genfs_io.c revision 1.74 1 /* $NetBSD: genfs_io.c,v 1.74 2018/12/10 21:10:52 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.74 2018/12/10 21:10:52 jdolecek Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53
54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
55 off_t, enum uio_rw);
56 static void genfs_dio_iodone(struct buf *);
57
58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
59 off_t, bool, bool, bool, bool);
60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
61 void (*)(struct buf *));
62 static void genfs_rel_pages(struct vm_page **, unsigned int);
63 static void genfs_markdirty(struct vnode *);
64
65 int genfs_maxdio = MAXPHYS;
66
67 static void
68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
69 {
70 unsigned int i;
71
72 for (i = 0; i < npages; i++) {
73 struct vm_page *pg = pgs[i];
74
75 if (pg == NULL || pg == PGO_DONTCARE)
76 continue;
77 KASSERT(uvm_page_locked_p(pg));
78 if (pg->flags & PG_FAKE) {
79 pg->flags |= PG_RELEASED;
80 }
81 }
82 mutex_enter(&uvm_pageqlock);
83 uvm_page_unbusy(pgs, npages);
84 mutex_exit(&uvm_pageqlock);
85 }
86
87 static void
88 genfs_markdirty(struct vnode *vp)
89 {
90 struct genfs_node * const gp = VTOG(vp);
91
92 KASSERT(mutex_owned(vp->v_interlock));
93 gp->g_dirtygen++;
94 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
95 vn_syncer_add_to_worklist(vp, filedelay);
96 }
97 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
98 vp->v_iflag |= VI_WRMAPDIRTY;
99 }
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
132 (flags & PGO_JOURNALLOCKED) == 0);
133 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
134 bool holds_wapbl = false;
135 struct mount *trans_mount = NULL;
136 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
137
138 UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
139 (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
140
141 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
142 vp->v_type == VLNK || vp->v_type == VBLK);
143
144 #ifdef DIAGNOSTIC
145 if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
146 WAPBL_JLOCK_ASSERT(vp->v_mount);
147 #endif
148
149 error = vdead_check(vp, VDEAD_NOWAIT);
150 if (error) {
151 if ((flags & PGO_LOCKED) == 0)
152 mutex_exit(uobj->vmobjlock);
153 return error;
154 }
155
156 startover:
157 error = 0;
158 const voff_t origvsize = vp->v_size;
159 const off_t origoffset = ap->a_offset;
160 const int orignpages = *ap->a_count;
161
162 GOP_SIZE(vp, origvsize, &diskeof, 0);
163 if (flags & PGO_PASTEOF) {
164 off_t newsize;
165 #if defined(DIAGNOSTIC)
166 off_t writeeof;
167 #endif /* defined(DIAGNOSTIC) */
168
169 newsize = MAX(origvsize,
170 origoffset + (orignpages << PAGE_SHIFT));
171 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
172 #if defined(DIAGNOSTIC)
173 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
174 if (newsize > round_page(writeeof)) {
175 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
176 __func__, newsize, round_page(writeeof));
177 }
178 #endif /* defined(DIAGNOSTIC) */
179 } else {
180 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
181 }
182 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
183 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
184 KASSERT(orignpages > 0);
185
186 /*
187 * Bounds-check the request.
188 */
189
190 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
191 if ((flags & PGO_LOCKED) == 0) {
192 mutex_exit(uobj->vmobjlock);
193 }
194 UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
195 origoffset, *ap->a_count, memeof,0);
196 error = EINVAL;
197 goto out_err;
198 }
199
200 /* uobj is locked */
201
202 if ((flags & PGO_NOTIMESTAMP) == 0 &&
203 (vp->v_type != VBLK ||
204 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
205 int updflags = 0;
206
207 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
208 updflags = GOP_UPDATE_ACCESSED;
209 }
210 if (memwrite) {
211 updflags |= GOP_UPDATE_MODIFIED;
212 }
213 if (updflags != 0) {
214 GOP_MARKUPDATE(vp, updflags);
215 }
216 }
217
218 /*
219 * For PGO_LOCKED requests, just return whatever's in memory.
220 */
221
222 if (flags & PGO_LOCKED) {
223 int nfound;
224 struct vm_page *pg;
225
226 KASSERT(!glocked);
227 npages = *ap->a_count;
228 #if defined(DEBUG)
229 for (i = 0; i < npages; i++) {
230 pg = ap->a_m[i];
231 KASSERT(pg == NULL || pg == PGO_DONTCARE);
232 }
233 #endif /* defined(DEBUG) */
234 nfound = uvn_findpages(uobj, origoffset, &npages,
235 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
236 KASSERT(npages == *ap->a_count);
237 if (nfound == 0) {
238 error = EBUSY;
239 goto out_err;
240 }
241 if (!genfs_node_rdtrylock(vp)) {
242 genfs_rel_pages(ap->a_m, npages);
243
244 /*
245 * restore the array.
246 */
247
248 for (i = 0; i < npages; i++) {
249 pg = ap->a_m[i];
250
251 if (pg != NULL && pg != PGO_DONTCARE) {
252 ap->a_m[i] = NULL;
253 }
254 KASSERT(ap->a_m[i] == NULL ||
255 ap->a_m[i] == PGO_DONTCARE);
256 }
257 } else {
258 genfs_node_unlock(vp);
259 }
260 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
261 if (error == 0 && memwrite) {
262 genfs_markdirty(vp);
263 }
264 goto out_err;
265 }
266 mutex_exit(uobj->vmobjlock);
267
268 /*
269 * find the requested pages and make some simple checks.
270 * leave space in the page array for a whole block.
271 */
272
273 const int fs_bshift = (vp->v_type != VBLK) ?
274 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
275 const int fs_bsize = 1 << fs_bshift;
276 #define blk_mask (fs_bsize - 1)
277 #define trunc_blk(x) ((x) & ~blk_mask)
278 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
279
280 const int orignmempages = MIN(orignpages,
281 round_page(memeof - origoffset) >> PAGE_SHIFT);
282 npages = orignmempages;
283 const off_t startoffset = trunc_blk(origoffset);
284 const off_t endoffset = MIN(
285 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
286 round_page(memeof));
287 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
288
289 const int pgs_size = sizeof(struct vm_page *) *
290 ((endoffset - startoffset) >> PAGE_SHIFT);
291 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
292
293 if (pgs_size > sizeof(pgs_onstack)) {
294 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
295 if (pgs == NULL) {
296 pgs = pgs_onstack;
297 error = ENOMEM;
298 goto out_err;
299 }
300 } else {
301 pgs = pgs_onstack;
302 (void)memset(pgs, 0, pgs_size);
303 }
304
305 UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
306 ridx, npages, startoffset, endoffset);
307
308 if (trans_mount == NULL) {
309 trans_mount = vp->v_mount;
310 fstrans_start(trans_mount);
311 /*
312 * check if this vnode is still valid.
