genfs_io.c revision 1.72 1 /* $NetBSD: genfs_io.c,v 1.72 2018/05/28 21:04:38 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.72 2018/05/28 21:04:38 chs Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
132 bool holds_wapbl = false;
133 struct mount *trans_mount = NULL;
134 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
135
136 UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
137 (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
138
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 error = vdead_check(vp, VDEAD_NOWAIT);
143 if (error) {
144 if ((flags & PGO_LOCKED) == 0)
145 mutex_exit(uobj->vmobjlock);
146 return error;
147 }
148
149 startover:
150 error = 0;
151 const voff_t origvsize = vp->v_size;
152 const off_t origoffset = ap->a_offset;
153 const int orignpages = *ap->a_count;
154
155 GOP_SIZE(vp, origvsize, &diskeof, 0);
156 if (flags & PGO_PASTEOF) {
157 off_t newsize;
158 #if defined(DIAGNOSTIC)
159 off_t writeeof;
160 #endif /* defined(DIAGNOSTIC) */
161
162 newsize = MAX(origvsize,
163 origoffset + (orignpages << PAGE_SHIFT));
164 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
165 #if defined(DIAGNOSTIC)
166 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
167 if (newsize > round_page(writeeof)) {
168 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
169 __func__, newsize, round_page(writeeof));
170 }
171 #endif /* defined(DIAGNOSTIC) */
172 } else {
173 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
174 }
175 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
176 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
177 KASSERT(orignpages > 0);
178
179 /*
180 * Bounds-check the request.
181 */
182
183 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
184 if ((flags & PGO_LOCKED) == 0) {
185 mutex_exit(uobj->vmobjlock);
186 }
187 UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
188 origoffset, *ap->a_count, memeof,0);
189 error = EINVAL;
190 goto out_err;
191 }
192
193 /* uobj is locked */
194
195 if ((flags & PGO_NOTIMESTAMP) == 0 &&
196 (vp->v_type != VBLK ||
197 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
198 int updflags = 0;
199
200 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
201 updflags = GOP_UPDATE_ACCESSED;
202 }
203 if (memwrite) {
204 updflags |= GOP_UPDATE_MODIFIED;
205 }
206 if (updflags != 0) {
207 GOP_MARKUPDATE(vp, updflags);
208 }
209 }
210
211 /*
212 * For PGO_LOCKED requests, just return whatever's in memory.
213 */
214
215 if (flags & PGO_LOCKED) {
216 int nfound;
217 struct vm_page *pg;
218
219 KASSERT(!glocked);
220 npages = *ap->a_count;
221 #if defined(DEBUG)
222 for (i = 0; i < npages; i++) {
223 pg = ap->a_m[i];
224 KASSERT(pg == NULL || pg == PGO_DONTCARE);
225 }
226 #endif /* defined(DEBUG) */
227 nfound = uvn_findpages(uobj, origoffset, &npages,
228 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
229 KASSERT(npages == *ap->a_count);
230 if (nfound == 0) {
231 error = EBUSY;
232 goto out_err;
233 }
234 if (!genfs_node_rdtrylock(vp)) {
235 genfs_rel_pages(ap->a_m, npages);
236
237 /*
238 * restore the array.
239 */
240
241 for (i = 0; i < npages; i++) {
242 pg = ap->a_m[i];
243
244 if (pg != NULL && pg != PGO_DONTCARE) {
245 ap->a_m[i] = NULL;
246 }
247 KASSERT(ap->a_m[i] == NULL ||
248 ap->a_m[i] == PGO_DONTCARE);
249 }
250 } else {
251 genfs_node_unlock(vp);
252 }
253 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
254 if (error == 0 && memwrite) {
255 genfs_markdirty(vp);
256 }
257 goto out_err;
258 }
259 mutex_exit(uobj->vmobjlock);
260
261 /*
262 * find the requested pages and make some simple checks.
263 * leave space in the page array for a whole block.
264 */
265
266 const int fs_bshift = (vp->v_type != VBLK) ?
267 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
268 const int fs_bsize = 1 << fs_bshift;
269 #define blk_mask (fs_bsize - 1)
270 #define trunc_blk(x) ((x) & ~blk_mask)
271 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
272
273 const int orignmempages = MIN(orignpages,
274 round_page(memeof - origoffset) >> PAGE_SHIFT);
275 npages = orignmempages;
276 const off_t startoffset = trunc_blk(origoffset);
277 const off_t endoffset = MIN(
278 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
279 round_page(memeof));
280 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
281
282 const int pgs_size = sizeof(struct vm_page *) *
283 ((endoffset - startoffset) >> PAGE_SHIFT);
284 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
285
286 if (pgs_size > sizeof(pgs_onstack)) {
287 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
288 if (pgs == NULL) {
289 pgs = pgs_onstack;
290 error = ENOMEM;
291 goto out_err;
292 }
293 } else {
294 pgs = pgs_onstack;
295 (void)memset(pgs, 0, pgs_size);
296 }
297
298 UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
299 ridx, npages, startoffset, endoffset);
300
301 if (trans_mount == NULL) {
302 trans_mount = vp->v_mount;
303 fstrans_start(trans_mount);
304 /*
305 * check if this vnode is still valid.
306 */
307 mutex_enter(vp->v_interlock);
308 error = vdead_check(vp, 0);
309 mutex_exit(vp->v_interlock);
310 if (error)
311 goto out_err_free;
312 /*
313 * XXX: This assumes that we come here only via
314 * the mmio path
315 */
316 if (blockalloc && vp->v_mount->mnt_wapbl) {
317 error = WAPBL_BEGIN(trans_mount);
318 if (error)
319 goto out_err_free;
320 holds_wapbl = true;
321 }
322 }
323
324 /*
325 * hold g_glock to prevent a race with truncate.
326 *
327 * check if our idea of v_size is still valid.
328 */
329
330 KASSERT(!glocked || genfs_node_wrlocked(vp));
331 if (!glocked) {
332 if (blockalloc) {
333 genfs_node_wrlock(vp);
334 } else {
335 genfs_node_rdlock(vp);
336 }
337 }
338 mutex_enter(uobj->vmobjlock);
339 if (vp->v_size < origvsize) {
340 if (!glocked) {
341 genfs_node_unlock(vp);
342 }
343 if (pgs != pgs_onstack)
344 kmem_free(pgs, pgs_size);
345 goto startover;
346 }
347
348 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
349 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
350 if (!glocked) {
351 genfs_node_unlock(vp);
352 }
353 KASSERT(async != 0);
354 genfs_rel_pages(&pgs[ridx], orignmempages);
355 mutex_exit(uobj->vmobjlock);
356 error = EBUSY;
357 goto out_err_free;
358 }
359
360 /*
361 * if the pages are already resident, just return them.
