Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.74
      1 /*	$NetBSD: genfs_io.c,v 1.74 2018/12/10 21:10:52 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.74 2018/12/10 21:10:52 jdolecek Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 
     47 #include <miscfs/genfs/genfs.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <miscfs/specfs/specdev.h>
     50 
     51 #include <uvm/uvm.h>
     52 #include <uvm/uvm_pager.h>
     53 
     54 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     55     off_t, enum uio_rw);
     56 static void genfs_dio_iodone(struct buf *);
     57 
     58 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
     59     off_t, bool, bool, bool, bool);
     60 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     61     void (*)(struct buf *));
     62 static void genfs_rel_pages(struct vm_page **, unsigned int);
     63 static void genfs_markdirty(struct vnode *);
     64 
     65 int genfs_maxdio = MAXPHYS;
     66 
     67 static void
     68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     69 {
     70 	unsigned int i;
     71 
     72 	for (i = 0; i < npages; i++) {
     73 		struct vm_page *pg = pgs[i];
     74 
     75 		if (pg == NULL || pg == PGO_DONTCARE)
     76 			continue;
     77 		KASSERT(uvm_page_locked_p(pg));
     78 		if (pg->flags & PG_FAKE) {
     79 			pg->flags |= PG_RELEASED;
     80 		}
     81 	}
     82 	mutex_enter(&uvm_pageqlock);
     83 	uvm_page_unbusy(pgs, npages);
     84 	mutex_exit(&uvm_pageqlock);
     85 }
     86 
     87 static void
     88 genfs_markdirty(struct vnode *vp)
     89 {
     90 	struct genfs_node * const gp = VTOG(vp);
     91 
     92 	KASSERT(mutex_owned(vp->v_interlock));
     93 	gp->g_dirtygen++;
     94 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
     95 		vn_syncer_add_to_worklist(vp, filedelay);
     96 	}
     97 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
     98 		vp->v_iflag |= VI_WRMAPDIRTY;
     99 	}
    100 }
    101 
    102 /*
    103  * generic VM getpages routine.
    104  * Return PG_BUSY pages for the given range,
    105  * reading from backing store if necessary.
    106  */
    107 
    108 int
    109 genfs_getpages(void *v)
    110 {
    111 	struct vop_getpages_args /* {
    112 		struct vnode *a_vp;
    113 		voff_t a_offset;
    114 		struct vm_page **a_m;
    115 		int *a_count;
    116 		int a_centeridx;
    117 		vm_prot_t a_access_type;
    118 		int a_advice;
    119 		int a_flags;
    120 	} */ * const ap = v;
    121 
    122 	off_t diskeof, memeof;
    123 	int i, error, npages;
    124 	const int flags = ap->a_flags;
    125 	struct vnode * const vp = ap->a_vp;
    126 	struct uvm_object * const uobj = &vp->v_uobj;
    127 	const bool async = (flags & PGO_SYNCIO) == 0;
    128 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    130 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    131 	const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
    132 			(flags & PGO_JOURNALLOCKED) == 0);
    133 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    134 	bool holds_wapbl = false;
    135 	struct mount *trans_mount = NULL;
    136 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    137 
    138 	UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
    139 	    (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    140 
    141 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    142 	    vp->v_type == VLNK || vp->v_type == VBLK);
    143 
    144 #ifdef DIAGNOSTIC
    145 	if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    146                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    147 #endif
    148 
    149 	error = vdead_check(vp, VDEAD_NOWAIT);
    150 	if (error) {
    151 		if ((flags & PGO_LOCKED) == 0)
    152 			mutex_exit(uobj->vmobjlock);
    153 		return error;
    154 	}
    155 
    156 startover:
    157 	error = 0;
    158 	const voff_t origvsize = vp->v_size;
    159 	const off_t origoffset = ap->a_offset;
    160 	const int orignpages = *ap->a_count;
    161 
    162 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    163 	if (flags & PGO_PASTEOF) {
    164 		off_t newsize;
    165 #if defined(DIAGNOSTIC)
    166 		off_t writeeof;
    167 #endif /* defined(DIAGNOSTIC) */
    168 
    169 		newsize = MAX(origvsize,
    170 		    origoffset + (orignpages << PAGE_SHIFT));
    171 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    172 #if defined(DIAGNOSTIC)
    173 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    174 		if (newsize > round_page(writeeof)) {
    175 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    176 			    __func__, newsize, round_page(writeeof));
    177 		}
    178 #endif /* defined(DIAGNOSTIC) */
    179 	} else {
    180 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    181 	}
    182 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    183 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    184 	KASSERT(orignpages > 0);
    185 
    186 	/*
    187 	 * Bounds-check the request.
    188 	 */
    189 
    190 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    191 		if ((flags & PGO_LOCKED) == 0) {
    192 			mutex_exit(uobj->vmobjlock);
    193 		}
    194 		UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
    195 		    origoffset, *ap->a_count, memeof,0);
    196 		error = EINVAL;
    197 		goto out_err;
    198 	}
    199 
    200 	/* uobj is locked */
    201 
    202 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    203 	    (vp->v_type != VBLK ||
    204 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    205 		int updflags = 0;
    206 
    207 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    208 			updflags = GOP_UPDATE_ACCESSED;
    209 		}
    210 		if (memwrite) {
    211 			updflags |= GOP_UPDATE_MODIFIED;
    212 		}
    213 		if (updflags != 0) {
    214 			GOP_MARKUPDATE(vp, updflags);
    215 		}
    216 	}
    217 
    218 	/*
    219 	 * For PGO_LOCKED requests, just return whatever's in memory.
    220 	 */
    221 
    222 	if (flags & PGO_LOCKED) {
    223 		int nfound;
    224 		struct vm_page *pg;
    225 
    226 		KASSERT(!glocked);
    227 		npages = *ap->a_count;
    228 #if defined(DEBUG)
    229 		for (i = 0; i < npages; i++) {
    230 			pg = ap->a_m[i];
    231 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    232 		}
    233 #endif /* defined(DEBUG) */
    234 		nfound = uvn_findpages(uobj, origoffset, &npages,
    235 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    236 		KASSERT(npages == *ap->a_count);
    237 		if (nfound == 0) {
    238 			error = EBUSY;
    239 			goto out_err;
    240 		}
    241 		if (!genfs_node_rdtrylock(vp)) {
    242 			genfs_rel_pages(ap->a_m, npages);
    243 
    244 			/*
    245 			 * restore the array.
    246 			 */
    247 
    248 			for (i = 0; i < npages; i++) {
    249 				pg = ap->a_m[i];
    250 
    251 				if (pg != NULL && pg != PGO_DONTCARE) {
    252 					ap->a_m[i] = NULL;
    253 				}
    254 				KASSERT(ap->a_m[i] == NULL ||
    255 				    ap->a_m[i] == PGO_DONTCARE);
    256 			}
    257 		} else {
    258 			genfs_node_unlock(vp);
    259 		}
    260 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    261 		if (error == 0 && memwrite) {
    262 			genfs_markdirty(vp);
    263 		}
    264 		goto out_err;
    265 	}
    266 	mutex_exit(uobj->vmobjlock);
    267 
    268 	/*
    269 	 * find the requested pages and make some simple checks.
    270 	 * leave space in the page array for a whole block.
    271 	 */
    272 
    273 	const int fs_bshift = (vp->v_type != VBLK) ?