313 */
314 mutex_enter(vp->v_interlock);
315 error = vdead_check(vp, 0);
316 mutex_exit(vp->v_interlock);
317 if (error)
318 goto out_err_free;
319 /*
320 * XXX: This assumes that we come here only via
321 * the mmio path
322 */
323 if (blockalloc && need_wapbl) {
324 error = WAPBL_BEGIN(trans_mount);
325 if (error)
326 goto out_err_free;
327 holds_wapbl = true;
328 }
329 }
330
331 /*
332 * hold g_glock to prevent a race with truncate.
333 *
334 * check if our idea of v_size is still valid.
335 */
336
337 KASSERT(!glocked || genfs_node_wrlocked(vp));
338 if (!glocked) {
339 if (blockalloc) {
340 genfs_node_wrlock(vp);
341 } else {
342 genfs_node_rdlock(vp);
343 }
344 }
345 mutex_enter(uobj->vmobjlock);
346 if (vp->v_size < origvsize) {
347 if (!glocked) {
348 genfs_node_unlock(vp);
349 }
350 if (pgs != pgs_onstack)
351 kmem_free(pgs, pgs_size);
352 goto startover;
353 }
354
355 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
356 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
357 if (!glocked) {
358 genfs_node_unlock(vp);
359 }
360 KASSERT(async != 0);
361 genfs_rel_pages(&pgs[ridx], orignmempages);
362 mutex_exit(uobj->vmobjlock);
363 error = EBUSY;
364 goto out_err_free;
365 }
366
367 /*
368 * if the pages are already resident, just return them.
369 */
370
371 for (i = 0; i < npages; i++) {
372 struct vm_page *pg = pgs[ridx + i];
373
374 if ((pg->flags & PG_FAKE) ||
375 (blockalloc && (pg->flags & PG_RDONLY))) {
376 break;
377 }
378 }
379 if (i == npages) {
380 if (!glocked) {
381 genfs_node_unlock(vp);
382 }
383 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
384 npages += ridx;
385 goto out;
386 }
387
388 /*
389 * if PGO_OVERWRITE is set, don't bother reading the pages.
390 */
391
392 if (overwrite) {
393 if (!glocked) {
394 genfs_node_unlock(vp);
395 }
396 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
397
398 for (i = 0; i < npages; i++) {
399 struct vm_page *pg = pgs[ridx + i];
400
401 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
402 }
403 npages += ridx;
404 goto out;
405 }
406
407 /*
408 * the page wasn't resident and we're not overwriting,
409 * so we're going to have to do some i/o.
410 * find any additional pages needed to cover the expanded range.
411 */
412
413 npages = (endoffset - startoffset) >> PAGE_SHIFT;
414 if (startoffset != origoffset || npages != orignmempages) {
415 int npgs;
416
417 /*
418 * we need to avoid deadlocks caused by locking
419 * additional pages at lower offsets than pages we
420 * already have locked. unlock them all and start over.
421 */
422
423 genfs_rel_pages(&pgs[ridx], orignmempages);
424 memset(pgs, 0, pgs_size);
425
426 UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
427 startoffset, endoffset, 0,0);
428 npgs = npages;
429 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
430 async ? UFP_NOWAIT : UFP_ALL) != npages) {
431 if (!glocked) {
432 genfs_node_unlock(vp);
433 }
434 KASSERT(async != 0);
435 genfs_rel_pages(pgs, npages);
436 mutex_exit(uobj->vmobjlock);
437 error = EBUSY;
438 goto out_err_free;
439 }
440 }
441
442 mutex_exit(uobj->vmobjlock);
443 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
444 async, memwrite, blockalloc, glocked);
445 if (!glocked) {
446 genfs_node_unlock(vp);
447 }
448 if (error == 0 && async)
449 goto out_err_free;
450 mutex_enter(uobj->vmobjlock);
451
452 /*
453 * we're almost done! release the pages...
454 * for errors, we free the pages.
455 * otherwise we activate them and mark them as valid and clean.
456 * also, unbusy pages that were not actually requested.
457 */
458
459 if (error) {
460 genfs_rel_pages(pgs, npages);
461 mutex_exit(uobj->vmobjlock);
462 UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
463 goto out_err_free;
464 }
465
466 out:
467 UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
468 error = 0;
469 mutex_enter(&uvm_pageqlock);
470 for (i = 0; i < npages; i++) {
471 struct vm_page *pg = pgs[i];
472 if (pg == NULL) {
473 continue;
474 }
475 UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
476 (uintptr_t)pg, pg->flags, 0,0);
477 if (pg->flags & PG_FAKE && !overwrite) {
478 pg->flags &= ~(PG_FAKE);
479 pmap_clear_modify(pgs[i]);
480 }
481 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
482 if (i < ridx || i >= ridx + orignmempages || async) {
483 UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
484 (uintptr_t)pg, pg->offset,0,0);
485 if (pg->flags & PG_WANTED) {
486 wakeup(pg);
487 }
488 if (pg->flags & PG_FAKE) {
489 KASSERT(overwrite);
490 uvm_pagezero(pg);
491 }
492 if (pg->flags & PG_RELEASED) {
493 uvm_pagefree(pg);
494 continue;
495 }
496 uvm_pageenqueue(pg);
497 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
498 UVM_PAGE_OWN(pg, NULL);
499 }
500 }
501 mutex_exit(&uvm_pageqlock);
502 if (memwrite) {
503 genfs_markdirty(vp);
504 }
505 mutex_exit(uobj->vmobjlock);
506 if (ap->a_m != NULL) {
507 memcpy(ap->a_m, &pgs[ridx],
508 orignmempages * sizeof(struct vm_page *));
509 }
510
511 out_err_free:
512 if (pgs != NULL && pgs != pgs_onstack)
513 kmem_free(pgs, pgs_size);
514 out_err:
515 if (trans_mount != NULL) {
516 if (holds_wapbl)
517 WAPBL_END(trans_mount);
518 fstrans_done(trans_mount);
519 }
520 return error;
521 }
522
523 /*
524 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
525 *
526 * "glocked" (which is currently not actually used) tells us not whether
527 * the genfs_node is locked on entry (it always is) but whether it was
528 * locked on entry to genfs_getpages.
529 */
530 static int
531 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
532 off_t startoffset, off_t diskeof,
533 bool async, bool memwrite, bool blockalloc, bool glocked)
534 {
535 struct uvm_object * const uobj = &vp->v_uobj;
536 const int fs_bshift = (vp->v_type != VBLK) ?
537 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
538 const int dev_bshift = (vp->v_type != VBLK) ?
