Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.66
      1 /*	$NetBSD: genfs_io.c,v 1.66 2017/03/30 09:12:21 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.66 2017/03/30 09:12:21 hannken Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 
     47 #include <miscfs/genfs/genfs.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <miscfs/specfs/specdev.h>
     50 
     51 #include <uvm/uvm.h>
     52 #include <uvm/uvm_pager.h>
     53 
     54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     55     off_t, enum uio_rw);
     56 static void genfs_dio_iodone(struct buf *);
     57 
     58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
     59     off_t, bool, bool, bool, bool);
     60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     61     void (*)(struct buf *));
     62 static void genfs_rel_pages(struct vm_page **, unsigned int);
     63 static void genfs_markdirty(struct vnode *);
     64 
     65 int genfs_maxdio = MAXPHYS;
     66 
     67 static void
     68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     69 {
     70 	unsigned int i;
     71 
     72 	for (i = 0; i < npages; i++) {
     73 		struct vm_page *pg = pgs[i];
     74 
     75 		if (pg == NULL || pg == PGO_DONTCARE)
     76 			continue;
     77 		KASSERT(uvm_page_locked_p(pg));
     78 		if (pg->flags & PG_FAKE) {
     79 			pg->flags |= PG_RELEASED;
     80 		}
     81 	}
     82 	mutex_enter(&uvm_pageqlock);
     83 	uvm_page_unbusy(pgs, npages);
     84 	mutex_exit(&uvm_pageqlock);
     85 }
     86 
     87 static void
     88 genfs_markdirty(struct vnode *vp)
     89 {
     90 	struct genfs_node * const gp = VTOG(vp);
     91 
     92 	KASSERT(mutex_owned(vp->v_interlock));
     93 	gp->g_dirtygen++;
     94 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     95 		vn_syncer_add_to_worklist(vp, filedelay);
     96 	}
     97 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
     98 		vp->v_iflag |= VI_WRMAPDIRTY;
     99 	}
    100 }
    101 
    102 /*
    103  * generic VM getpages routine.
    104  * Return PG_BUSY pages for the given range,
    105  * reading from backing store if necessary.
    106  */
    107 
    108 int
    109 genfs_getpages(void *v)
    110 {
    111 	struct vop_getpages_args /* {
    112 		struct vnode *a_vp;
    113 		voff_t a_offset;
    114 		struct vm_page **a_m;
    115 		int *a_count;
    116 		int a_centeridx;
    117 		vm_prot_t a_access_type;
    118 		int a_advice;
    119 		int a_flags;
    120 	} */ * const ap = v;
    121 
    122 	off_t diskeof, memeof;
    123 	int i, error, npages;
    124 	const int flags = ap->a_flags;
    125 	struct vnode * const vp = ap->a_vp;
    126 	struct uvm_object * const uobj = &vp->v_uobj;
    127 	const bool async = (flags & PGO_SYNCIO) == 0;
    128 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    130 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    131 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    132 	bool holds_wapbl = false;
    133 	struct mount *trans_mount = NULL;
    134 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    135 
    136 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    137 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    138 
    139 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    140 	    vp->v_type == VLNK || vp->v_type == VBLK);
    141 
    142 startover:
    143 	error = 0;
    144 	const voff_t origvsize = vp->v_size;
    145 	const off_t origoffset = ap->a_offset;
    146 	const int orignpages = *ap->a_count;
    147 
    148 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    149 	if (flags & PGO_PASTEOF) {
    150 		off_t newsize;
    151 #if defined(DIAGNOSTIC)
    152 		off_t writeeof;
    153 #endif /* defined(DIAGNOSTIC) */
    154 
    155 		newsize = MAX(origvsize,
    156 		    origoffset + (orignpages << PAGE_SHIFT));
    157 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    158 #if defined(DIAGNOSTIC)
    159 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    160 		if (newsize > round_page(writeeof)) {
    161 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    162 			    __func__, newsize, round_page(writeeof));
    163 		}
    164 #endif /* defined(DIAGNOSTIC) */
    165 	} else {
    166 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    167 	}
    168 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    169 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    170 	KASSERT(orignpages > 0);
    171 
    172 	/*
    173 	 * Bounds-check the request.
    174 	 */
    175 
    176 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    177 		if ((flags & PGO_LOCKED) == 0) {
    178 			mutex_exit(uobj->vmobjlock);
    179 		}
    180 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    181 		    origoffset, *ap->a_count, memeof,0);
    182 		error = EINVAL;
    183 		goto out_err;
    184 	}
    185 
    186 	/* uobj is locked */
    187 
    188 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    189 	    (vp->v_type != VBLK ||
    190 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    191 		int updflags = 0;
    192 
    193 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    194 			updflags = GOP_UPDATE_ACCESSED;
    195 		}
    196 		if (memwrite) {
    197 			updflags |= GOP_UPDATE_MODIFIED;
    198 		}
    199 		if (updflags != 0) {
    200 			GOP_MARKUPDATE(vp, updflags);
    201 		}
    202 	}
    203 
    204 	/*
    205 	 * For PGO_LOCKED requests, just return whatever's in memory.
    206 	 */
    207 
    208 	if (flags & PGO_LOCKED) {
    209 		int nfound;
    210 		struct vm_page *pg;
    211 
    212 		KASSERT(!glocked);
    213 		npages = *ap->a_count;
    214 #if defined(DEBUG)
    215 		for (i = 0; i < npages; i++) {
    216 			pg = ap->a_m[i];
    217 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    218 		}
    219 #endif /* defined(DEBUG) */
    220 		nfound = uvn_findpages(uobj, origoffset, &npages,
    221 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    222 		KASSERT(npages == *ap->a_count);
    223 		if (nfound == 0) {
    224 			error = EBUSY;
    225 			goto out_err;
    226 		}
    227 		if (!genfs_node_rdtrylock(vp)) {
    228 			genfs_rel_pages(ap->a_m, npages);
    229 
    230 			/*
    231 			 * restore the array.
    232 			 */
    233 
    234 			for (i = 0; i < npages; i++) {
    235 				pg = ap->a_m[i];
    236 
    237 				if (pg != NULL && pg != PGO_DONTCARE) {
    238 					ap->a_m[i] = NULL;
    239 				}
    240 				KASSERT(ap->a_m[i] == NULL ||
    241 				    ap->a_m[i] == PGO_DONTCARE);
    242 			}
    243 		} else {
    244 			genfs_node_unlock(vp);
    245 		}
    246 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    247 		if (error == 0 && memwrite) {
    248 			genfs_markdirty(vp);
    249 		}
    250 		goto out_err;
    251 	}
    252 	mutex_exit(uobj->vmobjlock);
    253 
    254 	/*
    255 	 * find the requested pages and make some simple checks.
    256 	 * leave space in the page array for a whole block.
    257 	 */
    258 
    259 	const int fs_bshift = (vp->v_type != VBLK) ?
