genfs_io.c revision 1.67 1 /* $NetBSD: genfs_io.c,v 1.67 2017/04/01 19:57:54 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.67 2017/04/01 19:57:54 riastradh Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 bool holds_wapbl = false;
133 struct mount *trans_mount = NULL;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 startover:
143 error = 0;
144 const voff_t origvsize = vp->v_size;
145 const off_t origoffset = ap->a_offset;
146 const int orignpages = *ap->a_count;
147
148 GOP_SIZE(vp, origvsize, &diskeof, 0);
149 if (flags & PGO_PASTEOF) {
150 off_t newsize;
151 #if defined(DIAGNOSTIC)
152 off_t writeeof;
153 #endif /* defined(DIAGNOSTIC) */
154
155 newsize = MAX(origvsize,
156 origoffset + (orignpages << PAGE_SHIFT));
157 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
158 #if defined(DIAGNOSTIC)
159 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
160 if (newsize > round_page(writeeof)) {
161 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
162 __func__, newsize, round_page(writeeof));
163 }
164 #endif /* defined(DIAGNOSTIC) */
165 } else {
166 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
167 }
168 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
169 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
170 KASSERT(orignpages > 0);
171
172 /*
173 * Bounds-check the request.
174 */
175
176 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
177 if ((flags & PGO_LOCKED) == 0) {
178 mutex_exit(uobj->vmobjlock);
179 }
180 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
181 origoffset, *ap->a_count, memeof,0);
182 error = EINVAL;
183 goto out_err;
184 }
185
186 /* uobj is locked */
187
188 if ((flags & PGO_NOTIMESTAMP) == 0 &&
189 (vp->v_type != VBLK ||
190 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
191 int updflags = 0;
192
193 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
194 updflags = GOP_UPDATE_ACCESSED;
195 }
196 if (memwrite) {
197 updflags |= GOP_UPDATE_MODIFIED;
198 }
199 if (updflags != 0) {
200 GOP_MARKUPDATE(vp, updflags);
201 }
202 }
203
204 /*
205 * For PGO_LOCKED requests, just return whatever's in memory.
206 */
207
208 if (flags & PGO_LOCKED) {
209 int nfound;
210 struct vm_page *pg;
211
212 KASSERT(!glocked);
213 npages = *ap->a_count;
214 #if defined(DEBUG)
215 for (i = 0; i < npages; i++) {
216 pg = ap->a_m[i];
217 KASSERT(pg == NULL || pg == PGO_DONTCARE);
218 }
219 #endif /* defined(DEBUG) */
220 nfound = uvn_findpages(uobj, origoffset, &npages,
221 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
222 KASSERT(npages == *ap->a_count);
223 if (nfound == 0) {
224 error = EBUSY;
225 goto out_err;
226 }
227 if (!genfs_node_rdtrylock(vp)) {
228 genfs_rel_pages(ap->a_m, npages);
229
230 /*
231 * restore the array.
232 */
233
234 for (i = 0; i < npages; i++) {
235 pg = ap->a_m[i];
236
237 if (pg != NULL && pg != PGO_DONTCARE) {
238 ap->a_m[i] = NULL;
239 }
240 KASSERT(ap->a_m[i] == NULL ||
241 ap->a_m[i] == PGO_DONTCARE);
242 }
243 } else {
244 genfs_node_unlock(vp);
245 }
246 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
247 if (error == 0 && memwrite) {
248 genfs_markdirty(vp);
249 }
250 goto out_err;
251 }
252 mutex_exit(uobj->vmobjlock);
253
254 /*
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
257 */
258
259 const int fs_bshift = (vp->v_type != VBLK) ?
260 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
261 const int fs_bsize = 1 << fs_bshift;
262 #define blk_mask (fs_bsize - 1)
263 #define trunc_blk(x) ((x) & ~blk_mask)
264 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
265
266 const int orignmempages = MIN(orignpages,
267 round_page(memeof - origoffset) >> PAGE_SHIFT);
268 npages = orignmempages;
269 const off_t startoffset = trunc_blk(origoffset);
270 const off_t endoffset = MIN(
271 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
272 round_page(memeof));
273 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
274
275 const int pgs_size = sizeof(struct vm_page *) *
276 ((endoffset - startoffset) >> PAGE_SHIFT);
277 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
278
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
285 }
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
289 }
290
291 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
292 ridx, npages, startoffset, endoffset);
293
294 if (trans_mount == NULL) {
295 trans_mount = vp->v_mount;
296 fstrans_start(trans_mount, FSTRANS_SHARED);
297 /*
298 * check if this vnode is still valid.
299 */
300 mutex_enter(vp->v_interlock);
301 error = vdead_check(vp, 0);
302 mutex_exit(vp->v_interlock);
303 if (error)
304 goto out_err_free;
305 /*
306 * XXX: This assumes that we come here only via
307 * the mmio path
308 */
309 if (blockalloc && vp->v_mount->mnt_wapbl) {
310 error = WAPBL_BEGIN(trans_mount);
311 if (error)
312 goto out_err_free;
313 holds_wapbl = true;
314 }
315 }
316
317 /*
318 * hold g_glock to prevent a race with truncate.
319 *
320 * check if our idea of v_size is still valid.
321 */
322
323 KASSERT(!glocked || genfs_node_wrlocked(vp));
324 if (!glocked) {
325 if (blockalloc) {
326 genfs_node_wrlock(vp);
327 } else {
328 genfs_node_rdlock(vp);
329 }
330 }
331 mutex_enter(uobj->vmobjlock);
332 if (vp->v_size < origvsize) {
333 if (!glocked) {
334 genfs_node_unlock(vp);
335 }
336 if (pgs != pgs_onstack)
337 kmem_free(pgs, pgs_size);
338 goto startover;
339 }
340
341 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
342 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
343 if (!glocked) {
344 genfs_node_unlock(vp);
345 }
346 KASSERT(async != 0);
347 genfs_rel_pages(&pgs[ridx], orignmempages);
348 mutex_exit(uobj->vmobjlock);
349 error = EBUSY;
350 goto out_err_free;
351 }
352
353 /*
354 * if the pages are already resident, just return them.
