genfs_io.c revision 1.73 1 /* $NetBSD: genfs_io.c,v 1.73 2018/12/09 20:32:37 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.73 2018/12/09 20:32:37 jdolecek Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
132 (flags & PGO_JOURNALLOCKED) == 0);
133 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
134 bool holds_wapbl = false;
135 struct mount *trans_mount = NULL;
136 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
137
138 UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
139 (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
140
141 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
142 vp->v_type == VLNK || vp->v_type == VBLK);
143
144 error = vdead_check(vp, VDEAD_NOWAIT);
145 if (error) {
146 if ((flags & PGO_LOCKED) == 0)
147 mutex_exit(uobj->vmobjlock);
148 return error;
149 }
150
151 startover:
152 error = 0;
153 const voff_t origvsize = vp->v_size;
154 const off_t origoffset = ap->a_offset;
155 const int orignpages = *ap->a_count;
156
157 GOP_SIZE(vp, origvsize, &diskeof, 0);
158 if (flags & PGO_PASTEOF) {
159 off_t newsize;
160 #if defined(DIAGNOSTIC)
161 off_t writeeof;
162 #endif /* defined(DIAGNOSTIC) */
163
164 newsize = MAX(origvsize,
165 origoffset + (orignpages << PAGE_SHIFT));
166 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
167 #if defined(DIAGNOSTIC)
168 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
169 if (newsize > round_page(writeeof)) {
170 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
171 __func__, newsize, round_page(writeeof));
172 }
173 #endif /* defined(DIAGNOSTIC) */
174 } else {
175 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
176 }
177 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
178 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
179 KASSERT(orignpages > 0);
180
181 /*
182 * Bounds-check the request.
183 */
184
185 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
186 if ((flags & PGO_LOCKED) == 0) {
187 mutex_exit(uobj->vmobjlock);
188 }
189 UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
190 origoffset, *ap->a_count, memeof,0);
191 error = EINVAL;
192 goto out_err;
193 }
194
195 /* uobj is locked */
196
197 if ((flags & PGO_NOTIMESTAMP) == 0 &&
198 (vp->v_type != VBLK ||
199 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
200 int updflags = 0;
201
202 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
203 updflags = GOP_UPDATE_ACCESSED;
204 }
205 if (memwrite) {
206 updflags |= GOP_UPDATE_MODIFIED;
207 }
208 if (updflags != 0) {
209 GOP_MARKUPDATE(vp, updflags);
210 }
211 }
212
213 /*
214 * For PGO_LOCKED requests, just return whatever's in memory.
215 */
216
217 if (flags & PGO_LOCKED) {
218 int nfound;
219 struct vm_page *pg;
220
221 KASSERT(!glocked);
222 npages = *ap->a_count;
223 #if defined(DEBUG)
224 for (i = 0; i < npages; i++) {
225 pg = ap->a_m[i];
226 KASSERT(pg == NULL || pg == PGO_DONTCARE);
227 }
228 #endif /* defined(DEBUG) */
229 nfound = uvn_findpages(uobj, origoffset, &npages,
230 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
231 KASSERT(npages == *ap->a_count);
232 if (nfound == 0) {
233 error = EBUSY;
234 goto out_err;
235 }
236 if (!genfs_node_rdtrylock(vp)) {
237 genfs_rel_pages(ap->a_m, npages);
238
239 /*
240 * restore the array.
241 */
242
243 for (i = 0; i < npages; i++) {
244 pg = ap->a_m[i];
245
246 if (pg != NULL && pg != PGO_DONTCARE) {
247 ap->a_m[i] = NULL;
248 }
249 KASSERT(ap->a_m[i] == NULL ||
250 ap->a_m[i] == PGO_DONTCARE);
251 }
252 } else {
253 genfs_node_unlock(vp);
254 }
255 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
256 if (error == 0 && memwrite) {
257 genfs_markdirty(vp);
258 }
259 goto out_err;
260 }
261 mutex_exit(uobj->vmobjlock);
262
263 /*
264 * find the requested pages and make some simple checks.
265 * leave space in the page array for a whole block.
266 */
267
268 const int fs_bshift = (vp->v_type != VBLK) ?
269 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
270 const int fs_bsize = 1 << fs_bshift;
271 #define blk_mask (fs_bsize - 1)
272 #define trunc_blk(x) ((x) & ~blk_mask)
273 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
274
275 const int orignmempages = MIN(orignpages,
276 round_page(memeof - origoffset) >> PAGE_SHIFT);
277 npages = orignmempages;
278 const off_t startoffset = trunc_blk(origoffset);
279 const off_t endoffset = MIN(
280 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
281 round_page(memeof));
282 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
283
284 const int pgs_size = sizeof(struct vm_page *) *
285 ((endoffset - startoffset) >> PAGE_SHIFT);
286 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
287
288 if (pgs_size > sizeof(pgs_onstack)) {
289 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
290 if (pgs == NULL) {
291 pgs = pgs_onstack;
292 error = ENOMEM;
293 goto out_err;
294 }
295 } else {
296 pgs = pgs_onstack;
297 (void)memset(pgs, 0, pgs_size);
298 }
299
300 UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
301 ridx, npages, startoffset, endoffset);
302
303 if (trans_mount == NULL) {
304 trans_mount = vp->v_mount;
305 fstrans_start(trans_mount);
306 /*
307 * check if this vnode is still valid.
308 */
309 mutex_enter(vp->v_interlock);
310 error = vdead_check(vp, 0);
311 mutex_exit(vp->v_interlock);
312 if (error)
313 goto out_err_free;
314 /*
315 * XXX: This assumes that we come here only via
316 * the mmio path
317 */
318 if (blockalloc && need_wapbl) {
319 error = WAPBL_BEGIN(trans_mount);
320 if (error)
321 goto out_err_free;
322 holds_wapbl = true;
323 }
324 }
325
326 /*
327 * hold g_glock to prevent a race with truncate.
328 *
329 * check if our idea of v_size is still valid.
330 */
331
332 KASSERT(!glocked || genfs_node_wrlocked(vp));
333 if (!glocked) {
334 if (blockalloc) {
335 genfs_node_wrlock(vp);
336 } else {
337 genfs_node_rdlock(vp);
338 }
339 }
340 mutex_enter(uobj->vmobjlock);
341 if (vp->v_size < origvsize) {
342 if (!glocked) {
343 genfs_node_unlock(vp);
344 }
345 if (pgs != pgs_onstack)
346 kmem_free(pgs, pgs_size);
347 goto startover;
348 }
349
350 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
351 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
352 if (!glocked) {
353 genfs_node_unlock(vp);
354 }
355 KASSERT(async != 0);
356 genfs_rel_pages(&pgs[ridx], orignmempages);
357 mutex_exit(uobj->vmobjlock);
358 error = EBUSY;
359 goto out_err_free;
360 }
361
362 /*
363 * if the pages are already resident, just return them.
