genfs_io.c revision 1.70 1 /* $NetBSD: genfs_io.c,v 1.70 2017/06/27 08:40:53 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.70 2017/06/27 08:40:53 hannken Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 bool holds_wapbl = false;
133 struct mount *trans_mount = NULL;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
137 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 error = vdead_check(vp, VDEAD_NOWAIT);
143 if (error) {
144 if ((flags & PGO_LOCKED) == 0)
145 mutex_exit(uobj->vmobjlock);
146 return error;
147 }
148
149 startover:
150 error = 0;
151 const voff_t origvsize = vp->v_size;
152 const off_t origoffset = ap->a_offset;
153 const int orignpages = *ap->a_count;
154
155 GOP_SIZE(vp, origvsize, &diskeof, 0);
156 if (flags & PGO_PASTEOF) {
157 off_t newsize;
158 #if defined(DIAGNOSTIC)
159 off_t writeeof;
160 #endif /* defined(DIAGNOSTIC) */
161
162 newsize = MAX(origvsize,
163 origoffset + (orignpages << PAGE_SHIFT));
164 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
165 #if defined(DIAGNOSTIC)
166 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
167 if (newsize > round_page(writeeof)) {
168 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
169 __func__, newsize, round_page(writeeof));
170 }
171 #endif /* defined(DIAGNOSTIC) */
172 } else {
173 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
174 }
175 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
176 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
177 KASSERT(orignpages > 0);
178
179 /*
180 * Bounds-check the request.
181 */
182
183 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
184 if ((flags & PGO_LOCKED) == 0) {
185 mutex_exit(uobj->vmobjlock);
186 }
187 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
188 origoffset, *ap->a_count, memeof,0);
189 error = EINVAL;
190 goto out_err;
191 }
192
193 /* uobj is locked */
194
195 if ((flags & PGO_NOTIMESTAMP) == 0 &&
196 (vp->v_type != VBLK ||
197 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
198 int updflags = 0;
199
200 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
201 updflags = GOP_UPDATE_ACCESSED;
202 }
203 if (memwrite) {
204 updflags |= GOP_UPDATE_MODIFIED;
205 }
206 if (updflags != 0) {
207 GOP_MARKUPDATE(vp, updflags);
208 }
209 }
210
211 /*
212 * For PGO_LOCKED requests, just return whatever's in memory.
213 */
214
215 if (flags & PGO_LOCKED) {
216 int nfound;
217 struct vm_page *pg;
218
219 KASSERT(!glocked);
220 npages = *ap->a_count;
221 #if defined(DEBUG)
222 for (i = 0; i < npages; i++) {
223 pg = ap->a_m[i];
224 KASSERT(pg == NULL || pg == PGO_DONTCARE);
225 }
226 #endif /* defined(DEBUG) */
227 nfound = uvn_findpages(uobj, origoffset, &npages,
228 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
229 KASSERT(npages == *ap->a_count);
230 if (nfound == 0) {
231 error = EBUSY;
232 goto out_err;
233 }
234 if (!genfs_node_rdtrylock(vp)) {
235 genfs_rel_pages(ap->a_m, npages);
236
237 /*
238 * restore the array.
239 */
240
241 for (i = 0; i < npages; i++) {
242 pg = ap->a_m[i];
243
244 if (pg != NULL && pg != PGO_DONTCARE) {
245 ap->a_m[i] = NULL;
246 }
247 KASSERT(ap->a_m[i] == NULL ||
248 ap->a_m[i] == PGO_DONTCARE);
249 }
250 } else {
251 genfs_node_unlock(vp);
252 }
253 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
254 if (error == 0 && memwrite) {
255 genfs_markdirty(vp);
256 }
257 goto out_err;
258 }
259 mutex_exit(uobj->vmobjlock);
260
261 /*
262 * find the requested pages and make some simple checks.
263 * leave space in the page array for a whole block.
264 */
265
266 const int fs_bshift = (vp->v_type != VBLK) ?
267 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
268 const int fs_bsize = 1 << fs_bshift;
269 #define blk_mask (fs_bsize - 1)
270 #define trunc_blk(x) ((x) & ~blk_mask)
271 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
272
273 const int orignmempages = MIN(orignpages,
274 round_page(memeof - origoffset) >> PAGE_SHIFT);
275 npages = orignmempages;
276 const off_t startoffset = trunc_blk(origoffset);
277 const off_t endoffset = MIN(
278 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
279 round_page(memeof));
280 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
281
282 const int pgs_size = sizeof(struct vm_page *) *
283 ((endoffset - startoffset) >> PAGE_SHIFT);
284 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
285
286 if (pgs_size > sizeof(pgs_onstack)) {
287 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
288 if (pgs == NULL) {
289 pgs = pgs_onstack;
290 error = ENOMEM;
291 goto out_err;
292 }
293 } else {
294 pgs = pgs_onstack;
295 (void)memset(pgs, 0, pgs_size);
296 }
297
298 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
299 ridx, npages, startoffset, endoffset);
300
301 if (trans_mount == NULL) {
302 trans_mount = vp->v_mount;
303 fstrans_start(trans_mount);
304 /*
305 * check if this vnode is still valid.
306 */
307 mutex_enter(vp->v_interlock);
308 error = vdead_check(vp, 0);
309 mutex_exit(vp->v_interlock);
310 if (error)
311 goto out_err_free;
312 /*
313 * XXX: This assumes that we come here only via
314 * the mmio path
315 */
316 if (blockalloc && vp->v_mount->mnt_wapbl) {
317 error = WAPBL_BEGIN(trans_mount);
318 if (error)
319 goto out_err_free;
320 holds_wapbl = true;
321 }
322 }
323
324 /*
325 * hold g_glock to prevent a race with truncate.
326 *
327 * check if our idea of v_size is still valid.
328 */
329
330 KASSERT(!glocked || genfs_node_wrlocked(vp));
331 if (!glocked) {
332 if (blockalloc) {
333 genfs_node_wrlock(vp);
334 } else {
335 genfs_node_rdlock(vp);
336 }
337 }
338 mutex_enter(uobj->vmobjlock);
339 if (vp->v_size < origvsize) {
340 if (!glocked) {
341 genfs_node_unlock(vp);
342 }
343 if (pgs != pgs_onstack)
344 kmem_free(pgs, pgs_size);
345 goto startover;
346 }
347
348 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
349 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
350 if (!glocked) {
351 genfs_node_unlock(vp);
352 }
353 KASSERT(async != 0);
354 genfs_rel_pages(&pgs[ridx], orignmempages);
355 mutex_exit(uobj->vmobjlock);
356 error = EBUSY;
357 goto out_err_free;
358 }
359
360 /*
361 * if the pages are already resident, just return them.