355 */
356
357 for (i = 0; i < npages; i++) {
358 struct vm_page *pg = pgs[ridx + i];
359
360 if ((pg->flags & PG_FAKE) ||
361 (blockalloc && (pg->flags & PG_RDONLY))) {
362 break;
363 }
364 }
365 if (i == npages) {
366 if (!glocked) {
367 genfs_node_unlock(vp);
368 }
369 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
370 npages += ridx;
371 goto out;
372 }
373
374 /*
375 * if PGO_OVERWRITE is set, don't bother reading the pages.
376 */
377
378 if (overwrite) {
379 if (!glocked) {
380 genfs_node_unlock(vp);
381 }
382 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
383
384 for (i = 0; i < npages; i++) {
385 struct vm_page *pg = pgs[ridx + i];
386
387 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
388 }
389 npages += ridx;
390 goto out;
391 }
392
393 /*
394 * the page wasn't resident and we're not overwriting,
395 * so we're going to have to do some i/o.
396 * find any additional pages needed to cover the expanded range.
397 */
398
399 npages = (endoffset - startoffset) >> PAGE_SHIFT;
400 if (startoffset != origoffset || npages != orignmempages) {
401 int npgs;
402
403 /*
404 * we need to avoid deadlocks caused by locking
405 * additional pages at lower offsets than pages we
406 * already have locked. unlock them all and start over.
407 */
408
409 genfs_rel_pages(&pgs[ridx], orignmempages);
410 memset(pgs, 0, pgs_size);
411
412 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
413 startoffset, endoffset, 0,0);
414 npgs = npages;
415 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
416 async ? UFP_NOWAIT : UFP_ALL) != npages) {
417 if (!glocked) {
418 genfs_node_unlock(vp);
419 }
420 KASSERT(async != 0);
421 genfs_rel_pages(pgs, npages);
422 mutex_exit(uobj->vmobjlock);
423 error = EBUSY;
424 goto out_err_free;
425 }
426 }
427
428 mutex_exit(uobj->vmobjlock);
429 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
430 async, memwrite, blockalloc, glocked);
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 if (error == 0 && async)
435 goto out_err_free;
436 mutex_enter(uobj->vmobjlock);
437
438 /*
439 * we're almost done! release the pages...
440 * for errors, we free the pages.
441 * otherwise we activate them and mark them as valid and clean.
442 * also, unbusy pages that were not actually requested.
443 */
444
445 if (error) {
446 genfs_rel_pages(pgs, npages);
447 mutex_exit(uobj->vmobjlock);
448 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
449 goto out_err_free;
450 }
451
452 out:
453 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
454 error = 0;
455 mutex_enter(&uvm_pageqlock);
456 for (i = 0; i < npages; i++) {
457 struct vm_page *pg = pgs[i];
458 if (pg == NULL) {
459 continue;
460 }
461 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
462 pg, pg->flags, 0,0);
463 if (pg->flags & PG_FAKE && !overwrite) {
464 pg->flags &= ~(PG_FAKE);
465 pmap_clear_modify(pgs[i]);
466 }
467 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
468 if (i < ridx || i >= ridx + orignmempages || async) {
469 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
470 pg, pg->offset,0,0);
471 if (pg->flags & PG_WANTED) {
472 wakeup(pg);
473 }
474 if (pg->flags & PG_FAKE) {
475 KASSERT(overwrite);
476 uvm_pagezero(pg);
477 }
478 if (pg->flags & PG_RELEASED) {
479 uvm_pagefree(pg);
480 continue;
481 }
482 uvm_pageenqueue(pg);
483 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
484 UVM_PAGE_OWN(pg, NULL);
485 }
486 }
487 mutex_exit(&uvm_pageqlock);
488 if (memwrite) {
489 genfs_markdirty(vp);
490 }
491 mutex_exit(uobj->vmobjlock);
492 if (ap->a_m != NULL) {
493 memcpy(ap->a_m, &pgs[ridx],
494 orignmempages * sizeof(struct vm_page *));
495 }
496
497 out_err_free:
498 if (pgs != NULL && pgs != pgs_onstack)
499 kmem_free(pgs, pgs_size);
500 out_err:
501 if (trans_mount != NULL) {
502 if (holds_wapbl)
503 WAPBL_END(trans_mount);
504 fstrans_done(trans_mount);
505 }
506 return error;
507 }
508
509 /*
510 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
511 */
512 static int
513 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
514 off_t startoffset, off_t diskeof,
515 bool async, bool memwrite, bool blockalloc, bool glocked)
516 {
517 struct uvm_object * const uobj = &vp->v_uobj;
518 const int fs_bshift = (vp->v_type != VBLK) ?
519 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
520 const int dev_bshift = (vp->v_type != VBLK) ?
521 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
522 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
523 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
524 vaddr_t kva;
525 struct buf *bp, *mbp;
526 bool sawhole = false;
527 int i;
528 int error = 0;
529
530 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
531
532 /*
533 * read the desired page(s).
534 */
535
536 totalbytes = npages << PAGE_SHIFT;
537 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
538 tailbytes = totalbytes - bytes;
539 skipbytes = 0;
540
541 kva = uvm_pagermapin(pgs, npages,
542 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
543 if (kva == 0)
544 return EBUSY;
545
546 mbp = getiobuf(vp, true);
547 mbp->b_bufsize = totalbytes;
548 mbp->b_data = (void *)kva;
549 mbp->b_resid = mbp->b_bcount = bytes;
550 mbp->b_cflags = BC_BUSY;
551 if (async) {
552 mbp->b_flags = B_READ | B_ASYNC;
553 mbp->b_iodone = uvm_aio_biodone;
554 } else {
555 mbp->b_flags = B_READ;
556 mbp->b_iodone = NULL;
557 }
558 if (async)
559 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
560 else
561 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
562
563 /*
564 * if EOF is in the middle of the range, zero the part past EOF.
565 * skip over pages which are not PG_FAKE since in that case they have
566 * valid data that we need to preserve.
567 */
568
569 tailstart = bytes;
570 while (tailbytes > 0) {
571 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
572
573 KASSERT(len <= tailbytes);
574 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
575 memset((void *)(kva + tailstart), 0, len);
576 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
577 kva, tailstart, len, 0);
578 }
579 tailstart += len;
580 tailbytes -= len;
581 }
582
583 /*
584 * now loop over the pages, reading as needed.