364 */
365
366 for (i = 0; i < npages; i++) {
367 struct vm_page *pg = pgs[ridx + i];
368
369 if ((pg->flags & PG_FAKE) ||
370 (blockalloc && (pg->flags & PG_RDONLY))) {
371 break;
372 }
373 }
374 if (i == npages) {
375 if (!glocked) {
376 genfs_node_unlock(vp);
377 }
378 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
379 npages += ridx;
380 goto out;
381 }
382
383 /*
384 * if PGO_OVERWRITE is set, don't bother reading the pages.
385 */
386
387 if (overwrite) {
388 if (!glocked) {
389 genfs_node_unlock(vp);
390 }
391 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
392
393 for (i = 0; i < npages; i++) {
394 struct vm_page *pg = pgs[ridx + i];
395
396 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
397 }
398 npages += ridx;
399 goto out;
400 }
401
402 /*
403 * the page wasn't resident and we're not overwriting,
404 * so we're going to have to do some i/o.
405 * find any additional pages needed to cover the expanded range.
406 */
407
408 npages = (endoffset - startoffset) >> PAGE_SHIFT;
409 if (startoffset != origoffset || npages != orignmempages) {
410 int npgs;
411
412 /*
413 * we need to avoid deadlocks caused by locking
414 * additional pages at lower offsets than pages we
415 * already have locked. unlock them all and start over.
416 */
417
418 genfs_rel_pages(&pgs[ridx], orignmempages);
419 memset(pgs, 0, pgs_size);
420
421 UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
422 startoffset, endoffset, 0,0);
423 npgs = npages;
424 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
425 async ? UFP_NOWAIT : UFP_ALL) != npages) {
426 if (!glocked) {
427 genfs_node_unlock(vp);
428 }
429 KASSERT(async != 0);
430 genfs_rel_pages(pgs, npages);
431 mutex_exit(uobj->vmobjlock);
432 error = EBUSY;
433 goto out_err_free;
434 }
435 }
436
437 mutex_exit(uobj->vmobjlock);
438 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
439 async, memwrite, blockalloc, glocked);
440 if (!glocked) {
441 genfs_node_unlock(vp);
442 }
443 if (error == 0 && async)
444 goto out_err_free;
445 mutex_enter(uobj->vmobjlock);
446
447 /*
448 * we're almost done! release the pages...
449 * for errors, we free the pages.
450 * otherwise we activate them and mark them as valid and clean.
451 * also, unbusy pages that were not actually requested.
452 */
453
454 if (error) {
455 genfs_rel_pages(pgs, npages);
456 mutex_exit(uobj->vmobjlock);
457 UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
458 goto out_err_free;
459 }
460
461 out:
462 UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
463 error = 0;
464 mutex_enter(&uvm_pageqlock);
465 for (i = 0; i < npages; i++) {
466 struct vm_page *pg = pgs[i];
467 if (pg == NULL) {
468 continue;
469 }
470 UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
471 (uintptr_t)pg, pg->flags, 0,0);
472 if (pg->flags & PG_FAKE && !overwrite) {
473 pg->flags &= ~(PG_FAKE);
474 pmap_clear_modify(pgs[i]);
475 }
476 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
477 if (i < ridx || i >= ridx + orignmempages || async) {
478 UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
479 (uintptr_t)pg, pg->offset,0,0);
480 if (pg->flags & PG_WANTED) {
481 wakeup(pg);
482 }
483 if (pg->flags & PG_FAKE) {
484 KASSERT(overwrite);
485 uvm_pagezero(pg);
486 }
487 if (pg->flags & PG_RELEASED) {
488 uvm_pagefree(pg);
489 continue;
490 }
491 uvm_pageenqueue(pg);
492 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
493 UVM_PAGE_OWN(pg, NULL);
494 }
495 }
496 mutex_exit(&uvm_pageqlock);
497 if (memwrite) {
498 genfs_markdirty(vp);
499 }
500 mutex_exit(uobj->vmobjlock);
501 if (ap->a_m != NULL) {
502 memcpy(ap->a_m, &pgs[ridx],
503 orignmempages * sizeof(struct vm_page *));
504 }
505
506 out_err_free:
507 if (pgs != NULL && pgs != pgs_onstack)
508 kmem_free(pgs, pgs_size);
509 out_err:
510 if (trans_mount != NULL) {
511 if (holds_wapbl)
512 WAPBL_END(trans_mount);
513 fstrans_done(trans_mount);
514 }
515 return error;
516 }
517
518 /*
519 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
520 *
521 * "glocked" (which is currently not actually used) tells us not whether
522 * the genfs_node is locked on entry (it always is) but whether it was
523 * locked on entry to genfs_getpages.
524 */
525 static int
526 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
527 off_t startoffset, off_t diskeof,
528 bool async, bool memwrite, bool blockalloc, bool glocked)
529 {
530 struct uvm_object * const uobj = &vp->v_uobj;
531 const int fs_bshift = (vp->v_type != VBLK) ?
532 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
533 const int dev_bshift = (vp->v_type != VBLK) ?
534 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
535 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
536 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
537 vaddr_t kva;
538 struct buf *bp, *mbp;
539 bool sawhole = false;
540 int i;
541 int error = 0;
542
543 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
544
545 /*
546 * read the desired page(s).
547 */
548
549 totalbytes = npages << PAGE_SHIFT;
550 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
551 tailbytes = totalbytes - bytes;
552 skipbytes = 0;
553
554 kva = uvm_pagermapin(pgs, npages,
555 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
556 if (kva == 0)
557 return EBUSY;
558
559 mbp = getiobuf(vp, true);
560 mbp->b_bufsize = totalbytes;
561 mbp->b_data = (void *)kva;
562 mbp->b_resid = mbp->b_bcount = bytes;
563 mbp->b_cflags = BC_BUSY;
564 if (async) {
565 mbp->b_flags = B_READ | B_ASYNC;
566 mbp->b_iodone = uvm_aio_biodone;
567 } else {
568 mbp->b_flags = B_READ;
569 mbp->b_iodone = NULL;
570 }
571 if (async)
572 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
573 else
574 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
575
576 /*
577 * if EOF is in the middle of the range, zero the part past EOF.
