /* defined(DEBUG) */
1269 vp->v_iflag &= ~VI_WRMAPDIRTY;
1270 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1271 vn_syncer_remove_from_worklist(vp);
1272 }
1273
1274 #if !defined(DEBUG)
1275 skip_scan:
1276 #endif /* !defined(DEBUG) */
1277
1278 /* Wait for output to complete. */
1279 if (!wasclean && !async && vp->v_numoutput != 0) {
1280 while (vp->v_numoutput != 0)
1281 cv_wait(&vp->v_cv, slock);
1282 }
1283 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1284 mutex_exit(slock);
1285
1286 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1287 /*
1288 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1289 * retrying is not a big deal because, in many cases,
1290 * uobj->uo_npages is already 0 here.
1291 */
1292 mutex_enter(slock);
1293 goto retry;
1294 }
1295
1296 if (trans_mp) {
1297 if (holds_wapbl)
1298 WAPBL_END(trans_mp);
1299 fstrans_done(trans_mp);
1300 }
1301
1302 return (error);
1303 }
1304
1305 int
1306 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1307 {
1308 off_t off;
1309 vaddr_t kva;
1310 size_t len;
1311 int error;
1312 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1313
1314 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1315 vp, pgs, npages, flags);
1316
1317 off = pgs[0]->offset;
1318 kva = uvm_pagermapin(pgs, npages,
1319 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1320 len = npages << PAGE_SHIFT;
1321
1322 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1323 uvm_aio_biodone);
1324
1325 return error;
1326 }
1327
1328 int
1329 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1330 {
1331 off_t off;
1332 vaddr_t kva;
1333 size_t len;
1334 int error;
1335 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1336
1337 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1338 vp, pgs, npages, flags);
1339
1340 off = pgs[0]->offset;
1341 kva = uvm_pagermapin(pgs, npages,
1342 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1343 len = npages << PAGE_SHIFT;
1344
1345 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1346 uvm_aio_biodone);
1347
1348 return error;
1349 }
1350
1351 /*
1352 * Backend routine for doing I/O to vnode pages. Pages are already locked
1353 * and mapped into kernel memory. Here we just look up the underlying
1354 * device block addresses and call the strategy routine.
1355 */
1356
1357 static int
1358 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1359 enum uio_rw rw, void (*iodone)(struct buf *))
1360 {
1361 int s, error;
1362 int fs_bshift, dev_bshift;
1363 off_t eof, offset, startoffset;
1364 size_t bytes, iobytes, skipbytes;
1365 struct buf *mbp, *bp;
1366 const bool async = (flags & PGO_SYNCIO) == 0;
1367 const bool lazy = (flags & PGO_LAZY) == 0;
1368 const bool iowrite = rw == UIO_WRITE;
1369 const int brw = iowrite ? B_WRITE : B_READ;
1370 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1371
1372 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1373 vp, kva, len, flags);
1374
1375 KASSERT(vp->v_size <= vp->v_writesize);
1376 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1377 if (vp->v_type != VBLK) {
1378 fs_bshift = vp->v_mount->mnt_fs_bshift;
1379 dev_bshift = vp->v_mount->mnt_dev_bshift;
1380 } else {
1381 fs_bshift = DEV_BSHIFT;
1382 dev_bshift = DEV_BSHIFT;
1383 }
1384 error = 0;
1385 startoffset = off;
1386 bytes = MIN(len, eof - startoffset);
1387 skipbytes = 0;
1388 KASSERT(bytes != 0);
1389
1390 if (iowrite) {
1391 mutex_enter(vp->v_interlock);
1392 vp->v_numoutput += 2;
1393 mutex_exit(vp->v_interlock);
1394 }
1395 mbp = getiobuf(vp, true);
1396 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1397 vp, mbp, vp->v_numoutput, bytes);
1398 mbp->b_bufsize = len;
1399 mbp->b_data = (void *)kva;
1400 mbp->b_resid = mbp->b_bcount = bytes;
1401 mbp->b_cflags = BC_BUSY | BC_AGE;
1402 if (async) {
1403 mbp->b_flags = brw | B_ASYNC;
1404 mbp->b_iodone = iodone;
1405 } else {
1406 mbp->b_flags = brw;
1407 mbp->b_iodone = NULL;
1408 }
1409 if (curlwp == uvm.pagedaemon_lwp)
1410 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1411 else if (async || lazy)
1412 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1413 else
1414 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1415
1416 bp = NULL;
1417 for (offset = startoffset;
1418 bytes > 0;
1419 offset += iobytes, bytes -= iobytes) {
1420 int run;
1421 daddr_t lbn, blkno;
1422 struct vnode *devvp;
1423
1424 /*
1425 * bmap the file to find out the blkno to read from and
1426 * how much we can read in one i/o. if bmap returns an error,
1427 * skip the rest of the top-level i/o.