362 */
363
364 for (i = 0; i < npages; i++) {
365 struct vm_page *pg = pgs[ridx + i];
366
367 if ((pg->flags & PG_FAKE) ||
368 (blockalloc && (pg->flags & PG_RDONLY))) {
369 break;
370 }
371 }
372 if (i == npages) {
373 if (!glocked) {
374 genfs_node_unlock(vp);
375 }
376 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
377 npages += ridx;
378 goto out;
379 }
380
381 /*
382 * if PGO_OVERWRITE is set, don't bother reading the pages.
383 */
384
385 if (overwrite) {
386 if (!glocked) {
387 genfs_node_unlock(vp);
388 }
389 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
390
391 for (i = 0; i < npages; i++) {
392 struct vm_page *pg = pgs[ridx + i];
393
394 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
395 }
396 npages += ridx;
397 goto out;
398 }
399
400 /*
401 * the page wasn't resident and we're not overwriting,
402 * so we're going to have to do some i/o.
403 * find any additional pages needed to cover the expanded range.
404 */
405
406 npages = (endoffset - startoffset) >> PAGE_SHIFT;
407 if (startoffset != origoffset || npages != orignmempages) {
408 int npgs;
409
410 /*
411 * we need to avoid deadlocks caused by locking
412 * additional pages at lower offsets than pages we
413 * already have locked. unlock them all and start over.
414 */
415
416 genfs_rel_pages(&pgs[ridx], orignmempages);
417 memset(pgs, 0, pgs_size);
418
419 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
420 startoffset, endoffset, 0,0);
421 npgs = npages;
422 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
423 async ? UFP_NOWAIT : UFP_ALL) != npages) {
424 if (!glocked) {
425 genfs_node_unlock(vp);
426 }
427 KASSERT(async != 0);
428 genfs_rel_pages(pgs, npages);
429 mutex_exit(uobj->vmobjlock);
430 error = EBUSY;
431 goto out_err_free;
432 }
433 }
434
435 mutex_exit(uobj->vmobjlock);
436 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
437 async, memwrite, blockalloc, glocked);
438 if (!glocked) {
439 genfs_node_unlock(vp);
440 }
441 if (error == 0 && async)
442 goto out_err_free;
443 mutex_enter(uobj->vmobjlock);
444
445 /*
446 * we're almost done! release the pages...
447 * for errors, we free the pages.
448 * otherwise we activate them and mark them as valid and clean.
449 * also, unbusy pages that were not actually requested.
450 */
451
452 if (error) {
453 genfs_rel_pages(pgs, npages);
454 mutex_exit(uobj->vmobjlock);
455 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
456 goto out_err_free;
457 }
458
459 out:
460 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
461 error = 0;
462 mutex_enter(&uvm_pageqlock);
463 for (i = 0; i < npages; i++) {
464 struct vm_page *pg = pgs[i];
465 if (pg == NULL) {
466 continue;
467 }
468 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
469 pg, pg->flags, 0,0);
470 if (pg->flags & PG_FAKE && !overwrite) {
471 pg->flags &= ~(PG_FAKE);
472 pmap_clear_modify(pgs[i]);
473 }
474 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
475 if (i < ridx || i >= ridx + orignmempages || async) {
476 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
477 pg, pg->offset,0,0);
478 if (pg->flags & PG_WANTED) {
479 wakeup(pg);
480 }
481 if (pg->flags & PG_FAKE) {
482 KASSERT(overwrite);
483 uvm_pagezero(pg);
484 }
485 if (pg->flags & PG_RELEASED) {
486 uvm_pagefree(pg);
487 continue;
488 }
489 uvm_pageenqueue(pg);
490 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
491 UVM_PAGE_OWN(pg, NULL);
492 }
493 }
494 mutex_exit(&uvm_pageqlock);
495 if (memwrite) {
496 genfs_markdirty(vp);
497 }
498 mutex_exit(uobj->vmobjlock);
499 if (ap->a_m != NULL) {
500 memcpy(ap->a_m, &pgs[ridx],
501 orignmempages * sizeof(struct vm_page *));
502 }
503
504 out_err_free:
505 if (pgs != NULL && pgs != pgs_onstack)
506 kmem_free(pgs, pgs_size);
507 out_err:
508 if (trans_mount != NULL) {
509 if (holds_wapbl)
510 WAPBL_END(trans_mount);
511 fstrans_done(trans_mount);
512 }
513 return error;
514 }
515
516 /*
517 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
518 *
519 * "glocked" (which is currently not actually used) tells us not whether
520 * the genfs_node is locked on entry (it always is) but whether it was
521 * locked on entry to genfs_getpages.
522 */
523 static int
524 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
525 off_t startoffset, off_t diskeof,
526 bool async, bool memwrite, bool blockalloc, bool glocked)
527 {
528 struct uvm_object * const uobj = &vp->v_uobj;
529 const int fs_bshift = (vp->v_type != VBLK) ?
530 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
531 const int dev_bshift = (vp->v_type != VBLK) ?
532 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
533 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
534 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
535 vaddr_t kva;
536 struct buf *bp, *mbp;
537 bool sawhole = false;
538 int i;
539 int error = 0;
540
541 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
542
543 /*
544 * read the desired page(s).
545 */
546
547 totalbytes = npages << PAGE_SHIFT;
548 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
549 tailbytes = totalbytes - bytes;
550 skipbytes = 0;
551
552 kva = uvm_pagermapin(pgs, npages,
553 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
554 if (kva == 0)
555 return EBUSY;
556
557 mbp = getiobuf(vp, true);
558 mbp->b_bufsize = totalbytes;
559 mbp->b_data = (void *)kva;
560 mbp->b_resid = mbp->b_bcount = bytes;
561 mbp->b_cflags = BC_BUSY;
562 if (async) {
563 mbp->b_flags = B_READ | B_ASYNC;
564 mbp->b_iodone = uvm_aio_biodone;
565 } else {
566 mbp->b_flags = B_READ;
567 mbp->b_iodone = NULL;
568 }
569 if (async)
570 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
571 else
572 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
573
574 /*
575 * if EOF is in the middle of the range, zero the part past EOF.