585 */
586
587 bp = NULL;
588 off_t offset;
589 for (offset = startoffset;
590 bytes > 0;
591 offset += iobytes, bytes -= iobytes) {
592 int run;
593 daddr_t lbn, blkno;
594 int pidx;
595 struct vnode *devvp;
596
597 /*
598 * skip pages which don't need to be read.
599 */
600
601 pidx = (offset - startoffset) >> PAGE_SHIFT;
602 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
603 size_t b;
604
605 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
606 if ((pgs[pidx]->flags & PG_RDONLY)) {
607 sawhole = true;
608 }
609 b = MIN(PAGE_SIZE, bytes);
610 offset += b;
611 bytes -= b;
612 skipbytes += b;
613 pidx++;
614 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
615 offset, 0,0,0);
616 if (bytes == 0) {
617 goto loopdone;
618 }
619 }
620
621 /*
622 * bmap the file to find out the blkno to read from and
623 * how much we can read in one i/o. if bmap returns an error,
624 * skip the rest of the top-level i/o.
625 */
626
627 lbn = offset >> fs_bshift;
628 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
629 if (error) {
630 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
631 lbn,error,0,0);
632 skipbytes += bytes;
633 bytes = 0;
634 goto loopdone;
635 }
636
637 /*
638 * see how many pages can be read with this i/o.
639 * reduce the i/o size if necessary to avoid
640 * overwriting pages with valid data.
641 */
642
643 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
644 bytes);
645 if (offset + iobytes > round_page(offset)) {
646 int pcount;
647
648 pcount = 1;
649 while (pidx + pcount < npages &&
650 pgs[pidx + pcount]->flags & PG_FAKE) {
651 pcount++;
652 }
653 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
654 (offset - trunc_page(offset)));
655 }
656
657 /*
658 * if this block isn't allocated, zero it instead of
659 * reading it. unless we are going to allocate blocks,
660 * mark the pages we zeroed PG_RDONLY.
661 */
662
663 if (blkno == (daddr_t)-1) {
664 int holepages = (round_page(offset + iobytes) -
665 trunc_page(offset)) >> PAGE_SHIFT;
666 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
667
668 sawhole = true;
669 memset((char *)kva + (offset - startoffset), 0,
670 iobytes);
671 skipbytes += iobytes;
672
673 mutex_enter(uobj->vmobjlock);
674 for (i = 0; i < holepages; i++) {
675 if (memwrite) {
676 pgs[pidx + i]->flags &= ~PG_CLEAN;
677 }
678 if (!blockalloc) {
679 pgs[pidx + i]->flags |= PG_RDONLY;
680 }
681 }
682 mutex_exit(uobj->vmobjlock);
683 continue;
684 }
685
686 /*
687 * allocate a sub-buf for this piece of the i/o
688 * (or just use mbp if there's only 1 piece),
689 * and start it going.
690 */
691
692 if (offset == startoffset && iobytes == bytes) {
693 bp = mbp;
694 } else {
695 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
696 vp, bp, vp->v_numoutput, 0);
697 bp = getiobuf(vp, true);
698 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
699 }
700 bp->b_lblkno = 0;
701
702 /* adjust physical blkno for partial blocks */
703 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
704 dev_bshift);
705
706 UVMHIST_LOG(ubchist,
707 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
708 bp, offset, bp->b_bcount, bp->b_blkno);
709
710 VOP_STRATEGY(devvp, bp);
711 }
712
713 loopdone:
714 nestiobuf_done(mbp, skipbytes, error);
715 if (async) {
716 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
717 return 0;
718 }
719 if (bp != NULL) {
720 error = biowait(mbp);
721 }
722
723 /* Remove the mapping (make KVA available as soon as possible) */
724 uvm_pagermapout(kva, npages);
725
726 /*
727 * if this we encountered a hole then we have to do a little more work.
728 * for read faults, we marked the page PG_RDONLY so that future
729 * write accesses to the page will fault again.
730 * for write faults, we must make sure that the backing store for
731 * the page is completely allocated while the pages are locked.
732 */
733
734 if (!error && sawhole && blockalloc) {
735 error = GOP_ALLOC(vp, startoffset,
736 npages << PAGE_SHIFT, 0, cred);
737 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
738 startoffset, npages << PAGE_SHIFT, error,0);
739 if (!error) {
740 mutex_enter(uobj->vmobjlock);
741 for (i = 0; i < npages; i++) {
742 struct vm_page *pg = pgs[i];
743
744 if (pg == NULL) {
745 continue;
746 }
747 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
748 UVMHIST_LOG(ubchist, "mark dirty pg %p",
749 pg,0,0,0);
750 }
751 mutex_exit(uobj->vmobjlock);
752 }
753 }
754
755 putiobuf(mbp);
756 return error;
757 }
758
759 /*
760 * generic VM putpages routine.
761 * Write the given range of pages to backing store.
762 *
763 * => "offhi == 0" means flush all pages at or after "offlo".
764 * => object should be locked by caller. we return with the
765 * object unlocked.
766 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
767 * thus, a caller might want to unlock higher level resources
768 * (e.g. vm_map) before calling flush.
769 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
770 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
771 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
772 * that new pages are inserted on the tail end of the list. thus,
773 * we can make a complete pass through the object in one go by starting
774 * at the head and working towards the tail (new pages are put in
775 * front of us).
776 * => NOTE: we are allowed to lock the page queues, so the caller
777 * must not be holding the page queue lock.
778 *
779 * note on "cleaning" object and PG_BUSY pages:
780 * this routine is holding the lock on the object. the only time
781 * that it can run into a PG_BUSY page that it does not own is if
782 * some other process has started I/O on the page (e.g. either
783 * a pagein, or a pageout). if the PG_BUSY page is being paged
784 * in, then it can not be dirty (!PG_CLEAN) because no one has
785 * had a chance to modify it yet. if the PG_BUSY page is being
786 * paged out then it means that someone else has already started
787 * cleaning the page for us (how nice!). in this case, if we
788 * have syncio specified, then after we make our pass through the
789 * object we need to wait for the other PG_BUSY pages to clear
790 * off (i.e. we need to do an iosync). also note that once a
791 * page is PG_BUSY it must stay in its object until it is un-busyed.