    260 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    261 	const int fs_bsize = 1 << fs_bshift;
    262 #define	blk_mask	(fs_bsize - 1)
    263 #define	trunc_blk(x)	((x) & ~blk_mask)
    264 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    265 
    266 	const int orignmempages = MIN(orignpages,
    267 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    268 	npages = orignmempages;
    269 	const off_t startoffset = trunc_blk(origoffset);
    270 	const off_t endoffset = MIN(
    271 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    272 	    round_page(memeof));
    273 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    274 
    275 	const int pgs_size = sizeof(struct vm_page *) *
    276 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    277 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    278 
    279 	if (pgs_size > sizeof(pgs_onstack)) {
    280 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    281 		if (pgs == NULL) {
    282 			pgs = pgs_onstack;
    283 			error = ENOMEM;
    284 			goto out_err;
    285 		}
    286 	} else {
    287 		pgs = pgs_onstack;
    288 		(void)memset(pgs, 0, pgs_size);
    289 	}
    290 
    291 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    292 	    ridx, npages, startoffset, endoffset);
    293 
    294 	if (trans_mount == NULL) {
    295 		trans_mount = vp->v_mount;
    296 		fstrans_start(trans_mount, FSTRANS_SHARED);
    297 		/*
    298 		 * check if this vnode is still valid.
    299 		 */
    300 		mutex_enter(vp->v_interlock);
    301 		error = vdead_check(vp, 0);
    302 		mutex_exit(vp->v_interlock);
    303 		if (error)
    304 			goto out_err_free;
    305 		/*
    306 		 * XXX: This assumes that we come here only via
    307 		 * the mmio path
    308 		 */
    309 		if (blockalloc && vp->v_mount->mnt_wapbl) {
    310 			error = WAPBL_BEGIN(trans_mount);
    311 			if (error)
    312 				goto out_err_free;
    313 			holds_wapbl = true;
    314 		}
    315 	}
    316 
    317 	/*
    318 	 * hold g_glock to prevent a race with truncate.
    319 	 *
    320 	 * check if our idea of v_size is still valid.
    321 	 */
    322 
    323 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    324 	if (!glocked) {
    325 		if (blockalloc) {
    326 			genfs_node_wrlock(vp);
    327 		} else {
    328 			genfs_node_rdlock(vp);
    329 		}
    330 	}
    331 	mutex_enter(uobj->vmobjlock);
    332 	if (vp->v_size < origvsize) {
    333 		if (!glocked) {
    334 			genfs_node_unlock(vp);
    335 		}
    336 		if (pgs != pgs_onstack)
    337 			kmem_free(pgs, pgs_size);
    338 		goto startover;
    339 	}
    340 
    341 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    342 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    343 		if (!glocked) {
    344 			genfs_node_unlock(vp);
    345 		}
    346 		KASSERT(async != 0);
    347 		genfs_rel_pages(&pgs[ridx], orignmempages);
    348 		mutex_exit(uobj->vmobjlock);
    349 		error = EBUSY;
    350 		goto out_err_free;
    351 	}
    352 
    353 	/*
    354 	 * if the pages are already resident, just return them.
    355 	 */
    356 
    357 	for (i = 0; i < npages; i++) {
    358 		struct vm_page *pg = pgs[ridx + i];
    359 
    360 		if ((pg->flags & PG_FAKE) ||
    361 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    362 			break;
    363 		}
    364 	}
    365 	if (i == npages) {
    366 		if (!glocked) {
    367 			genfs_node_unlock(vp);
    368 		}
    369 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    370 		npages += ridx;
    371 		goto out;
    372 	}
    373 
    374 	/*
    375 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    376 	 */
    377 
    378 	if (overwrite) {
    379 		if (!glocked) {
    380 			genfs_node_unlock(vp);
    381 		}
    382 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    383 
    384 		for (i = 0; i < npages; i++) {
    385 			struct vm_page *pg = pgs[ridx + i];
    386 
    387 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    388 		}
    389 		npages += ridx;
    390 		goto out;
    391 	}
    392 
    393 	/*
    394 	 * the page wasn't resident and we're not overwriting,
    395 	 * so we're going to have to do some i/o.
    396 	 * find any additional pages needed to cover the expanded range.
    397 	 */
    398 
    399 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    400 	if (startoffset != origoffset || npages != orignmempages) {
    401 		int npgs;
    402 
    403 		/*
    404 		 * we need to avoid deadlocks caused by locking
    405 		 * additional pages at lower offsets than pages we
    406 		 * already have locked.  unlock them all and start over.
    407 		 */
    408 
    409 		genfs_rel_pages(&pgs[ridx], orignmempages);
    410 		memset(pgs, 0, pgs_size);
    411 
    412 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    413 		    startoffset, endoffset, 0,0);
    414 		npgs = npages;
    415 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    416 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    417 			if (!glocked) {
    418 				genfs_node_unlock(vp);
    419 			}
    420 			KASSERT(async != 0);
    421 			genfs_rel_pages(pgs, npages);
    422 			mutex_exit(uobj->vmobjlock);
    423 			error = EBUSY;
    424 			goto out_err_free;
    425 		}
    426 	}
    427 
    428 	mutex_exit(uobj->vmobjlock);
    429 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
    430 	    async, memwrite, blockalloc, glocked);
    431 	if (error == 0 && async)
    432 		goto out_err_free;
    433 	if (!glocked) {
    434 		genfs_node_unlock(vp);
    435 	}
    436 	mutex_enter(uobj->vmobjlock);
    437 
    438 	/*
    439 	 * we're almost done!  release the pages...
    440 	 * for errors, we free the pages.
    441 	 * otherwise we activate them and mark them as valid and clean.
    442 	 * also, unbusy pages that were not actually requested.
    443 	 */
    444 
    445 	if (error) {
    446 		genfs_rel_pages(pgs, npages);
    447 		mutex_exit(uobj->vmobjlock);
    448 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    449 		goto out_err_free;
    450 	}
    451 
    452 out:
    453 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    454 	error = 0;
    455 	mutex_enter(&uvm_pageqlock);
    456 	for (i = 0; i < npages; i++) {
    457 		struct vm_page *pg = pgs[i];
    458 		if (pg == NULL) {
    459 			continue;
    460 		}
    461 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    462 		    pg, pg->flags, 0,0);
    463 		if (pg->flags & PG_FAKE && !overwrite) {
    464 			pg->flags &= ~(PG_FAKE);
    465 			pmap_clear_modify(pgs[i]);
    466 		}
    467 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    468 		if (i < ridx || i >= ridx + orignmempages || async) {
    469 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    470 			    pg, pg->offset,0,0);
    471 			if (pg->flags & PG_WANTED) {
    472 				wakeup(pg);
    473 			}
    474 			if (pg->flags & PG_FAKE) {
    475 				KASSERT(overwrite);
    476 				uvm_pagezero(pg);
    477 			}
    478 			if (pg->flags & PG_RELEASED) {
    479 				uvm_pagefree(pg);
    480 				continue;
    481 			}
    482 			uvm_pageenqueue(pg);
    483 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    484 			UVM_PAGE_OWN(pg, NULL);
    485 		}
    486 	}
    487 	mutex_exit(&uvm_pageqlock);
    488 	if (memwrite) {
    489 		genfs_markdirty(vp);
    490 	}
    491 	mutex_exit(uobj->vmobjlock);
    492 	if (ap->a_m != NULL) {
    493 		memcpy(ap->a_m, &pgs[ridx],
    494 		    orignmempages * sizeof(struct vm_page *));
    495 	}
    496 
    497 out_err_free:
    498 	if (pgs != NULL && pgs != pgs_onstack)
    499 		kmem_free(pgs, pgs_size);
    500 out_err:
    501 	if (trans_mount != NULL) {
    502 		if (holds_wapbl)
    503 			WAPBL_END(trans_mount);
    504 		fstrans_done(trans_mount);
    505 	}
    506 	return error;
    507 }
    508 
    509 /*
    510  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
    511  */
    512 static int
    513 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
    514     off_t startoffset, off_t diskeof,
    515     bool async, bool memwrite, bool blockalloc, bool glocked)
    516 {
    517 	struct uvm_object * const uobj = &vp->v_uobj;
    518 	const int fs_bshift = (vp->v_type != VBLK) ?
