genfs_io.c revision 1.83.2.1 1 /* $NetBSD: genfs_io.c,v 1.83.2.1 2020/01/17 21:47:36 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.83.2.1 2020/01/17 21:47:36 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53 #include <uvm/uvm_page_array.h>
54
55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
56 off_t, enum uio_rw);
57 static void genfs_dio_iodone(struct buf *);
58
59 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
60 off_t, bool, bool, bool, bool);
61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 void (*)(struct buf *));
63 static void genfs_rel_pages(struct vm_page **, unsigned int);
64 static void genfs_markdirty(struct vnode *);
65
66 int genfs_maxdio = MAXPHYS;
67
68 static void
69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70 {
71 unsigned int i;
72
73 for (i = 0; i < npages; i++) {
74 struct vm_page *pg = pgs[i];
75
76 if (pg == NULL || pg == PGO_DONTCARE)
77 continue;
78 KASSERT(uvm_page_owner_locked_p(pg));
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 uvm_page_unbusy(pgs, npages);
84 }
85
86 static void
87 genfs_markdirty(struct vnode *vp)
88 {
89
90 KASSERT(mutex_owned(vp->v_interlock));
91 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
92 vn_syncer_add_to_worklist(vp, filedelay);
93 }
94 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
95 vp->v_iflag |= VI_WRMAPDIRTY;
96 }
97 }
98
99 /*
100 * generic VM getpages routine.
101 * Return PG_BUSY pages for the given range,
102 * reading from backing store if necessary.
103 */
104
105 int
106 genfs_getpages(void *v)
107 {
108 struct vop_getpages_args /* {
109 struct vnode *a_vp;
110 voff_t a_offset;
111 struct vm_page **a_m;
112 int *a_count;
113 int a_centeridx;
114 vm_prot_t a_access_type;
115 int a_advice;
116 int a_flags;
117 } */ * const ap = v;
118
119 off_t diskeof, memeof;
120 int i, error, npages;
121 const int flags = ap->a_flags;
122 struct vnode * const vp = ap->a_vp;
123 struct uvm_object * const uobj = &vp->v_uobj;
124 const bool async = (flags & PGO_SYNCIO) == 0;
125 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
126 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
127 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
128 const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
129 (flags & PGO_JOURNALLOCKED) == 0);
130 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
131 bool holds_wapbl = false;
132 struct mount *trans_mount = NULL;
133 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
134
135 UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
136 (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
137
138 KASSERT(memwrite >= overwrite);
139 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
140 vp->v_type == VLNK || vp->v_type == VBLK);
141
142 #ifdef DIAGNOSTIC
143 if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
144 WAPBL_JLOCK_ASSERT(vp->v_mount);
145 #endif
146
147 error = vdead_check(vp, VDEAD_NOWAIT);
148 if (error) {
149 if ((flags & PGO_LOCKED) == 0)
150 mutex_exit(uobj->vmobjlock);
151 return error;
152 }
153
154 startover:
155 error = 0;
156 const voff_t origvsize = vp->v_size;
157 const off_t origoffset = ap->a_offset;
158 const int orignpages = *ap->a_count;
159
160 GOP_SIZE(vp, origvsize, &diskeof, 0);
161 if (flags & PGO_PASTEOF) {
162 off_t newsize;
163 #if defined(DIAGNOSTIC)
164 off_t writeeof;
165 #endif /* defined(DIAGNOSTIC) */
166
167 newsize = MAX(origvsize,
168 origoffset + (orignpages << PAGE_SHIFT));
169 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
170 #if defined(DIAGNOSTIC)
171 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
172 if (newsize > round_page(writeeof)) {
173 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
174 __func__, newsize, round_page(writeeof));
175 }
176 #endif /* defined(DIAGNOSTIC) */
177 } else {
178 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
179 }
180 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
181 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
182 KASSERT(orignpages > 0);
183
184 /*
185 * Bounds-check the request.
186 */
187
188 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
189 if ((flags & PGO_LOCKED) == 0) {
190 mutex_exit(uobj->vmobjlock);
191 }
192 UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
193 origoffset, *ap->a_count, memeof,0);
194 error = EINVAL;
195 goto out_err;
196 }
197
198 /* uobj is locked */
199
200 if ((flags & PGO_NOTIMESTAMP) == 0 &&
201 (vp->v_type != VBLK ||
202 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
203 int updflags = 0;
204
205 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
206 updflags = GOP_UPDATE_ACCESSED;
207 }
208 if (memwrite) {
209 updflags |= GOP_UPDATE_MODIFIED;
210 }
211 if (updflags != 0) {
212 GOP_MARKUPDATE(vp, updflags);
213 }
214 }
215
216 /*
217 * For PGO_LOCKED requests, just return whatever's in memory.