539 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
540 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
541 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
542 vaddr_t kva;
543 struct buf *bp, *mbp;
544 bool sawhole = false;
545 int i;
546 int error = 0;
547
548 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
549
550 /*
551 * read the desired page(s).
552 */
553
554 totalbytes = npages << PAGE_SHIFT;
555 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
556 tailbytes = totalbytes - bytes;
557 skipbytes = 0;
558
559 kva = uvm_pagermapin(pgs, npages,
560 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
561 if (kva == 0)
562 return EBUSY;
563
564 mbp = getiobuf(vp, true);
565 mbp->b_bufsize = totalbytes;
566 mbp->b_data = (void *)kva;
567 mbp->b_resid = mbp->b_bcount = bytes;
568 mbp->b_cflags = BC_BUSY;
569 if (async) {
570 mbp->b_flags = B_READ | B_ASYNC;
571 mbp->b_iodone = uvm_aio_biodone;
572 } else {
573 mbp->b_flags = B_READ;
574 mbp->b_iodone = NULL;
575 }
576 if (async)
577 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
578 else
579 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
580
581 /*
582 * if EOF is in the middle of the range, zero the part past EOF.
583 * skip over pages which are not PG_FAKE since in that case they have
584 * valid data that we need to preserve.
585 */
586
587 tailstart = bytes;
588 while (tailbytes > 0) {
589 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
590
591 KASSERT(len <= tailbytes);
592 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
593 memset((void *)(kva + tailstart), 0, len);
594 UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
595 (uintptr_t)kva, tailstart, len, 0);
596 }
597 tailstart += len;
598 tailbytes -= len;
599 }
600
601 /*
602 * now loop over the pages, reading as needed.
603 */
604
605 bp = NULL;
606 off_t offset;
607 for (offset = startoffset;
608 bytes > 0;
609 offset += iobytes, bytes -= iobytes) {
610 int run;
611 daddr_t lbn, blkno;
612 int pidx;
613 struct vnode *devvp;
614
615 /*
616 * skip pages which don't need to be read.
617 */
618
619 pidx = (offset - startoffset) >> PAGE_SHIFT;
620 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
621 size_t b;
622
623 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
624 if ((pgs[pidx]->flags & PG_RDONLY)) {
625 sawhole = true;
626 }
627 b = MIN(PAGE_SIZE, bytes);
628 offset += b;
629 bytes -= b;
630 skipbytes += b;
631 pidx++;
632 UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
633 offset, 0,0,0);
634 if (bytes == 0) {
635 goto loopdone;
636 }
637 }
638
639 /*
640 * bmap the file to find out the blkno to read from and
641 * how much we can read in one i/o. if bmap returns an error,
642 * skip the rest of the top-level i/o.
643 */
644
645 lbn = offset >> fs_bshift;
646 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
647 if (error) {
648 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
649 lbn,error,0,0);
650 skipbytes += bytes;
651 bytes = 0;
652 goto loopdone;
653 }
654
655 /*
656 * see how many pages can be read with this i/o.
657 * reduce the i/o size if necessary to avoid
658 * overwriting pages with valid data.
659 */
660
661 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
662 bytes);
663 if (offset + iobytes > round_page(offset)) {
664 int pcount;
665
666 pcount = 1;
667 while (pidx + pcount < npages &&
668 pgs[pidx + pcount]->flags & PG_FAKE) {
669 pcount++;
670 }
671 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
672 (offset - trunc_page(offset)));
673 }
674
675 /*
676 * if this block isn't allocated, zero it instead of
677 * reading it. unless we are going to allocate blocks,
678 * mark the pages we zeroed PG_RDONLY.
679 */
680
681 if (blkno == (daddr_t)-1) {
682 int holepages = (round_page(offset + iobytes) -
683 trunc_page(offset)) >> PAGE_SHIFT;
684 UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
685
686 sawhole = true;
687 memset((char *)kva + (offset - startoffset), 0,
688 iobytes);
689 skipbytes += iobytes;
690
691 mutex_enter(uobj->vmobjlock);
692 for (i = 0; i < holepages; i++) {
693 if (memwrite) {
694 pgs[pidx + i]->flags &= ~PG_CLEAN;
695 }
696 if (!blockalloc) {
697 pgs[pidx + i]->flags |= PG_RDONLY;
698 }
699 }
700 mutex_exit(uobj->vmobjlock);
701 continue;
702 }
703
704 /*
705 * allocate a sub-buf for this piece of the i/o
706 * (or just use mbp if there's only 1 piece),
707 * and start it going.
708 */
709
710 if (offset == startoffset && iobytes == bytes) {
711 bp = mbp;
712 } else {
713 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
714 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
715 bp = getiobuf(vp, true);
716 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
717 }
718 bp->b_lblkno = 0;
719
720 /* adjust physical blkno for partial blocks */
721 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
722 dev_bshift);
723
724 UVMHIST_LOG(ubchist,
725 "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
726 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
727
728 VOP_STRATEGY(devvp, bp);
729 }
730
731 loopdone:
732 nestiobuf_done(mbp, skipbytes, error);
733 if (async) {
734 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
735 return 0;
736 }
737 if (bp != NULL) {
738 error = biowait(mbp);
739 }
740
741 /* Remove the mapping (make KVA available as soon as possible) */
742 uvm_pagermapout(kva, npages);
743
744 /*
745 * if this we encountered a hole then we have to do a little more work.
746 * for read faults, we marked the page PG_RDONLY so that future
747 * write accesses to the page will fault again.
748 * for write faults, we must make sure that the backing store for
749 * the page is completely allocated while the pages are locked.
750 */
751
752 if (!error && sawhole && blockalloc) {
753 error = GOP_ALLOC(vp, startoffset,
754 npages << PAGE_SHIFT, 0, cred);
755 UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
756 startoffset, npages << PAGE_SHIFT, error,0);
757 if (!error) {
758 mutex_enter(uobj->vmobjlock);
759 for (i = 0; i < npages; i++) {
760 struct vm_page *pg = pgs[i];
761
762 if (pg == NULL) {
763 continue;
764 }
765 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
766 UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
767 (uintptr_t)pg, 0, 0, 0);
768 }
769 mutex_exit(uobj->vmobjlock);
770 }
771 }
772
773 putiobuf(mbp);
774 return error;
775 }
776
777 /*
778 * generic VM putpages routine.
779 * Write the given range of pages to backing store.
780 *
781 * => "offhi == 0" means flush all pages at or after "offlo".
782 * => object should be locked by caller. we return with the
783 * object unlocked.
784 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
785 * thus, a caller might want to unlock higher level resources
786 * (e.g. vm_map) before calling flush.
787 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
788 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
789 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
790 * that new pages are inserted on the tail end of the list. thus,
791 * we can make a complete pass through the object in one go by starting
792 * at the head and working towards the tail (new pages are put in
793 * front of us).