576 * skip over pages which are not PG_FAKE since in that case they have
577 * valid data that we need to preserve.
578 */
579
580 tailstart = bytes;
581 while (tailbytes > 0) {
582 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
583
584 KASSERT(len <= tailbytes);
585 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
586 memset((void *)(kva + tailstart), 0, len);
587 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
588 kva, tailstart, len, 0);
589 }
590 tailstart += len;
591 tailbytes -= len;
592 }
593
594 /*
595 * now loop over the pages, reading as needed.
596 */
597
598 bp = NULL;
599 off_t offset;
600 for (offset = startoffset;
601 bytes > 0;
602 offset += iobytes, bytes -= iobytes) {
603 int run;
604 daddr_t lbn, blkno;
605 int pidx;
606 struct vnode *devvp;
607
608 /*
609 * skip pages which don't need to be read.
610 */
611
612 pidx = (offset - startoffset) >> PAGE_SHIFT;
613 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
614 size_t b;
615
616 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
617 if ((pgs[pidx]->flags & PG_RDONLY)) {
618 sawhole = true;
619 }
620 b = MIN(PAGE_SIZE, bytes);
621 offset += b;
622 bytes -= b;
623 skipbytes += b;
624 pidx++;
625 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
626 offset, 0,0,0);
627 if (bytes == 0) {
628 goto loopdone;
629 }
630 }
631
632 /*
633 * bmap the file to find out the blkno to read from and
634 * how much we can read in one i/o. if bmap returns an error,
635 * skip the rest of the top-level i/o.
636 */
637
638 lbn = offset >> fs_bshift;
639 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
640 if (error) {
641 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
642 lbn,error,0,0);
643 skipbytes += bytes;
644 bytes = 0;
645 goto loopdone;
646 }
647
648 /*
649 * see how many pages can be read with this i/o.
650 * reduce the i/o size if necessary to avoid
651 * overwriting pages with valid data.
652 */
653
654 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
655 bytes);
656 if (offset + iobytes > round_page(offset)) {
657 int pcount;
658
659 pcount = 1;
660 while (pidx + pcount < npages &&
661 pgs[pidx + pcount]->flags & PG_FAKE) {
662 pcount++;
663 }
664 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
665 (offset - trunc_page(offset)));
666 }
667
668 /*
669 * if this block isn't allocated, zero it instead of
670 * reading it. unless we are going to allocate blocks,
671 * mark the pages we zeroed PG_RDONLY.
672 */
673
674 if (blkno == (daddr_t)-1) {
675 int holepages = (round_page(offset + iobytes) -
676 trunc_page(offset)) >> PAGE_SHIFT;
677 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
678
679 sawhole = true;
680 memset((char *)kva + (offset - startoffset), 0,
681 iobytes);
682 skipbytes += iobytes;
683
684 mutex_enter(uobj->vmobjlock);
685 for (i = 0; i < holepages; i++) {
686 if (memwrite) {
687 pgs[pidx + i]->flags &= ~PG_CLEAN;
688 }
689 if (!blockalloc) {
690 pgs[pidx + i]->flags |= PG_RDONLY;
691 }
692 }
693 mutex_exit(uobj->vmobjlock);
694 continue;
695 }
696
697 /*
698 * allocate a sub-buf for this piece of the i/o
699 * (or just use mbp if there's only 1 piece),
700 * and start it going.
701 */
702
703 if (offset == startoffset && iobytes == bytes) {
704 bp = mbp;
705 } else {
706 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
707 vp, bp, vp->v_numoutput, 0);
708 bp = getiobuf(vp, true);
709 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
710 }
711 bp->b_lblkno = 0;
712
713 /* adjust physical blkno for partial blocks */
714 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
715 dev_bshift);
716
717 UVMHIST_LOG(ubchist,
718 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
719 bp, offset, bp->b_bcount, bp->b_blkno);
720
721 VOP_STRATEGY(devvp, bp);
722 }
723
724 loopdone:
725 nestiobuf_done(mbp, skipbytes, error);
726 if (async) {
727 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
728 return 0;
729 }
730 if (bp != NULL) {
731 error = biowait(mbp);
732 }
733
734 /* Remove the mapping (make KVA available as soon as possible) */
735 uvm_pagermapout(kva, npages);
736
737 /*
738 * if this we encountered a hole then we have to do a little more work.
739 * for read faults, we marked the page PG_RDONLY so that future
740 * write accesses to the page will fault again.
741 * for write faults, we must make sure that the backing store for
742 * the page is completely allocated while the pages are locked.
743 */
744
745 if (!error && sawhole && blockalloc) {
746 error = GOP_ALLOC(vp, startoffset,
747 npages << PAGE_SHIFT, 0, cred);
748 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
749 startoffset, npages << PAGE_SHIFT, error,0);
750 if (!error) {
751 mutex_enter(uobj->vmobjlock);
752 for (i = 0; i < npages; i++) {
753 struct vm_page *pg = pgs[i];
754
755 if (pg == NULL) {
756 continue;
757 }
758 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
759 UVMHIST_LOG(ubchist, "mark dirty pg %p",
760 pg,0,0,0);
761 }
762 mutex_exit(uobj->vmobjlock);
763 }
764 }
765
766 putiobuf(mbp);
767 return error;
768 }
769
770 /*
771 * generic VM putpages routine.
772 * Write the given range of pages to backing store.
773 *
774 * => "offhi == 0" means flush all pages at or after "offlo".
775 * => object should be locked by caller. we return with the
776 * object unlocked.
777 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
778 * thus, a caller might want to unlock higher level resources
779 * (e.g. vm_map) before calling flush.
780 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
781 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
782 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
783 * that new pages are inserted on the tail end of the list. thus,
784 * we can make a complete pass through the object in one go by starting
785 * at the head and working towards the tail (new pages are put in
786 * front of us).
787 * => NOTE: we are allowed to lock the page queues, so the caller
788 * must not be holding the page queue lock.