578 * skip over pages which are not PG_FAKE since in that case they have
579 * valid data that we need to preserve.
580 */
581
582 tailstart = bytes;
583 while (tailbytes > 0) {
584 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
585
586 KASSERT(len <= tailbytes);
587 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
588 memset((void *)(kva + tailstart), 0, len);
589 UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
590 (uintptr_t)kva, tailstart, len, 0);
591 }
592 tailstart += len;
593 tailbytes -= len;
594 }
595
596 /*
597 * now loop over the pages, reading as needed.
598 */
599
600 bp = NULL;
601 off_t offset;
602 for (offset = startoffset;
603 bytes > 0;
604 offset += iobytes, bytes -= iobytes) {
605 int run;
606 daddr_t lbn, blkno;
607 int pidx;
608 struct vnode *devvp;
609
610 /*
611 * skip pages which don't need to be read.
612 */
613
614 pidx = (offset - startoffset) >> PAGE_SHIFT;
615 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
616 size_t b;
617
618 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
619 if ((pgs[pidx]->flags & PG_RDONLY)) {
620 sawhole = true;
621 }
622 b = MIN(PAGE_SIZE, bytes);
623 offset += b;
624 bytes -= b;
625 skipbytes += b;
626 pidx++;
627 UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
628 offset, 0,0,0);
629 if (bytes == 0) {
630 goto loopdone;
631 }
632 }
633
634 /*
635 * bmap the file to find out the blkno to read from and
636 * how much we can read in one i/o. if bmap returns an error,
637 * skip the rest of the top-level i/o.
638 */
639
640 lbn = offset >> fs_bshift;
641 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
642 if (error) {
643 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
644 lbn,error,0,0);
645 skipbytes += bytes;
646 bytes = 0;
647 goto loopdone;
648 }
649
650 /*
651 * see how many pages can be read with this i/o.
652 * reduce the i/o size if necessary to avoid
653 * overwriting pages with valid data.
654 */
655
656 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
657 bytes);
658 if (offset + iobytes > round_page(offset)) {
659 int pcount;
660
661 pcount = 1;
662 while (pidx + pcount < npages &&
663 pgs[pidx + pcount]->flags & PG_FAKE) {
664 pcount++;
665 }
666 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
667 (offset - trunc_page(offset)));
668 }
669
670 /*
671 * if this block isn't allocated, zero it instead of
672 * reading it. unless we are going to allocate blocks,
673 * mark the pages we zeroed PG_RDONLY.
674 */
675
676 if (blkno == (daddr_t)-1) {
677 int holepages = (round_page(offset + iobytes) -
678 trunc_page(offset)) >> PAGE_SHIFT;
679 UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
680
681 sawhole = true;
682 memset((char *)kva + (offset - startoffset), 0,
683 iobytes);
684 skipbytes += iobytes;
685
686 mutex_enter(uobj->vmobjlock);
687 for (i = 0; i < holepages; i++) {
688 if (memwrite) {
689 pgs[pidx + i]->flags &= ~PG_CLEAN;
690 }
691 if (!blockalloc) {
692 pgs[pidx + i]->flags |= PG_RDONLY;
693 }
694 }
695 mutex_exit(uobj->vmobjlock);
696 continue;
697 }
698
699 /*
700 * allocate a sub-buf for this piece of the i/o
701 * (or just use mbp if there's only 1 piece),
702 * and start it going.
703 */
704
705 if (offset == startoffset && iobytes == bytes) {
706 bp = mbp;
707 } else {
708 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
709 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
710 bp = getiobuf(vp, true);
711 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
712 }
713 bp->b_lblkno = 0;
714
715 /* adjust physical blkno for partial blocks */
716 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
717 dev_bshift);
718
719 UVMHIST_LOG(ubchist,
720 "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
721 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
722
723 VOP_STRATEGY(devvp, bp);
724 }
725
726 loopdone:
727 nestiobuf_done(mbp, skipbytes, error);
728 if (async) {
729 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
730 return 0;
731 }
732 if (bp != NULL) {
733 error = biowait(mbp);
734 }
735
736 /* Remove the mapping (make KVA available as soon as possible) */
737 uvm_pagermapout(kva, npages);
738
739 /*
740 * if this we encountered a hole then we have to do a little more work.
741 * for read faults, we marked the page PG_RDONLY so that future
742 * write accesses to the page will fault again.
743 * for write faults, we must make sure that the backing store for
744 * the page is completely allocated while the pages are locked.
745 */
746
747 if (!error && sawhole && blockalloc) {
748 error = GOP_ALLOC(vp, startoffset,
749 npages << PAGE_SHIFT, 0, cred);
750 UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
751 startoffset, npages << PAGE_SHIFT, error,0);
752 if (!error) {
753 mutex_enter(uobj->vmobjlock);
754 for (i = 0; i < npages; i++) {
755 struct vm_page *pg = pgs[i];
756
757 if (pg == NULL) {
758 continue;
759 }
760 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
761 UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
762 (uintptr_t)pg, 0, 0, 0);
763 }
764 mutex_exit(uobj->vmobjlock);
765 }
766 }
767
768 putiobuf(mbp);
769 return error;
770 }
771
772 /*
773 * generic VM putpages routine.
774 * Write the given range of pages to backing store.
775 *
776 * => "offhi == 0" means flush all pages at or after "offlo".
777 * => object should be locked by caller. we return with the
778 * object unlocked.
779 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
780 * thus, a caller might want to unlock higher level resources
781 * (e.g. vm_map) before calling flush.
782 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
783 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
784 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
785 * that new pages are inserted on the tail end of the list. thus,
786 * we can make a complete pass through the object in one go by starting
787 * at the head and working towards the tail (new pages are put in
788 * front of us).
789 * => NOTE: we are allowed to lock the page queues, so the caller
790 * must not be holding the page queue lock.
791 *
792 * note on "cleaning" object and PG_BUSY pages:
793 * this routine is holding the lock on the object. the only time
794 * that it can run into a PG_BUSY page that it does not own is if
795 * some other process has started I/O on the page (e.g. either
796 * a pagein, or a pageout). if the PG_BUSY page is being paged
797 * in, then it can not be dirty (!PG_CLEAN) because no one has
798 * had a chance to modify it yet. if the PG_BUSY page is being
799 * paged out then it means that someone else has already started
800 * cleaning the page for us (how nice!). in this case, if we
801 * have syncio specified, then after we make our pass through the
802 * object we need to wait for the other PG_BUSY pages to clear
803 * off (i.e. we need to do an iosync). also note that once a
804 * page is PG_BUSY it must stay in its object until it is un-busyed.