794 * => NOTE: we are allowed to lock the page queues, so the caller
795 * must not be holding the page queue lock.
796 *
797 * note on "cleaning" object and PG_BUSY pages:
798 * this routine is holding the lock on the object. the only time
799 * that it can run into a PG_BUSY page that it does not own is if
800 * some other process has started I/O on the page (e.g. either
801 * a pagein, or a pageout). if the PG_BUSY page is being paged
802 * in, then it can not be dirty (!PG_CLEAN) because no one has
803 * had a chance to modify it yet. if the PG_BUSY page is being
804 * paged out then it means that someone else has already started
805 * cleaning the page for us (how nice!). in this case, if we
806 * have syncio specified, then after we make our pass through the
807 * object we need to wait for the other PG_BUSY pages to clear
808 * off (i.e. we need to do an iosync). also note that once a
809 * page is PG_BUSY it must stay in its object until it is un-busyed.
810 *
811 * note on page traversal:
812 * we can traverse the pages in an object either by going down the
813 * linked list in "uobj->memq", or we can go over the address range
814 * by page doing hash table lookups for each address. depending
815 * on how many pages are in the object it may be cheaper to do one
816 * or the other. we set "by_list" to true if we are using memq.
817 * if the cost of a hash lookup was equal to the cost of the list
818 * traversal we could compare the number of pages in the start->stop
819 * range to the total number of pages in the object. however, it
820 * seems that a hash table lookup is more expensive than the linked
821 * list traversal, so we multiply the number of pages in the
822 * range by an estimate of the relatively higher cost of the hash lookup.
823 */
824
825 int
826 genfs_putpages(void *v)
827 {
828 struct vop_putpages_args /* {
829 struct vnode *a_vp;
830 voff_t a_offlo;
831 voff_t a_offhi;
832 int a_flags;
833 } */ * const ap = v;
834
835 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
836 ap->a_flags, NULL);
837 }
838
839 int
840 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
841 int origflags, struct vm_page **busypg)
842 {
843 struct uvm_object * const uobj = &vp->v_uobj;
844 kmutex_t * const slock = uobj->vmobjlock;
845 off_t off;
846 int i, error, npages, nback;
847 int freeflag;
848 /*
849 * This array is larger than it should so that it's size is constant.
850 * The right size is MAXPAGES.
851 */
852 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
853 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
854 struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
855 bool wasclean, by_list, needs_clean, yld;
856 bool async = (origflags & PGO_SYNCIO) == 0;
857 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
858 struct lwp * const l = curlwp ? curlwp : &lwp0;
859 struct genfs_node * const gp = VTOG(vp);
860 struct mount *trans_mp;
861 int flags;
862 int dirtygen;
863 bool modified;
864 bool holds_wapbl;
865 bool cleanall;
866 bool onworklst;
867
868 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
869
870 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
871 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
872 KASSERT(startoff < endoff || endoff == 0);
873
874 UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
875 (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
876
877 #ifdef DIAGNOSTIC
878 if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
879 WAPBL_JLOCK_ASSERT(vp->v_mount);
880 #endif
881
882 trans_mp = NULL;
883 holds_wapbl = false;
884
885 retry:
886 modified = false;
887 flags = origflags;
888 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
889 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
890 if (uobj->uo_npages == 0) {
891 if (vp->v_iflag & VI_ONWORKLST) {
892 vp->v_iflag &= ~VI_WRMAPDIRTY;
893 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
894 vn_syncer_remove_from_worklist(vp);
895 }
896 if (trans_mp) {
897 if (holds_wapbl)
898 WAPBL_END(trans_mp);
899 fstrans_done(trans_mp);
900 }
901 mutex_exit(slock);
902 return (0);
903 }
904
905 /*
906 * the vnode has pages, set up to process the request.
907 */
908
909 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
910 if (pagedaemon) {
911 /* Pagedaemon must not sleep here. */
912 trans_mp = vp->v_mount;
913 error = fstrans_start_nowait(trans_mp);
914 if (error) {
915 mutex_exit(slock);
916 return error;
917 }
918 } else {
919 /*
920 * Cannot use vdeadcheck() here as this operation
921 * usually gets used from VOP_RECLAIM(). Test for
922 * change of v_mount instead and retry on change.
923 */
924 mutex_exit(slock);
925 trans_mp = vp->v_mount;
926 fstrans_start(trans_mp);
927 if (vp->v_mount != trans_mp) {
928 fstrans_done(trans_mp);
929 trans_mp = NULL;
930 } else {
931 holds_wapbl = (trans_mp->mnt_wapbl &&
932 (origflags & PGO_JOURNALLOCKED) == 0);
933 if (holds_wapbl) {
934 error = WAPBL_BEGIN(trans_mp);
935 if (error) {
936 fstrans_done(trans_mp);
937 return error;
938 }
939 }
940 }
941 mutex_enter(slock);
942 goto retry;
943 }
944 }
945
946 error = 0;
947 wasclean = (vp->v_numoutput == 0);
948 off = startoff;
949 if (endoff == 0 || flags & PGO_ALLPAGES) {
950 endoff = trunc_page(LLONG_MAX);
951 }
952 by_list = (uobj->uo_npages <=
953 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
954
955 /*
956 * if this vnode is known not to have dirty pages,
957 * don't bother to clean it out.
958 */
959
960 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
961 #if !defined(DEBUG)
962 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
963 goto skip_scan;
964 }
965 #endif /* !defined(DEBUG) */
966 flags &= ~PGO_CLEANIT;
967 }
968
969 /*
970 * start the loop. when scanning by list, hold the last page
971 * in the list before we start. pages allocated after we start
972 * will be added to the end of the list, so we can stop at the
973 * current last page.
974 */
975
976 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
977 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
978 (vp->v_iflag & VI_ONWORKLST) != 0;
979 dirtygen = gp->g_dirtygen;
980 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
981 if (by_list) {
982 curmp.flags = PG_MARKER;
983 endmp.flags = PG_MARKER;
984 pg = TAILQ_FIRST(&uobj->memq);
985 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
986 } else {
987 pg = uvm_pagelookup(uobj, off);
988 }
989 nextpg = NULL;
990 while (by_list || off < endoff) {
991
992 /*
993 * if the current page is not interesting, move on to the next.