362 */
363
364 for (i = 0; i < npages; i++) {
365 struct vm_page *pg = pgs[ridx + i];
366
367 if ((pg->flags & PG_FAKE) ||
368 (blockalloc && (pg->flags & PG_RDONLY))) {
369 break;
370 }
371 }
372 if (i == npages) {
373 if (!glocked) {
374 genfs_node_unlock(vp);
375 }
376 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
377 npages += ridx;
378 goto out;
379 }
380
381 /*
382 * if PGO_OVERWRITE is set, don't bother reading the pages.
383 */
384
385 if (overwrite) {
386 if (!glocked) {
387 genfs_node_unlock(vp);
388 }
389 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
390
391 for (i = 0; i < npages; i++) {
392 struct vm_page *pg = pgs[ridx + i];
393
394 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
395 }
396 npages += ridx;
397 goto out;
398 }
399
400 /*
401 * the page wasn't resident and we're not overwriting,
402 * so we're going to have to do some i/o.
403 * find any additional pages needed to cover the expanded range.
404 */
405
406 npages = (endoffset - startoffset) >> PAGE_SHIFT;
407 if (startoffset != origoffset || npages != orignmempages) {
408 int npgs;
409
410 /*
411 * we need to avoid deadlocks caused by locking
412 * additional pages at lower offsets than pages we
413 * already have locked. unlock them all and start over.
414 */
415
416 genfs_rel_pages(&pgs[ridx], orignmempages);
417 memset(pgs, 0, pgs_size);
418
419 UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
420 startoffset, endoffset, 0,0);
421 npgs = npages;
422 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
423 async ? UFP_NOWAIT : UFP_ALL) != npages) {
424 if (!glocked) {
425 genfs_node_unlock(vp);
426 }
427 KASSERT(async != 0);
428 genfs_rel_pages(pgs, npages);
429 mutex_exit(uobj->vmobjlock);
430 error = EBUSY;
431 goto out_err_free;
432 }
433 }
434
435 mutex_exit(uobj->vmobjlock);
436 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
437 async, memwrite, blockalloc, glocked);
438 if (!glocked) {
439 genfs_node_unlock(vp);
440 }
441 if (error == 0 && async)
442 goto out_err_free;
443 mutex_enter(uobj->vmobjlock);
444
445 /*
446 * we're almost done! release the pages...
447 * for errors, we free the pages.
448 * otherwise we activate them and mark them as valid and clean.
449 * also, unbusy pages that were not actually requested.
450 */
451
452 if (error) {
453 genfs_rel_pages(pgs, npages);
454 mutex_exit(uobj->vmobjlock);
455 UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
456 goto out_err_free;
457 }
458
459 out:
460 UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
461 error = 0;
462 mutex_enter(&uvm_pageqlock);
463 for (i = 0; i < npages; i++) {
464 struct vm_page *pg = pgs[i];
465 if (pg == NULL) {
466 continue;
467 }
468 UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
469 (uintptr_t)pg, pg->flags, 0,0);
470 if (pg->flags & PG_FAKE && !overwrite) {
471 pg->flags &= ~(PG_FAKE);
472 pmap_clear_modify(pgs[i]);
473 }
474 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
475 if (i < ridx || i >= ridx + orignmempages || async) {
476 UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
477 (uintptr_t)pg, pg->offset,0,0);
478 if (pg->flags & PG_WANTED) {
479 wakeup(pg);
480 }
481 if (pg->flags & PG_FAKE) {
482 KASSERT(overwrite);
483 uvm_pagezero(pg);
484 }
485 if (pg->flags & PG_RELEASED) {
486 uvm_pagefree(pg);
487 continue;
488 }
489 uvm_pageenqueue(pg);
490 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
491 UVM_PAGE_OWN(pg, NULL);
492 }
493 }
494 mutex_exit(&uvm_pageqlock);
495 if (memwrite) {
496 genfs_markdirty(vp);
497 }
498 mutex_exit(uobj->vmobjlock);
499 if (ap->a_m != NULL) {
500 memcpy(ap->a_m, &pgs[ridx],
501 orignmempages * sizeof(struct vm_page *));
502 }
503
504 out_err_free:
505 if (pgs != NULL && pgs != pgs_onstack)
506 kmem_free(pgs, pgs_size);
507 out_err:
508 if (trans_mount != NULL) {
509 if (holds_wapbl)
510 WAPBL_END(trans_mount);
511 fstrans_done(trans_mount);
512 }
513 return error;
514 }
515
516 /*
517 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
518 *
519 * "glocked" (which is currently not actually used) tells us not whether
520 * the genfs_node is locked on entry (it always is) but whether it was
521 * locked on entry to genfs_getpages.
522 */
523 static int
524 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
525 off_t startoffset, off_t diskeof,
526 bool async, bool memwrite, bool blockalloc, bool glocked)
527 {
528 struct uvm_object * const uobj = &vp->v_uobj;
529 const int fs_bshift = (vp->v_type != VBLK) ?
530 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
531 const int dev_bshift = (vp->v_type != VBLK) ?
532 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
533 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
534 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
535 vaddr_t kva;
536 struct buf *bp, *mbp;
537 bool sawhole = false;
538 int i;
539 int error = 0;
540
541 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
542
543 /*
544 * read the desired page(s).
545 */
546
547 totalbytes = npages << PAGE_SHIFT;
548 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
549 tailbytes = totalbytes - bytes;
550 skipbytes = 0;
551
552 kva = uvm_pagermapin(pgs, npages,
553 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
554 if (kva == 0)
555 return EBUSY;
556
557 mbp = getiobuf(vp, true);
558 mbp->b_bufsize = totalbytes;
559 mbp->b_data = (void *)kva;
560 mbp->b_resid = mbp->b_bcount = bytes;
561 mbp->b_cflags = BC_BUSY;
562 if (async) {
563 mbp->b_flags = B_READ | B_ASYNC;
564 mbp->b_iodone = uvm_aio_biodone;
565 } else {
566 mbp->b_flags = B_READ;
567 mbp->b_iodone = NULL;
568 }
569 if (async)
570 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
571 else
572 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
573
574 /*
575 * if EOF is in the middle of the range, zero the part past EOF.
576 * skip over pages which are not PG_FAKE since in that case they have
577 * valid data that we need to preserve.