805 *
806 * note on page traversal:
807 * we can traverse the pages in an object either by going down the
808 * linked list in "uobj->memq", or we can go over the address range
809 * by page doing hash table lookups for each address. depending
810 * on how many pages are in the object it may be cheaper to do one
811 * or the other. we set "by_list" to true if we are using memq.
812 * if the cost of a hash lookup was equal to the cost of the list
813 * traversal we could compare the number of pages in the start->stop
814 * range to the total number of pages in the object. however, it
815 * seems that a hash table lookup is more expensive than the linked
816 * list traversal, so we multiply the number of pages in the
817 * range by an estimate of the relatively higher cost of the hash lookup.
818 */
819
820 int
821 genfs_putpages(void *v)
822 {
823 struct vop_putpages_args /* {
824 struct vnode *a_vp;
825 voff_t a_offlo;
826 voff_t a_offhi;
827 int a_flags;
828 } */ * const ap = v;
829
830 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
831 ap->a_flags, NULL);
832 }
833
834 int
835 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
836 int origflags, struct vm_page **busypg)
837 {
838 struct uvm_object * const uobj = &vp->v_uobj;
839 kmutex_t * const slock = uobj->vmobjlock;
840 off_t off;
841 int i, error, npages, nback;
842 int freeflag;
843 /*
844 * This array is larger than it should so that it's size is constant.
845 * The right size is MAXPAGES.
846 */
847 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
848 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
849 struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
850 bool wasclean, by_list, needs_clean, yld;
851 bool async = (origflags & PGO_SYNCIO) == 0;
852 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
853 struct lwp * const l = curlwp ? curlwp : &lwp0;
854 struct genfs_node * const gp = VTOG(vp);
855 struct mount *trans_mp;
856 int flags;
857 int dirtygen;
858 bool modified;
859 bool holds_wapbl;
860 bool cleanall;
861 bool onworklst;
862
863 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
864
865 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
866 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
867 KASSERT(startoff < endoff || endoff == 0);
868
869 UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
870 (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
871
872 trans_mp = NULL;
873 holds_wapbl = false;
874
875 retry:
876 modified = false;
877 flags = origflags;
878 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
879 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
880 if (uobj->uo_npages == 0) {
881 if (vp->v_iflag & VI_ONWORKLST) {
882 vp->v_iflag &= ~VI_WRMAPDIRTY;
883 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
884 vn_syncer_remove_from_worklist(vp);
885 }
886 if (trans_mp) {
887 if (holds_wapbl)
888 WAPBL_END(trans_mp);
889 fstrans_done(trans_mp);
890 }
891 mutex_exit(slock);
892 return (0);
893 }
894
895 /*
896 * the vnode has pages, set up to process the request.
897 */
898
899 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
900 if (pagedaemon) {
901 /* Pagedaemon must not sleep here. */
902 trans_mp = vp->v_mount;
903 error = fstrans_start_nowait(trans_mp);
904 if (error) {
905 mutex_exit(slock);
906 return error;
907 }
908 } else {
909 /*
910 * Cannot use vdeadcheck() here as this operation
911 * usually gets used from VOP_RECLAIM(). Test for
912 * change of v_mount instead and retry on change.
913 */
914 mutex_exit(slock);
915 trans_mp = vp->v_mount;
916 fstrans_start(trans_mp);
917 if (vp->v_mount != trans_mp) {
918 fstrans_done(trans_mp);
919 trans_mp = NULL;
920 } else {
921 holds_wapbl = (trans_mp->mnt_wapbl &&
922 (origflags & PGO_JOURNALLOCKED) == 0);
923 if (holds_wapbl) {
924 error = WAPBL_BEGIN(trans_mp);
925 if (error) {
926 fstrans_done(trans_mp);
927 return error;
928 }
929 }
930 }
931 mutex_enter(slock);
932 goto retry;
933 }
934 }
935
936 error = 0;
937 wasclean = (vp->v_numoutput == 0);
938 off = startoff;
939 if (endoff == 0 || flags & PGO_ALLPAGES) {
940 endoff = trunc_page(LLONG_MAX);
941 }
942 by_list = (uobj->uo_npages <=
943 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
944
945 /*
946 * if this vnode is known not to have dirty pages,
947 * don't bother to clean it out.
948 */
949
950 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
951 #if !defined(DEBUG)
952 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
953 goto skip_scan;
954 }
955 #endif /* !defined(DEBUG) */
956 flags &= ~PGO_CLEANIT;
957 }
958
959 /*
960 * start the loop. when scanning by list, hold the last page
961 * in the list before we start. pages allocated after we start
962 * will be added to the end of the list, so we can stop at the
963 * current last page.
964 */
965
966 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
967 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
968 (vp->v_iflag & VI_ONWORKLST) != 0;
969 dirtygen = gp->g_dirtygen;
970 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
971 if (by_list) {
972 curmp.flags = PG_MARKER;
973 endmp.flags = PG_MARKER;
974 pg = TAILQ_FIRST(&uobj->memq);
975 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
976 } else {
977 pg = uvm_pagelookup(uobj, off);
978 }
979 nextpg = NULL;
980 while (by_list || off < endoff) {
981
982 /*
983 * if the current page is not interesting, move on to the next.
984 */
985
986 KASSERT(pg == NULL || pg->uobject == uobj ||
987 (pg->flags & PG_MARKER) != 0);
988 KASSERT(pg == NULL ||
989 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
990 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
991 if (by_list) {
992 if (pg == &endmp) {
993 break;
994 }
995 if (pg->flags & PG_MARKER) {
996 pg = TAILQ_NEXT(pg, listq.queue);
997 continue;
998 }
999 if (pg->offset < startoff || pg->offset >= endoff ||
1000 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1001 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1002 wasclean = false;
1003 }
1004 pg = TAILQ_NEXT(pg, listq.queue);
1005 continue;
1006 }
1007 off = pg->offset;
1008 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1009 if (pg != NULL) {
1010 wasclean = false;
1011 }
1012 off += PAGE_SIZE;
1013 if (off < endoff) {
1014 pg = uvm_pagelookup(uobj, off);
1015 }
1016 continue;
1017 }
1018
1019 /*
1020 * if the current page needs to be cleaned and it's busy,
1021 * wait for it to become unbusy.