792 *
793 * note on page traversal:
794 * we can traverse the pages in an object either by going down the
795 * linked list in "uobj->memq", or we can go over the address range
796 * by page doing hash table lookups for each address. depending
797 * on how many pages are in the object it may be cheaper to do one
798 * or the other. we set "by_list" to true if we are using memq.
799 * if the cost of a hash lookup was equal to the cost of the list
800 * traversal we could compare the number of pages in the start->stop
801 * range to the total number of pages in the object. however, it
802 * seems that a hash table lookup is more expensive than the linked
803 * list traversal, so we multiply the number of pages in the
804 * range by an estimate of the relatively higher cost of the hash lookup.
805 */
806
807 int
808 genfs_putpages(void *v)
809 {
810 struct vop_putpages_args /* {
811 struct vnode *a_vp;
812 voff_t a_offlo;
813 voff_t a_offhi;
814 int a_flags;
815 } */ * const ap = v;
816
817 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
818 ap->a_flags, NULL);
819 }
820
821 int
822 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
823 int origflags, struct vm_page **busypg)
824 {
825 struct uvm_object * const uobj = &vp->v_uobj;
826 kmutex_t * const slock = uobj->vmobjlock;
827 off_t off;
828 int i, error, npages, nback;
829 int freeflag;
830 /*
831 * This array is larger than it should so that it's size is constant.
832 * The right size is MAXPAGES.
833 */
834 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
835 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
836 struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
837 bool wasclean, by_list, needs_clean, yld;
838 bool async = (origflags & PGO_SYNCIO) == 0;
839 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
840 struct lwp * const l = curlwp ? curlwp : &lwp0;
841 struct genfs_node * const gp = VTOG(vp);
842 struct mount *trans_mp;
843 int flags;
844 int dirtygen;
845 bool modified;
846 bool holds_wapbl;
847 bool cleanall;
848 bool onworklst;
849
850 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
851
852 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
853 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
854 KASSERT(startoff < endoff || endoff == 0);
855
856 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
857 vp, uobj->uo_npages, startoff, endoff - startoff);
858
859 trans_mp = NULL;
860 holds_wapbl = false;
861
862 retry:
863 modified = false;
864 flags = origflags;
865 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
866 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
867 if (uobj->uo_npages == 0) {
868 if (vp->v_iflag & VI_ONWORKLST) {
869 vp->v_iflag &= ~VI_WRMAPDIRTY;
870 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
871 vn_syncer_remove_from_worklist(vp);
872 }
873 if (trans_mp) {
874 if (holds_wapbl)
875 WAPBL_END(trans_mp);
876 fstrans_done(trans_mp);
877 }
878 mutex_exit(slock);
879 return (0);
880 }
881
882 /*
883 * the vnode has pages, set up to process the request.
884 */
885
886 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
887 if (pagedaemon) {
888 /* Pagedaemon must not sleep here. */
889 trans_mp = vp->v_mount;
890 error = fstrans_start_nowait(trans_mp, FSTRANS_SHARED);
891 if (error) {
892 mutex_exit(slock);
893 return error;
894 }
895 } else {
896 /*
897 * Cannot use vdeadcheck() here as this operation
898 * usually gets used from VOP_RECLAIM(). Test for
899 * change of v_mount instead and retry on change.
900 */
901 mutex_exit(slock);
902 trans_mp = vp->v_mount;
903 fstrans_start(trans_mp, FSTRANS_SHARED);
904 if (vp->v_mount != trans_mp) {
905 fstrans_done(trans_mp);
906 trans_mp = NULL;
907 } else {
908 holds_wapbl = (trans_mp->mnt_wapbl &&
909 (origflags & PGO_JOURNALLOCKED) == 0);
910 if (holds_wapbl) {
911 error = WAPBL_BEGIN(trans_mp);
912 if (error) {
913 fstrans_done(trans_mp);
914 return error;
915 }
916 }
917 }
918 mutex_enter(slock);
919 goto retry;
920 }
921 }
922
923 error = 0;
924 wasclean = (vp->v_numoutput == 0);
925 off = startoff;
926 if (endoff == 0 || flags & PGO_ALLPAGES) {
927 endoff = trunc_page(LLONG_MAX);
928 }
929 by_list = (uobj->uo_npages <=
930 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
931
932 /*
933 * if this vnode is known not to have dirty pages,
934 * don't bother to clean it out.
935 */
936
937 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
938 #if !defined(DEBUG)
939 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
940 goto skip_scan;
941 }
942 #endif /* !defined(DEBUG) */
943 flags &= ~PGO_CLEANIT;
944 }
945
946 /*
947 * start the loop. when scanning by list, hold the last page
948 * in the list before we start. pages allocated after we start
949 * will be added to the end of the list, so we can stop at the
950 * current last page.
951 */
952
953 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
954 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
955 (vp->v_iflag & VI_ONWORKLST) != 0;
956 dirtygen = gp->g_dirtygen;
957 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
958 if (by_list) {
959 curmp.flags = PG_MARKER;
960 endmp.flags = PG_MARKER;
961 pg = TAILQ_FIRST(&uobj->memq);
962 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
963 } else {
964 pg = uvm_pagelookup(uobj, off);
965 }
966 nextpg = NULL;
967 while (by_list || off < endoff) {
968
969 /*
970 * if the current page is not interesting, move on to the next.
971 */
972
973 KASSERT(pg == NULL || pg->uobject == uobj ||
974 (pg->flags & PG_MARKER) != 0);
975 KASSERT(pg == NULL ||
976 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
977 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
978 if (by_list) {
979 if (pg == &endmp) {
980 break;
981 }
982 if (pg->flags & PG_MARKER) {
983 pg = TAILQ_NEXT(pg, listq.queue);
984 continue;
985 }
986 if (pg->offset < startoff || pg->offset >= endoff ||
987 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
988 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
989 wasclean = false;
990 }
991 pg = TAILQ_NEXT(pg, listq.queue);
992 continue;
993 }
994 off = pg->offset;
995 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
996 if (pg != NULL) {
997 wasclean = false;
998 }
999 off += PAGE_SIZE;
1000 if (off < endoff) {
1001 pg = uvm_pagelookup(uobj, off);
1002 }
1003 continue;
1004 }
1005
1006 /*
1007 * if the current page needs to be cleaned and it's busy,
1008 * wait for it to become unbusy.