1428 */
1429
1430 lbn = offset >> fs_bshift;
1431 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1432 if (error) {
1433 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1434 lbn,error,0,0);
1435 skipbytes += bytes;
1436 bytes = 0;
1437 goto loopdone;
1438 }
1439
1440 /*
1441 * see how many pages can be read with this i/o.
1442 * reduce the i/o size if necessary to avoid
1443 * overwriting pages with valid data.
1444 */
1445
1446 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1447 bytes);
1448
1449 /*
1450 * if this block isn't allocated, zero it instead of
1451 * reading it. unless we are going to allocate blocks,
1452 * mark the pages we zeroed PG_RDONLY.
1453 */
1454
1455 if (blkno == (daddr_t)-1) {
1456 if (!iowrite) {
1457 memset((char *)kva + (offset - startoffset), 0,
1458 iobytes);
1459 }
1460 skipbytes += iobytes;
1461 continue;
1462 }
1463
1464 /*
1465 * allocate a sub-buf for this piece of the i/o
1466 * (or just use mbp if there's only 1 piece),
1467 * and start it going.
1468 */
1469
1470 if (offset == startoffset && iobytes == bytes) {
1471 bp = mbp;
1472 } else {
1473 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1474 vp, bp, vp->v_numoutput, 0);
1475 bp = getiobuf(vp, true);
1476 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1477 }
1478 bp->b_lblkno = 0;
1479
1480 /* adjust physical blkno for partial blocks */
1481 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1482 dev_bshift);
1483
1484 UVMHIST_LOG(ubchist,
1485 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1486 bp, offset, bp->b_bcount, bp->b_blkno);
1487
1488 VOP_STRATEGY(devvp, bp);
1489 }
1490
1491 loopdone:
1492 if (skipbytes) {
1493 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1494 }
1495 nestiobuf_done(mbp, skipbytes, error);
1496 if (async) {
1497 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1498 return (0);
1499 }
1500 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1501 error = biowait(mbp);
1502 s = splbio();
1503 (*iodone)(mbp);
1504 splx(s);
1505 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1506 return (error);
1507 }
1508
1509 int
1510 genfs_compat_getpages(void *v)
1511 {
1512 struct vop_getpages_args /* {
1513 struct vnode *a_vp;
1514 voff_t a_offset;
1515 struct vm_page **a_m;
1516 int *a_count;
1517 int a_centeridx;
1518 vm_prot_t a_access_type;
1519 int a_advice;
1520 int a_flags;
1521 } */ *ap = v;
1522
1523 off_t origoffset;
1524 struct vnode *vp = ap->a_vp;
1525 struct uvm_object *uobj = &vp->v_uobj;
1526 struct vm_page *pg, **pgs;
1527 vaddr_t kva;
1528 int i, error, orignpages, npages;
1529 struct iovec iov;
1530 struct uio uio;
1531 kauth_cred_t cred = curlwp->l_cred;
1532 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1533
1534 error = 0;
1535 origoffset = ap->a_offset;
1536 orignpages = *ap->a_count;
1537 pgs = ap->a_m;
1538
1539 if (ap->a_flags & PGO_LOCKED) {
1540 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1541 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1542
1543 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1544 if (error == 0 && memwrite) {
1545 genfs_markdirty(vp);
1546 }
1547 return error;
1548 }
1549 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1550 mutex_exit(uobj->vmobjlock);
1551 return EINVAL;
1552 }
1553 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1554 mutex_exit(uobj->vmobjlock);
1555 return 0;
1556 }
1557 npages = orignpages;
1558 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1559 mutex_exit(uobj->vmobjlock);
1560 kva = uvm_pagermapin(pgs, npages,
1561 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1562 for (i = 0; i < npages; i++) {
1563 pg = pgs[i];
1564 if ((pg->flags & PG_FAKE) == 0) {
1565 continue;
1566 }
1567 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1568 iov.iov_len = PAGE_SIZE;
1569 uio.uio_iov = &iov;