789 *
790 * note on "cleaning" object and PG_BUSY pages:
791 * this routine is holding the lock on the object. the only time
792 * that it can run into a PG_BUSY page that it does not own is if
793 * some other process has started I/O on the page (e.g. either
794 * a pagein, or a pageout). if the PG_BUSY page is being paged
795 * in, then it can not be dirty (!PG_CLEAN) because no one has
796 * had a chance to modify it yet. if the PG_BUSY page is being
797 * paged out then it means that someone else has already started
798 * cleaning the page for us (how nice!). in this case, if we
799 * have syncio specified, then after we make our pass through the
800 * object we need to wait for the other PG_BUSY pages to clear
801 * off (i.e. we need to do an iosync). also note that once a
802 * page is PG_BUSY it must stay in its object until it is un-busyed.
803 *
804 * note on page traversal:
805 * we can traverse the pages in an object either by going down the
806 * linked list in "uobj->memq", or we can go over the address range
807 * by page doing hash table lookups for each address. depending
808 * on how many pages are in the object it may be cheaper to do one
809 * or the other. we set "by_list" to true if we are using memq.
810 * if the cost of a hash lookup was equal to the cost of the list
811 * traversal we could compare the number of pages in the start->stop
812 * range to the total number of pages in the object. however, it
813 * seems that a hash table lookup is more expensive than the linked
814 * list traversal, so we multiply the number of pages in the
815 * range by an estimate of the relatively higher cost of the hash lookup.
816 */
817
818 int
819 genfs_putpages(void *v)
820 {
821 struct vop_putpages_args /* {
822 struct vnode *a_vp;
823 voff_t a_offlo;
824 voff_t a_offhi;
825 int a_flags;
826 } */ * const ap = v;
827
828 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
829 ap->a_flags, NULL);
830 }
831
832 int
833 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
834 int origflags, struct vm_page **busypg)
835 {
836 struct uvm_object * const uobj = &vp->v_uobj;
837 kmutex_t * const slock = uobj->vmobjlock;
838 off_t off;
839 int i, error, npages, nback;
840 int freeflag;
841 /*
842 * This array is larger than it should so that it's size is constant.
843 * The right size is MAXPAGES.
844 */
845 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
846 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
847 struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
848 bool wasclean, by_list, needs_clean, yld;
849 bool async = (origflags & PGO_SYNCIO) == 0;
850 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
851 struct lwp * const l = curlwp ? curlwp : &lwp0;
852 struct genfs_node * const gp = VTOG(vp);
853 struct mount *trans_mp;
854 int flags;
855 int dirtygen;
856 bool modified;
857 bool holds_wapbl;
858 bool cleanall;
859 bool onworklst;
860
861 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
862
863 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
864 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
865 KASSERT(startoff < endoff || endoff == 0);
866
867 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
868 vp, uobj->uo_npages, startoff, endoff - startoff);
869
870 trans_mp = NULL;
871 holds_wapbl = false;
872
873 retry:
874 modified = false;
875 flags = origflags;
876 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
877 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
878 if (uobj->uo_npages == 0) {
879 if (vp->v_iflag & VI_ONWORKLST) {
880 vp->v_iflag &= ~VI_WRMAPDIRTY;
881 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
882 vn_syncer_remove_from_worklist(vp);
883 }
884 if (trans_mp) {
885 if (holds_wapbl)
886 WAPBL_END(trans_mp);
887 fstrans_done(trans_mp);
888 }
889 mutex_exit(slock);
890 return (0);
891 }
892
893 /*
894 * the vnode has pages, set up to process the request.
895 */
896
897 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
898 if (pagedaemon) {
899 /* Pagedaemon must not sleep here. */
900 trans_mp = vp->v_mount;
901 error = fstrans_start_nowait(trans_mp);
902 if (error) {
903 mutex_exit(slock);
904 return error;
905 }
906 } else {
907 /*
908 * Cannot use vdeadcheck() here as this operation
909 * usually gets used from VOP_RECLAIM(). Test for
910 * change of v_mount instead and retry on change.
911 */
912 mutex_exit(slock);
913 trans_mp = vp->v_mount;
914 fstrans_start(trans_mp);
915 if (vp->v_mount != trans_mp) {
916 fstrans_done(trans_mp);
917 trans_mp = NULL;
918 } else {
919 holds_wapbl = (trans_mp->mnt_wapbl &&
920 (origflags & PGO_JOURNALLOCKED) == 0);
921 if (holds_wapbl) {
922 error = WAPBL_BEGIN(trans_mp);
923 if (error) {
924 fstrans_done(trans_mp);
925 return error;
926 }
927 }
928 }
929 mutex_enter(slock);
930 goto retry;
931 }
932 }
933
934 error = 0;
935 wasclean = (vp->v_numoutput == 0);
936 off = startoff;
937 if (endoff == 0 || flags & PGO_ALLPAGES) {
938 endoff = trunc_page(LLONG_MAX);
939 }
940 by_list = (uobj->uo_npages <=
941 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
942
943 /*
944 * if this vnode is known not to have dirty pages,
945 * don't bother to clean it out.
946 */
947
948 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
949 #if !defined(DEBUG)
950 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
951 goto skip_scan;
952 }
953 #endif /* !defined(DEBUG) */
954 flags &= ~PGO_CLEANIT;
955 }
956
957 /*
958 * start the loop. when scanning by list, hold the last page
959 * in the list before we start. pages allocated after we start
960 * will be added to the end of the list, so we can stop at the
961 * current last page.
962 */
963
964 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
965 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
966 (vp->v_iflag & VI_ONWORKLST) != 0;
967 dirtygen = gp->g_dirtygen;
968 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
969 if (by_list) {
970 curmp.flags = PG_MARKER;
971 endmp.flags = PG_MARKER;
972 pg = TAILQ_FIRST(&uobj->memq);
973 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
974 } else {
975 pg = uvm_pagelookup(uobj, off);
976 }
977 nextpg = NULL;
978 while (by_list || off < endoff) {
979
980 /*
981 * if the current page is not interesting, move on to the next.
982 */
983
984 KASSERT(pg == NULL || pg->uobject == uobj ||
985 (pg->flags & PG_MARKER) != 0);
986 KASSERT(pg == NULL ||
987 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
988 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
989 if (by_list) {
990 if (pg == &endmp) {
991 break;
992 }
993 if (pg->flags & PG_MARKER) {
994 pg = TAILQ_NEXT(pg, listq.queue);
995 continue;
996 }
997 if (pg->offset < startoff || pg->offset >= endoff ||
998 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
999 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1000 wasclean = false;
1001 }
1002 pg = TAILQ_NEXT(pg, listq.queue);
1003 continue;
1004 }
1005 off = pg->offset;
1006 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1007 if (pg != NULL) {
1008 wasclean = false;
1009 }
1010 off += PAGE_SIZE;
1011 if (off < endoff) {
1012 pg = uvm_pagelookup(uobj, off);
1013 }
1014 continue;
1015 }
1016
1017 /*
1018 * if the current page needs to be cleaned and it's busy,
1019 * wait for it to become unbusy.