    519 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    520 	const int dev_bshift = (vp->v_type != VBLK) ?
    521 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    522 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    523 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    524 	vaddr_t kva;
    525 	struct buf *bp, *mbp;
    526 	bool sawhole = false;
    527 	int i;
    528 	int error = 0;
    529 
    530 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
    531 
    532 	/*
    533 	 * read the desired page(s).
    534 	 */
    535 
    536 	totalbytes = npages << PAGE_SHIFT;
    537 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    538 	tailbytes = totalbytes - bytes;
    539 	skipbytes = 0;
    540 
    541 	kva = uvm_pagermapin(pgs, npages,
    542 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    543 	if (kva == 0)
    544 		return EBUSY;
    545 
    546 	mbp = getiobuf(vp, true);
    547 	mbp->b_bufsize = totalbytes;
    548 	mbp->b_data = (void *)kva;
    549 	mbp->b_resid = mbp->b_bcount = bytes;
    550 	mbp->b_cflags = BC_BUSY;
    551 	if (async) {
    552 		mbp->b_flags = B_READ | B_ASYNC;
    553 		mbp->b_iodone = uvm_aio_biodone;
    554 	} else {
    555 		mbp->b_flags = B_READ;
    556 		mbp->b_iodone = NULL;
    557 	}
    558 	if (async)
    559 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    560 	else
    561 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    562 
    563 	/*
    564 	 * if EOF is in the middle of the range, zero the part past EOF.
    565 	 * skip over pages which are not PG_FAKE since in that case they have
    566 	 * valid data that we need to preserve.
    567 	 */
    568 
    569 	tailstart = bytes;
    570 	while (tailbytes > 0) {
    571 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    572 
    573 		KASSERT(len <= tailbytes);
    574 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    575 			memset((void *)(kva + tailstart), 0, len);
    576 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    577 			    kva, tailstart, len, 0);
    578 		}
    579 		tailstart += len;
    580 		tailbytes -= len;
    581 	}
    582 
    583 	/*
    584 	 * now loop over the pages, reading as needed.
    585 	 */
    586 
    587 	bp = NULL;
    588 	off_t offset;
    589 	for (offset = startoffset;
    590 	    bytes > 0;
    591 	    offset += iobytes, bytes -= iobytes) {
    592 		int run;
    593 		daddr_t lbn, blkno;
    594 		int pidx;
    595 		struct vnode *devvp;
    596 
    597 		/*
    598 		 * skip pages which don't need to be read.
    599 		 */
    600 
    601 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    602 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    603 			size_t b;
    604 
    605 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    606 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    607 				sawhole = true;
    608 			}
    609 			b = MIN(PAGE_SIZE, bytes);
    610 			offset += b;
    611 			bytes -= b;
    612 			skipbytes += b;
    613 			pidx++;
    614 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    615 			    offset, 0,0,0);
    616 			if (bytes == 0) {
    617 				goto loopdone;
    618 			}
    619 		}
    620 
    621 		/*
    622 		 * bmap the file to find out the blkno to read from and
    623 		 * how much we can read in one i/o.  if bmap returns an error,
    624 		 * skip the rest of the top-level i/o.
    625 		 */
    626 
    627 		lbn = offset >> fs_bshift;
    628 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    629 		if (error) {
    630 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    631 			    lbn,error,0,0);
    632 			skipbytes += bytes;
    633 			bytes = 0;
    634 			goto loopdone;
    635 		}
    636 
    637 		/*
    638 		 * see how many pages can be read with this i/o.
    639 		 * reduce the i/o size if necessary to avoid
    640 		 * overwriting pages with valid data.
    641 		 */
    642 
    643 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    644 		    bytes);
    645 		if (offset + iobytes > round_page(offset)) {
    646 			int pcount;
    647 
    648 			pcount = 1;
    649 			while (pidx + pcount < npages &&
    650 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    651 				pcount++;
    652 			}
    653 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    654 			    (offset - trunc_page(offset)));
    655 		}
    656 
    657 		/*
    658 		 * if this block isn't allocated, zero it instead of
    659 		 * reading it.  unless we are going to allocate blocks,
    660 		 * mark the pages we zeroed PG_RDONLY.
    661 		 */
    662 
    663 		if (blkno == (daddr_t)-1) {
    664 			int holepages = (round_page(offset + iobytes) -
    665 			    trunc_page(offset)) >> PAGE_SHIFT;
    666 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    667 
    668 			sawhole = true;
    669 			memset((char *)kva + (offset - startoffset), 0,
    670 			    iobytes);
    671 			skipbytes += iobytes;
    672 
    673 			mutex_enter(uobj->vmobjlock);
    674 			for (i = 0; i < holepages; i++) {
    675 				if (memwrite) {
    676 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    677 				}
    678 				if (!blockalloc) {
    679 					pgs[pidx + i]->flags |= PG_RDONLY;
    680 				}
    681 			}
    682 			mutex_exit(uobj->vmobjlock);
    683 			continue;
    684 		}
    685 
    686 		/*
    687 		 * allocate a sub-buf for this piece of the i/o
    688 		 * (or just use mbp if there's only 1 piece),
    689 		 * and start it going.
    690 		 */
    691 
    692 		if (offset == startoffset && iobytes == bytes) {
    693 			bp = mbp;
    694 		} else {
    695 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    696 			    vp, bp, vp->v_numoutput, 0);
    697 			bp = getiobuf(vp, true);
    698 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    699 		}
    700 		bp->b_lblkno = 0;
    701 
    702 		/* adjust physical blkno for partial blocks */
    703 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    704 		    dev_bshift);
    705 
    706 		UVMHIST_LOG(ubchist,
    707 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    708 		    bp, offset, bp->b_bcount, bp->b_blkno);
    709 
    710 		VOP_STRATEGY(devvp, bp);
    711 	}
    712 
    713 loopdone:
    714 	nestiobuf_done(mbp, skipbytes, error);
    715 	if (async) {
    716 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    717 		if (!glocked) {
    718 			genfs_node_unlock(vp);
    719 		}
    720 		return 0;
    721 	}
    722 	if (bp != NULL) {
    723 		error = biowait(mbp);
    724 	}
    725 
    726 	/* Remove the mapping (make KVA available as soon as possible) */
    727 	uvm_pagermapout(kva, npages);
    728 
    729 	/*
    730 	 * if this we encountered a hole then we have to do a little more work.
    731 	 * for read faults, we marked the page PG_RDONLY so that future
    732 	 * write accesses to the page will fault again.
    733 	 * for write faults, we must make sure that the backing store for
    734 	 * the page is completely allocated while the pages are locked.