    274 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    275 	const int fs_bsize = 1 << fs_bshift;
    276 #define	blk_mask	(fs_bsize - 1)
    277 #define	trunc_blk(x)	((x) & ~blk_mask)
    278 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    279 
    280 	const int orignmempages = MIN(orignpages,
    281 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    282 	npages = orignmempages;
    283 	const off_t startoffset = trunc_blk(origoffset);
    284 	const off_t endoffset = MIN(
    285 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    286 	    round_page(memeof));
    287 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    288 
    289 	const int pgs_size = sizeof(struct vm_page *) *
    290 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    291 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    292 
    293 	if (pgs_size > sizeof(pgs_onstack)) {
    294 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    295 		if (pgs == NULL) {
    296 			pgs = pgs_onstack;
    297 			error = ENOMEM;
    298 			goto out_err;
    299 		}
    300 	} else {
    301 		pgs = pgs_onstack;
    302 		(void)memset(pgs, 0, pgs_size);
    303 	}
    304 
    305 	UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
    306 	    ridx, npages, startoffset, endoffset);
    307 
    308 	if (trans_mount == NULL) {
    309 		trans_mount = vp->v_mount;
    310 		fstrans_start(trans_mount);
    311 		/*
    312 		 * check if this vnode is still valid.
    313 		 */
    314 		mutex_enter(vp->v_interlock);
    315 		error = vdead_check(vp, 0);
    316 		mutex_exit(vp->v_interlock);
    317 		if (error)
    318 			goto out_err_free;
    319 		/*
    320 		 * XXX: This assumes that we come here only via
    321 		 * the mmio path
    322 		 */
    323 		if (blockalloc && need_wapbl) {
    324 			error = WAPBL_BEGIN(trans_mount);
    325 			if (error)
    326 				goto out_err_free;
    327 			holds_wapbl = true;
    328 		}
    329 	}
    330 
    331 	/*
    332 	 * hold g_glock to prevent a race with truncate.
    333 	 *
    334 	 * check if our idea of v_size is still valid.
    335 	 */
    336 
    337 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    338 	if (!glocked) {
    339 		if (blockalloc) {
    340 			genfs_node_wrlock(vp);
    341 		} else {
    342 			genfs_node_rdlock(vp);
    343 		}
    344 	}
    345 	mutex_enter(uobj->vmobjlock);
    346 	if (vp->v_size < origvsize) {
    347 		if (!glocked) {
    348 			genfs_node_unlock(vp);
    349 		}
    350 		if (pgs != pgs_onstack)
    351 			kmem_free(pgs, pgs_size);
    352 		goto startover;
    353 	}
    354 
    355 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    356 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    357 		if (!glocked) {
    358 			genfs_node_unlock(vp);
    359 		}
    360 		KASSERT(async != 0);
    361 		genfs_rel_pages(&pgs[ridx], orignmempages);
    362 		mutex_exit(uobj->vmobjlock);
    363 		error = EBUSY;
    364 		goto out_err_free;
    365 	}
    366 
    367 	/*
    368 	 * if the pages are already resident, just return them.
    369 	 */
    370 
    371 	for (i = 0; i < npages; i++) {
    372 		struct vm_page *pg = pgs[ridx + i];
    373 
    374 		if ((pg->flags & PG_FAKE) ||
    375 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    376 			break;
    377 		}
    378 	}
    379 	if (i == npages) {
    380 		if (!glocked) {
    381 			genfs_node_unlock(vp);
    382 		}
    383 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    384 		npages += ridx;
    385 		goto out;
    386 	}
    387 
    388 	/*
    389 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    390 	 */
    391 
    392 	if (overwrite) {
    393 		if (!glocked) {
    394 			genfs_node_unlock(vp);
    395 		}
    396 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    397 
    398 		for (i = 0; i < npages; i++) {
    399 			struct vm_page *pg = pgs[ridx + i];
    400 
    401 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    402 		}
    403 		npages += ridx;
    404 		goto out;
    405 	}
    406 
    407 	/*
    408 	 * the page wasn't resident and we're not overwriting,
    409 	 * so we're going to have to do some i/o.
    410 	 * find any additional pages needed to cover the expanded range.
    411 	 */
    412 
    413 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    414 	if (startoffset != origoffset || npages != orignmempages) {
    415 		int npgs;
    416 
    417 		/*
    418 		 * we need to avoid deadlocks caused by locking
    419 		 * additional pages at lower offsets than pages we
    420 		 * already have locked.  unlock them all and start over.
    421 		 */
    422 
    423 		genfs_rel_pages(&pgs[ridx], orignmempages);
    424 		memset(pgs, 0, pgs_size);
    425 
    426 		UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
    427 		    startoffset, endoffset, 0,0);
    428 		npgs = npages;
    429 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    430 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    431 			if (!glocked) {
    432 				genfs_node_unlock(vp);
    433 			}
    434 			KASSERT(async != 0);
    435 			genfs_rel_pages(pgs, npages);
    436 			mutex_exit(uobj->vmobjlock);
    437 			error = EBUSY;
    438 			goto out_err_free;
    439 		}
    440 	}
    441 
    442 	mutex_exit(uobj->vmobjlock);
    443 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
    444 	    async, memwrite, blockalloc, glocked);
    445 	if (!glocked) {
    446 		genfs_node_unlock(vp);
    447 	}
    448 	if (error == 0 && async)
    449 		goto out_err_free;
    450 	mutex_enter(uobj->vmobjlock);
    451 
    452 	/*
    453 	 * we're almost done!  release the pages...
    454 	 * for errors, we free the pages.
    455 	 * otherwise we activate them and mark them as valid and clean.
    456 	 * also, unbusy pages that were not actually requested.
    457 	 */
    458 
    459 	if (error) {
    460 		genfs_rel_pages(pgs, npages);
    461 		mutex_exit(uobj->vmobjlock);
    462 		UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
    463 		goto out_err_free;
    464 	}
    465 
    466 out:
    467 	UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
    468 	error = 0;
    469 	mutex_enter(&uvm_pageqlock);
    470 	for (i = 0; i < npages; i++) {
    471 		struct vm_page *pg = pgs[i];
    472 		if (pg == NULL) {
    473 			continue;
    474 		}
    475 		UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
    476 		    (uintptr_t)pg, pg->flags, 0,0);
    477 		if (pg->flags & PG_FAKE && !overwrite) {
    478 			pg->flags &= ~(PG_FAKE);
    479 			pmap_clear_modify(pgs[i]);
    480 		}
    481 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    482 		if (i < ridx || i >= ridx + orignmempages || async) {
    483 			UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
    484 			    (uintptr_t)pg, pg->offset,0,0);
    485 			if (pg->flags & PG_WANTED) {
    486 				wakeup(pg);
    487 			}
    488 			if (pg->flags & PG_FAKE) {
    489 				KASSERT(overwrite);
    490 				uvm_pagezero(pg);
    491 			}
    492 			if (pg->flags & PG_RELEASED) {
    493 				uvm_pagefree(pg);
    494 				continue;
    495 			}
    496 			uvm_pageenqueue(pg);
    497 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    498 			UVM_PAGE_OWN(pg, NULL);
    499 		}
    500 	}
    501 	mutex_exit(&uvm_pageqlock);
    502 	if (memwrite) {
    503 		genfs_markdirty(vp);
    504 	}
    505 	mutex_exit(uobj->vmobjlock);
    506 	if (ap->a_m != NULL) {
    507 		memcpy(ap->a_m, &pgs[ridx],
    508 		    orignmempages * sizeof(struct vm_page *));
    509 	}
    510 
    511 out_err_free:
    512 	if (pgs != NULL && pgs != pgs_onstack)
    513 		kmem_free(pgs, pgs_size);
    514 out_err:
    515 	if (trans_mount != NULL) {
    516 		if (holds_wapbl)
    517 			WAPBL_END(trans_mount);
    518 		fstrans_done(trans_mount);
    519 	}
    520 	return error;
    521 }
    522 
    523 /*
    524  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
    525  *
    526  * "glocked" (which is currently not actually used) tells us not whether
    527  * the genfs_node is locked on entry (it always is) but whether it was
    528  * locked on entry to genfs_getpages.