1020 */
1021
1022 yld = (l->l_cpu->ci_schedstate.spc_flags &
1023 SPCF_SHOULDYIELD) && !pagedaemon;
1024 if (pg->flags & PG_BUSY || yld) {
1025 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1026 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1027 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1028 error = EDEADLK;
1029 if (busypg != NULL)
1030 *busypg = pg;
1031 break;
1032 }
1033 if (pagedaemon) {
1034 /*
1035 * someone has taken the page while we
1036 * dropped the lock for fstrans_start.
1037 */
1038 break;
1039 }
1040 if (by_list) {
1041 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1042 UVMHIST_LOG(ubchist, "curmp next %p",
1043 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1044 }
1045 if (yld) {
1046 mutex_exit(slock);
1047 preempt();
1048 mutex_enter(slock);
1049 } else {
1050 pg->flags |= PG_WANTED;
1051 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1052 mutex_enter(slock);
1053 }
1054 if (by_list) {
1055 UVMHIST_LOG(ubchist, "after next %p",
1056 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1057 pg = TAILQ_NEXT(&curmp, listq.queue);
1058 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1059 } else {
1060 pg = uvm_pagelookup(uobj, off);
1061 }
1062 continue;
1063 }
1064
1065 /*
1066 * if we're freeing, remove all mappings of the page now.
1067 * if we're cleaning, check if the page is needs to be cleaned.
1068 */
1069
1070 if (flags & PGO_FREE) {
1071 pmap_page_protect(pg, VM_PROT_NONE);
1072 } else if (flags & PGO_CLEANIT) {
1073
1074 /*
1075 * if we still have some hope to pull this vnode off
1076 * from the syncer queue, write-protect the page.
1077 */
1078
1079 if (cleanall && wasclean &&
1080 gp->g_dirtygen == dirtygen) {
1081
1082 /*
1083 * uobj pages get wired only by uvm_fault
1084 * where uobj is locked.
1085 */
1086
1087 if (pg->wire_count == 0) {
1088 pmap_page_protect(pg,
1089 VM_PROT_READ|VM_PROT_EXECUTE);
1090 } else {
1091 cleanall = false;
1092 }
1093 }
1094 }
1095
1096 if (flags & PGO_CLEANIT) {
1097 needs_clean = pmap_clear_modify(pg) ||
1098 (pg->flags & PG_CLEAN) == 0;
1099 pg->flags |= PG_CLEAN;
1100 } else {
1101 needs_clean = false;
1102 }
1103
1104 /*
1105 * if we're cleaning, build a cluster.
1106 * the cluster will consist of pages which are currently dirty,
1107 * but they will be returned to us marked clean.
1108 * if not cleaning, just operate on the one page.
1109 */
1110
1111 if (needs_clean) {
1112 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1113 wasclean = false;
1114 memset(pgs, 0, sizeof(pgs));
1115 pg->flags |= PG_BUSY;
1116 UVM_PAGE_OWN(pg, "genfs_putpages");
1117
1118 /*
1119 * first look backward.
1120 */
1121
1122 npages = MIN(MAXPAGES >> 1, off >> PAGE_SHIFT);
1123 nback = npages;
1124 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1125 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1126 if (nback) {
1127 memmove(&pgs[0], &pgs[npages - nback],
1128 nback * sizeof(pgs[0]));
1129 if (npages - nback < nback)
1130 memset(&pgs[nback], 0,
1131 (npages - nback) * sizeof(pgs[0]));
1132 else
1133 memset(&pgs[npages - nback], 0,
1134 nback * sizeof(pgs[0]));
1135 }
1136
1137 /*
1138 * then plug in our page of interest.
1139 */
1140
1141 pgs[nback] = pg;
1142
1143 /*
1144 * then look forward to fill in the remaining space in
1145 * the array of pages.
1146 */
1147
1148 npages = MAXPAGES - nback - 1;
1149 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1150 &pgs[nback + 1],
1151 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1152 npages += nback + 1;
1153 } else {
1154 pgs[0] = pg;
1155 npages = 1;
1156 nback = 0;
1157 }
1158
1159 /*
1160 * apply FREE or DEACTIVATE options if requested.
1161 */
1162
1163 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1164 mutex_enter(&uvm_pageqlock);
1165 }
1166 for (i = 0; i < npages; i++) {
1167 tpg = pgs[i];
1168 KASSERT(tpg->uobject == uobj);
1169 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1170 pg = tpg;
1171 if (tpg->offset < startoff || tpg->offset >= endoff)
1172 continue;
1173 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1174 uvm_pagedeactivate(tpg);
1175 } else if (flags & PGO_FREE) {
1176 pmap_page_protect(tpg, VM_PROT_NONE);
1177 if (tpg->flags & PG_BUSY) {
1178 tpg->flags |= freeflag;
1179 if (pagedaemon) {
1180 uvm_pageout_start(1);
1181 uvm_pagedequeue(tpg);
1182 }
1183 } else {
1184
1185 /*
1186 * ``page is not busy''
1187 * implies that npages is 1
1188 * and needs_clean is false.
1189 */
1190
1191 nextpg = TAILQ_NEXT(tpg, listq.queue);
1192 uvm_pagefree(tpg);
1193 if (pagedaemon)
1194 uvmexp.pdfreed++;
1195 }
1196 }
1197 }
1198 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1199 mutex_exit(&uvm_pageqlock);
1200 }
1201 if (needs_clean) {
1202 modified = true;
1203
1204 /*
1205 * start the i/o. if we're traversing by list,
1206 * keep our place in the list with a marker page.
1207 */
1208
1209 if (by_list) {
1210 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1211 listq.queue);
1212 }
1213 mutex_exit(slock);
1214 error = GOP_WRITE(vp, pgs, npages, flags);
1215 mutex_enter(slock);
1216 if (by_list) {
1217 pg = TAILQ_NEXT(&curmp, listq.queue);
1218 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1219 }
1220 if (error) {
1221 break;
1222 }
1223 if (by_list) {
1224 continue;
1225 }
1226 }
1227
1228 /*
1229 * find the next page and continue if there was no error.