994 */
995
996 KASSERT(pg == NULL || pg->uobject == uobj ||
997 (pg->flags & PG_MARKER) != 0);
998 KASSERT(pg == NULL ||
999 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1000 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1001 if (by_list) {
1002 if (pg == &endmp) {
1003 break;
1004 }
1005 if (pg->flags & PG_MARKER) {
1006 pg = TAILQ_NEXT(pg, listq.queue);
1007 continue;
1008 }
1009 if (pg->offset < startoff || pg->offset >= endoff ||
1010 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1011 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1012 wasclean = false;
1013 }
1014 pg = TAILQ_NEXT(pg, listq.queue);
1015 continue;
1016 }
1017 off = pg->offset;
1018 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1019 if (pg != NULL) {
1020 wasclean = false;
1021 }
1022 off += PAGE_SIZE;
1023 if (off < endoff) {
1024 pg = uvm_pagelookup(uobj, off);
1025 }
1026 continue;
1027 }
1028
1029 /*
1030 * if the current page needs to be cleaned and it's busy,
1031 * wait for it to become unbusy.
1032 */
1033
1034 yld = (l->l_cpu->ci_schedstate.spc_flags &
1035 SPCF_SHOULDYIELD) && !pagedaemon;
1036 if (pg->flags & PG_BUSY || yld) {
1037 UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1038 0, 0, 0);
1039 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1040 UVMHIST_LOG(ubchist, "busyfail %#jx",
1041 (uintptr_t)pg, 0, 0, 0);
1042 error = EDEADLK;
1043 if (busypg != NULL)
1044 *busypg = pg;
1045 break;
1046 }
1047 if (pagedaemon) {
1048 /*
1049 * someone has taken the page while we
1050 * dropped the lock for fstrans_start.
1051 */
1052 break;
1053 }
1054 if (by_list) {
1055 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1056 UVMHIST_LOG(ubchist, "curmp next %#jx",
1057 (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
1058 0, 0, 0);
1059 }
1060 if (yld) {
1061 mutex_exit(slock);
1062 preempt();
1063 mutex_enter(slock);
1064 } else {
1065 pg->flags |= PG_WANTED;
1066 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1067 mutex_enter(slock);
1068 }
1069 if (by_list) {
1070 UVMHIST_LOG(ubchist, "after next %#jx",
1071 (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
1072 0, 0, 0);
1073 pg = TAILQ_NEXT(&curmp, listq.queue);
1074 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1075 } else {
1076 pg = uvm_pagelookup(uobj, off);
1077 }
1078 continue;
1079 }
1080
1081 /*
1082 * if we're freeing, remove all mappings of the page now.
1083 * if we're cleaning, check if the page is needs to be cleaned.
1084 */
1085
1086 if (flags & PGO_FREE) {
1087 pmap_page_protect(pg, VM_PROT_NONE);
1088 } else if (flags & PGO_CLEANIT) {
1089
1090 /*
1091 * if we still have some hope to pull this vnode off
1092 * from the syncer queue, write-protect the page.
1093 */
1094
1095 if (cleanall && wasclean &&
1096 gp->g_dirtygen == dirtygen) {
1097
1098 /*
1099 * uobj pages get wired only by uvm_fault
1100 * where uobj is locked.
1101 */
1102
1103 if (pg->wire_count == 0) {
1104 pmap_page_protect(pg,
1105 VM_PROT_READ|VM_PROT_EXECUTE);
1106 } else {
1107 cleanall = false;
1108 }
1109 }
1110 }
1111
1112 if (flags & PGO_CLEANIT) {
1113 needs_clean = pmap_clear_modify(pg) ||
1114 (pg->flags & PG_CLEAN) == 0;
1115 pg->flags |= PG_CLEAN;
1116 } else {
1117 needs_clean = false;
1118 }
1119
1120 /*
1121 * if we're cleaning, build a cluster.
1122 * the cluster will consist of pages which are currently dirty,
1123 * but they will be returned to us marked clean.
1124 * if not cleaning, just operate on the one page.
1125 */
1126
1127 if (needs_clean) {
1128 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1129 wasclean = false;
1130 memset(pgs, 0, sizeof(pgs));
1131 pg->flags |= PG_BUSY;
1132 UVM_PAGE_OWN(pg, "genfs_putpages");
1133
1134 /*
1135 * let the fs constrain the offset range of the cluster.
1136 * we additionally constrain the range here such that
1137 * it fits in the "pgs" pages array.
1138 */
1139
1140 off_t fslo, fshi, genlo, lo;
1141 GOP_PUTRANGE(vp, off, &fslo, &fshi);
1142 KASSERT(fslo == trunc_page(fslo));
1143 KASSERT(fslo <= off);
1144 KASSERT(fshi == trunc_page(fshi));
1145 KASSERT(fshi == 0 || off < fshi);
1146
1147 if (off > MAXPHYS / 2)
1148 genlo = trunc_page(off - (MAXPHYS / 2));
1149 else
1150 genlo = 0;
1151 lo = MAX(fslo, genlo);
1152
1153 /*
1154 * first look backward.
1155 */
1156
1157 npages = (off - lo) >> PAGE_SHIFT;
1158 nback = npages;
1159 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1160 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1161 if (nback) {
1162 memmove(&pgs[0], &pgs[npages - nback],
1163 nback * sizeof(pgs[0]));
1164 if (npages - nback < nback)
1165 memset(&pgs[nback], 0,
1166 (npages - nback) * sizeof(pgs[0]));
1167 else
1168 memset(&pgs[npages - nback], 0,
1169 nback * sizeof(pgs[0]));
1170 }
1171
1172 /*
1173 * then plug in our page of interest.
1174 */
1175
1176 pgs[nback] = pg;
1177
1178 /*
1179 * then look forward to fill in the remaining space in
1180 * the array of pages.
1181 */
1182
1183 npages = MAXPAGES - nback - 1;
1184 if (fshi)
1185 npages = MIN(npages,
1186 (fshi - off - 1) >> PAGE_SHIFT);
1187 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1188 &pgs[nback + 1],
1189 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1190 npages += nback + 1;
1191 } else {
1192 pgs[0] = pg;
1193 npages = 1;
1194 nback = 0;
1195 }
1196
1197 /*
1198 * apply FREE or DEACTIVATE options if requested.
1199 */
1200
1201 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1202 mutex_enter(&uvm_pageqlock);
1203 }
1204 for (i = 0; i < npages; i++) {
1205 tpg = pgs[i];
1206 KASSERT(tpg->uobject == uobj);
1207 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1208 pg = tpg;
1209 if (tpg->offset < startoff || tpg->offset >= endoff)
1210 continue;
1211 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1212 uvm_pagedeactivate(tpg);
1213 } else if (flags & PGO_FREE) {
1214 pmap_page_protect(tpg, VM_PROT_NONE);
1215 if (tpg->flags & PG_BUSY) {
1216 tpg->flags |= freeflag;
1217 if (pagedaemon) {
1218 uvm_pageout_start(1);
1219 uvm_pagedequeue(tpg);
1220 }
1221 } else {
1222
1223 /*
1224 * ``page is not busy''
1225 * implies that npages is 1
1226 * and needs_clean is false.