    735 	 */
    736 
    737 	if (!error && sawhole && blockalloc) {
    738 		error = GOP_ALLOC(vp, startoffset,
    739 		    npages << PAGE_SHIFT, 0, cred);
    740 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    741 		    startoffset, npages << PAGE_SHIFT, error,0);
    742 		if (!error) {
    743 			mutex_enter(uobj->vmobjlock);
    744 			for (i = 0; i < npages; i++) {
    745 				struct vm_page *pg = pgs[i];
    746 
    747 				if (pg == NULL) {
    748 					continue;
    749 				}
    750 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    751 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    752 				    pg,0,0,0);
    753 			}
    754 			mutex_exit(uobj->vmobjlock);
    755 		}
    756 	}
    757 
    758 	putiobuf(mbp);
    759 	return error;
    760 }
    761 
    762 /*
    763  * generic VM putpages routine.
    764  * Write the given range of pages to backing store.
    765  *
    766  * => "offhi == 0" means flush all pages at or after "offlo".
    767  * => object should be locked by caller.  we return with the
    768  *      object unlocked.
    769  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    770  *	thus, a caller might want to unlock higher level resources
    771  *	(e.g. vm_map) before calling flush.
    772  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    773  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    774  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    775  *	that new pages are inserted on the tail end of the list.   thus,
    776  *	we can make a complete pass through the object in one go by starting
    777  *	at the head and working towards the tail (new pages are put in
    778  *	front of us).
    779  * => NOTE: we are allowed to lock the page queues, so the caller
    780  *	must not be holding the page queue lock.
    781  *
    782  * note on "cleaning" object and PG_BUSY pages:
    783  *	this routine is holding the lock on the object.   the only time
    784  *	that it can run into a PG_BUSY page that it does not own is if
    785  *	some other process has started I/O on the page (e.g. either
    786  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    787  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    788  *	had a chance to modify it yet.    if the PG_BUSY page is being
    789  *	paged out then it means that someone else has already started
    790  *	cleaning the page for us (how nice!).    in this case, if we
    791  *	have syncio specified, then after we make our pass through the
    792  *	object we need to wait for the other PG_BUSY pages to clear
    793  *	off (i.e. we need to do an iosync).   also note that once a
    794  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    795  *
    796  * note on page traversal:
    797  *	we can traverse the pages in an object either by going down the
    798  *	linked list in "uobj->memq", or we can go over the address range
    799  *	by page doing hash table lookups for each address.    depending
    800  *	on how many pages are in the object it may be cheaper to do one
    801  *	or the other.   we set "by_list" to true if we are using memq.
    802  *	if the cost of a hash lookup was equal to the cost of the list
    803  *	traversal we could compare the number of pages in the start->stop
    804  *	range to the total number of pages in the object.   however, it
    805  *	seems that a hash table lookup is more expensive than the linked
    806  *	list traversal, so we multiply the number of pages in the
    807  *	range by an estimate of the relatively higher cost of the hash lookup.
    808  */
    809 
    810 int
    811 genfs_putpages(void *v)
    812 {
    813 	struct vop_putpages_args /* {
    814 		struct vnode *a_vp;
    815 		voff_t a_offlo;
    816 		voff_t a_offhi;
    817 		int a_flags;
    818 	} */ * const ap = v;
    819 
    820 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    821 	    ap->a_flags, NULL);
    822 }
    823 
    824 int
    825 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    826     int origflags, struct vm_page **busypg)
    827 {
    828 	struct uvm_object * const uobj = &vp->v_uobj;
    829 	kmutex_t * const slock = uobj->vmobjlock;
    830 	off_t off;
    831 	int i, error, npages, nback;
    832 	int freeflag;
    833 	/*
    834 	 * This array is larger than it should so that it's size is constant.
    835 	 * The right size is MAXPAGES.
    836 	 */
    837 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
    838 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
    839 	struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
    840 	bool wasclean, by_list, needs_clean, yld;
    841 	bool async = (origflags & PGO_SYNCIO) == 0;
    842 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    843 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    844 	struct genfs_node * const gp = VTOG(vp);
    845 	struct mount *trans_mp;
    846 	int flags;
    847 	int dirtygen;
    848 	bool modified;
    849 	bool holds_wapbl;
    850 	bool cleanall;
    851 	bool onworklst;
    852 
    853 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    854 
    855 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    856 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    857 	KASSERT(startoff < endoff || endoff == 0);
    858 
    859 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    860 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    861 
    862 	trans_mp = NULL;
    863 	holds_wapbl = false;
    864 
    865 retry:
    866 	modified = false;
    867 	flags = origflags;
    868 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    869 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    870 	if (uobj->uo_npages == 0) {
    871 		if (vp->v_iflag & VI_ONWORKLST) {
    872 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    873 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    874 				vn_syncer_remove_from_worklist(vp);
    875 		}
    876 		if (trans_mp) {
    877 			if (holds_wapbl)
    878 				WAPBL_END(trans_mp);
    879 			fstrans_done(trans_mp);
    880 		}
    881 		mutex_exit(slock);
    882 		return (0);
    883 	}
    884 
    885 	/*
    886 	 * the vnode has pages, set up to process the request.
    887 	 */
    888 
    889 	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
    890 		if (pagedaemon) {
    891 			/* Pagedaemon must not sleep here. */
    892 			trans_mp = vp->v_mount;
    893 			error = fstrans_start_nowait(trans_mp, FSTRANS_SHARED);
    894 			if (error) {
    895 				mutex_exit(slock);
    896 				return error;
    897 			}
    898 		} else {
    899 			/*
    900 			 * Cannot use vdeadcheck() here as this operation
    901 			 * usually gets used from VOP_RECLAIM().  Test for
    902 			 * change of v_mount instead and retry on change.
    903 			 */
    904 			mutex_exit(slock);
    905 			trans_mp = vp->v_mount;
    906 			fstrans_start(trans_mp, FSTRANS_SHARED);
    907 			if (vp->v_mount != trans_mp) {
    908 				fstrans_done(trans_mp);
    909 				trans_mp = NULL;
    910 			} else {
    911 				holds_wapbl = (trans_mp->mnt_wapbl &&
    912 				    (origflags & PGO_JOURNALLOCKED) == 0);
    913 				if (holds_wapbl) {
    914 					error = WAPBL_BEGIN(trans_mp);
    915 					if (error) {
    916 						fstrans_done(trans_mp);
    917 						return error;
    918 					}
    919 				}
    920 			}
    921 			mutex_enter(slock);
    922 			goto retry;
    923 		}
    924 	}
    925 
    926 	error = 0;
    927 	wasclean = (vp->v_numoutput == 0);
    928 	off = startoff;
    929 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    930 		endoff = trunc_page(LLONG_MAX);
    931 	}
    932 	by_list = (uobj->uo_npages <=
    933 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    934 
    935 	/*
    936 	 * if this vnode is known not to have dirty pages,
    937 	 * don't bother to clean it out.
    938 	 */
    939 
    940 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    941 #if !defined(DEBUG)
    942 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    943 			goto skip_scan;
    944 		}
    945 #endif /* !defined(DEBUG) */
    946 		flags &= ~PGO_CLEANIT;
    947 	}
    948 
    949 	/*
    950 	 * start the loop.  when scanning by list, hold the last page
    951 	 * in the list before we start.  pages allocated after we start
    952 	 * will be added to the end of the list, so we can stop at the
    953 	 * current last page.