1022 */
1023
1024 yld = (l->l_cpu->ci_schedstate.spc_flags &
1025 SPCF_SHOULDYIELD) && !pagedaemon;
1026 if (pg->flags & PG_BUSY || yld) {
1027 UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1028 0, 0, 0);
1029 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1030 UVMHIST_LOG(ubchist, "busyfail %#jx",
1031 (uintptr_t)pg, 0, 0, 0);
1032 error = EDEADLK;
1033 if (busypg != NULL)
1034 *busypg = pg;
1035 break;
1036 }
1037 if (pagedaemon) {
1038 /*
1039 * someone has taken the page while we
1040 * dropped the lock for fstrans_start.
1041 */
1042 break;
1043 }
1044 if (by_list) {
1045 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1046 UVMHIST_LOG(ubchist, "curmp next %#jx",
1047 (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
1048 0, 0, 0);
1049 }
1050 if (yld) {
1051 mutex_exit(slock);
1052 preempt();
1053 mutex_enter(slock);
1054 } else {
1055 pg->flags |= PG_WANTED;
1056 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1057 mutex_enter(slock);
1058 }
1059 if (by_list) {
1060 UVMHIST_LOG(ubchist, "after next %#jx",
1061 (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
1062 0, 0, 0);
1063 pg = TAILQ_NEXT(&curmp, listq.queue);
1064 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1065 } else {
1066 pg = uvm_pagelookup(uobj, off);
1067 }
1068 continue;
1069 }
1070
1071 /*
1072 * if we're freeing, remove all mappings of the page now.
1073 * if we're cleaning, check if the page is needs to be cleaned.
1074 */
1075
1076 if (flags & PGO_FREE) {
1077 pmap_page_protect(pg, VM_PROT_NONE);
1078 } else if (flags & PGO_CLEANIT) {
1079
1080 /*
1081 * if we still have some hope to pull this vnode off
1082 * from the syncer queue, write-protect the page.
1083 */
1084
1085 if (cleanall && wasclean &&
1086 gp->g_dirtygen == dirtygen) {
1087
1088 /*
1089 * uobj pages get wired only by uvm_fault
1090 * where uobj is locked.
1091 */
1092
1093 if (pg->wire_count == 0) {
1094 pmap_page_protect(pg,
1095 VM_PROT_READ|VM_PROT_EXECUTE);
1096 } else {
1097 cleanall = false;
1098 }
1099 }
1100 }
1101
1102 if (flags & PGO_CLEANIT) {
1103 needs_clean = pmap_clear_modify(pg) ||
1104 (pg->flags & PG_CLEAN) == 0;
1105 pg->flags |= PG_CLEAN;
1106 } else {
1107 needs_clean = false;
1108 }
1109
1110 /*
1111 * if we're cleaning, build a cluster.
1112 * the cluster will consist of pages which are currently dirty,
1113 * but they will be returned to us marked clean.
1114 * if not cleaning, just operate on the one page.
1115 */
1116
1117 if (needs_clean) {
1118 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1119 wasclean = false;
1120 memset(pgs, 0, sizeof(pgs));
1121 pg->flags |= PG_BUSY;
1122 UVM_PAGE_OWN(pg, "genfs_putpages");
1123
1124 /*
1125 * let the fs constrain the offset range of the cluster.
1126 * we additionally constrain the range here such that
1127 * it fits in the "pgs" pages array.
1128 */
1129
1130 off_t fslo, fshi, genlo, lo;
1131 GOP_PUTRANGE(vp, off, &fslo, &fshi);
1132 KASSERT(fslo == trunc_page(fslo));
1133 KASSERT(fslo <= off);
1134 KASSERT(fshi == trunc_page(fshi));
1135 KASSERT(fshi == 0 || off < fshi);
1136
1137 if (off > MAXPHYS / 2)
1138 genlo = trunc_page(off - (MAXPHYS / 2));
1139 else
1140 genlo = 0;
1141 lo = MAX(fslo, genlo);
1142
1143 /*
1144 * first look backward.
1145 */
1146
1147 npages = (off - lo) >> PAGE_SHIFT;
1148 nback = npages;
1149 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1150 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1151 if (nback) {
1152 memmove(&pgs[0], &pgs[npages - nback],
1153 nback * sizeof(pgs[0]));
1154 if (npages - nback < nback)
1155 memset(&pgs[nback], 0,
1156 (npages - nback) * sizeof(pgs[0]));
1157 else
1158 memset(&pgs[npages - nback], 0,
1159 nback * sizeof(pgs[0]));
1160 }
1161
1162 /*
1163 * then plug in our page of interest.
1164 */
1165
1166 pgs[nback] = pg;
1167
1168 /*
1169 * then look forward to fill in the remaining space in
1170 * the array of pages.
1171 */
1172
1173 npages = MAXPAGES - nback - 1;
1174 if (fshi)
1175 npages = MIN(npages,
1176 (fshi - off - 1) >> PAGE_SHIFT);
1177 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1178 &pgs[nback + 1],
1179 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1180 npages += nback + 1;
1181 } else {
1182 pgs[0] = pg;
1183 npages = 1;
1184 nback = 0;
1185 }
1186
1187 /*
1188 * apply FREE or DEACTIVATE options if requested.
1189 */
1190
1191 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1192 mutex_enter(&uvm_pageqlock);
1193 }
1194 for (i = 0; i < npages; i++) {
1195 tpg = pgs[i];
1196 KASSERT(tpg->uobject == uobj);
1197 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1198 pg = tpg;
1199 if (tpg->offset < startoff || tpg->offset >= endoff)
1200 continue;
1201 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1202 uvm_pagedeactivate(tpg);
1203 } else if (flags & PGO_FREE) {
1204 pmap_page_protect(tpg, VM_PROT_NONE);
1205 if (tpg->flags & PG_BUSY) {
1206 tpg->flags |= freeflag;
1207 if (pagedaemon) {
1208 uvm_pageout_start(1);
1209 uvm_pagedequeue(tpg);
1210 }
1211 } else {
1212
1213 /*
1214 * ``page is not busy''
1215 * implies that npages is 1
1216 * and needs_clean is false.
1217 */
1218
1219 nextpg = TAILQ_NEXT(tpg, listq.queue);
1220 uvm_pagefree(tpg);
1221 if (pagedaemon)
1222 uvmexp.pdfreed++;
1223 }
1224 }
1225 }
1226 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1227 mutex_exit(&uvm_pageqlock);
1228 }
1229 if (needs_clean) {
1230 modified = true;
1231
1232 /*
1233 * start the i/o. if we're traversing by list,
1234 * keep our place in the list with a marker page.