1227 */
1228
1229 nextpg = TAILQ_NEXT(tpg, listq.queue);
1230 uvm_pagefree(tpg);
1231 if (pagedaemon)
1232 uvmexp.pdfreed++;
1233 }
1234 }
1235 }
1236 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1237 mutex_exit(&uvm_pageqlock);
1238 }
1239 if (needs_clean) {
1240 modified = true;
1241
1242 /*
1243 * start the i/o. if we're traversing by list,
1244 * keep our place in the list with a marker page.
1245 */
1246
1247 if (by_list) {
1248 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1249 listq.queue);
1250 }
1251 mutex_exit(slock);
1252 error = GOP_WRITE(vp, pgs, npages, flags);
1253 mutex_enter(slock);
1254 if (by_list) {
1255 pg = TAILQ_NEXT(&curmp, listq.queue);
1256 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1257 }
1258 if (error) {
1259 break;
1260 }
1261 if (by_list) {
1262 continue;
1263 }
1264 }
1265
1266 /*
1267 * find the next page and continue if there was no error.
1268 */
1269
1270 if (by_list) {
1271 if (nextpg) {
1272 pg = nextpg;
1273 nextpg = NULL;
1274 } else {
1275 pg = TAILQ_NEXT(pg, listq.queue);
1276 }
1277 } else {
1278 off += (npages - nback) << PAGE_SHIFT;
1279 if (off < endoff) {
1280 pg = uvm_pagelookup(uobj, off);
1281 }
1282 }
1283 }
1284 if (by_list) {
1285 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1286 }
1287
1288 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1289 (vp->v_type != VBLK ||
1290 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1291 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1292 }
1293
1294 /*
1295 * if we're cleaning and there was nothing to clean,
1296 * take us off the syncer list. if we started any i/o
1297 * and we're doing sync i/o, wait for all writes to finish.
1298 */
1299
1300 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1301 (vp->v_iflag & VI_ONWORKLST) != 0) {
1302 #if defined(DEBUG)
1303 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1304 if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
1305 continue;
1306 }
1307 if ((pg->flags & PG_CLEAN) == 0) {
1308 printf("%s: %p: !CLEAN\n", __func__, pg);
1309 }
1310 if (pmap_is_modified(pg)) {
1311 printf("%s: %p: modified\n", __func__, pg);
1312 }
1313 }
1314 #endif /* defined(DEBUG) */
1315 vp->v_iflag &= ~VI_WRMAPDIRTY;
1316 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1317 vn_syncer_remove_from_worklist(vp);
1318 }
1319
1320 #if !defined(DEBUG)
1321 skip_scan:
1322 #endif /* !defined(DEBUG) */
1323
1324 /* Wait for output to complete. */
1325 if (!wasclean && !async && vp->v_numoutput != 0) {
1326 while (vp->v_numoutput != 0)
1327 cv_wait(&vp->v_cv, slock);
1328 }
1329 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1330 mutex_exit(slock);
1331
1332 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1333 /*
1334 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1335 * retrying is not a big deal because, in many cases,
1336 * uobj->uo_npages is already 0 here.
1337 */
1338 mutex_enter(slock);
1339 goto retry;
1340 }
1341
1342 if (trans_mp) {
1343 if (holds_wapbl)
1344 WAPBL_END(trans_mp);
1345 fstrans_done(trans_mp);
1346 }
1347
1348 return (error);
1349 }
1350
1351 /*
1352 * Default putrange method for file systems that do not care
1353 * how many pages are given to one GOP_WRITE() call.
1354 */
1355 void
1356 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1357 {
1358
1359 *lop = 0;
1360 *hip = 0;
1361 }
1362
1363 int
1364 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1365 {
1366 off_t off;
1367 vaddr_t kva;
1368 size_t len;
1369 int error;
1370 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1371
1372 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1373 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1374
1375 off = pgs[0]->offset;
1376 kva = uvm_pagermapin(pgs, npages,
1377 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1378 len = npages << PAGE_SHIFT;
1379
1380 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1381 uvm_aio_biodone);
1382
1383 return error;
1384 }
1385
1386 int
1387 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1388 {
1389 off_t off;
1390 vaddr_t kva;
1391 size_t len;
1392 int error;
1393 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1394
1395 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1396 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1397
1398 off = pgs[0]->offset;
1399 kva = uvm_pagermapin(pgs, npages,
1400 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1401 len = npages << PAGE_SHIFT;
1402
1403 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1404 uvm_aio_biodone);
1405
1406 return error;
1407 }
1408
1409 /*
1410 * Backend routine for doing I/O to vnode pages. Pages are already locked
1411 * and mapped into kernel memory. Here we just look up the underlying
1412 * device block addresses and call the strategy routine.
1413 */
1414
1415 static int
1416 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1417 enum uio_rw rw, void (*iodone)(struct buf *))
1418 {
1419 int s, error;
1420 int fs_bshift, dev_bshift;
1421 off_t eof, offset, startoffset;
1422 size_t bytes, iobytes, skipbytes;
1423 struct buf *mbp, *bp;
1424 const bool async = (flags & PGO_SYNCIO) == 0;
1425 const bool lazy = (flags & PGO_LAZY) == 0;
1426 const bool iowrite = rw == UIO_WRITE;
1427 const int brw = iowrite ? B_WRITE : B_READ;
1428 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1429
1430 UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1431 (uintptr_t)vp, (uintptr_t)kva, len, flags);
1432
1433 KASSERT(vp->v_size <= vp->v_writesize);
1434 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1435 if (vp->v_type != VBLK) {
1436 fs_bshift = vp->v_mount->mnt_fs_bshift;
1437 dev_bshift = vp->v_mount->mnt_dev_bshift;
1438 } else {
1439 fs_bshift = DEV_BSHIFT;
1440 dev_bshift = DEV_BSHIFT;
1441 }
1442 error = 0;
1443 startoffset = off;
1444 bytes = MIN(len, eof - startoffset);
1445 skipbytes = 0;
1446 KASSERT(bytes != 0);
1447
1448 if (iowrite) {
1449 mutex_enter(vp->v_interlock);
1450 vp->v_numoutput += 2;
1451 mutex_exit(vp->v_interlock);
1452 }
1453 mbp = getiobuf(vp, true);
1454 UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1455 (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1456 mbp->b_bufsize = len;
1457 mbp->b_data = (void *)kva;
1458 mbp->b_resid = mbp->b_bcount = bytes;
1459 mbp->b_cflags = BC_BUSY | BC_AGE;
1460 if (async) {
1461 mbp->b_flags = brw | B_ASYNC;
1462 mbp->b_iodone = iodone;
1463 } else {
1464 mbp->b_flags = brw;
1465 mbp->b_iodone = NULL;
1466 }
1467 if (curlwp == uvm.pagedaemon_lwp)
1468 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1469 else if (async || lazy)
1470 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1471 else
1472 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1473
1474 bp = NULL;
1475 for (offset = startoffset;
1476 bytes > 0;
1477 offset += iobytes, bytes -= iobytes) {
1478 int run;
1479 daddr_t lbn, blkno;
1480 struct vnode *devvp;
1481
1482 /*
1483 * bmap the file to find out the blkno to read from and
1484 * how much we can read in one i/o. if bmap returns an error,
1485 * skip the rest of the top-level i/o.