    954 	 */
    955 
    956 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    957 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    958 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    959 	dirtygen = gp->g_dirtygen;
    960 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    961 	if (by_list) {
    962 		curmp.flags = PG_MARKER;
    963 		endmp.flags = PG_MARKER;
    964 		pg = TAILQ_FIRST(&uobj->memq);
    965 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    966 	} else {
    967 		pg = uvm_pagelookup(uobj, off);
    968 	}
    969 	nextpg = NULL;
    970 	while (by_list || off < endoff) {
    971 
    972 		/*
    973 		 * if the current page is not interesting, move on to the next.
    974 		 */
    975 
    976 		KASSERT(pg == NULL || pg->uobject == uobj ||
    977 		    (pg->flags & PG_MARKER) != 0);
    978 		KASSERT(pg == NULL ||
    979 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    980 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
    981 		if (by_list) {
    982 			if (pg == &endmp) {
    983 				break;
    984 			}
    985 			if (pg->flags & PG_MARKER) {
    986 				pg = TAILQ_NEXT(pg, listq.queue);
    987 				continue;
    988 			}
    989 			if (pg->offset < startoff || pg->offset >= endoff ||
    990 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    991 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    992 					wasclean = false;
    993 				}
    994 				pg = TAILQ_NEXT(pg, listq.queue);
    995 				continue;
    996 			}
    997 			off = pg->offset;
    998 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    999 			if (pg != NULL) {
   1000 				wasclean = false;
   1001 			}
   1002 			off += PAGE_SIZE;
   1003 			if (off < endoff) {
   1004 				pg = uvm_pagelookup(uobj, off);
   1005 			}
   1006 			continue;
   1007 		}
   1008 
   1009 		/*
   1010 		 * if the current page needs to be cleaned and it's busy,
   1011 		 * wait for it to become unbusy.
   1012 		 */
   1013 
   1014 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1015 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1016 		if (pg->flags & PG_BUSY || yld) {
   1017 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1018 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1019 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1020 				error = EDEADLK;
   1021 				if (busypg != NULL)
   1022 					*busypg = pg;
   1023 				break;
   1024 			}
   1025 			if (pagedaemon) {
   1026 				/*
   1027 				 * someone has taken the page while we
   1028 				 * dropped the lock for fstrans_start.
   1029 				 */
   1030 				break;
   1031 			}
   1032 			if (by_list) {
   1033 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1034 				UVMHIST_LOG(ubchist, "curmp next %p",
   1035 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1036 			}
   1037 			if (yld) {
   1038 				mutex_exit(slock);
   1039 				preempt();
   1040 				mutex_enter(slock);
   1041 			} else {
   1042 				pg->flags |= PG_WANTED;
   1043 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1044 				mutex_enter(slock);
   1045 			}
   1046 			if (by_list) {
   1047 				UVMHIST_LOG(ubchist, "after next %p",
   1048 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1049 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1050 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1051 			} else {
   1052 				pg = uvm_pagelookup(uobj, off);
   1053 			}
   1054 			continue;
   1055 		}
   1056 
   1057 		/*
   1058 		 * if we're freeing, remove all mappings of the page now.
   1059 		 * if we're cleaning, check if the page is needs to be cleaned.
   1060 		 */
   1061 
   1062 		if (flags & PGO_FREE) {
   1063 			pmap_page_protect(pg, VM_PROT_NONE);
   1064 		} else if (flags & PGO_CLEANIT) {
   1065 
   1066 			/*
   1067 			 * if we still have some hope to pull this vnode off
   1068 			 * from the syncer queue, write-protect the page.
   1069 			 */
   1070 
   1071 			if (cleanall && wasclean &&
   1072 			    gp->g_dirtygen == dirtygen) {
   1073 
   1074 				/*
   1075 				 * uobj pages get wired only by uvm_fault
   1076 				 * where uobj is locked.
   1077 				 */
   1078 
   1079 				if (pg->wire_count == 0) {
   1080 					pmap_page_protect(pg,
   1081 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1082 				} else {
   1083 					cleanall = false;
   1084 				}
   1085 			}
   1086 		}
   1087 
   1088 		if (flags & PGO_CLEANIT) {
   1089 			needs_clean = pmap_clear_modify(pg) ||
   1090 			    (pg->flags & PG_CLEAN) == 0;
   1091 			pg->flags |= PG_CLEAN;
   1092 		} else {
   1093 			needs_clean = false;
   1094 		}
   1095 
   1096 		/*
   1097 		 * if we're cleaning, build a cluster.
   1098 		 * the cluster will consist of pages which are currently dirty,
   1099 		 * but they will be returned to us marked clean.
   1100 		 * if not cleaning, just operate on the one page.
   1101 		 */
   1102 
   1103 		if (needs_clean) {
   1104 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1105 			wasclean = false;
   1106 			memset(pgs, 0, sizeof(pgs));
   1107 			pg->flags |= PG_BUSY;
   1108 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1109 
   1110 			/*
   1111 			 * first look backward.
   1112 			 */
   1113 
   1114 			npages = MIN(MAXPAGES >> 1, off >> PAGE_SHIFT);
   1115 			nback = npages;
   1116 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1117 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1118 			if (nback) {
   1119 				memmove(&pgs[0], &pgs[npages - nback],
   1120 				    nback * sizeof(pgs[0]));
   1121 				if (npages - nback < nback)
   1122 					memset(&pgs[nback], 0,
   1123 					    (npages - nback) * sizeof(pgs[0]));
   1124 				else
   1125 					memset(&pgs[npages - nback], 0,
   1126 					    nback * sizeof(pgs[0]));
   1127 			}
   1128 
   1129 			/*
   1130 			 * then plug in our page of interest.
   1131 			 */
   1132 
   1133 			pgs[nback] = pg;
   1134 
   1135 			/*
   1136 			 * then look forward to fill in the remaining space in
   1137 			 * the array of pages.
   1138 			 */
   1139 
   1140 			npages = MAXPAGES - nback - 1;
   1141 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1142 			    &pgs[nback + 1],
   1143 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1144 			npages += nback + 1;
   1145 		} else {
   1146 			pgs[0] = pg;
   1147 			npages = 1;
   1148 			nback = 0;
   1149 		}
   1150 
   1151 		/*
   1152 		 * apply FREE or DEACTIVATE options if requested.
   1153 		 */
   1154 
   1155 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1156 			mutex_enter(&uvm_pageqlock);
   1157 		}
   1158 		for (i = 0; i < npages; i++) {
   1159 			tpg = pgs[i];
   1160 			KASSERT(tpg->uobject == uobj);
   1161 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1162 				pg = tpg;
   1163 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1164 				continue;
   1165 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1166 				uvm_pagedeactivate(tpg);
   1167 			} else if (flags & PGO_FREE) {
   1168 				pmap_page_protect(tpg, VM_PROT_NONE);
   1169 				if (tpg->flags & PG_BUSY) {
   1170 					tpg->flags |= freeflag;
   1171 					if (pagedaemon) {
   1172 						uvm_pageout_start(1);
   1173 						uvm_pagedequeue(tpg);
   1174 					}
   1175 				} else {
   1176 
   1177 					/*
   1178 					 * ``page is not busy''
   1179 					 * implies that npages is 1
   1180 					 * and needs_clean is false.