    529  */
    530 static int
    531 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
    532     off_t startoffset, off_t diskeof,
    533     bool async, bool memwrite, bool blockalloc, bool glocked)
    534 {
    535 	struct uvm_object * const uobj = &vp->v_uobj;
    536 	const int fs_bshift = (vp->v_type != VBLK) ?
    537 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    538 	const int dev_bshift = (vp->v_type != VBLK) ?
    539 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    540 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    541 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    542 	vaddr_t kva;
    543 	struct buf *bp, *mbp;
    544 	bool sawhole = false;
    545 	int i;
    546 	int error = 0;
    547 
    548 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
    549 
    550 	/*
    551 	 * read the desired page(s).
    552 	 */
    553 
    554 	totalbytes = npages << PAGE_SHIFT;
    555 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    556 	tailbytes = totalbytes - bytes;
    557 	skipbytes = 0;
    558 
    559 	kva = uvm_pagermapin(pgs, npages,
    560 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    561 	if (kva == 0)
    562 		return EBUSY;
    563 
    564 	mbp = getiobuf(vp, true);
    565 	mbp->b_bufsize = totalbytes;
    566 	mbp->b_data = (void *)kva;
    567 	mbp->b_resid = mbp->b_bcount = bytes;
    568 	mbp->b_cflags = BC_BUSY;
    569 	if (async) {
    570 		mbp->b_flags = B_READ | B_ASYNC;
    571 		mbp->b_iodone = uvm_aio_biodone;
    572 	} else {
    573 		mbp->b_flags = B_READ;
    574 		mbp->b_iodone = NULL;
    575 	}
    576 	if (async)
    577 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    578 	else
    579 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    580 
    581 	/*
    582 	 * if EOF is in the middle of the range, zero the part past EOF.
    583 	 * skip over pages which are not PG_FAKE since in that case they have
    584 	 * valid data that we need to preserve.
    585 	 */
    586 
    587 	tailstart = bytes;
    588 	while (tailbytes > 0) {
    589 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    590 
    591 		KASSERT(len <= tailbytes);
    592 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    593 			memset((void *)(kva + tailstart), 0, len);
    594 			UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
    595 			    (uintptr_t)kva, tailstart, len, 0);
    596 		}
    597 		tailstart += len;
    598 		tailbytes -= len;
    599 	}
    600 
    601 	/*
    602 	 * now loop over the pages, reading as needed.
    603 	 */
    604 
    605 	bp = NULL;
    606 	off_t offset;
    607 	for (offset = startoffset;
    608 	    bytes > 0;
    609 	    offset += iobytes, bytes -= iobytes) {
    610 		int run;
    611 		daddr_t lbn, blkno;
    612 		int pidx;
    613 		struct vnode *devvp;
    614 
    615 		/*
    616 		 * skip pages which don't need to be read.
    617 		 */
    618 
    619 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    620 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    621 			size_t b;
    622 
    623 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    624 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    625 				sawhole = true;
    626 			}
    627 			b = MIN(PAGE_SIZE, bytes);
    628 			offset += b;
    629 			bytes -= b;
    630 			skipbytes += b;
    631 			pidx++;
    632 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
    633 			    offset, 0,0,0);
    634 			if (bytes == 0) {
    635 				goto loopdone;
    636 			}
    637 		}
    638 
    639 		/*
    640 		 * bmap the file to find out the blkno to read from and
    641 		 * how much we can read in one i/o.  if bmap returns an error,
    642 		 * skip the rest of the top-level i/o.
    643 		 */
    644 
    645 		lbn = offset >> fs_bshift;
    646 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    647 		if (error) {
    648 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
    649 			    lbn,error,0,0);
    650 			skipbytes += bytes;
    651 			bytes = 0;
    652 			goto loopdone;
    653 		}
    654 
    655 		/*
    656 		 * see how many pages can be read with this i/o.
    657 		 * reduce the i/o size if necessary to avoid
    658 		 * overwriting pages with valid data.
    659 		 */
    660 
    661 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    662 		    bytes);
    663 		if (offset + iobytes > round_page(offset)) {
    664 			int pcount;
    665 
    666 			pcount = 1;
    667 			while (pidx + pcount < npages &&
    668 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    669 				pcount++;
    670 			}
    671 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    672 			    (offset - trunc_page(offset)));
    673 		}
    674 
    675 		/*
    676 		 * if this block isn't allocated, zero it instead of
    677 		 * reading it.  unless we are going to allocate blocks,
    678 		 * mark the pages we zeroed PG_RDONLY.
    679 		 */
    680 
    681 		if (blkno == (daddr_t)-1) {
    682 			int holepages = (round_page(offset + iobytes) -
    683 			    trunc_page(offset)) >> PAGE_SHIFT;
    684 			UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
    685 
    686 			sawhole = true;
    687 			memset((char *)kva + (offset - startoffset), 0,
    688 			    iobytes);
    689 			skipbytes += iobytes;
    690 
    691 			mutex_enter(uobj->vmobjlock);
    692 			for (i = 0; i < holepages; i++) {
    693 				if (memwrite) {
    694 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    695 				}
    696 				if (!blockalloc) {
    697 					pgs[pidx + i]->flags |= PG_RDONLY;
    698 				}
    699 			}
    700 			mutex_exit(uobj->vmobjlock);
    701 			continue;
    702 		}
    703 
    704 		/*
    705 		 * allocate a sub-buf for this piece of the i/o
    706 		 * (or just use mbp if there's only 1 piece),
    707 		 * and start it going.
    708 		 */
    709 
    710 		if (offset == startoffset && iobytes == bytes) {
    711 			bp = mbp;
    712 		} else {
    713 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
    714 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
    715 			bp = getiobuf(vp, true);
    716 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    717 		}
    718 		bp->b_lblkno = 0;
    719 
    720 		/* adjust physical blkno for partial blocks */
    721 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    722 		    dev_bshift);
    723 
    724 		UVMHIST_LOG(ubchist,
    725 		    "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
    726 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
    727 
    728 		VOP_STRATEGY(devvp, bp);
    729 	}
    730 
    731 loopdone:
    732 	nestiobuf_done(mbp, skipbytes, error);
    733 	if (async) {
    734 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    735 		return 0;
    736 	}
    737 	if (bp != NULL) {
    738 		error = biowait(mbp);
    739 	}
    740 
    741 	/* Remove the mapping (make KVA available as soon as possible) */
    742 	uvm_pagermapout(kva, npages);
    743 
    744 	/*
    745 	 * if this we encountered a hole then we have to do a little more work.
    746 	 * for read faults, we marked the page PG_RDONLY so that future
    747 	 * write accesses to the page will fault again.
    748 	 * for write faults, we must make sure that the backing store for
    749 	 * the page is completely allocated while the pages are locked.
    750 	 */
    751 
    752 	if (!error && sawhole && blockalloc) {
    753 		error = GOP_ALLOC(vp, startoffset,
    754 		    npages << PAGE_SHIFT, 0, cred);
    755 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
    756 		    startoffset, npages << PAGE_SHIFT, error,0);
    757 		if (!error) {
    758 			mutex_enter(uobj->vmobjlock);
    759 			for (i = 0; i < npages; i++) {
    760 				struct vm_page *pg = pgs[i];
    761 
    762 				if (pg == NULL) {
    763 					continue;
    764 				}
    765 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    766 				UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
    767 				    (uintptr_t)pg, 0, 0, 0);
    768 			}
    769 			mutex_exit(uobj->vmobjlock);
    770 		}
    771 	}
    772 
    773 	putiobuf(mbp);
    774 	return error;
    775 }
    776 
    777 /*
    778  * generic VM putpages routine.