1486 */
1487
1488 lbn = offset >> fs_bshift;
1489 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1490 if (error) {
1491 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
1492 lbn, error, 0, 0);
1493 skipbytes += bytes;
1494 bytes = 0;
1495 goto loopdone;
1496 }
1497
1498 /*
1499 * see how many pages can be read with this i/o.
1500 * reduce the i/o size if necessary to avoid
1501 * overwriting pages with valid data.
1502 */
1503
1504 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1505 bytes);
1506
1507 /*
1508 * if this block isn't allocated, zero it instead of
1509 * reading it. unless we are going to allocate blocks,
1510 * mark the pages we zeroed PG_RDONLY.
1511 */
1512
1513 if (blkno == (daddr_t)-1) {
1514 if (!iowrite) {
1515 memset((char *)kva + (offset - startoffset), 0,
1516 iobytes);
1517 }
1518 skipbytes += iobytes;
1519 continue;
1520 }
1521
1522 /*
1523 * allocate a sub-buf for this piece of the i/o
1524 * (or just use mbp if there's only 1 piece),
1525 * and start it going.
1526 */
1527
1528 if (offset == startoffset && iobytes == bytes) {
1529 bp = mbp;
1530 } else {
1531 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1532 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1533 bp = getiobuf(vp, true);
1534 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1535 }
1536 bp->b_lblkno = 0;
1537
1538 /* adjust physical blkno for partial blocks */
1539 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1540 dev_bshift);
1541
1542 UVMHIST_LOG(ubchist,
1543 "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1544 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1545
1546 VOP_STRATEGY(devvp, bp);
1547 }
1548
1549 loopdone:
1550 if (skipbytes) {
1551 UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1552 }
1553 nestiobuf_done(mbp, skipbytes, error);
1554 if (async) {
1555 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1556 return (0);
1557 }
1558 UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1559 error = biowait(mbp);
1560 s = splbio();
1561 (*iodone)(mbp);
1562 splx(s);
1563 UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1564 return (error);
1565 }
1566
1567 int
1568 genfs_compat_getpages(void *v)
1569 {
1570 struct vop_getpages_args /* {
1571 struct vnode *a_vp;
1572 voff_t a_offset;
1573 struct vm_page **a_m;
1574 int *a_count;
1575 int a_centeridx;
1576 vm_prot_t a_access_type;
1577 int a_advice;
1578 int a_flags;
1579 } */ *ap = v;
1580
1581 off_t origoffset;
1582 struct vnode *vp = ap->a_vp;
1583 struct uvm_object *uobj = &vp->v_uobj;
1584 struct vm_page *pg, **pgs;
1585 vaddr_t kva;
1586 int i, error, orignpages, npages;
1587 struct iovec iov;
1588 struct uio uio;
1589 kauth_cred_t cred = curlwp->l_cred;
1590 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1591
1592 error = 0;
1593 origoffset = ap->a_offset;
1594 orignpages = *ap->a_count;
1595 pgs = ap->a_m;
1596
1597 if (ap->a_flags & PGO_LOCKED) {
1598 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1599 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1600
1601 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1602 if (error == 0 && memwrite) {
1603 genfs_markdirty(vp);
1604 }
1605 return error;
1606 }
1607 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1608 mutex_exit(uobj->vmobjlock);
1609 return EINVAL;
1610 }
1611 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1612 mutex_exit(uobj->vmobjlock);
1613 return 0;
1614 }
1615 npages = orignpages;
1616 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1617 mutex_exit(uobj->vmobjlock);
1618 kva = uvm_pagermapin(pgs, npages,
1619 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1620 for (i = 0; i < npages; i++) {
1621 pg = pgs[i];
1622 if ((pg->flags & PG_FAKE) == 0) {
1623 continue;
1624 }
1625 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1626 iov.iov_len = PAGE_SIZE;
1627 uio.uio_iov = &iov;
1628 uio.uio_iovcnt = 1;
1629 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1630 uio.uio_rw = UIO_READ;
1631 uio.uio_resid = PAGE_SIZE;
1632 UIO_SETUP_SYSSPACE(&uio);
1633 /* XXX vn_lock */
1634 error = VOP_READ(vp, &uio, 0, cred);
1635 if (error) {
1636 break;
1637 }
1638 if (uio.uio_resid) {
1639 memset(iov.iov_base, 0, uio.uio_resid);
1640 }
1641 }
1642 uvm_pagermapout(kva, npages);
1643 mutex_enter(uobj->vmobjlock);
1644 mutex_enter(&uvm_pageqlock);
1645 for (i = 0; i < npages; i++) {
1646 pg = pgs[i];
1647 if (error && (pg->flags & PG_FAKE) != 0) {
1648 pg->flags |= PG_RELEASED;
1649 } else {
1650 pmap_clear_modify(pg);
1651 uvm_pageactivate(pg);
1652 }
1653 }
1654 if (error) {
1655 uvm_page_unbusy(pgs, npages);
1656 }
1657 mutex_exit(&uvm_pageqlock);
1658 if (error == 0 && memwrite) {
1659 genfs_markdirty(vp);
1660 }
1661 mutex_exit(uobj->vmobjlock);
1662 return error;
1663 }
1664
1665 int
1666 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1667 int flags)
1668 {
1669 off_t offset;
1670 struct iovec iov;
1671 struct uio uio;
1672 kauth_cred_t cred = curlwp->l_cred;
1673 struct buf *bp;
1674 vaddr_t kva;
1675 int error;
1676
1677 offset = pgs[0]->offset;
1678 kva = uvm_pagermapin(pgs, npages,
1679 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1680
1681 iov.iov_base = (void *)kva;
1682 iov.iov_len = npages << PAGE_SHIFT;
1683 uio.uio_iov = &iov;
1684 uio.uio_iovcnt = 1;
1685 uio.uio_offset = offset;
1686 uio.uio_rw = UIO_WRITE;
1687 uio.uio_resid = npages << PAGE_SHIFT;
1688 UIO_SETUP_SYSSPACE(&uio);
1689 /* XXX vn_lock */
1690 error = VOP_WRITE(vp, &uio, 0, cred);
1691
1692 mutex_enter(vp->v_interlock);
1693 vp->v_numoutput++;
1694 mutex_exit(vp->v_interlock);
1695
1696 bp = getiobuf(vp, true);
1697 bp->b_cflags = BC_BUSY | BC_AGE;
1698 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1699 bp->b_data = (char *)kva;
1700 bp->b_bcount = npages << PAGE_SHIFT;
1701 bp->b_bufsize = npages << PAGE_SHIFT;
1702 bp->b_resid = 0;
1703 bp->b_error = error;
1704 uvm_aio_aiodone(bp);
1705 return (error);
1706 }
1707
1708 /*
1709 * Process a uio using direct I/O. If we reach a part of the request
1710 * which cannot be processed in this fashion for some reason, just return.