1570 uio.uio_iovcnt = 1;
1571 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1572 uio.uio_rw = UIO_READ;
1573 uio.uio_resid = PAGE_SIZE;
1574 UIO_SETUP_SYSSPACE(&uio);
1575 /* XXX vn_lock */
1576 error = VOP_READ(vp, &uio, 0, cred);
1577 if (error) {
1578 break;
1579 }
1580 if (uio.uio_resid) {
1581 memset(iov.iov_base, 0, uio.uio_resid);
1582 }
1583 }
1584 uvm_pagermapout(kva, npages);
1585 mutex_enter(uobj->vmobjlock);
1586 mutex_enter(&uvm_pageqlock);
1587 for (i = 0; i < npages; i++) {
1588 pg = pgs[i];
1589 if (error && (pg->flags & PG_FAKE) != 0) {
1590 pg->flags |= PG_RELEASED;
1591 } else {
1592 pmap_clear_modify(pg);
1593 uvm_pageactivate(pg);
1594 }
1595 }
1596 if (error) {
1597 uvm_page_unbusy(pgs, npages);
1598 }
1599 mutex_exit(&uvm_pageqlock);
1600 if (error == 0 && memwrite) {
1601 genfs_markdirty(vp);
1602 }
1603 mutex_exit(uobj->vmobjlock);
1604 return error;
1605 }
1606
1607 int
1608 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1609 int flags)
1610 {
1611 off_t offset;
1612 struct iovec iov;
1613 struct uio uio;
1614 kauth_cred_t cred = curlwp->l_cred;
1615 struct buf *bp;
1616 vaddr_t kva;
1617 int error;
1618
1619 offset = pgs[0]->offset;
1620 kva = uvm_pagermapin(pgs, npages,
1621 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1622
1623 iov.iov_base = (void *)kva;
1624 iov.iov_len = npages << PAGE_SHIFT;
1625 uio.uio_iov = &iov;
1626 uio.uio_iovcnt = 1;
1627 uio.uio_offset = offset;
1628 uio.uio_rw = UIO_WRITE;
1629 uio.uio_resid = npages << PAGE_SHIFT;
1630 UIO_SETUP_SYSSPACE(&uio);
1631 /* XXX vn_lock */
1632 error = VOP_WRITE(vp, &uio, 0, cred);
1633
1634 mutex_enter(vp->v_interlock);
1635 vp->v_numoutput++;
1636 mutex_exit(vp->v_interlock);
1637
1638 bp = getiobuf(vp, true);
1639 bp->b_cflags = BC_BUSY | BC_AGE;
1640 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1641 bp->b_data = (char *)kva;
1642 bp->b_bcount = npages << PAGE_SHIFT;
1643 bp->b_bufsize = npages << PAGE_SHIFT;
1644 bp->b_resid = 0;
1645 bp->b_error = error;
1646 uvm_aio_aiodone(bp);
1647 return (error);
1648 }
1649
1650 /*
1651 * Process a uio using direct I/O. If we reach a part of the request
1652 * which cannot be processed in this fashion for some reason, just return.
1653 * The caller must handle some additional part of the request using
1654 * buffered I/O before trying direct I/O again.
1655 */
1656
1657 void
1658 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1659 {
1660 struct vmspace *vs;
1661 struct iovec *iov;
1662 vaddr_t va;
1663 size_t len;
1664 const int mask = DEV_BSIZE - 1;
1665 int error;
1666 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1667 (ioflag & IO_JOURNALLOCKED) == 0);
1668
1669 /*
1670 * We only support direct I/O to user space for now.
1671 */
1672
1673 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1674 return;
1675 }
1676
1677 /*
1678 * If the vnode is mapped, we would need to get the getpages lock
1679 * to stabilize the bmap, but then we would get into trouble while
1680 * locking the pages if the pages belong to this same vnode (or a
1681 * multi-vnode cascade to the same effect). Just fall back to
1682 * buffered I/O if the vnode is mapped to avoid this mess.
1683 */
1684
1685 if (vp->v_vflag & VV_MAPPED) {
1686 return;
1687 }
1688
1689 if (need_wapbl) {
1690 error = WAPBL_BEGIN(vp->v_mount);
1691 if (error)
1692 return;
1693 }
1694
1695 /*
1696 * Do as much of the uio as possible with direct I/O.
1697 */
1698
1699 vs = uio->uio_vmspace;
1700 while (uio->uio_resid) {
1701 iov = uio->uio_iov;
1702 if (iov->iov_len == 0) {
1703 uio->uio_iov++;
1704 uio->uio_iovcnt--;
1705 continue;
1706 }
1707 va = (vaddr_t)iov->iov_base;
1708 len = MIN(iov->iov_len, genfs_maxdio);
1709 len &= ~mask;
1710
1711 /*
1712 * If the next chunk is smaller than DEV_BSIZE or extends past
1713 * the current EOF, then fall back to buffered I/O.