    779  * Write the given range of pages to backing store.
    780  *
    781  * => "offhi == 0" means flush all pages at or after "offlo".
    782  * => object should be locked by caller.  we return with the
    783  *      object unlocked.
    784  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    785  *	thus, a caller might want to unlock higher level resources
    786  *	(e.g. vm_map) before calling flush.
    787  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    788  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    789  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    790  *	that new pages are inserted on the tail end of the list.   thus,
    791  *	we can make a complete pass through the object in one go by starting
    792  *	at the head and working towards the tail (new pages are put in
    793  *	front of us).
    794  * => NOTE: we are allowed to lock the page queues, so the caller
    795  *	must not be holding the page queue lock.
    796  *
    797  * note on "cleaning" object and PG_BUSY pages:
    798  *	this routine is holding the lock on the object.   the only time
    799  *	that it can run into a PG_BUSY page that it does not own is if
    800  *	some other process has started I/O on the page (e.g. either
    801  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    802  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    803  *	had a chance to modify it yet.    if the PG_BUSY page is being
    804  *	paged out then it means that someone else has already started
    805  *	cleaning the page for us (how nice!).    in this case, if we
    806  *	have syncio specified, then after we make our pass through the
    807  *	object we need to wait for the other PG_BUSY pages to clear
    808  *	off (i.e. we need to do an iosync).   also note that once a
    809  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    810  *
    811  * note on page traversal:
    812  *	we can traverse the pages in an object either by going down the
    813  *	linked list in "uobj->memq", or we can go over the address range
    814  *	by page doing hash table lookups for each address.    depending
    815  *	on how many pages are in the object it may be cheaper to do one
    816  *	or the other.   we set "by_list" to true if we are using memq.
    817  *	if the cost of a hash lookup was equal to the cost of the list
    818  *	traversal we could compare the number of pages in the start->stop
    819  *	range to the total number of pages in the object.   however, it
    820  *	seems that a hash table lookup is more expensive than the linked
    821  *	list traversal, so we multiply the number of pages in the
    822  *	range by an estimate of the relatively higher cost of the hash lookup.
    823  */
    824 
    825 int
    826 genfs_putpages(void *v)
    827 {
    828 	struct vop_putpages_args /* {
    829 		struct vnode *a_vp;
    830 		voff_t a_offlo;
    831 		voff_t a_offhi;
    832 		int a_flags;
    833 	} */ * const ap = v;
    834 
    835 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    836 	    ap->a_flags, NULL);
    837 }
    838 
    839 int
    840 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    841     int origflags, struct vm_page **busypg)
    842 {
    843 	struct uvm_object * const uobj = &vp->v_uobj;
    844 	kmutex_t * const slock = uobj->vmobjlock;
    845 	off_t off;
    846 	int i, error, npages, nback;
    847 	int freeflag;
    848 	/*
    849 	 * This array is larger than it should so that it's size is constant.
    850 	 * The right size is MAXPAGES.
    851 	 */
    852 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
    853 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
    854 	struct vm_page *pg, *nextpg, *tpg, curmp, endmp;
    855 	bool wasclean, by_list, needs_clean, yld;
    856 	bool async = (origflags & PGO_SYNCIO) == 0;
    857 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    858 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    859 	struct genfs_node * const gp = VTOG(vp);
    860 	struct mount *trans_mp;
    861 	int flags;
    862 	int dirtygen;
    863 	bool modified;
    864 	bool holds_wapbl;
    865 	bool cleanall;
    866 	bool onworklst;
    867 
    868 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    869 
    870 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    871 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    872 	KASSERT(startoff < endoff || endoff == 0);
    873 
    874 	UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
    875 	    (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
    876 
    877 #ifdef DIAGNOSTIC
    878 	if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    879                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    880 #endif
    881 
    882 	trans_mp = NULL;
    883 	holds_wapbl = false;
    884 
    885 retry:
    886 	modified = false;
    887 	flags = origflags;
    888 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    889 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    890 	if (uobj->uo_npages == 0) {
    891 		if (vp->v_iflag & VI_ONWORKLST) {
    892 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    893 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    894 				vn_syncer_remove_from_worklist(vp);
    895 		}
    896 		if (trans_mp) {
    897 			if (holds_wapbl)
    898 				WAPBL_END(trans_mp);
    899 			fstrans_done(trans_mp);
    900 		}
    901 		mutex_exit(slock);
    902 		return (0);
    903 	}
    904 
    905 	/*
    906 	 * the vnode has pages, set up to process the request.
    907 	 */
    908 
    909 	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
    910 		if (pagedaemon) {
    911 			/* Pagedaemon must not sleep here. */
    912 			trans_mp = vp->v_mount;
    913 			error = fstrans_start_nowait(trans_mp);
    914 			if (error) {
    915 				mutex_exit(slock);
    916 				return error;
    917 			}
    918 		} else {
    919 			/*
    920 			 * Cannot use vdeadcheck() here as this operation
    921 			 * usually gets used from VOP_RECLAIM().  Test for
    922 			 * change of v_mount instead and retry on change.
    923 			 */
    924 			mutex_exit(slock);
    925 			trans_mp = vp->v_mount;
    926 			fstrans_start(trans_mp);
    927 			if (vp->v_mount != trans_mp) {
    928 				fstrans_done(trans_mp);
    929 				trans_mp = NULL;
    930 			} else {
    931 				holds_wapbl = (trans_mp->mnt_wapbl &&
    932 				    (origflags & PGO_JOURNALLOCKED) == 0);
    933 				if (holds_wapbl) {
    934 					error = WAPBL_BEGIN(trans_mp);
    935 					if (error) {
    936 						fstrans_done(trans_mp);
    937 						return error;
    938 					}
    939 				}
    940 			}
    941 			mutex_enter(slock);
    942 			goto retry;
    943 		}
    944 	}
    945 
    946 	error = 0;
    947 	wasclean = (vp->v_numoutput == 0);
    948 	off = startoff;
    949 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    950 		endoff = trunc_page(LLONG_MAX);
    951 	}
    952 	by_list = (uobj->uo_npages <=
    953 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    954 
    955 	/*
    956 	 * if this vnode is known not to have dirty pages,
    957 	 * don't bother to clean it out.
    958 	 */
    959 
    960 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    961 #if !defined(DEBUG)
    962 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    963 			goto skip_scan;
    964 		}
    965 #endif /* !defined(DEBUG) */
    966 		flags &= ~PGO_CLEANIT;
    967 	}
    968 
    969 	/*
    970 	 * start the loop.  when scanning by list, hold the last page
    971 	 * in the list before we start.  pages allocated after we start
    972 	 * will be added to the end of the list, so we can stop at the
    973 	 * current last page.
    974 	 */
    975 
    976 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    977 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    978 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    979 	dirtygen = gp->g_dirtygen;
    980 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    981 	if (by_list) {
    982 		curmp.flags = PG_MARKER;
    983 		endmp.flags = PG_MARKER;
    984 		pg = TAILQ_FIRST(&uobj->memq);
    985 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    986 	} else {
    987 		pg = uvm_pagelookup(uobj, off);
    988 	}
    989 	nextpg = NULL;
    990 	while (by_list || off < endoff) {
    991 
    992 		/*
    993 		 * if the current page is not interesting, move on to the next.