   1181 					 */
   1182 
   1183 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1184 					uvm_pagefree(tpg);
   1185 					if (pagedaemon)
   1186 						uvmexp.pdfreed++;
   1187 				}
   1188 			}
   1189 		}
   1190 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1191 			mutex_exit(&uvm_pageqlock);
   1192 		}
   1193 		if (needs_clean) {
   1194 			modified = true;
   1195 
   1196 			/*
   1197 			 * start the i/o.  if we're traversing by list,
   1198 			 * keep our place in the list with a marker page.
   1199 			 */
   1200 
   1201 			if (by_list) {
   1202 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1203 				    listq.queue);
   1204 			}
   1205 			mutex_exit(slock);
   1206 			error = GOP_WRITE(vp, pgs, npages, flags);
   1207 			mutex_enter(slock);
   1208 			if (by_list) {
   1209 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1210 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1211 			}
   1212 			if (error) {
   1213 				break;
   1214 			}
   1215 			if (by_list) {
   1216 				continue;
   1217 			}
   1218 		}
   1219 
   1220 		/*
   1221 		 * find the next page and continue if there was no error.
   1222 		 */
   1223 
   1224 		if (by_list) {
   1225 			if (nextpg) {
   1226 				pg = nextpg;
   1227 				nextpg = NULL;
   1228 			} else {
   1229 				pg = TAILQ_NEXT(pg, listq.queue);
   1230 			}
   1231 		} else {
   1232 			off += (npages - nback) << PAGE_SHIFT;
   1233 			if (off < endoff) {
   1234 				pg = uvm_pagelookup(uobj, off);
   1235 			}
   1236 		}
   1237 	}
   1238 	if (by_list) {
   1239 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1240 	}
   1241 
   1242 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1243 	    (vp->v_type != VBLK ||
   1244 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1245 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1246 	}
   1247 
   1248 	/*
   1249 	 * if we're cleaning and there was nothing to clean,
   1250 	 * take us off the syncer list.  if we started any i/o
   1251 	 * and we're doing sync i/o, wait for all writes to finish.
   1252 	 */
   1253 
   1254 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1255 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1256 #if defined(DEBUG)
   1257 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1258 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
   1259 				continue;
   1260 			}
   1261 			if ((pg->flags & PG_CLEAN) == 0) {
   1262 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1263 			}
   1264 			if (pmap_is_modified(pg)) {
   1265 				printf("%s: %p: modified\n", __func__, pg);
   1266 			}
   1267 		}
   1268 #endif /* defined(DEBUG) */
   1269 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1270 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1271 			vn_syncer_remove_from_worklist(vp);
   1272 	}
   1273 
   1274 #if !defined(DEBUG)
   1275 skip_scan:
   1276 #endif /* !defined(DEBUG) */
   1277 
   1278 	/* Wait for output to complete. */
   1279 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1280 		while (vp->v_numoutput != 0)
   1281 			cv_wait(&vp->v_cv, slock);
   1282 	}
   1283 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1284 	mutex_exit(slock);
   1285 
   1286 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1287 		/*
   1288 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1289 		 * retrying is not a big deal because, in many cases,
   1290 		 * uobj->uo_npages is already 0 here.
   1291 		 */
   1292 		mutex_enter(slock);
   1293 		goto retry;
   1294 	}
   1295 
   1296 	if (trans_mp) {
   1297 		if (holds_wapbl)
   1298 			WAPBL_END(trans_mp);
   1299 		fstrans_done(trans_mp);
   1300 	}
   1301 
   1302 	return (error);
   1303 }
   1304 
   1305 int
   1306 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1307 {
   1308 	off_t off;
   1309 	vaddr_t kva;
   1310 	size_t len;
   1311 	int error;
   1312 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1313 
   1314 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1315 	    vp, pgs, npages, flags);
   1316 
   1317 	off = pgs[0]->offset;
   1318 	kva = uvm_pagermapin(pgs, npages,
   1319 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1320 	len = npages << PAGE_SHIFT;
   1321 
   1322 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1323 			    uvm_aio_biodone);
   1324 
   1325 	return error;
   1326 }
   1327 
   1328 int
   1329 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1330 {
   1331 	off_t off;
   1332 	vaddr_t kva;
   1333 	size_t len;
   1334 	int error;
   1335 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1336 
   1337 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1338 	    vp, pgs, npages, flags);
   1339 
   1340 	off = pgs[0]->offset;
   1341 	kva = uvm_pagermapin(pgs, npages,
   1342 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1343 	len = npages << PAGE_SHIFT;
   1344 
   1345 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1346 			    uvm_aio_biodone);
   1347 
   1348 	return error;
   1349 }
   1350 
   1351 /*
   1352  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1353  * and mapped into kernel memory.  Here we just look up the underlying
   1354  * device block addresses and call the strategy routine.
   1355  */
   1356 
   1357 static int
   1358 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1359     enum uio_rw rw, void (*iodone)(struct buf *))
   1360 {
   1361 	int s, error;
   1362 	int fs_bshift, dev_bshift;
   1363 	off_t eof, offset, startoffset;
   1364 	size_t bytes, iobytes, skipbytes;
   1365 	struct buf *mbp, *bp;
   1366 	const bool async = (flags & PGO_SYNCIO) == 0;
   1367 	const bool lazy = (flags & PGO_LAZY) == 0;
   1368 	const bool iowrite = rw == UIO_WRITE;
   1369 	const int brw = iowrite ? B_WRITE : B_READ;
   1370 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1371 
   1372 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1373 	    vp, kva, len, flags);
   1374 
   1375 	KASSERT(vp->v_size <= vp->v_writesize);
   1376 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1377 	if (vp->v_type != VBLK) {
   1378 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1379 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1380 	} else {
   1381 		fs_bshift = DEV_BSHIFT;
   1382 		dev_bshift = DEV_BSHIFT;
   1383 	}
   1384 	error = 0;
   1385 	startoffset = off;
   1386 	bytes = MIN(len, eof - startoffset);
   1387 	skipbytes = 0;
   1388 	KASSERT(bytes != 0);
   1389 
   1390 	if (iowrite) {
   1391 		mutex_enter(vp->v_interlock);
   1392 		vp->v_numoutput += 2;
   1393 		mutex_exit(vp->v_interlock);
   1394 	}
   1395 	mbp = getiobuf(vp, true);
   1396 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1397 	    vp, mbp, vp->v_numoutput, bytes);
   1398 	mbp->b_bufsize = len;
   1399 	mbp->b_data = (void *)kva;
   1400 	mbp->b_resid = mbp->b_bcount = bytes;
   1401 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1402 	if (async) {
   1403 		mbp->b_flags = brw | B_ASYNC;
   1404 		mbp->b_iodone = iodone;
   1405 	} else {
   1406 		mbp->b_flags = brw;
   1407 		mbp->b_iodone = NULL;
   1408 	}
   1409 	if (curlwp == uvm.pagedaemon_lwp)
   1410 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1411 	else if (async || lazy)
   1412 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1413 	else
   1414 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1415 
   1416 	bp = NULL;
   1417 	for (offset = startoffset;
   1418 	    bytes > 0;
   1419 	    offset += iobytes, bytes -= iobytes) {
   1420 		int run;
   1421 		daddr_t lbn, blkno;
   1422 		struct vnode *devvp;
   1423 
   1424 		/*
   1425 		 * bmap the file to find out the blkno to read from and
   1426 		 * how much we can read in one i/o.  if bmap returns an error,
   1427 		 * skip the rest of the top-level i/o.