1009 */
1010
1011 yld = (l->l_cpu->ci_schedstate.spc_flags &
1012 SPCF_SHOULDYIELD) && !pagedaemon;
1013 if (pg->flags & PG_BUSY || yld) {
1014 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1015 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1016 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1017 error = EDEADLK;
1018 if (busypg != NULL)
1019 *busypg = pg;
1020 break;
1021 }
1022 if (pagedaemon) {
1023 /*
1024 * someone has taken the page while we
1025 * dropped the lock for fstrans_start.
1026 */
1027 break;
1028 }
1029 if (by_list) {
1030 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1031 UVMHIST_LOG(ubchist, "curmp next %p",
1032 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1033 }
1034 if (yld) {
1035 mutex_exit(slock);
1036 preempt();
1037 mutex_enter(slock);
1038 } else {
1039 pg->flags |= PG_WANTED;
1040 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1041 mutex_enter(slock);
1042 }
1043 if (by_list) {
1044 UVMHIST_LOG(ubchist, "after next %p",
1045 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1046 pg = TAILQ_NEXT(&curmp, listq.queue);
1047 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1048 } else {
1049 pg = uvm_pagelookup(uobj, off);
1050 }
1051 continue;
1052 }
1053
1054 /*
1055 * if we're freeing, remove all mappings of the page now.
1056 * if we're cleaning, check if the page is needs to be cleaned.
1057 */
1058
1059 if (flags & PGO_FREE) {
1060 pmap_page_protect(pg, VM_PROT_NONE);
1061 } else if (flags & PGO_CLEANIT) {
1062
1063 /*
1064 * if we still have some hope to pull this vnode off
1065 * from the syncer queue, write-protect the page.
1066 */
1067
1068 if (cleanall && wasclean &&
1069 gp->g_dirtygen == dirtygen) {
1070
1071 /*
1072 * uobj pages get wired only by uvm_fault
1073 * where uobj is locked.
1074 */
1075
1076 if (pg->wire_count == 0) {
1077 pmap_page_protect(pg,
1078 VM_PROT_READ|VM_PROT_EXECUTE);
1079 } else {
1080 cleanall = false;
1081 }
1082 }
1083 }
1084
1085 if (flags & PGO_CLEANIT) {
1086 needs_clean = pmap_clear_modify(pg) ||
1087 (pg->flags & PG_CLEAN) == 0;
1088 pg->flags |= PG_CLEAN;
1089 } else {
1090 needs_clean = false;
1091 }
1092
1093 /*
1094 * if we're cleaning, build a cluster.
1095 * the cluster will consist of pages which are currently dirty,
1096 * but they will be returned to us marked clean.
1097 * if not cleaning, just operate on the one page.
1098 */
1099
1100 if (needs_clean) {
1101 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1102 wasclean = false;
1103 memset(pgs, 0, sizeof(pgs));
1104 pg->flags |= PG_BUSY;
1105 UVM_PAGE_OWN(pg, "genfs_putpages");
1106
1107 /*
1108 * first look backward.
1109 */
1110
1111 npages = MIN(MAXPAGES >> 1, off >> PAGE_SHIFT);
1112 nback = npages;
1113 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1114 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1115 if (nback) {
1116 memmove(&pgs[0], &pgs[npages - nback],
1117 nback * sizeof(pgs[0]));
1118 if (npages - nback < nback)
1119 memset(&pgs[nback], 0,
1120 (npages - nback) * sizeof(pgs[0]));
1121 else
1122 memset(&pgs[npages - nback], 0,
1123 nback * sizeof(pgs[0]));
1124 }
1125
1126 /*
1127 * then plug in our page of interest.
1128 */
1129
1130 pgs[nback] = pg;
1131
1132 /*
1133 * then look forward to fill in the remaining space in
1134 * the array of pages.
1135 */
1136
1137 npages = MAXPAGES - nback - 1;
1138 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1139 &pgs[nback + 1],
1140 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1141 npages += nback + 1;
1142 } else {
1143 pgs[0] = pg;
1144 npages = 1;
1145 nback = 0;
1146 }
1147
1148 /*
1149 * apply FREE or DEACTIVATE options if requested.
1150 */
1151
1152 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1153 mutex_enter(&uvm_pageqlock);
1154 }
1155 for (i = 0; i < npages; i++) {
1156 tpg = pgs[i];
1157 KASSERT(tpg->uobject == uobj);
1158 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1159 pg = tpg;
1160 if (tpg->offset < startoff || tpg->offset >= endoff)
1161 continue;
1162 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1163 uvm_pagedeactivate(tpg);
1164 } else if (flags & PGO_FREE) {
1165 pmap_page_protect(tpg, VM_PROT_NONE);
1166 if (tpg->flags & PG_BUSY) {
1167 tpg->flags |= freeflag;
1168 if (pagedaemon) {
1169 uvm_pageout_start(1);
1170 uvm_pagedequeue(tpg);
1171 }
1172 } else {
1173
1174 /*
1175 * ``page is not busy''
1176 * implies that npages is 1
1177 * and needs_clean is false.
1178 */
1179
1180 nextpg = TAILQ_NEXT(tpg, listq.queue);
1181 uvm_pagefree(tpg);
1182 if (pagedaemon)
1183 uvmexp.pdfreed++;
1184 }
1185 }
1186 }
1187 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1188 mutex_exit(&uvm_pageqlock);
1189 }
1190 if (needs_clean) {
1191 modified = true;
1192
1193 /*
1194 * start the i/o. if we're traversing by list,
1195 * keep our place in the list with a marker page.
1196 */
1197
1198 if (by_list) {
1199 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1200 listq.queue);
1201 }
1202 mutex_exit(slock);
1203 error = GOP_WRITE(vp, pgs, npages, flags);
1204 mutex_enter(slock);
1205 if (by_list) {
1206 pg = TAILQ_NEXT(&curmp, listq.queue);
1207 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1208 }
1209 if (error) {
1210 break;
1211 }
1212 if (by_list) {
1213 continue;
1214 }
1215 }
1216
1217 /*
1218 * find the next page and continue if there was no error.