    994 		 */
    995 
    996 		KASSERT(pg == NULL || pg->uobject == uobj ||
    997 		    (pg->flags & PG_MARKER) != 0);
    998 		KASSERT(pg == NULL ||
    999 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1000 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
   1001 		if (by_list) {
   1002 			if (pg == &endmp) {
   1003 				break;
   1004 			}
   1005 			if (pg->flags & PG_MARKER) {
   1006 				pg = TAILQ_NEXT(pg, listq.queue);
   1007 				continue;
   1008 			}
   1009 			if (pg->offset < startoff || pg->offset >= endoff ||
   1010 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1011 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1012 					wasclean = false;
   1013 				}
   1014 				pg = TAILQ_NEXT(pg, listq.queue);
   1015 				continue;
   1016 			}
   1017 			off = pg->offset;
   1018 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1019 			if (pg != NULL) {
   1020 				wasclean = false;
   1021 			}
   1022 			off += PAGE_SIZE;
   1023 			if (off < endoff) {
   1024 				pg = uvm_pagelookup(uobj, off);
   1025 			}
   1026 			continue;
   1027 		}
   1028 
   1029 		/*
   1030 		 * if the current page needs to be cleaned and it's busy,
   1031 		 * wait for it to become unbusy.
   1032 		 */
   1033 
   1034 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1035 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1036 		if (pg->flags & PG_BUSY || yld) {
   1037 			UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
   1038 			   0, 0, 0);
   1039 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1040 				UVMHIST_LOG(ubchist, "busyfail %#jx",
   1041 				    (uintptr_t)pg, 0, 0, 0);
   1042 				error = EDEADLK;
   1043 				if (busypg != NULL)
   1044 					*busypg = pg;
   1045 				break;
   1046 			}
   1047 			if (pagedaemon) {
   1048 				/*
   1049 				 * someone has taken the page while we
   1050 				 * dropped the lock for fstrans_start.
   1051 				 */
   1052 				break;
   1053 			}
   1054 			if (by_list) {
   1055 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1056 				UVMHIST_LOG(ubchist, "curmp next %#jx",
   1057 				    (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
   1058 				    0, 0, 0);
   1059 			}
   1060 			if (yld) {
   1061 				mutex_exit(slock);
   1062 				preempt();
   1063 				mutex_enter(slock);
   1064 			} else {
   1065 				pg->flags |= PG_WANTED;
   1066 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1067 				mutex_enter(slock);
   1068 			}
   1069 			if (by_list) {
   1070 				UVMHIST_LOG(ubchist, "after next %#jx",
   1071 				    (uintptr_t)TAILQ_NEXT(&curmp, listq.queue),
   1072 				    0, 0, 0);
   1073 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1074 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1075 			} else {
   1076 				pg = uvm_pagelookup(uobj, off);
   1077 			}
   1078 			continue;
   1079 		}
   1080 
   1081 		/*
   1082 		 * if we're freeing, remove all mappings of the page now.
   1083 		 * if we're cleaning, check if the page is needs to be cleaned.
   1084 		 */
   1085 
   1086 		if (flags & PGO_FREE) {
   1087 			pmap_page_protect(pg, VM_PROT_NONE);
   1088 		} else if (flags & PGO_CLEANIT) {
   1089 
   1090 			/*
   1091 			 * if we still have some hope to pull this vnode off
   1092 			 * from the syncer queue, write-protect the page.
   1093 			 */
   1094 
   1095 			if (cleanall && wasclean &&
   1096 			    gp->g_dirtygen == dirtygen) {
   1097 
   1098 				/*
   1099 				 * uobj pages get wired only by uvm_fault
   1100 				 * where uobj is locked.
   1101 				 */
   1102 
   1103 				if (pg->wire_count == 0) {
   1104 					pmap_page_protect(pg,
   1105 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1106 				} else {
   1107 					cleanall = false;
   1108 				}
   1109 			}
   1110 		}
   1111 
   1112 		if (flags & PGO_CLEANIT) {
   1113 			needs_clean = pmap_clear_modify(pg) ||
   1114 			    (pg->flags & PG_CLEAN) == 0;
   1115 			pg->flags |= PG_CLEAN;
   1116 		} else {
   1117 			needs_clean = false;
   1118 		}
   1119 
   1120 		/*
   1121 		 * if we're cleaning, build a cluster.
   1122 		 * the cluster will consist of pages which are currently dirty,
   1123 		 * but they will be returned to us marked clean.
   1124 		 * if not cleaning, just operate on the one page.
   1125 		 */
   1126 
   1127 		if (needs_clean) {
   1128 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1129 			wasclean = false;
   1130 			memset(pgs, 0, sizeof(pgs));
   1131 			pg->flags |= PG_BUSY;
   1132 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1133 
   1134 			/*
   1135 			 * let the fs constrain the offset range of the cluster.
   1136 			 * we additionally constrain the range here such that
   1137 			 * it fits in the "pgs" pages array.
   1138 			 */
   1139 
   1140 			off_t fslo, fshi, genlo, lo;
   1141 			GOP_PUTRANGE(vp, off, &fslo, &fshi);
   1142 			KASSERT(fslo == trunc_page(fslo));
   1143 			KASSERT(fslo <= off);
   1144 			KASSERT(fshi == trunc_page(fshi));
   1145 			KASSERT(fshi == 0 || off < fshi);
   1146 
   1147 			if (off > MAXPHYS / 2)
   1148 				genlo = trunc_page(off - (MAXPHYS / 2));
   1149 			else
   1150 				genlo = 0;
   1151 			lo = MAX(fslo, genlo);
   1152 
   1153 			/*
   1154 			 * first look backward.
   1155 			 */
   1156 
   1157 			npages = (off - lo) >> PAGE_SHIFT;
   1158 			nback = npages;
   1159 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1160 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1161 			if (nback) {
   1162 				memmove(&pgs[0], &pgs[npages - nback],
   1163 				    nback * sizeof(pgs[0]));
   1164 				if (npages - nback < nback)
   1165 					memset(&pgs[nback], 0,
   1166 					    (npages - nback) * sizeof(pgs[0]));
   1167 				else
   1168 					memset(&pgs[npages - nback], 0,
   1169 					    nback * sizeof(pgs[0]));
   1170 			}
   1171 
   1172 			/*
   1173 			 * then plug in our page of interest.
   1174 			 */
   1175 
   1176 			pgs[nback] = pg;
   1177 
   1178 			/*
   1179 			 * then look forward to fill in the remaining space in
   1180 			 * the array of pages.
   1181 			 */
   1182 
   1183 			npages = MAXPAGES - nback - 1;
   1184 			if (fshi)
   1185 				npages = MIN(npages,
   1186 					     (fshi - off - 1) >> PAGE_SHIFT);
   1187 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1188 			    &pgs[nback + 1],
   1189 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1190 			npages += nback + 1;
   1191 		} else {
   1192 			pgs[0] = pg;
   1193 			npages = 1;
   1194 			nback = 0;
   1195 		}
   1196 
   1197 		/*
   1198 		 * apply FREE or DEACTIVATE options if requested.
   1199 		 */
   1200 
   1201 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1202 			mutex_enter(&uvm_pageqlock);
   1203 		}
   1204 		for (i = 0; i < npages; i++) {
   1205 			tpg = pgs[i];
   1206 			KASSERT(tpg->uobject == uobj);
   1207 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1208 				pg = tpg;
   1209 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1210 				continue;
   1211 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1212 				uvm_pagedeactivate(tpg);
   1213 			} else if (flags & PGO_FREE) {
   1214 				pmap_page_protect(tpg, VM_PROT_NONE);
   1215 				if (tpg->flags & PG_BUSY) {
   1216 					tpg->flags |= freeflag;
   1217 					if (pagedaemon) {
   1218 						uvm_pageout_start(1);
   1219 						uvm_pagedequeue(tpg);
   1220 					}
   1221 				} else {
   1222 
   1223 					/*
   1224 					 * ``page is not busy''
   1225 					 * implies that npages is 1
   1226 					 * and needs_clean is false.