   1428 		 */
   1429 
   1430 		lbn = offset >> fs_bshift;
   1431 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1432 		if (error) {
   1433 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1434 			    lbn,error,0,0);
   1435 			skipbytes += bytes;
   1436 			bytes = 0;
   1437 			goto loopdone;
   1438 		}
   1439 
   1440 		/*
   1441 		 * see how many pages can be read with this i/o.
   1442 		 * reduce the i/o size if necessary to avoid
   1443 		 * overwriting pages with valid data.
   1444 		 */
   1445 
   1446 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1447 		    bytes);
   1448 
   1449 		/*
   1450 		 * if this block isn't allocated, zero it instead of
   1451 		 * reading it.  unless we are going to allocate blocks,
   1452 		 * mark the pages we zeroed PG_RDONLY.
   1453 		 */
   1454 
   1455 		if (blkno == (daddr_t)-1) {
   1456 			if (!iowrite) {
   1457 				memset((char *)kva + (offset - startoffset), 0,
   1458 				    iobytes);
   1459 			}
   1460 			skipbytes += iobytes;
   1461 			continue;
   1462 		}
   1463 
   1464 		/*
   1465 		 * allocate a sub-buf for this piece of the i/o
   1466 		 * (or just use mbp if there's only 1 piece),
   1467 		 * and start it going.
   1468 		 */
   1469 
   1470 		if (offset == startoffset && iobytes == bytes) {
   1471 			bp = mbp;
   1472 		} else {
   1473 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1474 			    vp, bp, vp->v_numoutput, 0);
   1475 			bp = getiobuf(vp, true);
   1476 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1477 		}
   1478 		bp->b_lblkno = 0;
   1479 
   1480 		/* adjust physical blkno for partial blocks */
   1481 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1482 		    dev_bshift);
   1483 
   1484 		UVMHIST_LOG(ubchist,
   1485 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1486 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1487 
   1488 		VOP_STRATEGY(devvp, bp);
   1489 	}
   1490 
   1491 loopdone:
   1492 	if (skipbytes) {
   1493 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1494 	}
   1495 	nestiobuf_done(mbp, skipbytes, error);
   1496 	if (async) {
   1497 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1498 		return (0);
   1499 	}
   1500 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1501 	error = biowait(mbp);
   1502 	s = splbio();
   1503 	(*iodone)(mbp);
   1504 	splx(s);
   1505 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1506 	return (error);
   1507 }
   1508 
   1509 int
   1510 genfs_compat_getpages(void *v)
   1511 {
   1512 	struct vop_getpages_args /* {
   1513 		struct vnode *a_vp;
   1514 		voff_t a_offset;
   1515 		struct vm_page **a_m;
   1516 		int *a_count;
   1517 		int a_centeridx;
   1518 		vm_prot_t a_access_type;
   1519 		int a_advice;
   1520 		int a_flags;
   1521 	} */ *ap = v;
   1522 
   1523 	off_t origoffset;
   1524 	struct vnode *vp = ap->a_vp;
   1525 	struct uvm_object *uobj = &vp->v_uobj;
   1526 	struct vm_page *pg, **pgs;
   1527 	vaddr_t kva;
   1528 	int i, error, orignpages, npages;
   1529 	struct iovec iov;
   1530 	struct uio uio;
   1531 	kauth_cred_t cred = curlwp->l_cred;
   1532 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1533 
   1534 	error = 0;
   1535 	origoffset = ap->a_offset;
   1536 	orignpages = *ap->a_count;
   1537 	pgs = ap->a_m;
   1538 
   1539 	if (ap->a_flags & PGO_LOCKED) {
   1540 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1541 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1542 
   1543 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1544 		if (error == 0 && memwrite) {
   1545 			genfs_markdirty(vp);
   1546 		}
   1547 		return error;
   1548 	}
   1549 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1550 		mutex_exit(uobj->vmobjlock);
   1551 		return EINVAL;
   1552 	}
   1553 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1554 		mutex_exit(uobj->vmobjlock);
   1555 		return 0;
   1556 	}
   1557 	npages = orignpages;
   1558 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1559 	mutex_exit(uobj->vmobjlock);
   1560 	kva = uvm_pagermapin(pgs, npages,
   1561 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1562 	for (i = 0; i < npages; i++) {
   1563 		pg = pgs[i];
   1564 		if ((pg->flags & PG_FAKE) == 0) {
   1565 			continue;
   1566 		}
   1567 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1568 		iov.iov_len = PAGE_SIZE;
   1569 		uio.uio_iov = &iov;
   1570 		uio.uio_iovcnt = 1;
   1571 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1572 		uio.uio_rw = UIO_READ;
   1573 		uio.uio_resid = PAGE_SIZE;
   1574 		UIO_SETUP_SYSSPACE(&uio);
   1575 		/* XXX vn_lock */
   1576 		error = VOP_READ(vp, &uio, 0, cred);
   1577 		if (error) {
   1578 			break;
   1579 		}
   1580 		if (uio.uio_resid) {
   1581 			memset(iov.iov_base, 0, uio.uio_resid);
   1582 		}
   1583 	}
   1584 	uvm_pagermapout(kva, npages);
   1585 	mutex_enter(uobj->vmobjlock);
   1586 	mutex_enter(&uvm_pageqlock);
   1587 	for (i = 0; i < npages; i++) {
   1588 		pg = pgs[i];
   1589 		if (error && (pg->flags & PG_FAKE) != 0) {
   1590 			pg->flags |= PG_RELEASED;
   1591 		} else {
   1592 			pmap_clear_modify(pg);
   1593 			uvm_pageactivate(pg);
   1594 		}
   1595 	}
   1596 	if (error) {
   1597 		uvm_page_unbusy(pgs, npages);
   1598 	}
   1599 	mutex_exit(&uvm_pageqlock);
   1600 	if (error == 0 && memwrite) {
   1601 		genfs_markdirty(vp);
   1602 	}
   1603 	mutex_exit(uobj->vmobjlock);
   1604 	return error;
   1605 }
   1606 
   1607 int
   1608 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1609     int flags)
   1610 {
   1611 	off_t offset;
   1612 	struct iovec iov;
   1613 	struct uio uio;
   1614 	kauth_cred_t cred = curlwp->l_cred;
   1615 	struct buf *bp;
   1616 	vaddr_t kva;
   1617 	int error;
   1618 
   1619 	offset = pgs[0]->offset;
   1620 	kva = uvm_pagermapin(pgs, npages,
   1621 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1622 
   1623 	iov.iov_base = (void *)kva;
   1624 	iov.iov_len = npages << PAGE_SHIFT;
   1625 	uio.uio_iov = &iov;
   1626 	uio.uio_iovcnt = 1;
   1627 	uio.uio_offset = offset;
   1628 	uio.uio_rw = UIO_WRITE;
   1629 	uio.uio_resid = npages << PAGE_SHIFT;
   1630 	UIO_SETUP_SYSSPACE(&uio);
   1631 	/* XXX vn_lock */
   1632 	error = VOP_WRITE(vp, &uio, 0, cred);
   1633 
   1634 	mutex_enter(vp->v_interlock);
   1635 	vp->v_numoutput++;
   1636 	mutex_exit(vp->v_interlock);
   1637 
   1638 	bp = getiobuf(vp, true);
   1639 	bp->b_cflags = BC_BUSY | BC_AGE;
   1640 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1641 	bp->b_data = (char *)kva;
   1642 	bp->b_bcount = npages << PAGE_SHIFT;
   1643 	bp->b_bufsize = npages << PAGE_SHIFT;
   1644 	bp->b_resid = 0;
   1645 	bp->b_error = error;
   1646 	uvm_aio_aiodone(bp);
   1647 	return (error);
   1648 }
   1649 
   1650 /*
   1651  * Process a uio using direct I/O.  If we reach a part of the request
   1652  * which cannot be processed in this fashion for some reason, just return.