578 */
579
580 tailstart = bytes;
581 while (tailbytes > 0) {
582 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
583
584 KASSERT(len <= tailbytes);
585 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
586 memset((void *)(kva + tailstart), 0, len);
587 UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
588 (uintptr_t)kva, tailstart, len, 0);
589 }
590 tailstart += len;
591 tailbytes -= len;
592 }
593
594 /*
595 * now loop over the pages, reading as needed.
596 */
597
598 bp = NULL;
599 off_t offset;
600 for (offset = startoffset;
601 bytes > 0;
602 offset += iobytes, bytes -= iobytes) {
603 int run;
604 daddr_t lbn, blkno;
605 int pidx;
606 struct vnode *devvp;
607
608 /*
609 * skip pages which don't need to be read.
610 */
611
612 pidx = (offset - startoffset) >> PAGE_SHIFT;
613 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
614 size_t b;
615
616 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
617 if ((pgs[pidx]->flags & PG_RDONLY)) {
618 sawhole = true;
619 }
620 b = MIN(PAGE_SIZE, bytes);
621 offset += b;
622 bytes -= b;
623 skipbytes += b;
624 pidx++;
625 UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
626 offset, 0,0,0);
627 if (bytes == 0) {
628 goto loopdone;
629 }
630 }
631
632 /*
633 * bmap the file to find out the blkno to read from and
634 * how much we can read in one i/o. if bmap returns an error,
635 * skip the rest of the top-level i/o.
636 */
637
638 lbn = offset >> fs_bshift;
639 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
640 if (error) {
641 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
642 lbn,error,0,0);
643 skipbytes += bytes;
644 bytes = 0;
645 goto loopdone;
646 }
647
648 /*
649 * see how many pages can be read with this i/o.
650 * reduce the i/o size if necessary to avoid
651 * overwriting pages with valid data.
652 */
653
654 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
655 bytes);
656 if (offset + iobytes > round_page(offset)) {
657 int pcount;
658
659 pcount = 1;
660 while (pidx + pcount < npages &&
661 pgs[pidx + pcount]->flags & PG_FAKE) {
662 pcount++;
663 }
664 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
665 (offset - trunc_page(offset)));
666 }
667
668 /*
669 * if this block isn't allocated, zero it instead of
670 * reading it. unless we are going to allocate blocks,
671 * mark the pages we zeroed PG_RDONLY.
672 */
673
674 if (blkno == (daddr_t)-1) {
675 int holepages = (round_page(offset + iobytes) -
676 trunc_page(offset)) >> PAGE_SHIFT;
677 UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
678
679 sawhole = true;
680 memset((char *)kva + (offset - startoffset), 0,
681 iobytes);
682 skipbytes += iobytes;
683
684 mutex_enter(uobj->vmobjlock);
685 for (i = 0; i < holepages; i++) {
686 if (memwrite) {
687 pgs[pidx + i]->flags &= ~PG_CLEAN;
688 }
689 if (!blockalloc) {
690 pgs[pidx + i]->flags |= PG_RDONLY;
691 }
692 }
693 mutex_exit(uobj->vmobjlock);
694 continue;
695 }
696
697 /*
698 * allocate a sub-buf for this piece of the i/o
699 * (or just use mbp if there's only 1 piece),
700 * and start it going.
701 */
702
703 if (offset == startoffset && iobytes == bytes) {
704 bp = mbp;
705 } else {
706 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
707 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
708 bp = getiobuf(vp, true);
709 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
710 }
711 bp->b_lblkno = 0;
712
713 /* adjust physical blkno for partial blocks */
714 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
715 dev_bshift);
716
717 UVMHIST_LOG(ubchist,
718 "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
719 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
720
721 VOP_STRATEGY(devvp, bp);
722 }
723
724 loopdone:
725 nestiobuf_done(mbp, skipbytes, error);
726 if (async) {
727 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
728 return 0;
729 }
730 if (bp != NULL) {
731 error = biowait(mbp);
732 }
733
734 /* Remove the mapping (make KVA available as soon as possible) */
735 uvm_pagermapout(kva, npages);
736
737 /*
738 * if this we encountered a hole then we have to do a little more work.
739 * for read faults, we marked the page PG_RDONLY so that future
740 * write accesses to the page will fault again.
741 * for write faults, we must make sure that the backing store for
742 * the page is completely allocated while the pages are locked.
743 */
744
745 if (!error && sawhole && blockalloc) {
746 error = GOP_ALLOC(vp, startoffset,
747 npages << PAGE_SHIFT, 0, cred);
748 UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
749 startoffset, npages << PAGE_SHIFT, error,0);
750 if (!error) {
751 mutex_enter(uobj->vmobjlock);
752 for (i = 0; i < npages; i++) {
753 struct vm_page *pg = pgs[i];
754
755 if (pg == NULL) {
756 continue;
757 }
758 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
759 UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
760 (uintptr_t)pg, 0, 0, 0);
761 }
762 mutex_exit(uobj->vmobjlock);
763 }
764 }
765
766 putiobuf(mbp);
767 return error;
768 }
769
770 /*
771 * generic VM putpages routine.
772 * Write the given range of pages to backing store.
773 *
774 * => "offhi == 0" means flush all pages at or after "offlo".
775 * => object should be locked by caller. we return with the
776 * object unlocked.
777 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
778 * thus, a caller might want to unlock higher level resources
779 * (e.g. vm_map) before calling flush.
780 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
781 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
782 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
783 * that new pages are inserted on the tail end of the list. thus,
784 * we can make a complete pass through the object in one go by starting
785 * at the head and working towards the tail (new pages are put in
786 * front of us).
787 * => NOTE: we are allowed to lock the page queues, so the caller
788 * must not be holding the page queue lock.
789 *
790 * note on "cleaning" object and PG_BUSY pages:
791 * this routine is holding the lock on the object. the only time
792 * that it can run into a PG_BUSY page that it does not own is if
793 * some other process has started I/O on the page (e.g. either
794 * a pagein, or a pageout). if the PG_BUSY page is being paged
795 * in, then it can not be dirty (!PG_CLEAN) because no one has
796 * had a chance to modify it yet. if the PG_BUSY page is being
797 * paged out then it means that someone else has already started
798 * cleaning the page for us (how nice!). in this case, if we
799 * have syncio specified, then after we make our pass through the
800 * object we need to wait for the other PG_BUSY pages to clear
801 * off (i.e. we need to do an iosync). also note that once a
802 * page is PG_BUSY it must stay in its object until it is un-busyed.