1235 */
1236
1237 if (by_list) {
1238 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1239 listq.queue);
1240 }
1241 mutex_exit(slock);
1242 error = GOP_WRITE(vp, pgs, npages, flags);
1243 mutex_enter(slock);
1244 if (by_list) {
1245 pg = TAILQ_NEXT(&curmp, listq.queue);
1246 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1247 }
1248 if (error) {
1249 break;
1250 }
1251 if (by_list) {
1252 continue;
1253 }
1254 }
1255
1256 /*
1257 * find the next page and continue if there was no error.
1258 */
1259
1260 if (by_list) {
1261 if (nextpg) {
1262 pg = nextpg;
1263 nextpg = NULL;
1264 } else {
1265 pg = TAILQ_NEXT(pg, listq.queue);
1266 }
1267 } else {
1268 off += (npages - nback) << PAGE_SHIFT;
1269 if (off < endoff) {
1270 pg = uvm_pagelookup(uobj, off);
1271 }
1272 }
1273 }
1274 if (by_list) {
1275 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1276 }
1277
1278 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1279 (vp->v_type != VBLK ||
1280 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1281 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1282 }
1283
1284 /*
1285 * if we're cleaning and there was nothing to clean,
1286 * take us off the syncer list. if we started any i/o
1287 * and we're doing sync i/o, wait for all writes to finish.
1288 */
1289
1290 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1291 (vp->v_iflag & VI_ONWORKLST) != 0) {
1292 #if defined(DEBUG)
1293 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1294 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1295 continue;
1296 }
1297 if ((pg->flags & PG_CLEAN) == 0) {
1298 printf("%s: %p: !CLEAN\n", __func__, pg);
1299 }
1300 if (pmap_is_modified(pg)) {
1301 printf("%s: %p: modified\n", __func__, pg);
1302 }
1303 }
1304 #endif /* defined(DEBUG) */
1305 vp->v_iflag &= ~VI_WRMAPDIRTY;
1306 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1307 vn_syncer_remove_from_worklist(vp);
1308 }
1309
1310 #if !defined(DEBUG)
1311 skip_scan:
1312 #endif /* !defined(DEBUG) */
1313
1314 /* Wait for output to complete. */
1315 if (!wasclean && !async && vp->v_numoutput != 0) {
1316 while (vp->v_numoutput != 0)
1317 cv_wait(&vp->v_cv, slock);
1318 }
1319 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1320 mutex_exit(slock);
1321
1322 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1323 /*
1324 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1325 * retrying is not a big deal because, in many cases,
1326 * uobj->uo_npages is already 0 here.
1327 */
1328 mutex_enter(slock);
1329 goto retry;
1330 }
1331
1332 if (trans_mp) {
1333 if (holds_wapbl)
1334 WAPBL_END(trans_mp);
1335 fstrans_done(trans_mp);
1336 }
1337
1338 return (error);
1339 }
1340
1341 /*
1342 * Default putrange method for file systems that do not care
1343 * how many pages are given to one GOP_WRITE() call.
1344 */
1345 void
1346 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1347 {
1348
1349 *lop = 0;
1350 *hip = 0;
1351 }
1352
1353 int
1354 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1355 {
1356 off_t off;
1357 vaddr_t kva;
1358 size_t len;
1359 int error;
1360 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1361
1362 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1363 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1364
1365 off = pgs[0]->offset;
1366 kva = uvm_pagermapin(pgs, npages,
1367 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1368 len = npages << PAGE_SHIFT;
1369
1370 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1371 uvm_aio_biodone);
1372
1373 return error;
1374 }
1375
1376 int
1377 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1378 {
1379 off_t off;
1380 vaddr_t kva;
1381 size_t len;
1382 int error;
1383 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1384
1385 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1386 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1387
1388 off = pgs[0]->offset;
1389 kva = uvm_pagermapin(pgs, npages,
1390 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1391 len = npages << PAGE_SHIFT;
1392
1393 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1394 uvm_aio_biodone);
1395
1396 return error;
1397 }
1398
1399 /*
1400 * Backend routine for doing I/O to vnode pages. Pages are already locked
1401 * and mapped into kernel memory. Here we just look up the underlying
1402 * device block addresses and call the strategy routine.
1403 */
1404
1405 static int
1406 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1407 enum uio_rw rw, void (*iodone)(struct buf *))
1408 {
1409 int s, error;
1410 int fs_bshift, dev_bshift;
1411 off_t eof, offset, startoffset;
1412 size_t bytes, iobytes, skipbytes;
1413 struct buf *mbp, *bp;
1414 const bool async = (flags & PGO_SYNCIO) == 0;
1415 const bool lazy = (flags & PGO_LAZY) == 0;
1416 const bool iowrite = rw == UIO_WRITE;
1417 const int brw = iowrite ? B_WRITE : B_READ;
1418 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1419
1420 UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1421 (uintptr_t)vp, (uintptr_t)kva, len, flags);
1422
1423 KASSERT(vp->v_size <= vp->v_writesize);
1424 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1425 if (vp->v_type != VBLK) {
1426 fs_bshift = vp->v_mount->mnt_fs_bshift;
1427 dev_bshift = vp->v_mount->mnt_dev_bshift;
1428 } else {
1429 fs_bshift = DEV_BSHIFT;
1430 dev_bshift = DEV_BSHIFT;
1431 }
1432 error = 0;
1433 startoffset = off;
1434 bytes = MIN(len, eof - startoffset);
1435 skipbytes = 0;
1436 KASSERT(bytes != 0);
1437
1438 if (iowrite) {
1439 mutex_enter(vp->v_interlock);
1440 vp->v_numoutput += 2;
1441 mutex_exit(vp->v_interlock);
1442 }
1443 mbp = getiobuf(vp, true);
1444 UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1445 (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1446 mbp->b_bufsize = len;
1447 mbp->b_data = (void *)kva;
1448 mbp->b_resid = mbp->b_bcount = bytes;
1449 mbp->b_cflags = BC_BUSY | BC_AGE;
1450 if (async) {
1451 mbp->b_flags = brw | B_ASYNC;
1452 mbp->b_iodone = iodone;
1453 } else {
1454 mbp->b_flags = brw;
1455 mbp->b_iodone = NULL;
1456 }
1457 if (curlwp == uvm.pagedaemon_lwp)
1458 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1459 else if (async || lazy)
1460 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1461 else
1462 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1463
1464 bp = NULL;
1465 for (offset = startoffset;
1466 bytes > 0;
1467 offset += iobytes, bytes -= iobytes) {
1468 int run;
1469 daddr_t lbn, blkno;
1470 struct vnode *devvp;
1471
1472 /*
1473 * bmap the file to find out the blkno to read from and
1474 * how much we can read in one i/o. if bmap returns an error,
1475 * skip the rest of the top-level i/o.