1711 * The caller must handle some additional part of the request using
1712 * buffered I/O before trying direct I/O again.
1713 */
1714
1715 void
1716 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1717 {
1718 struct vmspace *vs;
1719 struct iovec *iov;
1720 vaddr_t va;
1721 size_t len;
1722 const int mask = DEV_BSIZE - 1;
1723 int error;
1724 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1725 (ioflag & IO_JOURNALLOCKED) == 0);
1726
1727 #ifdef DIAGNOSTIC
1728 if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
1729 WAPBL_JLOCK_ASSERT(vp->v_mount);
1730 #endif
1731
1732 /*
1733 * We only support direct I/O to user space for now.
1734 */
1735
1736 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1737 return;
1738 }
1739
1740 /*
1741 * If the vnode is mapped, we would need to get the getpages lock
1742 * to stabilize the bmap, but then we would get into trouble while
1743 * locking the pages if the pages belong to this same vnode (or a
1744 * multi-vnode cascade to the same effect). Just fall back to
1745 * buffered I/O if the vnode is mapped to avoid this mess.
1746 */
1747
1748 if (vp->v_vflag & VV_MAPPED) {
1749 return;
1750 }
1751
1752 if (need_wapbl) {
1753 error = WAPBL_BEGIN(vp->v_mount);
1754 if (error)
1755 return;
1756 }
1757
1758 /*
1759 * Do as much of the uio as possible with direct I/O.
1760 */
1761
1762 vs = uio->uio_vmspace;
1763 while (uio->uio_resid) {
1764 iov = uio->uio_iov;
1765 if (iov->iov_len == 0) {
1766 uio->uio_iov++;
1767 uio->uio_iovcnt--;
1768 continue;
1769 }
1770 va = (vaddr_t)iov->iov_base;
1771 len = MIN(iov->iov_len, genfs_maxdio);
1772 len &= ~mask;
1773
1774 /*
1775 * If the next chunk is smaller than DEV_BSIZE or extends past
1776 * the current EOF, then fall back to buffered I/O.
1777 */
1778
1779 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1780 break;
1781 }
1782
1783 /*
1784 * Check alignment. The file offset must be at least
1785 * sector-aligned. The exact constraint on memory alignment
1786 * is very hardware-dependent, but requiring sector-aligned
1787 * addresses there too is safe.
1788 */
1789
1790 if (uio->uio_offset & mask || va & mask) {
1791 break;
1792 }
1793 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1794 uio->uio_rw);
1795 if (error) {
1796 break;
1797 }
1798 iov->iov_base = (char *)iov->iov_base + len;
1799 iov->iov_len -= len;
1800 uio->uio_offset += len;
1801 uio->uio_resid -= len;
1802 }
1803
1804 if (need_wapbl)
1805 WAPBL_END(vp->v_mount);
1806 }
1807
1808 /*
1809 * Iodone routine for direct I/O. We don't do much here since the request is
1810 * always synchronous, so the caller will do most of the work after biowait().
1811 */
1812
1813 static void
1814 genfs_dio_iodone(struct buf *bp)
1815 {
1816
1817 KASSERT((bp->b_flags & B_ASYNC) == 0);
1818 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1819 mutex_enter(bp->b_objlock);
1820 vwakeup(bp);
1821 mutex_exit(bp->b_objlock);
1822 }
1823 putiobuf(bp);
1824 }
1825
1826 /*
1827 * Process one chunk of a direct I/O request.
1828 */
1829
1830 static int
1831 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1832 off_t off, enum uio_rw rw)
1833 {
1834 struct vm_map *map;
1835 struct pmap *upm, *kpm __unused;
1836 size_t klen = round_page(uva + len) - trunc_page(uva);
1837 off_t spoff, epoff;
1838 vaddr_t kva, puva;
1839 paddr_t pa;
1840 vm_prot_t prot;
1841 int error, rv __diagused, poff, koff;
1842 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1843 (rw == UIO_WRITE ? PGO_FREE : 0);
1844
1845 /*
1846 * For writes, verify that this range of the file already has fully
1847 * allocated backing store. If there are any holes, just punt and
1848 * make the caller take the buffered write path.
1849 */
1850
1851 if (rw == UIO_WRITE) {
1852 daddr_t lbn, elbn, blkno;
1853 int bsize, bshift, run;
1854
1855 bshift = vp->v_mount->mnt_fs_bshift;
1856 bsize = 1 << bshift;
1857 lbn = off >> bshift;
1858 elbn = (off + len + bsize - 1) >> bshift;
1859 while (lbn < elbn) {
1860 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1861 if (error) {
1862 return error;
1863 }
1864 if (blkno == (daddr_t)-1) {
1865 return ENOSPC;
1866 }
1867 lbn += 1 + run;
1868 }
1869 }
1870
1871 /*
1872 * Flush any cached pages for parts of the file that we're about to
1873 * access. If we're writing, invalidate pages as well.
1874 */
1875
1876 spoff = trunc_page(off);
1877 epoff = round_page(off + len);
1878 mutex_enter(vp->v_interlock);
1879 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1880 if (error) {
1881 return error;
1882 }
1883
1884 /*
1885 * Wire the user pages and remap them into kernel memory.
1886 */
1887
1888 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1889 error = uvm_vslock(vs, (void *)uva, len, prot);
1890 if (error) {
1891 return error;
1892 }
1893
1894 map = &vs->vm_map;
1895 upm = vm_map_pmap(map);
1896 kpm = vm_map_pmap(kernel_map);
1897 puva = trunc_page(uva);
1898 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1899 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1900 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1901 rv = pmap_extract(upm, puva + poff, &pa);
1902 KASSERT(rv);
1903 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1904 }
1905 pmap_update(kpm);
1906
1907 /*
1908 * Do the I/O.
1909 */
1910
1911 koff = uva - trunc_page(uva);
1912 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1913 genfs_dio_iodone);
1914
1915 /*
1916 * Tear down the kernel mapping.
1917 */
1918
1919 pmap_kremove(kva, klen);
1920 pmap_update(kpm);
1921 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1922
1923 /*
1924 * Unwire the user pages.
1925 */
1926
1927 uvm_vsunlock(vs, (void *)uva, len);
1928 return error;
1929 }
1930