803 *
804 * note on page traversal:
805 * we can traverse the pages in an object either by going down the
806 * linked list in "uobj->memq", or we can go over the address range
807 * by page doing hash table lookups for each address. depending
808 * on how many pages are in the object it may be cheaper to do one
809 * or the other. we set "by_list" to true if we are using memq.
810 * if the cost of a hash lookup was equal to the cost of the list
811 * traversal we could compare the number of pages in the start->stop
812 * range to the total number of pages in the object. however, it
813 * seems that a hash table lookup is more expensive than the linked
814 * list traversal, so we multiply the number of pages in the
815 * range by an estimate of the relatively higher cost of the hash lookup.
816 */
817
818 int
819 genfs_putpages(void *v)
820 {
821 struct vop_putpages_args /* {
822 struct vnode *a_vp;
823 voff_t a_offlo;
824 voff_t a_offhi;
825 int a_flags;
826 } */ * const ap = v;
827
828 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
829 ap->a_flags, NULL);
830 }
831
832 int
833 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
834 int origflags, struct vm_page **busypg)
835 {
836 struct uvm_object * const uobj = &vp->v_uobj;
837 kmutex_t * const slock = uobj->vmobjlock;
838 off_t off;
839 int i, error, npages, nback;
840 int freeflag;
841 /*
842 * This array is larger than it should so that it's size is constant.
843 * The right size is MAXPAGES.
844 */
845 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
846 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
847 struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
848 bool wasclean, by_list, needs_clean, yld;
849 bool async = (origflags & PGO_SYNCIO) == 0;
850 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
851 struct lwp * const l = curlwp ? curlwp : &lwp0;
852 struct genfs_node * const gp = VTOG(vp);
853 struct mount *trans_mp;
854 int flags;
855 int dirtygen;
856 bool modified;
857 bool holds_wapbl;
858 bool cleanall;
859 bool onworklst;
860
861 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
862
863 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
864 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
865 KASSERT(startoff < endoff || endoff == 0);
866
867 UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
868 (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
869
870 trans_mp = NULL;
871 holds_wapbl = false;
872
873 retry:
874 modified = false;
875 flags = origflags;
876 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
877 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
878 if (uobj->uo_npages == 0) {
879 if (vp->v_iflag & VI_ONWORKLST) {
880 vp->v_iflag &= ~VI_WRMAPDIRTY;
881 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
882 vn_syncer_remove_from_worklist(vp);
883 }
884 if (trans_mp) {
885 if (holds_wapbl)
886 WAPBL_END(trans_mp);
887 fstrans_done(trans_mp);
888 }
889 mutex_exit(slock);
890 return (0);
891 }
892
893 /*
894 * the vnode has pages, set up to process the request.
895 */
896
897 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
898 if (pagedaemon) {
899 /* Pagedaemon must not sleep here. */
900 trans_mp = vp->v_mount;
901 error = fstrans_start_nowait(trans_mp);
902 if (error) {
903 mutex_exit(slock);
904 return error;
905 }
906 } else {
907 /*
908 * Cannot use vdeadcheck() here as this operation
909 * usually gets used from VOP_RECLAIM(). Test for
910 * change of v_mount instead and retry on change.
911 */
912 mutex_exit(slock);
913 trans_mp = vp->v_mount;
914 fstrans_start(trans_mp);
915 if (vp->v_mount != trans_mp) {
916 fstrans_done(trans_mp);
917 trans_mp = NULL;
918 } else {
919 holds_wapbl = (trans_mp->mnt_wapbl &&
920 (origflags & PGO_JOURNALLOCKED) == 0);
921 if (holds_wapbl) {
922 error = WAPBL_BEGIN(trans_mp);
923 if (error) {
924 fstrans_done(trans_mp);
925 return error;
926 }
927 }
928 }
929 mutex_enter(slock);
930 goto retry;
931 }
932 }
933
934 error = 0;
935 wasclean = (vp->v_numoutput == 0);
936 off = startoff;
937 if (endoff == 0 || flags & PGO_ALLPAGES) {
938 endoff = trunc_page(LLONG_MAX);
939 }
940 by_list = (uobj->uo_npages <=
941 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
942
943 /*
944 * if this vnode is known not to have dirty pages,
945 * don't bother to clean it out.
946 */
947
948 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
949 #if !defined(DEBUG)
950 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
951 goto skip_scan;
952 }
953 #endif /* !defined(DEBUG) */
954 flags &= ~PGO_CLEANIT;
955 }
956
957 /*
958 * start the loop. when scanning by list, hold the last page
959 * in the list before we start. pages allocated after we start
960 * will be added to the end of the list, so we can stop at the
961 * current last page.
962 */
963
964 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
965 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
966 (vp->v_iflag & VI_ONWORKLST) != 0;
967 dirtygen = gp->g_dirtygen;
968 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
969 if (by_list) {
970 curmp.flags = PG_MARKER;
971 endmp.flags = PG_MARKER;
972 pg = TAILQ_FIRST(&uobj->memq);
973 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
974 } else {
975 pg = uvm_pagelookup(uobj, off);
976 }
977 nextpg = NULL;
978 while (by_list || off < endoff) {
979
980 /*
981 * if the current page is not interesting, move on to the next.
982 */
983
984 KASSERT(pg == NULL || pg->uobject == uobj ||
985 (pg->flags & PG_MARKER) != 0);
986 KASSERT(pg == NULL ||
987 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
988 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
989 if (by_list) {
990 if (pg == &endmp) {
991 break;
992 }
993 if (pg->flags & PG_MARKER) {
994 pg = TAILQ_NEXT(pg, listq.queue);
995 continue;
996 }
997 if (pg->offset < startoff || pg->offset >= endoff ||
998 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
999 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1000 wasclean = false;
1001 }
1002 pg = TAILQ_NEXT(pg, listq.queue);
1003 continue;
1004 }
1005 off = pg->offset;
1006 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1007 if (pg != NULL) {
1008 wasclean = false;
1009 }
1010 off += PAGE_SIZE;
1011 if (off < endoff) {
1012 pg = uvm_pagelookup(uobj, off);
1013 }
1014 continue;
1015 }
1016
1017 /*
1018 * if the current page needs to be cleaned and it's busy,
1019 * wait for it to become unbusy.