1219 */
1220
1221 if (by_list) {
1222 if (nextpg) {
1223 pg = nextpg;
1224 nextpg = NULL;
1225 } else {
1226 pg = TAILQ_NEXT(pg, listq.queue);
1227 }
1228 } else {
1229 off += (npages - nback) << PAGE_SHIFT;
1230 if (off < endoff) {
1231 pg = uvm_pagelookup(uobj, off);
1232 }
1233 }
1234 }
1235 if (by_list) {
1236 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1237 }
1238
1239 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1240 (vp->v_type != VBLK ||
1241 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1242 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1243 }
1244
1245 /*
1246 * if we're cleaning and there was nothing to clean,
1247 * take us off the syncer list. if we started any i/o
1248 * and we're doing sync i/o, wait for all writes to finish.
1249 */
1250
1251 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1252 (vp->v_iflag & VI_ONWORKLST) != 0) {
1253 #if defined(DEBUG)
1254 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1255 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1256 continue;
1257 }
1258 if ((pg->flags & PG_CLEAN) == 0) {
1259 printf("%s: %p: !CLEAN\n", __func__, pg);
1260 }
1261 if (pmap_is_modified(pg)) {
1262 printf("%s: %p: modified\n", __func__, pg);
1263 }
1264 }
1265 #endif /* defined(DEBUG) */
1266 vp->v_iflag &= ~VI_WRMAPDIRTY;
1267 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1268 vn_syncer_remove_from_worklist(vp);
1269 }
1270
1271 #if !defined(DEBUG)
1272 skip_scan:
1273 #endif /* !defined(DEBUG) */
1274
1275 /* Wait for output to complete. */
1276 if (!wasclean && !async && vp->v_numoutput != 0) {
1277 while (vp->v_numoutput != 0)
1278 cv_wait(&vp->v_cv, slock);
1279 }
1280 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1281 mutex_exit(slock);
1282
1283 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1284 /*
1285 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1286 * retrying is not a big deal because, in many cases,
1287 * uobj->uo_npages is already 0 here.
1288 */
1289 mutex_enter(slock);
1290 goto retry;
1291 }
1292
1293 if (trans_mp) {
1294 if (holds_wapbl)
1295 WAPBL_END(trans_mp);
1296 fstrans_done(trans_mp);
1297 }
1298
1299 return (error);
1300 }
1301
1302 int
1303 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1304 {
1305 off_t off;
1306 vaddr_t kva;
1307 size_t len;
1308 int error;
1309 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1310
1311 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1312 vp, pgs, npages, flags);
1313
1314 off = pgs[0]->offset;
1315 kva = uvm_pagermapin(pgs, npages,
1316 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1317 len = npages << PAGE_SHIFT;
1318
1319 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1320 uvm_aio_biodone);
1321
1322 return error;
1323 }
1324
1325 int
1326 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1327 {
1328 off_t off;
1329 vaddr_t kva;
1330 size_t len;
1331 int error;
1332 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1333
1334 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1335 vp, pgs, npages, flags);
1336
1337 off = pgs[0]->offset;
1338 kva = uvm_pagermapin(pgs, npages,
1339 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1340 len = npages << PAGE_SHIFT;
1341
1342 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1343 uvm_aio_biodone);
1344
1345 return error;
1346 }
1347
1348 /*
1349 * Backend routine for doing I/O to vnode pages. Pages are already locked
1350 * and mapped into kernel memory. Here we just look up the underlying
1351 * device block addresses and call the strategy routine.
1352 */
1353
1354 static int
1355 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1356 enum uio_rw rw, void (*iodone)(struct buf *))
1357 {
1358 int s, error;
1359 int fs_bshift, dev_bshift;
1360 off_t eof, offset, startoffset;
1361 size_t bytes, iobytes, skipbytes;
1362 struct buf *mbp, *bp;
1363 const bool async = (flags & PGO_SYNCIO) == 0;
1364 const bool lazy = (flags & PGO_LAZY) == 0;
1365 const bool iowrite = rw == UIO_WRITE;
1366 const int brw = iowrite ? B_WRITE : B_READ;
1367 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1368
1369 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1370 vp, kva, len, flags);
1371
1372 KASSERT(vp->v_size <= vp->v_writesize);
1373 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1374 if (vp->v_type != VBLK) {
1375 fs_bshift = vp->v_mount->mnt_fs_bshift;
1376 dev_bshift = vp->v_mount->mnt_dev_bshift;
1377 } else {
1378 fs_bshift = DEV_BSHIFT;
1379 dev_bshift = DEV_BSHIFT;
1380 }
1381 error = 0;
1382 startoffset = off;
1383 bytes = MIN(len, eof - startoffset);
1384 skipbytes = 0;
1385 KASSERT(bytes != 0);
1386
1387 if (iowrite) {
1388 mutex_enter(vp->v_interlock);
1389 vp->v_numoutput += 2;
1390 mutex_exit(vp->v_interlock);
1391 }
1392 mbp = getiobuf(vp, true);
1393 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1394 vp, mbp, vp->v_numoutput, bytes);
1395 mbp->b_bufsize = len;
1396 mbp->b_data = (void *)kva;
1397 mbp->b_resid = mbp->b_bcount = bytes;
1398 mbp->b_cflags = BC_BUSY | BC_AGE;
1399 if (async) {
1400 mbp->b_flags = brw | B_ASYNC;
1401 mbp->b_iodone = iodone;
1402 } else {
1403 mbp->b_flags = brw;
1404 mbp->b_iodone = NULL;
1405 }
1406 if (curlwp == uvm.pagedaemon_lwp)
1407 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1408 else if (async || lazy)
1409 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1410 else
1411 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1412
1413 bp = NULL;
1414 for (offset = startoffset;
1415 bytes > 0;
1416 offset += iobytes, bytes -= iobytes) {
1417 int run;
1418 daddr_t lbn, blkno;
1419 struct vnode *devvp;
1420
1421 /*
1422 * bmap the file to find out the blkno to read from and
1423 * how much we can read in one i/o. if bmap returns an error,
1424 * skip the rest of the top-level i/o.
1425 */
1426
1427 lbn = offset >> fs_bshift;
1428 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1429 if (error) {
1430 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1431 lbn,error,0,0);
1432 skipbytes += bytes;
1433 bytes = 0;
1434 goto loopdone;
1435 }
1436
1437 /*
1438 * see how many pages can be read with this i/o.
1439 * reduce the i/o size if necessary to avoid
1440 * overwriting pages with valid data.