1476 */
1477
1478 lbn = offset >> fs_bshift;
1479 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1480 if (error) {
1481 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
1482 lbn, error, 0, 0);
1483 skipbytes += bytes;
1484 bytes = 0;
1485 goto loopdone;
1486 }
1487
1488 /*
1489 * see how many pages can be read with this i/o.
1490 * reduce the i/o size if necessary to avoid
1491 * overwriting pages with valid data.
1492 */
1493
1494 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1495 bytes);
1496
1497 /*
1498 * if this block isn't allocated, zero it instead of
1499 * reading it. unless we are going to allocate blocks,
1500 * mark the pages we zeroed PG_RDONLY.
1501 */
1502
1503 if (blkno == (daddr_t)-1) {
1504 if (!iowrite) {
1505 memset((char *)kva + (offset - startoffset), 0,
1506 iobytes);
1507 }
1508 skipbytes += iobytes;
1509 continue;
1510 }
1511
1512 /*
1513 * allocate a sub-buf for this piece of the i/o
1514 * (or just use mbp if there's only 1 piece),
1515 * and start it going.
1516 */
1517
1518 if (offset == startoffset && iobytes == bytes) {
1519 bp = mbp;
1520 } else {
1521 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1522 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1523 bp = getiobuf(vp, true);
1524 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1525 }
1526 bp->b_lblkno = 0;
1527
1528 /* adjust physical blkno for partial blocks */
1529 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1530 dev_bshift);
1531
1532 UVMHIST_LOG(ubchist,
1533 "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1534 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1535
1536 VOP_STRATEGY(devvp, bp);
1537 }
1538
1539 loopdone:
1540 if (skipbytes) {
1541 UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1542 }
1543 nestiobuf_done(mbp, skipbytes, error);
1544 if (async) {
1545 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1546 return (0);
1547 }
1548 UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1549 error = biowait(mbp);
1550 s = splbio();
1551 (*iodone)(mbp);
1552 splx(s);
1553 UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1554 return (error);
1555 }
1556
1557 int
1558 genfs_compat_getpages(void *v)
1559 {
1560 struct vop_getpages_args /* {
1561 struct vnode *a_vp;
1562 voff_t a_offset;
1563 struct vm_page **a_m;
1564 int *a_count;
1565 int a_centeridx;
1566 vm_prot_t a_access_type;
1567 int a_advice;
1568 int a_flags;
1569 } */ *ap = v;
1570
1571 off_t origoffset;
1572 struct vnode *vp = ap->a_vp;
1573 struct uvm_object *uobj = &vp->v_uobj;
1574 struct vm_page *pg, **pgs;
1575 vaddr_t kva;
1576 int i, error, orignpages, npages;
1577 struct iovec iov;
1578 struct uio uio;
1579 kauth_cred_t cred = curlwp->l_cred;
1580 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1581
1582 error = 0;
1583 origoffset = ap->a_offset;
1584 orignpages = *ap->a_count;
1585 pgs = ap->a_m;
1586
1587 if (ap->a_flags & PGO_LOCKED) {
1588 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1589 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1590
1591 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1592 if (error == 0 && memwrite) {
1593 genfs_markdirty(vp);
1594 }
1595 return error;
1596 }
1597 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1598 mutex_exit(uobj->vmobjlock);
1599 return EINVAL;
1600 }
1601 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1602 mutex_exit(uobj->vmobjlock);
1603 return 0;
1604 }
1605 npages = orignpages;
1606 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1607 mutex_exit(uobj->vmobjlock);
1608 kva = uvm_pagermapin(pgs, npages,
1609 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1610 for (i = 0; i < npages; i++) {
1611 pg = pgs[i];
1612 if ((pg->flags & PG_FAKE) == 0) {
1613 continue;
1614 }
1615 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1616 iov.iov_len = PAGE_SIZE;
1617 uio.uio_iov = &iov;
1618 uio.uio_iovcnt = 1;
1619 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1620 uio.uio_rw = UIO_READ;
1621 uio.uio_resid = PAGE_SIZE;
1622 UIO_SETUP_SYSSPACE(&uio);
1623 /* XXX vn_lock */
1624 error = VOP_READ(vp, &uio, 0, cred);
1625 if (error) {
1626 break;
1627 }
1628 if (uio.uio_resid) {
1629 memset(iov.iov_base, 0, uio.uio_resid);
1630 }
1631 }
1632 uvm_pagermapout(kva, npages);
1633 mutex_enter(uobj->vmobjlock);
1634 mutex_enter(&uvm_pageqlock);
1635 for (i = 0; i < npages; i++) {
1636 pg = pgs[i];
1637 if (error && (pg->flags & PG_FAKE) != 0) {
1638 pg->flags |= PG_RELEASED;
1639 } else {
1640 pmap_clear_modify(pg);
1641 uvm_pageactivate(pg);
1642 }
1643 }
1644 if (error) {
1645 uvm_page_unbusy(pgs, npages);
1646 }
1647 mutex_exit(&uvm_pageqlock);
1648 if (error == 0 && memwrite) {
1649 genfs_markdirty(vp);
1650 }
1651 mutex_exit(uobj->vmobjlock);
1652 return error;
1653 }
1654
1655 int
1656 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1657 int flags)
1658 {
1659 off_t offset;
1660 struct iovec iov;
1661 struct uio uio;
1662 kauth_cred_t cred = curlwp->l_cred;
1663 struct buf *bp;
1664 vaddr_t kva;
1665 int error;
1666
1667 offset = pgs[0]->offset;
1668 kva = uvm_pagermapin(pgs, npages,
1669 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1670
1671 iov.iov_base = (void *)kva;
1672 iov.iov_len = npages << PAGE_SHIFT;
1673 uio.uio_iov = &iov;
1674 uio.uio_iovcnt = 1;
1675 uio.uio_offset = offset;
1676 uio.uio_rw = UIO_WRITE;
1677 uio.uio_resid = npages << PAGE_SHIFT;
1678 UIO_SETUP_SYSSPACE(&uio);
1679 /* XXX vn_lock */
1680 error = VOP_WRITE(vp, &uio, 0, cred);
1681
1682 mutex_enter(vp->v_interlock);
1683 vp->v_numoutput++;
1684 mutex_exit(vp->v_interlock);
1685
1686 bp = getiobuf(vp, true);
1687 bp->b_cflags = BC_BUSY | BC_AGE;
1688 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1689 bp->b_data = (char *)kva;
1690 bp->b_bcount = npages << PAGE_SHIFT;
1691 bp->b_bufsize = npages << PAGE_SHIFT;
1692 bp->b_resid = 0;
1693 bp->b_error = error;
1694 uvm_aio_aiodone(bp);
1695 return (error);
1696 }
1697
1698 /*
1699 * Process a uio using direct I/O. If we reach a part of the request
1700 * which cannot be processed in this fashion for some reason, just return.