1230 */
1231
1232 if (by_list) {
1233 if (nextpg) {
1234 pg = nextpg;
1235 nextpg = NULL;
1236 } else {
1237 pg = TAILQ_NEXT(pg, listq.queue);
1238 }
1239 } else {
1240 off += (npages - nback) << PAGE_SHIFT;
1241 if (off < endoff) {
1242 pg = uvm_pagelookup(uobj, off);
1243 }
1244 }
1245 }
1246 if (by_list) {
1247 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1248 }
1249
1250 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1251 (vp->v_type != VBLK ||
1252 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1253 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1254 }
1255
1256 /*
1257 * if we're cleaning and there was nothing to clean,
1258 * take us off the syncer list. if we started any i/o
1259 * and we're doing sync i/o, wait for all writes to finish.
1260 */
1261
1262 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1263 (vp->v_iflag & VI_ONWORKLST) != 0) {
1264 #if defined(DEBUG)
1265 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1266 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1267 continue;
1268 }
1269 if ((pg->flags & PG_CLEAN) == 0) {
1270 printf("%s: %p: !CLEAN\n", __func__, pg);
1271 }
1272 if (pmap_is_modified(pg)) {
1273 printf("%s: %p: modified\n", __func__, pg);
1274 }
1275 }
1276 #endif /* defined(DEBUG) */
1277 vp->v_iflag &= ~VI_WRMAPDIRTY;
1278 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1279 vn_syncer_remove_from_worklist(vp);
1280 }
1281
1282 #if !defined(DEBUG)
1283 skip_scan:
1284 #endif /* !defined(DEBUG) */
1285
1286 /* Wait for output to complete. */
1287 if (!wasclean && !async && vp->v_numoutput != 0) {
1288 while (vp->v_numoutput != 0)
1289 cv_wait(&vp->v_cv, slock);
1290 }
1291 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1292 mutex_exit(slock);
1293
1294 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1295 /*
1296 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1297 * retrying is not a big deal because, in many cases,
1298 * uobj->uo_npages is already 0 here.
1299 */
1300 mutex_enter(slock);
1301 goto retry;
1302 }
1303
1304 if (trans_mp) {
1305 if (holds_wapbl)
1306 WAPBL_END(trans_mp);
1307 fstrans_done(trans_mp);
1308 }
1309
1310 return (error);
1311 }
1312
1313 int
1314 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1315 {
1316 off_t off;
1317 vaddr_t kva;
1318 size_t len;
1319 int error;
1320 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1321
1322 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1323 vp, pgs, npages, flags);
1324
1325 off = pgs[0]->offset;
1326 kva = uvm_pagermapin(pgs, npages,
1327 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1328 len = npages << PAGE_SHIFT;
1329
1330 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1331 uvm_aio_biodone);
1332
1333 return error;
1334 }
1335
1336 int
1337 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1338 {
1339 off_t off;
1340 vaddr_t kva;
1341 size_t len;
1342 int error;
1343 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1344
1345 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1346 vp, pgs, npages, flags);
1347
1348 off = pgs[0]->offset;
1349 kva = uvm_pagermapin(pgs, npages,
1350 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1351 len = npages << PAGE_SHIFT;
1352
1353 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1354 uvm_aio_biodone);
1355
1356 return error;
1357 }
1358
1359 /*
1360 * Backend routine for doing I/O to vnode pages. Pages are already locked
1361 * and mapped into kernel memory. Here we just look up the underlying
1362 * device block addresses and call the strategy routine.
1363 */
1364
1365 static int
1366 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1367 enum uio_rw rw, void (*iodone)(struct buf *))
1368 {
1369 int s, error;
1370 int fs_bshift, dev_bshift;
1371 off_t eof, offset, startoffset;
1372 size_t bytes, iobytes, skipbytes;
1373 struct buf *mbp, *bp;
1374 const bool async = (flags & PGO_SYNCIO) == 0;
1375 const bool lazy = (flags & PGO_LAZY) == 0;
1376 const bool iowrite = rw == UIO_WRITE;
1377 const int brw = iowrite ? B_WRITE : B_READ;
1378 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1379
1380 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1381 vp, kva, len, flags);
1382
1383 KASSERT(vp->v_size <= vp->v_writesize);
1384 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1385 if (vp->v_type != VBLK) {
1386 fs_bshift = vp->v_mount->mnt_fs_bshift;
1387 dev_bshift = vp->v_mount->mnt_dev_bshift;
1388 } else {
1389 fs_bshift = DEV_BSHIFT;
1390 dev_bshift = DEV_BSHIFT;
1391 }
1392 error = 0;
1393 startoffset = off;
1394 bytes = MIN(len, eof - startoffset);
1395 skipbytes = 0;
1396 KASSERT(bytes != 0);
1397
1398 if (iowrite) {
1399 mutex_enter(vp->v_interlock);
1400 vp->v_numoutput += 2;
1401 mutex_exit(vp->v_interlock);
1402 }
1403 mbp = getiobuf(vp, true);
1404 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1405 vp, mbp, vp->v_numoutput, bytes);
1406 mbp->b_bufsize = len;
1407 mbp->b_data = (void *)kva;
1408 mbp->b_resid = mbp->b_bcount = bytes;
1409 mbp->b_cflags = BC_BUSY | BC_AGE;
1410 if (async) {
1411 mbp->b_flags = brw | B_ASYNC;
1412 mbp->b_iodone = iodone;
1413 } else {
1414 mbp->b_flags = brw;
1415 mbp->b_iodone = NULL;
1416 }
1417 if (curlwp == uvm.pagedaemon_lwp)
1418 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1419 else if (async || lazy)
1420 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1421 else
1422 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1423
1424 bp = NULL;
1425 for (offset = startoffset;
1426 bytes > 0;
1427 offset += iobytes, bytes -= iobytes) {
1428 int run;
1429 daddr_t lbn, blkno;
1430 struct vnode *devvp;
1431
1432 /*
1433 * bmap the file to find out the blkno to read from and
1434 * how much we can read in one i/o. if bmap returns an error,
1435 * skip the rest of the top-level i/o.
1436 */
1437
1438 lbn = offset >> fs_bshift;
1439 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1440 if (error) {
1441 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1442 lbn,error,0,0);
1443 skipbytes += bytes;
1444 bytes = 0;
1445 goto loopdone;
1446 }
1447
1448 /*
1449 * see how many pages can be read with this i/o.