1714 */
1715
1716 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1717 break;
1718 }
1719
1720 /*
1721 * Check alignment. The file offset must be at least
1722 * sector-aligned. The exact constraint on memory alignment
1723 * is very hardware-dependent, but requiring sector-aligned
1724 * addresses there too is safe.
1725 */
1726
1727 if (uio->uio_offset & mask || va & mask) {
1728 break;
1729 }
1730 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1731 uio->uio_rw);
1732 if (error) {
1733 break;
1734 }
1735 iov->iov_base = (char *)iov->iov_base + len;
1736 iov->iov_len -= len;
1737 uio->uio_offset += len;
1738 uio->uio_resid -= len;
1739 }
1740
1741 if (need_wapbl)
1742 WAPBL_END(vp->v_mount);
1743 }
1744
1745 /*
1746 * Iodone routine for direct I/O. We don't do much here since the request is
1747 * always synchronous, so the caller will do most of the work after biowait().
1748 */
1749
1750 static void
1751 genfs_dio_iodone(struct buf *bp)
1752 {
1753
1754 KASSERT((bp->b_flags & B_ASYNC) == 0);
1755 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1756 mutex_enter(bp->b_objlock);
1757 vwakeup(bp);
1758 mutex_exit(bp->b_objlock);
1759 }
1760 putiobuf(bp);
1761 }
1762
1763 /*
1764 * Process one chunk of a direct I/O request.
1765 */
1766
1767 static int
1768 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1769 off_t off, enum uio_rw rw)
1770 {
1771 struct vm_map *map;
1772 struct pmap *upm, *kpm __unused;
1773 size_t klen = round_page(uva + len) - trunc_page(uva);
1774 off_t spoff, epoff;
1775 vaddr_t kva, puva;
1776 paddr_t pa;
1777 vm_prot_t prot;
1778 int error, rv __diagused, poff, koff;
1779 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1780 (rw == UIO_WRITE ? PGO_FREE : 0);
1781
1782 /*
1783 * For writes, verify that this range of the file already has fully
1784 * allocated backing store. If there are any holes, just punt and
1785 * make the caller take the buffered write path.
1786 */
1787
1788 if (rw == UIO_WRITE) {
1789 daddr_t lbn, elbn, blkno;
1790 int bsize, bshift, run;
1791
1792 bshift = vp->v_mount->mnt_fs_bshift;
1793 bsize = 1 << bshift;
1794 lbn = off >> bshift;
1795 elbn = (off + len + bsize - 1) >> bshift;
1796 while (lbn < elbn) {
1797 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1798 if (error) {
1799 return error;
1800 }
1801 if (blkno == (daddr_t)-1) {
1802 return ENOSPC;
1803 }
1804 lbn += 1 + run;
1805 }
1806 }
1807
1808 /*
1809 * Flush any cached pages for parts of the file that we're about to
1810 * access. If we're writing, invalidate pages as well.
1811 */
1812
1813 spoff = trunc_page(off);
1814 epoff = round_page(off + len);
1815 mutex_enter(vp->v_interlock);
1816 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1817 if (error) {
1818 return error;
1819 }
1820
1821 /*
1822 * Wire the user pages and remap them into kernel memory.
1823 */
1824
1825 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1826 error = uvm_vslock(vs, (void *)uva, len, prot);
1827 if (error) {
1828 return error;
1829 }
1830
1831 map = &vs->vm_map;
1832 upm = vm_map_pmap(map);
1833 kpm = vm_map_pmap(kernel_map);
1834 puva = trunc_page(uva);
1835 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1836 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1837 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1838 rv = pmap_extract(upm, puva + poff, &pa);
1839 KASSERT(rv);
1840 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1841 }
1842 pmap_update(kpm);
1843
1844 /*
1845 * Do the I/O.
1846 */
1847
1848 koff = uva - trunc_page(uva);
1849 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1850 genfs_dio_iodone);
1851
1852 /*
1853 * Tear down the kernel mapping.
1854 */
1855
1856 pmap_kremove(kva, klen);
1857 pmap_update(kpm);
1858 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1859
1860 /*
1861 * Unwire the user pages.
1862 */
1863
1864 uvm_vsunlock(vs, (void *)uva, len);
1865 return error;
1866 }
1867