1020 */
1021
1022 yld = (l->l_cpu->ci_schedstate.spc_flags &
1023 SPCF_SHOULDYIELD) && !pagedaemon;
1024 if (pg->flags & PG_BUSY || yld) {
1025 UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1026 0, 0, 0);
1027 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1028 UVMHIST_LOG(ubchist, "busyfail %#jx",
1029 (uintptr_t)pg, 0, 0, 0);
1030 error = EDEADLK;
1031 if (busypg != NULL)
1032 *busypg = pg;
1033 break;
1034 }
1035 if (pagedaemon) {
1036 /*
1037 * someone has taken the page while we
1038 * dropped the lock for fstrans_start.
1039 */
1040 break;
1041 }
1042 if (by_list) {
1043 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1044 UVMHIST_LOG(ubchist, "curmp next %#jx",
1045 (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
1046 0, 0, 0);
1047 }
1048 if (yld) {
1049 mutex_exit(slock);
1050 preempt();
1051 mutex_enter(slock);
1052 } else {
1053 pg->flags |= PG_WANTED;
1054 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1055 mutex_enter(slock);
1056 }
1057 if (by_list) {
1058 UVMHIST_LOG(ubchist, "after next %#jx",
1059 (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
1060 0, 0, 0);
1061 pg = TAILQ_NEXT(&curmp, listq.queue);
1062 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1063 } else {
1064 pg = uvm_pagelookup(uobj, off);
1065 }
1066 continue;
1067 }
1068
1069 /*
1070 * if we're freeing, remove all mappings of the page now.
1071 * if we're cleaning, check if the page is needs to be cleaned.
1072 */
1073
1074 if (flags & PGO_FREE) {
1075 pmap_page_protect(pg, VM_PROT_NONE);
1076 } else if (flags & PGO_CLEANIT) {
1077
1078 /*
1079 * if we still have some hope to pull this vnode off
1080 * from the syncer queue, write-protect the page.
1081 */
1082
1083 if (cleanall && wasclean &&
1084 gp->g_dirtygen == dirtygen) {
1085
1086 /*
1087 * uobj pages get wired only by uvm_fault
1088 * where uobj is locked.
1089 */
1090
1091 if (pg->wire_count == 0) {
1092 pmap_page_protect(pg,
1093 VM_PROT_READ|VM_PROT_EXECUTE);
1094 } else {
1095 cleanall = false;
1096 }
1097 }
1098 }
1099
1100 if (flags & PGO_CLEANIT) {
1101 needs_clean = pmap_clear_modify(pg) ||
1102 (pg->flags & PG_CLEAN) == 0;
1103 pg->flags |= PG_CLEAN;
1104 } else {
1105 needs_clean = false;
1106 }
1107
1108 /*
1109 * if we're cleaning, build a cluster.
1110 * the cluster will consist of pages which are currently dirty,
1111 * but they will be returned to us marked clean.
1112 * if not cleaning, just operate on the one page.
1113 */
1114
1115 if (needs_clean) {
1116 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1117 wasclean = false;
1118 memset(pgs, 0, sizeof(pgs));
1119 pg->flags |= PG_BUSY;
1120 UVM_PAGE_OWN(pg, "genfs_putpages");
1121
1122 /*
1123 * let the fs constrain the offset range of the cluster.
1124 * we additionally constrain the range here such that
1125 * it fits in the "pgs" pages array.
1126 */
1127
1128 off_t fslo, fshi, genlo, lo;
1129 GOP_PUTRANGE(vp, off, &fslo, &fshi);
1130 KASSERT(fslo == trunc_page(fslo));
1131 KASSERT(fslo <= off);
1132 KASSERT(fshi == trunc_page(fshi));
1133 KASSERT(fshi == 0 || off < fshi);
1134
1135 if (off > MAXPHYS / 2)
1136 genlo = trunc_page(off - (MAXPHYS / 2));
1137 else
1138 genlo = 0;
1139 lo = MAX(fslo, genlo);
1140
1141 /*
1142 * first look backward.
1143 */
1144
1145 npages = (off - lo) >> PAGE_SHIFT;
1146 nback = npages;
1147 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1148 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1149 if (nback) {
1150 memmove(&pgs[0], &pgs[npages - nback],
1151 nback * sizeof(pgs[0]));
1152 if (npages - nback < nback)
1153 memset(&pgs[nback], 0,
1154 (npages - nback) * sizeof(pgs[0]));
1155 else
1156 memset(&pgs[npages - nback], 0,
1157 nback * sizeof(pgs[0]));
1158 }
1159
1160 /*
1161 * then plug in our page of interest.
1162 */
1163
1164 pgs[nback] = pg;
1165
1166 /*
1167 * then look forward to fill in the remaining space in
1168 * the array of pages.
1169 */
1170
1171 npages = MAXPAGES - nback - 1;
1172 if (fshi)
1173 npages = MIN(npages,
1174 (fshi - off - 1) >> PAGE_SHIFT);
1175 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1176 &pgs[nback + 1],
1177 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1178 npages += nback + 1;
1179 } else {
1180 pgs[0] = pg;
1181 npages = 1;
1182 nback = 0;
1183 }
1184
1185 /*
1186 * apply FREE or DEACTIVATE options if requested.
1187 */
1188
1189 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1190 mutex_enter(&uvm_pageqlock);
1191 }
1192 for (i = 0; i < npages; i++) {
1193 tpg = pgs[i];
1194 KASSERT(tpg->uobject == uobj);
1195 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1196 pg = tpg;
1197 if (tpg->offset < startoff || tpg->offset >= endoff)
1198 continue;
1199 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1200 uvm_pagedeactivate(tpg);
1201 } else if (flags & PGO_FREE) {
1202 pmap_page_protect(tpg, VM_PROT_NONE);
1203 if (tpg->flags & PG_BUSY) {
1204 tpg->flags |= freeflag;
1205 if (pagedaemon) {
1206 uvm_pageout_start(1);
1207 uvm_pagedequeue(tpg);
1208 }
1209 } else {
1210
1211 /*
1212 * ``page is not busy''
1213 * implies that npages is 1
1214 * and needs_clean is false.
1215 */
1216
1217 nextpg = TAILQ_NEXT(tpg, listq.queue);
1218 uvm_pagefree(tpg);
1219 if (pagedaemon)
1220 uvmexp.pdfreed++;
1221 }
1222 }
1223 }
1224 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1225 mutex_exit(&uvm_pageqlock);
1226 }
1227 if (needs_clean) {
1228 modified = true;
1229
1230 /*
1231 * start the i/o. if we're traversing by list,
1232 * keep our place in the list with a marker page.