   1653  * The caller must handle some additional part of the request using
   1654  * buffered I/O before trying direct I/O again.
   1655  */
   1656 
   1657 void
   1658 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1659 {
   1660 	struct vmspace *vs;
   1661 	struct iovec *iov;
   1662 	vaddr_t va;
   1663 	size_t len;
   1664 	const int mask = DEV_BSIZE - 1;
   1665 	int error;
   1666 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1667 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1668 
   1669 	/*
   1670 	 * We only support direct I/O to user space for now.
   1671 	 */
   1672 
   1673 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1674 		return;
   1675 	}
   1676 
   1677 	/*
   1678 	 * If the vnode is mapped, we would need to get the getpages lock
   1679 	 * to stabilize the bmap, but then we would get into trouble while
   1680 	 * locking the pages if the pages belong to this same vnode (or a
   1681 	 * multi-vnode cascade to the same effect).  Just fall back to
   1682 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1683 	 */
   1684 
   1685 	if (vp->v_vflag & VV_MAPPED) {
   1686 		return;
   1687 	}
   1688 
   1689 	if (need_wapbl) {
   1690 		error = WAPBL_BEGIN(vp->v_mount);
   1691 		if (error)
   1692 			return;
   1693 	}
   1694 
   1695 	/*
   1696 	 * Do as much of the uio as possible with direct I/O.
   1697 	 */
   1698 
   1699 	vs = uio->uio_vmspace;
   1700 	while (uio->uio_resid) {
   1701 		iov = uio->uio_iov;
   1702 		if (iov->iov_len == 0) {
   1703 			uio->uio_iov++;
   1704 			uio->uio_iovcnt--;
   1705 			continue;
   1706 		}
   1707 		va = (vaddr_t)iov->iov_base;
   1708 		len = MIN(iov->iov_len, genfs_maxdio);
   1709 		len &= ~mask;
   1710 
   1711 		/*
   1712 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1713 		 * the current EOF, then fall back to buffered I/O.
   1714 		 */
   1715 
   1716 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1717 			break;
   1718 		}
   1719 
   1720 		/*
   1721 		 * Check alignment.  The file offset must be at least
   1722 		 * sector-aligned.  The exact constraint on memory alignment
   1723 		 * is very hardware-dependent, but requiring sector-aligned
   1724 		 * addresses there too is safe.
   1725 		 */
   1726 
   1727 		if (uio->uio_offset & mask || va & mask) {
   1728 			break;
   1729 		}
   1730 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1731 					  uio->uio_rw);
   1732 		if (error) {
   1733 			break;
   1734 		}
   1735 		iov->iov_base = (char *)iov->iov_base + len;
   1736 		iov->iov_len -= len;
   1737 		uio->uio_offset += len;
   1738 		uio->uio_resid -= len;
   1739 	}
   1740 
   1741 	if (need_wapbl)
   1742 		WAPBL_END(vp->v_mount);
   1743 }
   1744 
   1745 /*
   1746  * Iodone routine for direct I/O.  We don't do much here since the request is
   1747  * always synchronous, so the caller will do most of the work after biowait().
   1748  */
   1749 
   1750 static void
   1751 genfs_dio_iodone(struct buf *bp)
   1752 {
   1753 
   1754 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1755 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1756 		mutex_enter(bp->b_objlock);
   1757 		vwakeup(bp);
   1758 		mutex_exit(bp->b_objlock);
   1759 	}
   1760 	putiobuf(bp);
   1761 }
   1762 
   1763 /*
   1764  * Process one chunk of a direct I/O request.
   1765  */
   1766 
   1767 static int
   1768 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1769     off_t off, enum uio_rw rw)
   1770 {
   1771 	struct vm_map *map;
   1772 	struct pmap *upm, *kpm __unused;
   1773 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1774 	off_t spoff, epoff;
   1775 	vaddr_t kva, puva;
   1776 	paddr_t pa;
   1777 	vm_prot_t prot;
   1778 	int error, rv __diagused, poff, koff;
   1779 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1780 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1781 
   1782 	/*
   1783 	 * For writes, verify that this range of the file already has fully
   1784 	 * allocated backing store.  If there are any holes, just punt and
   1785 	 * make the caller take the buffered write path.
   1786 	 */
   1787 
   1788 	if (rw == UIO_WRITE) {
   1789 		daddr_t lbn, elbn, blkno;
   1790 		int bsize, bshift, run;
   1791 
   1792 		bshift = vp->v_mount->mnt_fs_bshift;
   1793 		bsize = 1 << bshift;
   1794 		lbn = off >> bshift;
   1795 		elbn = (off + len + bsize - 1) >> bshift;
   1796 		while (lbn < elbn) {
   1797 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1798 			if (error) {
   1799 				return error;
   1800 			}
   1801 			if (blkno == (daddr_t)-1) {
   1802 				return ENOSPC;
   1803 			}
   1804 			lbn += 1 + run;
   1805 		}
   1806 	}
   1807 
   1808 	/*
   1809 	 * Flush any cached pages for parts of the file that we're about to
   1810 	 * access.  If we're writing, invalidate pages as well.
   1811 	 */
   1812 
   1813 	spoff = trunc_page(off);
   1814 	epoff = round_page(off + len);
   1815 	mutex_enter(vp->v_interlock);
   1816 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1817 	if (error) {
   1818 		return error;
   1819 	}
   1820 
   1821 	/*
   1822 	 * Wire the user pages and remap them into kernel memory.
   1823 	 */
   1824 
   1825 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1826 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1827 	if (error) {
   1828 		return error;
   1829 	}
   1830 
   1831 	map = &vs->vm_map;
   1832 	upm = vm_map_pmap(map);
   1833 	kpm = vm_map_pmap(kernel_map);
   1834 	puva = trunc_page(uva);
   1835 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1836 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1837 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1838 		rv = pmap_extract(upm, puva + poff, &pa);
   1839 		KASSERT(rv);
   1840 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1841 	}
   1842 	pmap_update(kpm);
   1843 
   1844 	/*
   1845 	 * Do the I/O.
   1846 	 */
   1847 
   1848 	koff = uva - trunc_page(uva);
   1849 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1850 			    genfs_dio_iodone);
   1851 
   1852 	/*
   1853 	 * Tear down the kernel mapping.
   1854 	 */
   1855 
   1856 	pmap_kremove(kva, klen);
   1857 	pmap_update(kpm);
   1858 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1859 
   1860 	/*
   1861 	 * Unwire the user pages.
   1862 	 */
   1863 
   1864 	uvm_vsunlock(vs, (void *)uva, len);
   1865 	return error;
   1866 }
   1867