1441 */
1442
1443 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1444 bytes);
1445
1446 /*
1447 * if this block isn't allocated, zero it instead of
1448 * reading it. unless we are going to allocate blocks,
1449 * mark the pages we zeroed PG_RDONLY.
1450 */
1451
1452 if (blkno == (daddr_t)-1) {
1453 if (!iowrite) {
1454 memset((char *)kva + (offset - startoffset), 0,
1455 iobytes);
1456 }
1457 skipbytes += iobytes;
1458 continue;
1459 }
1460
1461 /*
1462 * allocate a sub-buf for this piece of the i/o
1463 * (or just use mbp if there's only 1 piece),
1464 * and start it going.
1465 */
1466
1467 if (offset == startoffset && iobytes == bytes) {
1468 bp = mbp;
1469 } else {
1470 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1471 vp, bp, vp->v_numoutput, 0);
1472 bp = getiobuf(vp, true);
1473 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1474 }
1475 bp->b_lblkno = 0;
1476
1477 /* adjust physical blkno for partial blocks */
1478 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1479 dev_bshift);
1480
1481 UVMHIST_LOG(ubchist,
1482 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1483 bp, offset, bp->b_bcount, bp->b_blkno);
1484
1485 VOP_STRATEGY(devvp, bp);
1486 }
1487
1488 loopdone:
1489 if (skipbytes) {
1490 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1491 }
1492 nestiobuf_done(mbp, skipbytes, error);
1493 if (async) {
1494 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1495 return (0);
1496 }
1497 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1498 error = biowait(mbp);
1499 s = splbio();
1500 (*iodone)(mbp);
1501 splx(s);
1502 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1503 return (error);
1504 }
1505
1506 int
1507 genfs_compat_getpages(void *v)
1508 {
1509 struct vop_getpages_args /* {
1510 struct vnode *a_vp;
1511 voff_t a_offset;
1512 struct vm_page **a_m;
1513 int *a_count;
1514 int a_centeridx;
1515 vm_prot_t a_access_type;
1516 int a_advice;
1517 int a_flags;
1518 } */ *ap = v;
1519
1520 off_t origoffset;
1521 struct vnode *vp = ap->a_vp;
1522 struct uvm_object *uobj = &vp->v_uobj;
1523 struct vm_page *pg, **pgs;
1524 vaddr_t kva;
1525 int i, error, orignpages, npages;
1526 struct iovec iov;
1527 struct uio uio;
1528 kauth_cred_t cred = curlwp->l_cred;
1529 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1530
1531 error = 0;
1532 origoffset = ap->a_offset;
1533 orignpages = *ap->a_count;
1534 pgs = ap->a_m;
1535
1536 if (ap->a_flags & PGO_LOCKED) {
1537 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1538 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1539
1540 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1541 if (error == 0 && memwrite) {
1542 genfs_markdirty(vp);
1543 }
1544 return error;
1545 }
1546 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1547 mutex_exit(uobj->vmobjlock);
1548 return EINVAL;
1549 }
1550 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1551 mutex_exit(uobj->vmobjlock);
1552 return 0;
1553 }
1554 npages = orignpages;
1555 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1556 mutex_exit(uobj->vmobjlock);
1557 kva = uvm_pagermapin(pgs, npages,
1558 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1559 for (i = 0; i < npages; i++) {
1560 pg = pgs[i];
1561 if ((pg->flags & PG_FAKE) == 0) {
1562 continue;
1563 }
1564 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1565 iov.iov_len = PAGE_SIZE;
1566 uio.uio_iov = &iov;
1567 uio.uio_iovcnt = 1;
1568 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1569 uio.uio_rw = UIO_READ;
1570 uio.uio_resid = PAGE_SIZE;
1571 UIO_SETUP_SYSSPACE(&uio);
1572 /* XXX vn_lock */
1573 error = VOP_READ(vp, &uio, 0, cred);
1574 if (error) {
1575 break;
1576 }
1577 if (uio.uio_resid) {
1578 memset(iov.iov_base, 0, uio.uio_resid);
1579 }
1580 }
1581 uvm_pagermapout(kva, npages);
1582 mutex_enter(uobj->vmobjlock);
1583 mutex_enter(&uvm_pageqlock);
1584 for (i = 0; i < npages; i++) {
1585 pg = pgs[i];
1586 if (error && (pg->flags & PG_FAKE) != 0) {
1587 pg->flags |= PG_RELEASED;
1588 } else {
1589 pmap_clear_modify(pg);
1590 uvm_pageactivate(pg);
1591 }
1592 }
1593 if (error) {
1594 uvm_page_unbusy(pgs, npages);
1595 }
1596 mutex_exit(&uvm_pageqlock);
1597 if (error == 0 && memwrite) {
1598 genfs_markdirty(vp);
1599 }
1600 mutex_exit(uobj->vmobjlock);
1601 return error;
1602 }
1603
1604 int
1605 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1606 int flags)
1607 {
1608 off_t offset;
1609 struct iovec iov;
1610 struct uio uio;
1611 kauth_cred_t cred = curlwp->l_cred;
1612 struct buf *bp;
1613 vaddr_t kva;
1614 int error;
1615
1616 offset = pgs[0]->offset;
1617 kva = uvm_pagermapin(pgs, npages,
1618 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1619
1620 iov.iov_base = (void *)kva;
1621 iov.iov_len = npages << PAGE_SHIFT;
1622 uio.uio_iov = &iov;
1623 uio.uio_iovcnt = 1;
1624 uio.uio_offset = offset;
1625 uio.uio_rw = UIO_WRITE;
1626 uio.uio_resid = npages << PAGE_SHIFT;
1627 UIO_SETUP_SYSSPACE(&uio);
1628 /* XXX vn_lock */
1629 error = VOP_WRITE(vp, &uio, 0, cred);
1630
1631 mutex_enter(vp->v_interlock);
1632 vp->v_numoutput++;
1633 mutex_exit(vp->v_interlock);
1634
1635 bp = getiobuf(vp, true);
1636 bp->b_cflags = BC_BUSY | BC_AGE;
1637 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1638 bp->b_data = (char *)kva;
1639 bp->b_bcount = npages << PAGE_SHIFT;
1640 bp->b_bufsize = npages << PAGE_SHIFT;
1641 bp->b_resid = 0;
1642 bp->b_error = error;
1643 uvm_aio_aiodone(bp);
1644 return (error);
1645 }
1646
1647 /*
1648 * Process a uio using direct I/O. If we reach a part of the request
1649 * which cannot be processed in this fashion for some reason, just return.