1450 * reduce the i/o size if necessary to avoid
1451 * overwriting pages with valid data.
1452 */
1453
1454 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1455 bytes);
1456
1457 /*
1458 * if this block isn't allocated, zero it instead of
1459 * reading it. unless we are going to allocate blocks,
1460 * mark the pages we zeroed PG_RDONLY.
1461 */
1462
1463 if (blkno == (daddr_t)-1) {
1464 if (!iowrite) {
1465 memset((char *)kva + (offset - startoffset), 0,
1466 iobytes);
1467 }
1468 skipbytes += iobytes;
1469 continue;
1470 }
1471
1472 /*
1473 * allocate a sub-buf for this piece of the i/o
1474 * (or just use mbp if there's only 1 piece),
1475 * and start it going.
1476 */
1477
1478 if (offset == startoffset && iobytes == bytes) {
1479 bp = mbp;
1480 } else {
1481 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1482 vp, bp, vp->v_numoutput, 0);
1483 bp = getiobuf(vp, true);
1484 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1485 }
1486 bp->b_lblkno = 0;
1487
1488 /* adjust physical blkno for partial blocks */
1489 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1490 dev_bshift);
1491
1492 UVMHIST_LOG(ubchist,
1493 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1494 bp, offset, bp->b_bcount, bp->b_blkno);
1495
1496 VOP_STRATEGY(devvp, bp);
1497 }
1498
1499 loopdone:
1500 if (skipbytes) {
1501 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1502 }
1503 nestiobuf_done(mbp, skipbytes, error);
1504 if (async) {
1505 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1506 return (0);
1507 }
1508 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1509 error = biowait(mbp);
1510 s = splbio();
1511 (*iodone)(mbp);
1512 splx(s);
1513 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1514 return (error);
1515 }
1516
1517 int
1518 genfs_compat_getpages(void *v)
1519 {
1520 struct vop_getpages_args /* {
1521 struct vnode *a_vp;
1522 voff_t a_offset;
1523 struct vm_page **a_m;
1524 int *a_count;
1525 int a_centeridx;
1526 vm_prot_t a_access_type;
1527 int a_advice;
1528 int a_flags;
1529 } */ *ap = v;
1530
1531 off_t origoffset;
1532 struct vnode *vp = ap->a_vp;
1533 struct uvm_object *uobj = &vp->v_uobj;
1534 struct vm_page *pg, **pgs;
1535 vaddr_t kva;
1536 int i, error, orignpages, npages;
1537 struct iovec iov;
1538 struct uio uio;
1539 kauth_cred_t cred = curlwp->l_cred;
1540 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1541
1542 error = 0;
1543 origoffset = ap->a_offset;
1544 orignpages = *ap->a_count;
1545 pgs = ap->a_m;
1546
1547 if (ap->a_flags & PGO_LOCKED) {
1548 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1549 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1550
1551 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1552 if (error == 0 && memwrite) {
1553 genfs_markdirty(vp);
1554 }
1555 return error;
1556 }
1557 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1558 mutex_exit(uobj->vmobjlock);
1559 return EINVAL;
1560 }
1561 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1562 mutex_exit(uobj->vmobjlock);
1563 return 0;
1564 }
1565 npages = orignpages;
1566 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1567 mutex_exit(uobj->vmobjlock);
1568 kva = uvm_pagermapin(pgs, npages,
1569 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1570 for (i = 0; i < npages; i++) {
1571 pg = pgs[i];
1572 if ((pg->flags & PG_FAKE) == 0) {
1573 continue;
1574 }
1575 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1576 iov.iov_len = PAGE_SIZE;
1577 uio.uio_iov = &iov;
1578 uio.uio_iovcnt = 1;
1579 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1580 uio.uio_rw = UIO_READ;
1581 uio.uio_resid = PAGE_SIZE;
1582 UIO_SETUP_SYSSPACE(&uio);
1583 /* XXX vn_lock */
1584 error = VOP_READ(vp, &uio, 0, cred);
1585 if (error) {
1586 break;
1587 }
1588 if (uio.uio_resid) {
1589 memset(iov.iov_base, 0, uio.uio_resid);
1590 }
1591 }
1592 uvm_pagermapout(kva, npages);
1593 mutex_enter(uobj->vmobjlock);
1594 mutex_enter(&uvm_pageqlock);
1595 for (i = 0; i < npages; i++) {
1596 pg = pgs[i];
1597 if (error && (pg->flags & PG_FAKE) != 0) {
1598 pg->flags |= PG_RELEASED;
1599 } else {
1600 pmap_clear_modify(pg);
1601 uvm_pageactivate(pg);
1602 }
1603 }
1604 if (error) {
1605 uvm_page_unbusy(pgs, npages);
1606 }
1607 mutex_exit(&uvm_pageqlock);
1608 if (error == 0 && memwrite) {
1609 genfs_markdirty(vp);
1610 }
1611 mutex_exit(uobj->vmobjlock);
1612 return error;
1613 }
1614
1615 int
1616 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1617 int flags)
1618 {
1619 off_t offset;
1620 struct iovec iov;
1621 struct uio uio;
1622 kauth_cred_t cred = curlwp->l_cred;
1623 struct buf *bp;
1624 vaddr_t kva;
1625 int error;
1626
1627 offset = pgs[0]->offset;
1628 kva = uvm_pagermapin(pgs, npages,
1629 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1630
1631 iov.iov_base = (void *)kva;
1632 iov.iov_len = npages << PAGE_SHIFT;
1633 uio.uio_iov = &iov;
1634 uio.uio_iovcnt = 1;
1635 uio.uio_offset = offset;
1636 uio.uio_rw = UIO_WRITE;
1637 uio.uio_resid = npages << PAGE_SHIFT;
1638 UIO_SETUP_SYSSPACE(&uio);
1639 /* XXX vn_lock */
1640 error = VOP_WRITE(vp, &uio, 0, cred);
1641
1642 mutex_enter(vp->v_interlock);
1643 vp->v_numoutput++;
1644 mutex_exit(vp->v_interlock);
1645
1646 bp = getiobuf(vp, true);
1647 bp->b_cflags = BC_BUSY | BC_AGE;
1648 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1649 bp->b_data = (char *)kva;
1650 bp->b_bcount = npages << PAGE_SHIFT;
1651 bp->b_bufsize = npages << PAGE_SHIFT;
1652 bp->b_resid = 0;
1653 bp->b_error = error;
1654 uvm_aio_aiodone(bp);
1655 return (error);
1656 }
1657
1658 /*
1659 * Process a uio using direct I/O. If we reach a part of the request
1660 * which cannot be processed in this fashion for some reason, just return.