1233 */
1234
1235 if (by_list) {
1236 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1237 listq.queue);
1238 }
1239 mutex_exit(slock);
1240 error = GOP_WRITE(vp, pgs, npages, flags);
1241 mutex_enter(slock);
1242 if (by_list) {
1243 pg = TAILQ_NEXT(&curmp, listq.queue);
1244 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1245 }
1246 if (error) {
1247 break;
1248 }
1249 if (by_list) {
1250 continue;
1251 }
1252 }
1253
1254 /*
1255 * find the next page and continue if there was no error.
1256 */
1257
1258 if (by_list) {
1259 if (nextpg) {
1260 pg = nextpg;
1261 nextpg = NULL;
1262 } else {
1263 pg = TAILQ_NEXT(pg, listq.queue);
1264 }
1265 } else {
1266 off += (npages - nback) << PAGE_SHIFT;
1267 if (off < endoff) {
1268 pg = uvm_pagelookup(uobj, off);
1269 }
1270 }
1271 }
1272 if (by_list) {
1273 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1274 }
1275
1276 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1277 (vp->v_type != VBLK ||
1278 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1279 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1280 }
1281
1282 /*
1283 * if we're cleaning and there was nothing to clean,
1284 * take us off the syncer list. if we started any i/o
1285 * and we're doing sync i/o, wait for all writes to finish.
1286 */
1287
1288 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1289 (vp->v_iflag & VI_ONWORKLST) != 0) {
1290 #if defined(DEBUG)
1291 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1292 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1293 continue;
1294 }
1295 if ((pg->flags & PG_CLEAN) == 0) {
1296 printf("%s: %p: !CLEAN\n", __func__, pg);
1297 }
1298 if (pmap_is_modified(pg)) {
1299 printf("%s: %p: modified\n", __func__, pg);
1300 }
1301 }
1302 #endif /* defined(DEBUG) */
1303 vp->v_iflag &= ~VI_WRMAPDIRTY;
1304 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1305 vn_syncer_remove_from_worklist(vp);
1306 }
1307
1308 #if !defined(DEBUG)
1309 skip_scan:
1310 #endif /* !defined(DEBUG) */
1311
1312 /* Wait for output to complete. */
1313 if (!wasclean && !async && vp->v_numoutput != 0) {
1314 while (vp->v_numoutput != 0)
1315 cv_wait(&vp->v_cv, slock);
1316 }
1317 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1318 mutex_exit(slock);
1319
1320 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1321 /*
1322 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1323 * retrying is not a big deal because, in many cases,
1324 * uobj->uo_npages is already 0 here.
1325 */
1326 mutex_enter(slock);
1327 goto retry;
1328 }
1329
1330 if (trans_mp) {
1331 if (holds_wapbl)
1332 WAPBL_END(trans_mp);
1333 fstrans_done(trans_mp);
1334 }
1335
1336 return (error);
1337 }
1338
1339 /*
1340 * Default putrange method for file systems that do not care
1341 * how many pages are given to one GOP_WRITE() call.
1342 */
1343 void
1344 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1345 {
1346
1347 *lop = 0;
1348 *hip = 0;
1349 }
1350
1351 int
1352 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1353 {
1354 off_t off;
1355 vaddr_t kva;
1356 size_t len;
1357 int error;
1358 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1359
1360 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1361 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1362
1363 off = pgs[0]->offset;
1364 kva = uvm_pagermapin(pgs, npages,
1365 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1366 len = npages << PAGE_SHIFT;
1367
1368 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1369 uvm_aio_biodone);
1370
1371 return error;
1372 }
1373
1374 int
1375 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1376 {
1377 off_t off;
1378 vaddr_t kva;
1379 size_t len;
1380 int error;
1381 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1382
1383 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1384 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1385
1386 off = pgs[0]->offset;
1387 kva = uvm_pagermapin(pgs, npages,
1388 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1389 len = npages << PAGE_SHIFT;
1390
1391 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1392 uvm_aio_biodone);
1393
1394 return error;
1395 }
1396
1397 /*
1398 * Backend routine for doing I/O to vnode pages. Pages are already locked
1399 * and mapped into kernel memory. Here we just look up the underlying
1400 * device block addresses and call the strategy routine.
1401 */
1402
1403 static int
1404 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1405 enum uio_rw rw, void (*iodone)(struct buf *))
1406 {
1407 int s, error;
1408 int fs_bshift, dev_bshift;
1409 off_t eof, offset, startoffset;
1410 size_t bytes, iobytes, skipbytes;
1411 struct buf *mbp, *bp;
1412 const bool async = (flags & PGO_SYNCIO) == 0;
1413 const bool lazy = (flags & PGO_LAZY) == 0;
1414 const bool iowrite = rw == UIO_WRITE;
1415 const int brw = iowrite ? B_WRITE : B_READ;
1416 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1417
1418 UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1419 (uintptr_t)vp, (uintptr_t)kva, len, flags);
1420
1421 KASSERT(vp->v_size <= vp->v_writesize);
1422 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1423 if (vp->v_type != VBLK) {
1424 fs_bshift = vp->v_mount->mnt_fs_bshift;
1425 dev_bshift = vp->v_mount->mnt_dev_bshift;
1426 } else {
1427 fs_bshift = DEV_BSHIFT;
1428 dev_bshift = DEV_BSHIFT;
1429 }
1430 error = 0;
1431 startoffset = off;
1432 bytes = MIN(len, eof - startoffset);
1433 skipbytes = 0;
1434 KASSERT(bytes != 0);
1435
1436 if (iowrite) {
1437 mutex_enter(vp->v_interlock);
1438 vp->v_numoutput += 2;
1439 mutex_exit(vp->v_interlock);
1440 }
1441 mbp = getiobuf(vp, true);
1442 UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1443 (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1444 mbp->b_bufsize = len;
1445 mbp->b_data = (void *)kva;
1446 mbp->b_resid = mbp->b_bcount = bytes;
1447 mbp->b_cflags = BC_BUSY | BC_AGE;
1448 if (async) {
1449 mbp->b_flags = brw | B_ASYNC;
1450 mbp->b_iodone = iodone;
1451 } else {
1452 mbp->b_flags = brw;
1453 mbp->b_iodone = NULL;
1454 }
1455 if (curlwp == uvm.pagedaemon_lwp)
1456 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1457 else if (async || lazy)
1458 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1459 else
1460 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1461
1462 bp = NULL;
1463 for (offset = startoffset;
1464 bytes > 0;
1465 offset += iobytes, bytes -= iobytes) {
1466 int run;
1467 daddr_t lbn, blkno;
1468 struct vnode *devvp;
1469
1470 /*
1471 * bmap the file to find out the blkno to read from and
1472 * how much we can read in one i/o. if bmap returns an error,
1473 * skip the rest of the top-level i/o.