1701 * The caller must handle some additional part of the request using
1702 * buffered I/O before trying direct I/O again.
1703 */
1704
1705 void
1706 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1707 {
1708 struct vmspace *vs;
1709 struct iovec *iov;
1710 vaddr_t va;
1711 size_t len;
1712 const int mask = DEV_BSIZE - 1;
1713 int error;
1714 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1715 (ioflag & IO_JOURNALLOCKED) == 0);
1716
1717 /*
1718 * We only support direct I/O to user space for now.
1719 */
1720
1721 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1722 return;
1723 }
1724
1725 /*
1726 * If the vnode is mapped, we would need to get the getpages lock
1727 * to stabilize the bmap, but then we would get into trouble while
1728 * locking the pages if the pages belong to this same vnode (or a
1729 * multi-vnode cascade to the same effect). Just fall back to
1730 * buffered I/O if the vnode is mapped to avoid this mess.
1731 */
1732
1733 if (vp->v_vflag & VV_MAPPED) {
1734 return;
1735 }
1736
1737 if (need_wapbl) {
1738 error = WAPBL_BEGIN(vp->v_mount);
1739 if (error)
1740 return;
1741 }
1742
1743 /*
1744 * Do as much of the uio as possible with direct I/O.
1745 */
1746
1747 vs = uio->uio_vmspace;
1748 while (uio->uio_resid) {
1749 iov = uio->uio_iov;
1750 if (iov->iov_len == 0) {
1751 uio->uio_iov++;
1752 uio->uio_iovcnt--;
1753 continue;
1754 }
1755 va = (vaddr_t)iov->iov_base;
1756 len = MIN(iov->iov_len, genfs_maxdio);
1757 len &= ~mask;
1758
1759 /*
1760 * If the next chunk is smaller than DEV_BSIZE or extends past
1761 * the current EOF, then fall back to buffered I/O.
1762 */
1763
1764 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1765 break;
1766 }
1767
1768 /*
1769 * Check alignment. The file offset must be at least
1770 * sector-aligned. The exact constraint on memory alignment
1771 * is very hardware-dependent, but requiring sector-aligned
1772 * addresses there too is safe.
1773 */
1774
1775 if (uio->uio_offset & mask || va & mask) {
1776 break;
1777 }
1778 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1779 uio->uio_rw);
1780 if (error) {
1781 break;
1782 }
1783 iov->iov_base = (char *)iov->iov_base + len;
1784 iov->iov_len -= len;
1785 uio->uio_offset += len;
1786 uio->uio_resid -= len;
1787 }
1788
1789 if (need_wapbl)
1790 WAPBL_END(vp->v_mount);
1791 }
1792
1793 /*
1794 * Iodone routine for direct I/O. We don't do much here since the request is
1795 * always synchronous, so the caller will do most of the work after biowait().
1796 */
1797
1798 static void
1799 genfs_dio_iodone(struct buf *bp)
1800 {
1801
1802 KASSERT((bp->b_flags & B_ASYNC) == 0);
1803 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1804 mutex_enter(bp->b_objlock);
1805 vwakeup(bp);
1806 mutex_exit(bp->b_objlock);
1807 }
1808 putiobuf(bp);
1809 }
1810
1811 /*
1812 * Process one chunk of a direct I/O request.
1813 */
1814
1815 static int
1816 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1817 off_t off, enum uio_rw rw)
1818 {
1819 struct vm_map *map;
1820 struct pmap *upm, *kpm __unused;
1821 size_t klen = round_page(uva + len) - trunc_page(uva);
1822 off_t spoff, epoff;
1823 vaddr_t kva, puva;
1824 paddr_t pa;
1825 vm_prot_t prot;
1826 int error, rv __diagused, poff, koff;
1827 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1828 (rw == UIO_WRITE ? PGO_FREE : 0);
1829
1830 /*
1831 * For writes, verify that this range of the file already has fully
1832 * allocated backing store. If there are any holes, just punt and
1833 * make the caller take the buffered write path.
1834 */
1835
1836 if (rw == UIO_WRITE) {
1837 daddr_t lbn, elbn, blkno;
1838 int bsize, bshift, run;
1839
1840 bshift = vp->v_mount->mnt_fs_bshift;
1841 bsize = 1 << bshift;
1842 lbn = off >> bshift;
1843 elbn = (off + len + bsize - 1) >> bshift;
1844 while (lbn < elbn) {
1845 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1846 if (error) {
1847 return error;
1848 }
1849 if (blkno == (daddr_t)-1) {
1850 return ENOSPC;
1851 }
1852 lbn += 1 + run;
1853 }
1854 }
1855
1856 /*
1857 * Flush any cached pages for parts of the file that we're about to
1858 * access. If we're writing, invalidate pages as well.
1859 */
1860
1861 spoff = trunc_page(off);
1862 epoff = round_page(off + len);
1863 mutex_enter(vp->v_interlock);
1864 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1865 if (error) {
1866 return error;
1867 }
1868
1869 /*
1870 * Wire the user pages and remap them into kernel memory.
1871 */
1872
1873 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1874 error = uvm_vslock(vs, (void *)uva, len, prot);
1875 if (error) {
1876 return error;
1877 }
1878
1879 map = &vs->vm_map;
1880 upm = vm_map_pmap(map);
1881 kpm = vm_map_pmap(kernel_map);
1882 puva = trunc_page(uva);
1883 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1884 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1885 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1886 rv = pmap_extract(upm, puva + poff, &pa);
1887 KASSERT(rv);
1888 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1889 }
1890 pmap_update(kpm);
1891
1892 /*
1893 * Do the I/O.
1894 */
1895
1896 koff = uva - trunc_page(uva);
1897 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1898 genfs_dio_iodone);
1899
1900 /*
1901 * Tear down the kernel mapping.
1902 */
1903
1904 pmap_kremove(kva, klen);
1905 pmap_update(kpm);
1906 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1907
1908 /*
1909 * Unwire the user pages.
1910 */
1911
1912 uvm_vsunlock(vs, (void *)uva, len);
1913 return error;
1914 }
1915