1661 * The caller must handle some additional part of the request using
1662 * buffered I/O before trying direct I/O again.
1663 */
1664
1665 void
1666 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1667 {
1668 struct vmspace *vs;
1669 struct iovec *iov;
1670 vaddr_t va;
1671 size_t len;
1672 const int mask = DEV_BSIZE - 1;
1673 int error;
1674 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1675 (ioflag & IO_JOURNALLOCKED) == 0);
1676
1677 /*
1678 * We only support direct I/O to user space for now.
1679 */
1680
1681 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1682 return;
1683 }
1684
1685 /*
1686 * If the vnode is mapped, we would need to get the getpages lock
1687 * to stabilize the bmap, but then we would get into trouble while
1688 * locking the pages if the pages belong to this same vnode (or a
1689 * multi-vnode cascade to the same effect). Just fall back to
1690 * buffered I/O if the vnode is mapped to avoid this mess.
1691 */
1692
1693 if (vp->v_vflag & VV_MAPPED) {
1694 return;
1695 }
1696
1697 if (need_wapbl) {
1698 error = WAPBL_BEGIN(vp->v_mount);
1699 if (error)
1700 return;
1701 }
1702
1703 /*
1704 * Do as much of the uio as possible with direct I/O.
1705 */
1706
1707 vs = uio->uio_vmspace;
1708 while (uio->uio_resid) {
1709 iov = uio->uio_iov;
1710 if (iov->iov_len == 0) {
1711 uio->uio_iov++;
1712 uio->uio_iovcnt--;
1713 continue;
1714 }
1715 va = (vaddr_t)iov->iov_base;
1716 len = MIN(iov->iov_len, genfs_maxdio);
1717 len &= ~mask;
1718
1719 /*
1720 * If the next chunk is smaller than DEV_BSIZE or extends past
1721 * the current EOF, then fall back to buffered I/O.
1722 */
1723
1724 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1725 break;
1726 }
1727
1728 /*
1729 * Check alignment. The file offset must be at least
1730 * sector-aligned. The exact constraint on memory alignment
1731 * is very hardware-dependent, but requiring sector-aligned
1732 * addresses there too is safe.
1733 */
1734
1735 if (uio->uio_offset & mask || va & mask) {
1736 break;
1737 }
1738 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1739 uio->uio_rw);
1740 if (error) {
1741 break;
1742 }
1743 iov->iov_base = (char *)iov->iov_base + len;
1744 iov->iov_len -= len;
1745 uio->uio_offset += len;
1746 uio->uio_resid -= len;
1747 }
1748
1749 if (need_wapbl)
1750 WAPBL_END(vp->v_mount);
1751 }
1752
1753 /*
1754 * Iodone routine for direct I/O. We don't do much here since the request is
1755 * always synchronous, so the caller will do most of the work after biowait().
1756 */
1757
1758 static void
1759 genfs_dio_iodone(struct buf *bp)
1760 {
1761
1762 KASSERT((bp->b_flags & B_ASYNC) == 0);
1763 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1764 mutex_enter(bp->b_objlock);
1765 vwakeup(bp);
1766 mutex_exit(bp->b_objlock);
1767 }
1768 putiobuf(bp);
1769 }
1770
1771 /*
1772 * Process one chunk of a direct I/O request.
1773 */
1774
1775 static int
1776 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1777 off_t off, enum uio_rw rw)
1778 {
1779 struct vm_map *map;
1780 struct pmap *upm, *kpm __unused;
1781 size_t klen = round_page(uva + len) - trunc_page(uva);
1782 off_t spoff, epoff;
1783 vaddr_t kva, puva;
1784 paddr_t pa;
1785 vm_prot_t prot;
1786 int error, rv __diagused, poff, koff;
1787 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1788 (rw == UIO_WRITE ? PGO_FREE : 0);
1789
1790 /*
1791 * For writes, verify that this range of the file already has fully
1792 * allocated backing store. If there are any holes, just punt and
1793 * make the caller take the buffered write path.
1794 */
1795
1796 if (rw == UIO_WRITE) {
1797 daddr_t lbn, elbn, blkno;
1798 int bsize, bshift, run;
1799
1800 bshift = vp->v_mount->mnt_fs_bshift;
1801 bsize = 1 << bshift;
1802 lbn = off >> bshift;
1803 elbn = (off + len + bsize - 1) >> bshift;
1804 while (lbn < elbn) {
1805 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1806 if (error) {
1807 return error;
1808 }
1809 if (blkno == (daddr_t)-1) {
1810 return ENOSPC;
1811 }
1812 lbn += 1 + run;
1813 }
1814 }
1815
1816 /*
1817 * Flush any cached pages for parts of the file that we're about to
1818 * access. If we're writing, invalidate pages as well.
1819 */
1820
1821 spoff = trunc_page(off);
1822 epoff = round_page(off + len);
1823 mutex_enter(vp->v_interlock);
1824 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1825 if (error) {
1826 return error;
1827 }
1828
1829 /*
1830 * Wire the user pages and remap them into kernel memory.
1831 */
1832
1833 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1834 error = uvm_vslock(vs, (void *)uva, len, prot);
1835 if (error) {
1836 return error;
1837 }
1838
1839 map = &vs->vm_map;
1840 upm = vm_map_pmap(map);
1841 kpm = vm_map_pmap(kernel_map);
1842 puva = trunc_page(uva);
1843 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1844 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1845 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1846 rv = pmap_extract(upm, puva + poff, &pa);
1847 KASSERT(rv);
1848 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1849 }
1850 pmap_update(kpm);
1851
1852 /*
1853 * Do the I/O.
1854 */
1855
1856 koff = uva - trunc_page(uva);
1857 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1858 genfs_dio_iodone);
1859
1860 /*
1861 * Tear down the kernel mapping.
1862 */
1863
1864 pmap_kremove(kva, klen);
1865 pmap_update(kpm);
1866 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1867
1868 /*
1869 * Unwire the user pages.
1870 */
1871
1872 uvm_vsunlock(vs, (void *)uva, len);
1873 return error;
1874 }
1875