1474 */
1475
1476 lbn = offset >> fs_bshift;
1477 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1478 if (error) {
1479 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
1480 lbn, error, 0, 0);
1481 skipbytes += bytes;
1482 bytes = 0;
1483 goto loopdone;
1484 }
1485
1486 /*
1487 * see how many pages can be read with this i/o.
1488 * reduce the i/o size if necessary to avoid
1489 * overwriting pages with valid data.
1490 */
1491
1492 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1493 bytes);
1494
1495 /*
1496 * if this block isn't allocated, zero it instead of
1497 * reading it. unless we are going to allocate blocks,
1498 * mark the pages we zeroed PG_RDONLY.
1499 */
1500
1501 if (blkno == (daddr_t)-1) {
1502 if (!iowrite) {
1503 memset((char *)kva + (offset - startoffset), 0,
1504 iobytes);
1505 }
1506 skipbytes += iobytes;
1507 continue;
1508 }
1509
1510 /*
1511 * allocate a sub-buf for this piece of the i/o
1512 * (or just use mbp if there's only 1 piece),
1513 * and start it going.
1514 */
1515
1516 if (offset == startoffset && iobytes == bytes) {
1517 bp = mbp;
1518 } else {
1519 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1520 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1521 bp = getiobuf(vp, true);
1522 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1523 }
1524 bp->b_lblkno = 0;
1525
1526 /* adjust physical blkno for partial blocks */
1527 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1528 dev_bshift);
1529
1530 UVMHIST_LOG(ubchist,
1531 "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1532 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1533
1534 VOP_STRATEGY(devvp, bp);
1535 }
1536
1537 loopdone:
1538 if (skipbytes) {
1539 UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1540 }
1541 nestiobuf_done(mbp, skipbytes, error);
1542 if (async) {
1543 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1544 return (0);
1545 }
1546 UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1547 error = biowait(mbp);
1548 s = splbio();
1549 (*iodone)(mbp);
1550 splx(s);
1551 UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1552 return (error);
1553 }
1554
1555 int
1556 genfs_compat_getpages(void *v)
1557 {
1558 struct vop_getpages_args /* {
1559 struct vnode *a_vp;
1560 voff_t a_offset;
1561 struct vm_page **a_m;
1562 int *a_count;
1563 int a_centeridx;
1564 vm_prot_t a_access_type;
1565 int a_advice;
1566 int a_flags;
1567 } */ *ap = v;
1568
1569 off_t origoffset;
1570 struct vnode *vp = ap->a_vp;
1571 struct uvm_object *uobj = &vp->v_uobj;
1572 struct vm_page *pg, **pgs;
1573 vaddr_t kva;
1574 int i, error, orignpages, npages;
1575 struct iovec iov;
1576 struct uio uio;
1577 kauth_cred_t cred = curlwp->l_cred;
1578 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1579
1580 error = 0;
1581 origoffset = ap->a_offset;
1582 orignpages = *ap->a_count;
1583 pgs = ap->a_m;
1584
1585 if (ap->a_flags & PGO_LOCKED) {
1586 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1587 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1588
1589 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1590 if (error == 0 && memwrite) {
1591 genfs_markdirty(vp);
1592 }
1593 return error;
1594 }
1595 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1596 mutex_exit(uobj->vmobjlock);
1597 return EINVAL;
1598 }
1599 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1600 mutex_exit(uobj->vmobjlock);
1601 return 0;
1602 }
1603 npages = orignpages;
1604 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1605 mutex_exit(uobj->vmobjlock);
1606 kva = uvm_pagermapin(pgs, npages,
1607 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1608 for (i = 0; i < npages; i++) {
1609 pg = pgs[i];
1610 if ((pg->flags & PG_FAKE) == 0) {
1611 continue;
1612 }
1613 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1614 iov.iov_len = PAGE_SIZE;
1615 uio.uio_iov = &iov;
1616 uio.uio_iovcnt = 1;
1617 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1618 uio.uio_rw = UIO_READ;
1619 uio.uio_resid = PAGE_SIZE;
1620 UIO_SETUP_SYSSPACE(&uio);
1621 /* XXX vn_lock */
1622 error = VOP_READ(vp, &uio, 0, cred);
1623 if (error) {
1624 break;
1625 }
1626 if (uio.uio_resid) {
1627 memset(iov.iov_base, 0, uio.uio_resid);
1628 }
1629 }
1630 uvm_pagermapout(kva, npages);
1631 mutex_enter(uobj->vmobjlock);
1632 mutex_enter(&uvm_pageqlock);
1633 for (i = 0; i < npages; i++) {
1634 pg = pgs[i];
1635 if (error && (pg->flags & PG_FAKE) != 0) {
1636 pg->flags |= PG_RELEASED;
1637 } else {
1638 pmap_clear_modify(pg);
1639 uvm_pageactivate(pg);
1640 }
1641 }
1642 if (error) {
1643 uvm_page_unbusy(pgs, npages);
1644 }
1645 mutex_exit(&uvm_pageqlock);
1646 if (error == 0 && memwrite) {
1647 genfs_markdirty(vp);
1648 }
1649 mutex_exit(uobj->vmobjlock);
1650 return error;
1651 }
1652
1653 int
1654 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1655 int flags)
1656 {
1657 off_t offset;
1658 struct iovec iov;
1659 struct uio uio;
1660 kauth_cred_t cred = curlwp->l_cred;
1661 struct buf *bp;
1662 vaddr_t kva;
1663 int error;
1664
1665 offset = pgs[0]->offset;
1666 kva = uvm_pagermapin(pgs, npages,
1667 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1668
1669 iov.iov_base = (void *)kva;
1670 iov.iov_len = npages << PAGE_SHIFT;
1671 uio.uio_iov = &iov;
1672 uio.uio_iovcnt = 1;
1673 uio.uio_offset = offset;
1674 uio.uio_rw = UIO_WRITE;
1675 uio.uio_resid = npages << PAGE_SHIFT;
1676 UIO_SETUP_SYSSPACE(&uio);
1677 /* XXX vn_lock */
1678 error = VOP_WRITE(vp, &uio, 0, cred);
1679
1680 mutex_enter(vp->v_interlock);
1681 vp->v_numoutput++;
1682 mutex_exit(vp->v_interlock);
1683
1684 bp = getiobuf(vp, true);
1685 bp->b_cflags = BC_BUSY | BC_AGE;
1686 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1687 bp->b_data = (char *)kva;
1688 bp->b_bcount = npages << PAGE_SHIFT;
1689 bp->b_bufsize = npages << PAGE_SHIFT;
1690 bp->b_resid = 0;
1691 bp->b_error = error;
1692 uvm_aio_aiodone(bp);
1693 return (error);
1694 }
1695
1696 /*
1697 * Process a uio using direct I/O. If we reach a part of the request
1698 * which cannot be processed in this fashion for some reason, just return.