   1227 					 */
   1228 
   1229 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1230 					uvm_pagefree(tpg);
   1231 					if (pagedaemon)
   1232 						uvmexp.pdfreed++;
   1233 				}
   1234 			}
   1235 		}
   1236 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1237 			mutex_exit(&uvm_pageqlock);
   1238 		}
   1239 		if (needs_clean) {
   1240 			modified = true;
   1241 
   1242 			/*
   1243 			 * start the i/o.  if we're traversing by list,
   1244 			 * keep our place in the list with a marker page.
   1245 			 */
   1246 
   1247 			if (by_list) {
   1248 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1249 				    listq.queue);
   1250 			}
   1251 			mutex_exit(slock);
   1252 			error = GOP_WRITE(vp, pgs, npages, flags);
   1253 			mutex_enter(slock);
   1254 			if (by_list) {
   1255 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1256 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1257 			}
   1258 			if (error) {
   1259 				break;
   1260 			}
   1261 			if (by_list) {
   1262 				continue;
   1263 			}
   1264 		}
   1265 
   1266 		/*
   1267 		 * find the next page and continue if there was no error.
   1268 		 */
   1269 
   1270 		if (by_list) {
   1271 			if (nextpg) {
   1272 				pg = nextpg;
   1273 				nextpg = NULL;
   1274 			} else {
   1275 				pg = TAILQ_NEXT(pg, listq.queue);
   1276 			}
   1277 		} else {
   1278 			off += (npages - nback) << PAGE_SHIFT;
   1279 			if (off < endoff) {
   1280 				pg = uvm_pagelookup(uobj, off);
   1281 			}
   1282 		}
   1283 	}
   1284 	if (by_list) {
   1285 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1286 	}
   1287 
   1288 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1289 	    (vp->v_type != VBLK ||
   1290 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1291 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1292 	}
   1293 
   1294 	/*
   1295 	 * if we're cleaning and there was nothing to clean,
   1296 	 * take us off the syncer list.  if we started any i/o
   1297 	 * and we're doing sync i/o, wait for all writes to finish.
   1298 	 */
   1299 
   1300 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1301 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1302 #if defined(DEBUG)
   1303 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1304 			if ((pg->flags & (PG_FAKE | PG_MARKER)) != 0) {
   1305 				continue;
   1306 			}
   1307 			if ((pg->flags & PG_CLEAN) == 0) {
   1308 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1309 			}
   1310 			if (pmap_is_modified(pg)) {
   1311 				printf("%s: %p: modified\n", __func__, pg);
   1312 			}
   1313 		}
   1314 #endif /* defined(DEBUG) */
   1315 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1316 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1317 			vn_syncer_remove_from_worklist(vp);
   1318 	}
   1319 
   1320 #if !defined(DEBUG)
   1321 skip_scan:
   1322 #endif /* !defined(DEBUG) */
   1323 
   1324 	/* Wait for output to complete. */
   1325 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1326 		while (vp->v_numoutput != 0)
   1327 			cv_wait(&vp->v_cv, slock);
   1328 	}
   1329 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1330 	mutex_exit(slock);
   1331 
   1332 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1333 		/*
   1334 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1335 		 * retrying is not a big deal because, in many cases,
   1336 		 * uobj->uo_npages is already 0 here.
   1337 		 */
   1338 		mutex_enter(slock);
   1339 		goto retry;
   1340 	}
   1341 
   1342 	if (trans_mp) {
   1343 		if (holds_wapbl)
   1344 			WAPBL_END(trans_mp);
   1345 		fstrans_done(trans_mp);
   1346 	}
   1347 
   1348 	return (error);
   1349 }
   1350 
   1351 /*
   1352  * Default putrange method for file systems that do not care
   1353  * how many pages are given to one GOP_WRITE() call.
   1354  */
   1355 void
   1356 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
   1357 {
   1358 
   1359 	*lop = 0;
   1360 	*hip = 0;
   1361 }
   1362 
   1363 int
   1364 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1365 {
   1366 	off_t off;
   1367 	vaddr_t kva;
   1368 	size_t len;
   1369 	int error;
   1370 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1371 
   1372 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1373 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1374 
   1375 	off = pgs[0]->offset;
   1376 	kva = uvm_pagermapin(pgs, npages,
   1377 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1378 	len = npages << PAGE_SHIFT;
   1379 
   1380 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1381 			    uvm_aio_biodone);
   1382 
   1383 	return error;
   1384 }
   1385 
   1386 int
   1387 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1388 {
   1389 	off_t off;
   1390 	vaddr_t kva;
   1391 	size_t len;
   1392 	int error;
   1393 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1394 
   1395 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1396 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1397 
   1398 	off = pgs[0]->offset;
   1399 	kva = uvm_pagermapin(pgs, npages,
   1400 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1401 	len = npages << PAGE_SHIFT;
   1402 
   1403 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1404 			    uvm_aio_biodone);
   1405 
   1406 	return error;
   1407 }
   1408 
   1409 /*
   1410  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1411  * and mapped into kernel memory.  Here we just look up the underlying
   1412  * device block addresses and call the strategy routine.
   1413  */
   1414 
   1415 static int
   1416 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1417     enum uio_rw rw, void (*iodone)(struct buf *))
   1418 {
   1419 	int s, error;
   1420 	int fs_bshift, dev_bshift;
   1421 	off_t eof, offset, startoffset;
   1422 	size_t bytes, iobytes, skipbytes;
   1423 	struct buf *mbp, *bp;
   1424 	const bool async = (flags & PGO_SYNCIO) == 0;
   1425 	const bool lazy = (flags & PGO_LAZY) == 0;
   1426 	const bool iowrite = rw == UIO_WRITE;
   1427 	const int brw = iowrite ? B_WRITE : B_READ;
   1428 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1429 
   1430 	UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
   1431 	    (uintptr_t)vp, (uintptr_t)kva, len, flags);
   1432 
   1433 	KASSERT(vp->v_size <= vp->v_writesize);
   1434 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1435 	if (vp->v_type != VBLK) {
   1436 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1437 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1438 	} else {
   1439 		fs_bshift = DEV_BSHIFT;
   1440 		dev_bshift = DEV_BSHIFT;
   1441 	}
   1442 	error = 0;
   1443 	startoffset = off;
   1444 	bytes = MIN(len, eof - startoffset);
   1445 	skipbytes = 0;
   1446 	KASSERT(bytes != 0);
   1447 
   1448 	if (iowrite) {
   1449 		mutex_enter(vp->v_interlock);
   1450 		vp->v_numoutput += 2;
   1451 		mutex_exit(vp->v_interlock);
   1452 	}
   1453 	mbp = getiobuf(vp, true);
   1454 	UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
   1455 	    (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
   1456 	mbp->b_bufsize = len;
   1457 	mbp->b_data = (void *)kva;
   1458 	mbp->b_resid = mbp->b_bcount = bytes;
   1459 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1460 	if (async) {
   1461 		mbp->b_flags = brw | B_ASYNC;
   1462 		mbp->b_iodone = iodone;
   1463 	} else {
   1464 		mbp->b_flags = brw;
   1465 		mbp->b_iodone = NULL;
   1466 	}
   1467 	if (curlwp == uvm.pagedaemon_lwp)
   1468 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1469 	else if (async || lazy)
   1470 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1471 	else
   1472 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1473 
   1474 	bp = NULL;
   1475 	for (offset = startoffset;
   1476 	    bytes > 0;
   1477 	    offset += iobytes, bytes -= iobytes) {
   1478 		int run;
   1479 		daddr_t lbn, blkno;
   1480 		struct vnode *devvp;
   1481 
   1482 		/*
   1483 		 * bmap the file to find out the blkno to read from and
   1484 		 * how much we can read in one i/o.  if bmap returns an error,
   1485 		 * skip the rest of the top-level i/o.