1650 * The caller must handle some additional part of the request using
1651 * buffered I/O before trying direct I/O again.
1652 */
1653
1654 void
1655 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1656 {
1657 struct vmspace *vs;
1658 struct iovec *iov;
1659 vaddr_t va;
1660 size_t len;
1661 const int mask = DEV_BSIZE - 1;
1662 int error;
1663 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1664 (ioflag & IO_JOURNALLOCKED) == 0);
1665
1666 /*
1667 * We only support direct I/O to user space for now.
1668 */
1669
1670 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1671 return;
1672 }
1673
1674 /*
1675 * If the vnode is mapped, we would need to get the getpages lock
1676 * to stabilize the bmap, but then we would get into trouble while
1677 * locking the pages if the pages belong to this same vnode (or a
1678 * multi-vnode cascade to the same effect). Just fall back to
1679 * buffered I/O if the vnode is mapped to avoid this mess.
1680 */
1681
1682 if (vp->v_vflag & VV_MAPPED) {
1683 return;
1684 }
1685
1686 if (need_wapbl) {
1687 error = WAPBL_BEGIN(vp->v_mount);
1688 if (error)
1689 return;
1690 }
1691
1692 /*
1693 * Do as much of the uio as possible with direct I/O.
1694 */
1695
1696 vs = uio->uio_vmspace;
1697 while (uio->uio_resid) {
1698 iov = uio->uio_iov;
1699 if (iov->iov_len == 0) {
1700 uio->uio_iov++;
1701 uio->uio_iovcnt--;
1702 continue;
1703 }
1704 va = (vaddr_t)iov->iov_base;
1705 len = MIN(iov->iov_len, genfs_maxdio);
1706 len &= ~mask;
1707
1708 /*
1709 * If the next chunk is smaller than DEV_BSIZE or extends past
1710 * the current EOF, then fall back to buffered I/O.
1711 */
1712
1713 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1714 break;
1715 }
1716
1717 /*
1718 * Check alignment. The file offset must be at least
1719 * sector-aligned. The exact constraint on memory alignment
1720 * is very hardware-dependent, but requiring sector-aligned
1721 * addresses there too is safe.
1722 */
1723
1724 if (uio->uio_offset & mask || va & mask) {
1725 break;
1726 }
1727 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1728 uio->uio_rw);
1729 if (error) {
1730 break;
1731 }
1732 iov->iov_base = (char *)iov->iov_base + len;
1733 iov->iov_len -= len;
1734 uio->uio_offset += len;
1735 uio->uio_resid -= len;
1736 }
1737
1738 if (need_wapbl)
1739 WAPBL_END(vp->v_mount);
1740 }
1741
1742 /*
1743 * Iodone routine for direct I/O. We don't do much here since the request is
1744 * always synchronous, so the caller will do most of the work after biowait().
1745 */
1746
1747 static void
1748 genfs_dio_iodone(struct buf *bp)
1749 {
1750
1751 KASSERT((bp->b_flags & B_ASYNC) == 0);
1752 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1753 mutex_enter(bp->b_objlock);
1754 vwakeup(bp);
1755 mutex_exit(bp->b_objlock);
1756 }
1757 putiobuf(bp);
1758 }
1759
1760 /*
1761 * Process one chunk of a direct I/O request.
1762 */
1763
1764 static int
1765 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1766 off_t off, enum uio_rw rw)
1767 {
1768 struct vm_map *map;
1769 struct pmap *upm, *kpm __unused;
1770 size_t klen = round_page(uva + len) - trunc_page(uva);
1771 off_t spoff, epoff;
1772 vaddr_t kva, puva;
1773 paddr_t pa;
1774 vm_prot_t prot;
1775 int error, rv __diagused, poff, koff;
1776 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1777 (rw == UIO_WRITE ? PGO_FREE : 0);
1778
1779 /*
1780 * For writes, verify that this range of the file already has fully
1781 * allocated backing store. If there are any holes, just punt and
1782 * make the caller take the buffered write path.
1783 */
1784
1785 if (rw == UIO_WRITE) {
1786 daddr_t lbn, elbn, blkno;
1787 int bsize, bshift, run;
1788
1789 bshift = vp->v_mount->mnt_fs_bshift;
1790 bsize = 1 << bshift;
1791 lbn = off >> bshift;
1792 elbn = (off + len + bsize - 1) >> bshift;
1793 while (lbn < elbn) {
1794 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1795 if (error) {
1796 return error;
1797 }
1798 if (blkno == (daddr_t)-1) {
1799 return ENOSPC;
1800 }
1801 lbn += 1 + run;
1802 }
1803 }
1804
1805 /*
1806 * Flush any cached pages for parts of the file that we're about to
1807 * access. If we're writing, invalidate pages as well.
1808 */
1809
1810 spoff = trunc_page(off);
1811 epoff = round_page(off + len);
1812 mutex_enter(vp->v_interlock);
1813 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1814 if (error) {
1815 return error;
1816 }
1817
1818 /*
1819 * Wire the user pages and remap them into kernel memory.
1820 */
1821
1822 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1823 error = uvm_vslock(vs, (void *)uva, len, prot);
1824 if (error) {
1825 return error;
1826 }
1827
1828 map = &vs->vm_map;
1829 upm = vm_map_pmap(map);
1830 kpm = vm_map_pmap(kernel_map);
1831 puva = trunc_page(uva);
1832 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1833 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1834 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1835 rv = pmap_extract(upm, puva + poff, &pa);
1836 KASSERT(rv);
1837 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1838 }
1839 pmap_update(kpm);
1840
1841 /*
1842 * Do the I/O.
1843 */
1844
1845 koff = uva - trunc_page(uva);
1846 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1847 genfs_dio_iodone);
1848
1849 /*
1850 * Tear down the kernel mapping.
1851 */
1852
1853 pmap_kremove(kva, klen);
1854 pmap_update(kpm);
1855 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1856
1857 /*
1858 * Unwire the user pages.
1859 */
1860
1861 uvm_vsunlock(vs, (void *)uva, len);
1862 return error;
1863 }
1864