1699 * The caller must handle some additional part of the request using
1700 * buffered I/O before trying direct I/O again.
1701 */
1702
1703 void
1704 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1705 {
1706 struct vmspace *vs;
1707 struct iovec *iov;
1708 vaddr_t va;
1709 size_t len;
1710 const int mask = DEV_BSIZE - 1;
1711 int error;
1712 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1713 (ioflag & IO_JOURNALLOCKED) == 0);
1714
1715 /*
1716 * We only support direct I/O to user space for now.
1717 */
1718
1719 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1720 return;
1721 }
1722
1723 /*
1724 * If the vnode is mapped, we would need to get the getpages lock
1725 * to stabilize the bmap, but then we would get into trouble while
1726 * locking the pages if the pages belong to this same vnode (or a
1727 * multi-vnode cascade to the same effect). Just fall back to
1728 * buffered I/O if the vnode is mapped to avoid this mess.
1729 */
1730
1731 if (vp->v_vflag & VV_MAPPED) {
1732 return;
1733 }
1734
1735 if (need_wapbl) {
1736 error = WAPBL_BEGIN(vp->v_mount);
1737 if (error)
1738 return;
1739 }
1740
1741 /*
1742 * Do as much of the uio as possible with direct I/O.
1743 */
1744
1745 vs = uio->uio_vmspace;
1746 while (uio->uio_resid) {
1747 iov = uio->uio_iov;
1748 if (iov->iov_len == 0) {
1749 uio->uio_iov++;
1750 uio->uio_iovcnt--;
1751 continue;
1752 }
1753 va = (vaddr_t)iov->iov_base;
1754 len = MIN(iov->iov_len, genfs_maxdio);
1755 len &= ~mask;
1756
1757 /*
1758 * If the next chunk is smaller than DEV_BSIZE or extends past
1759 * the current EOF, then fall back to buffered I/O.
1760 */
1761
1762 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1763 break;
1764 }
1765
1766 /*
1767 * Check alignment. The file offset must be at least
1768 * sector-aligned. The exact constraint on memory alignment
1769 * is very hardware-dependent, but requiring sector-aligned
1770 * addresses there too is safe.
1771 */
1772
1773 if (uio->uio_offset & mask || va & mask) {
1774 break;
1775 }
1776 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1777 uio->uio_rw);
1778 if (error) {
1779 break;
1780 }
1781 iov->iov_base = (char *)iov->iov_base + len;
1782 iov->iov_len -= len;
1783 uio->uio_offset += len;
1784 uio->uio_resid -= len;
1785 }
1786
1787 if (need_wapbl)
1788 WAPBL_END(vp->v_mount);
1789 }
1790
1791 /*
1792 * Iodone routine for direct I/O. We don't do much here since the request is
1793 * always synchronous, so the caller will do most of the work after biowait().
1794 */
1795
1796 static void
1797 genfs_dio_iodone(struct buf *bp)
1798 {
1799
1800 KASSERT((bp->b_flags & B_ASYNC) == 0);
1801 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1802 mutex_enter(bp->b_objlock);
1803 vwakeup(bp);
1804 mutex_exit(bp->b_objlock);
1805 }
1806 putiobuf(bp);
1807 }
1808
1809 /*
1810 * Process one chunk of a direct I/O request.
1811 */
1812
1813 static int
1814 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1815 off_t off, enum uio_rw rw)
1816 {
1817 struct vm_map *map;
1818 struct pmap *upm, *kpm __unused;
1819 size_t klen = round_page(uva + len) - trunc_page(uva);
1820 off_t spoff, epoff;
1821 vaddr_t kva, puva;
1822 paddr_t pa;
1823 vm_prot_t prot;
1824 int error, rv __diagused, poff, koff;
1825 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1826 (rw == UIO_WRITE ? PGO_FREE : 0);
1827
1828 /*
1829 * For writes, verify that this range of the file already has fully
1830 * allocated backing store. If there are any holes, just punt and
1831 * make the caller take the buffered write path.
1832 */
1833
1834 if (rw == UIO_WRITE) {
1835 daddr_t lbn, elbn, blkno;
1836 int bsize, bshift, run;
1837
1838 bshift = vp->v_mount->mnt_fs_bshift;
1839 bsize = 1 << bshift;
1840 lbn = off >> bshift;
1841 elbn = (off + len + bsize - 1) >> bshift;
1842 while (lbn < elbn) {
1843 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1844 if (error) {
1845 return error;
1846 }
1847 if (blkno == (daddr_t)-1) {
1848 return ENOSPC;
1849 }
1850 lbn += 1 + run;
1851 }
1852 }
1853
1854 /*
1855 * Flush any cached pages for parts of the file that we're about to
1856 * access. If we're writing, invalidate pages as well.
1857 */
1858
1859 spoff = trunc_page(off);
1860 epoff = round_page(off + len);
1861 mutex_enter(vp->v_interlock);
1862 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1863 if (error) {
1864 return error;
1865 }
1866
1867 /*
1868 * Wire the user pages and remap them into kernel memory.
1869 */
1870
1871 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1872 error = uvm_vslock(vs, (void *)uva, len, prot);
1873 if (error) {
1874 return error;
1875 }
1876
1877 map = &vs->vm_map;
1878 upm = vm_map_pmap(map);
1879 kpm = vm_map_pmap(kernel_map);
1880 puva = trunc_page(uva);
1881 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1882 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1883 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1884 rv = pmap_extract(upm, puva + poff, &pa);
1885 KASSERT(rv);
1886 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1887 }
1888 pmap_update(kpm);
1889
1890 /*
1891 * Do the I/O.
1892 */
1893
1894 koff = uva - trunc_page(uva);
1895 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1896 genfs_dio_iodone);
1897
1898 /*
1899 * Tear down the kernel mapping.
1900 */
1901
1902 pmap_kremove(kva, klen);
1903 pmap_update(kpm);
1904 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1905
1906 /*
1907 * Unwire the user pages.
1908 */
1909
1910 uvm_vsunlock(vs, (void *)uva, len);
1911 return error;
1912 }
1913