   1486 		 */
   1487 
   1488 		lbn = offset >> fs_bshift;
   1489 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1490 		if (error) {
   1491 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
   1492 			    lbn, error, 0, 0);
   1493 			skipbytes += bytes;
   1494 			bytes = 0;
   1495 			goto loopdone;
   1496 		}
   1497 
   1498 		/*
   1499 		 * see how many pages can be read with this i/o.
   1500 		 * reduce the i/o size if necessary to avoid
   1501 		 * overwriting pages with valid data.
   1502 		 */
   1503 
   1504 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1505 		    bytes);
   1506 
   1507 		/*
   1508 		 * if this block isn't allocated, zero it instead of
   1509 		 * reading it.  unless we are going to allocate blocks,
   1510 		 * mark the pages we zeroed PG_RDONLY.
   1511 		 */
   1512 
   1513 		if (blkno == (daddr_t)-1) {
   1514 			if (!iowrite) {
   1515 				memset((char *)kva + (offset - startoffset), 0,
   1516 				    iobytes);
   1517 			}
   1518 			skipbytes += iobytes;
   1519 			continue;
   1520 		}
   1521 
   1522 		/*
   1523 		 * allocate a sub-buf for this piece of the i/o
   1524 		 * (or just use mbp if there's only 1 piece),
   1525 		 * and start it going.
   1526 		 */
   1527 
   1528 		if (offset == startoffset && iobytes == bytes) {
   1529 			bp = mbp;
   1530 		} else {
   1531 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
   1532 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
   1533 			bp = getiobuf(vp, true);
   1534 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1535 		}
   1536 		bp->b_lblkno = 0;
   1537 
   1538 		/* adjust physical blkno for partial blocks */
   1539 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1540 		    dev_bshift);
   1541 
   1542 		UVMHIST_LOG(ubchist,
   1543 		    "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
   1544 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
   1545 
   1546 		VOP_STRATEGY(devvp, bp);
   1547 	}
   1548 
   1549 loopdone:
   1550 	if (skipbytes) {
   1551 		UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
   1552 	}
   1553 	nestiobuf_done(mbp, skipbytes, error);
   1554 	if (async) {
   1555 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1556 		return (0);
   1557 	}
   1558 	UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
   1559 	error = biowait(mbp);
   1560 	s = splbio();
   1561 	(*iodone)(mbp);
   1562 	splx(s);
   1563 	UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
   1564 	return (error);
   1565 }
   1566 
   1567 int
   1568 genfs_compat_getpages(void *v)
   1569 {
   1570 	struct vop_getpages_args /* {
   1571 		struct vnode *a_vp;
   1572 		voff_t a_offset;
   1573 		struct vm_page **a_m;
   1574 		int *a_count;
   1575 		int a_centeridx;
   1576 		vm_prot_t a_access_type;
   1577 		int a_advice;
   1578 		int a_flags;
   1579 	} */ *ap = v;
   1580 
   1581 	off_t origoffset;
   1582 	struct vnode *vp = ap->a_vp;
   1583 	struct uvm_object *uobj = &vp->v_uobj;
   1584 	struct vm_page *pg, **pgs;
   1585 	vaddr_t kva;
   1586 	int i, error, orignpages, npages;
   1587 	struct iovec iov;
   1588 	struct uio uio;
   1589 	kauth_cred_t cred = curlwp->l_cred;
   1590 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1591 
   1592 	error = 0;
   1593 	origoffset = ap->a_offset;
   1594 	orignpages = *ap->a_count;
   1595 	pgs = ap->a_m;
   1596 
   1597 	if (ap->a_flags & PGO_LOCKED) {
   1598 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1599 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1600 
   1601 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1602 		if (error == 0 && memwrite) {
   1603 			genfs_markdirty(vp);
   1604 		}
   1605 		return error;
   1606 	}
   1607 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1608 		mutex_exit(uobj->vmobjlock);
   1609 		return EINVAL;
   1610 	}
   1611 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1612 		mutex_exit(uobj->vmobjlock);
   1613 		return 0;
   1614 	}
   1615 	npages = orignpages;
   1616 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1617 	mutex_exit(uobj->vmobjlock);
   1618 	kva = uvm_pagermapin(pgs, npages,
   1619 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1620 	for (i = 0; i < npages; i++) {
   1621 		pg = pgs[i];
   1622 		if ((pg->flags & PG_FAKE) == 0) {
   1623 			continue;
   1624 		}
   1625 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1626 		iov.iov_len = PAGE_SIZE;
   1627 		uio.uio_iov = &iov;
   1628 		uio.uio_iovcnt = 1;
   1629 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1630 		uio.uio_rw = UIO_READ;
   1631 		uio.uio_resid = PAGE_SIZE;
   1632 		UIO_SETUP_SYSSPACE(&uio);
   1633 		/* XXX vn_lock */
   1634 		error = VOP_READ(vp, &uio, 0, cred);
   1635 		if (error) {
   1636 			break;
   1637 		}
   1638 		if (uio.uio_resid) {
   1639 			memset(iov.iov_base, 0, uio.uio_resid);
   1640 		}
   1641 	}
   1642 	uvm_pagermapout(kva, npages);
   1643 	mutex_enter(uobj->vmobjlock);
   1644 	mutex_enter(&uvm_pageqlock);
   1645 	for (i = 0; i < npages; i++) {
   1646 		pg = pgs[i];
   1647 		if (error && (pg->flags & PG_FAKE) != 0) {
   1648 			pg->flags |= PG_RELEASED;
   1649 		} else {
   1650 			pmap_clear_modify(pg);
   1651 			uvm_pageactivate(pg);
   1652 		}
   1653 	}
   1654 	if (error) {
   1655 		uvm_page_unbusy(pgs, npages);
   1656 	}
   1657 	mutex_exit(&uvm_pageqlock);
   1658 	if (error == 0 && memwrite) {
   1659 		genfs_markdirty(vp);
   1660 	}
   1661 	mutex_exit(uobj->vmobjlock);
   1662 	return error;
   1663 }
   1664 
   1665 int
   1666 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1667     int flags)
   1668 {
   1669 	off_t offset;
   1670 	struct iovec iov;
   1671 	struct uio uio;
   1672 	kauth_cred_t cred = curlwp->l_cred;
   1673 	struct buf *bp;
   1674 	vaddr_t kva;
   1675 	int error;
   1676 
   1677 	offset = pgs[0]->offset;
   1678 	kva = uvm_pagermapin(pgs, npages,
   1679 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1680 
   1681 	iov.iov_base = (void *)kva;
   1682 	iov.iov_len = npages << PAGE_SHIFT;
   1683 	uio.uio_iov = &iov;
   1684 	uio.uio_iovcnt = 1;
   1685 	uio.uio_offset = offset;
   1686 	uio.uio_rw = UIO_WRITE;
   1687 	uio.uio_resid = npages << PAGE_SHIFT;
   1688 	UIO_SETUP_SYSSPACE(&uio);
   1689 	/* XXX vn_lock */
   1690 	error = VOP_WRITE(vp, &uio, 0, cred);
   1691 
   1692 	mutex_enter(vp->v_interlock);
   1693 	vp->v_numoutput++;
   1694 	mutex_exit(vp->v_interlock);
   1695 
   1696 	bp = getiobuf(vp, true);
   1697 	bp->b_cflags = BC_BUSY | BC_AGE;
   1698 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1699 	bp->b_data = (char *)kva;
   1700 	bp->b_bcount = npages << PAGE_SHIFT;
   1701 	bp->b_bufsize = npages << PAGE_SHIFT;
   1702 	bp->b_resid = 0;
   1703 	bp->b_error = error;
   1704 	uvm_aio_aiodone(bp);
   1705 	return (error);
   1706 }
   1707 
   1708 /*
   1709  * Process a uio using direct I/O.  If we reach a part of the request
   1710  * which cannot be processed in this fashion for some reason, just return.
   1711  * The caller must handle some additional part of the request using
   1712  * buffered I/O before trying direct I/O again.
   1713  */
   1714 
   1715 void
   1716 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1717 {
   1718 	struct vmspace *vs;
   1719 	struct iovec *iov;
   1720 	vaddr_t va;
   1721 	size_t len;
   1722 	const int mask = DEV_BSIZE - 1;
   1723 	int error;
   1724 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1725 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1726 
   1727 #ifdef DIAGNOSTIC
   1728 	if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
   1729                 WAPBL_JLOCK_ASSERT(vp->v_mount);
   1730 #endif
   1731 
   1732 	/*
   1733 	 * We only support direct I/O to user space for now.
   1734 	 */
   1735 
   1736 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1737 		return;
   1738 	}
   1739 
   1740 	/*
   1741 	 * If the vnode is mapped, we would need to get the getpages lock
   1742 	 * to stabilize the bmap, but then we would get into trouble while
   1743 	 * locking the pages if the pages belong to this same vnode (or a
   1744 	 * multi-vnode cascade to the same effect).  Just fall back to
   1745 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1746 	 */
   1747 
   1748 	if (vp->v_vflag & VV_MAPPED) {
   1749 		return;
   1750 	}
   1751 
   1752 	if (need_wapbl) {
   1753 		error = WAPBL_BEGIN(vp->v_mount);
   1754 		if (error)
   1755 			return;
   1756 	}
   1757 
   1758 	/*
   1759 	 * Do as much of the uio as possible with direct I/O.
   1760 	 */
   1761 
   1762 	vs = uio->uio_vmspace;
   1763 	while (uio->uio_resid) {
   1764 		iov = uio->uio_iov;
   1765 		if (iov->iov_len == 0) {
   1766 			uio->uio_iov++;
   1767 			uio->uio_iovcnt--;
   1768 			continue;
   1769 		}
   1770 		va = (vaddr_t)iov->iov_base;
   1771 		len = MIN(iov->iov_len, genfs_maxdio);
   1772 		len &= ~mask;
   1773 
   1774 		/*
   1775 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1776 		 * the current EOF, then fall back to buffered I/O.
   1777 		 */
   1778 
   1779 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1780 			break;
   1781 		}
   1782 
   1783 		/*
   1784 		 * Check alignment.  The file offset must be at least
   1785 		 * sector-aligned.  The exact constraint on memory alignment
   1786 		 * is very hardware-dependent, but requiring sector-aligned
   1787 		 * addresses there too is safe.
   1788 		 */
   1789 
   1790 		if (uio->uio_offset & mask || va & mask) {
   1791 			break;
   1792 		}
   1793 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1794 					  uio->uio_rw);
   1795 		if (error) {
   1796 			break;
   1797 		}
   1798 		iov->iov_base = (char *)iov->iov_base + len;
   1799 		iov->iov_len -= len;
   1800 		uio->uio_offset += len;
   1801 		uio->uio_resid -= len;
   1802 	}
   1803 
   1804 	if (need_wapbl)
   1805 		WAPBL_END(vp->v_mount);
   1806 }
   1807 
   1808 /*
   1809  * Iodone routine for direct I/O.  We don't do much here since the request is
   1810  * always synchronous, so the caller will do most of the work after biowait().
   1811  */
   1812 
   1813 static void
   1814 genfs_dio_iodone(struct buf *bp)
   1815 {
   1816 
   1817 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1818 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1819 		mutex_enter(bp->b_objlock);
   1820 		vwakeup(bp);
   1821 		mutex_exit(bp->b_objlock);
   1822 	}
   1823 	putiobuf(bp);
   1824 }
   1825 
   1826 /*
   1827  * Process one chunk of a direct I/O request.
   1828  */
   1829 
   1830 static int
   1831 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1832     off_t off, enum uio_rw rw)
   1833 {
   1834 	struct vm_map *map;
   1835 	struct pmap *upm, *kpm __unused;
   1836 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1837 	off_t spoff, epoff;
   1838 	vaddr_t kva, puva;
   1839 	paddr_t pa;
   1840 	vm_prot_t prot;
   1841 	int error, rv __diagused, poff, koff;
   1842 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1843 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1844 
   1845 	/*
   1846 	 * For writes, verify that this range of the file already has fully
   1847 	 * allocated backing store.  If there are any holes, just punt and
   1848 	 * make the caller take the buffered write path.
   1849 	 */
   1850 
   1851 	if (rw == UIO_WRITE) {
   1852 		daddr_t lbn, elbn, blkno;
   1853 		int bsize, bshift, run;
   1854 
   1855 		bshift = vp->v_mount->mnt_fs_bshift;
   1856 		bsize = 1 << bshift;
   1857 		lbn = off >> bshift;
   1858 		elbn = (off + len + bsize - 1) >> bshift;
   1859 		while (lbn < elbn) {
   1860 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1861 			if (error) {
   1862 				return error;
   1863 			}
   1864 			if (blkno == (daddr_t)-1) {
   1865 				return ENOSPC;
   1866 			}
   1867 			lbn += 1 + run;
   1868 		}
   1869 	}
   1870 
   1871 	/*
   1872 	 * Flush any cached pages for parts of the file that we're about to
   1873 	 * access.  If we're writing, invalidate pages as well.
   1874 	 */
   1875 
   1876 	spoff = trunc_page(off);
   1877 	epoff = round_page(off + len);
   1878 	mutex_enter(vp->v_interlock);
   1879 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1880 	if (error) {
   1881 		return error;
   1882 	}
   1883 
   1884 	/*
   1885 	 * Wire the user pages and remap them into kernel memory.
   1886 	 */
   1887 
   1888 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1889 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1890 	if (error) {
   1891 		return error;
   1892 	}
   1893 
   1894 	map = &vs->vm_map;
   1895 	upm = vm_map_pmap(map);
   1896 	kpm = vm_map_pmap(kernel_map);
   1897 	puva = trunc_page(uva);
   1898 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1899 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1900 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1901 		rv = pmap_extract(upm, puva + poff, &pa);
   1902 		KASSERT(rv);
   1903 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1904 	}
   1905 	pmap_update(kpm);
   1906 
   1907 	/*
   1908 	 * Do the I/O.
   1909 	 */
   1910 
   1911 	koff = uva - trunc_page(uva);
   1912 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1913 			    genfs_dio_iodone);
   1914 
   1915 	/*
   1916 	 * Tear down the kernel mapping.
   1917 	 */
   1918 
   1919 	pmap_kremove(kva, klen);
   1920 	pmap_update(kpm);
   1921 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1922 
   1923 	/*
   1924 	 * Unwire the user pages.
   1925 	 */
   1926 
   1927 	uvm_vsunlock(vs, (void *)uva, len);
   1928 	return error;
   1929 }
   1930