218 */
219
220 if (flags & PGO_LOCKED) {
221 int nfound;
222 struct vm_page *pg;
223
224 KASSERT(!glocked);
225 npages = *ap->a_count;
226 #if defined(DEBUG)
227 for (i = 0; i < npages; i++) {
228 pg = ap->a_m[i];
229 KASSERT(pg == NULL || pg == PGO_DONTCARE);
230 }
231 #endif /* defined(DEBUG) */
232 nfound = uvn_findpages(uobj, origoffset, &npages,
233 ap->a_m, NULL,
234 UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
235 KASSERT(npages == *ap->a_count);
236 if (nfound == 0) {
237 error = EBUSY;
238 goto out_err;
239 }
240 /*
241 * lock and unlock g_glock to ensure that no one is truncating
242 * the file behind us.
243 */
244 if (!genfs_node_rdtrylock(vp)) {
245 genfs_rel_pages(ap->a_m, npages);
246
247 /*
248 * restore the array.
249 */
250
251 for (i = 0; i < npages; i++) {
252 pg = ap->a_m[i];
253
254 if (pg != NULL && pg != PGO_DONTCARE) {
255 ap->a_m[i] = NULL;
256 }
257 KASSERT(ap->a_m[i] == NULL ||
258 ap->a_m[i] == PGO_DONTCARE);
259 }
260 } else {
261 genfs_node_unlock(vp);
262 }
263 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
264 if (error == 0 && memwrite) {
265 for (i = 0; i < npages; i++) {
266 pg = ap->a_m[i];
267 if (pg == NULL || pg == PGO_DONTCARE) {
268 continue;
269 }
270 if (uvm_pagegetdirty(pg) ==
271 UVM_PAGE_STATUS_CLEAN) {
272 uvm_pagemarkdirty(pg,
273 UVM_PAGE_STATUS_UNKNOWN);
274 }
275 }
276 genfs_markdirty(vp);
277 }
278 goto out_err;
279 }
280 mutex_exit(uobj->vmobjlock);
281
282 /*
283 * find the requested pages and make some simple checks.
284 * leave space in the page array for a whole block.
285 */
286
287 const int fs_bshift = (vp->v_type != VBLK) ?
288 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
289 const int fs_bsize = 1 << fs_bshift;
290 #define blk_mask (fs_bsize - 1)
291 #define trunc_blk(x) ((x) & ~blk_mask)
292 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
293
294 const int orignmempages = MIN(orignpages,
295 round_page(memeof - origoffset) >> PAGE_SHIFT);
296 npages = orignmempages;
297 const off_t startoffset = trunc_blk(origoffset);
298 const off_t endoffset = MIN(
299 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
300 round_page(memeof));
301 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
302
303 const int pgs_size = sizeof(struct vm_page *) *
304 ((endoffset - startoffset) >> PAGE_SHIFT);
305 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
306
307 if (pgs_size > sizeof(pgs_onstack)) {
308 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
309 if (pgs == NULL) {
310 pgs = pgs_onstack;
311 error = ENOMEM;
312 goto out_err;
313 }
314 } else {
315 pgs = pgs_onstack;
316 (void)memset(pgs, 0, pgs_size);
317 }
318
319 UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
320 ridx, npages, startoffset, endoffset);
321
322 if (trans_mount == NULL) {
323 trans_mount = vp->v_mount;
324 fstrans_start(trans_mount);
325 /*
326 * check if this vnode is still valid.
327 */
328 mutex_enter(vp->v_interlock);
329 error = vdead_check(vp, 0);
330 mutex_exit(vp->v_interlock);
331 if (error)
332 goto out_err_free;
333 /*
334 * XXX: This assumes that we come here only via
335 * the mmio path
336 */
337 if (blockalloc && need_wapbl) {
338 error = WAPBL_BEGIN(trans_mount);
339 if (error)
340 goto out_err_free;
341 holds_wapbl = true;
342 }
343 }
344
345 /*
346 * hold g_glock to prevent a race with truncate.
347 *
348 * check if our idea of v_size is still valid.
349 */
350
351 KASSERT(!glocked || genfs_node_wrlocked(vp));
352 if (!glocked) {
353 if (blockalloc) {
354 genfs_node_wrlock(vp);
355 } else {
356 genfs_node_rdlock(vp);
357 }
358 }
359 mutex_enter(uobj->vmobjlock);
360 if (vp->v_size < origvsize) {
361 if (!glocked) {
362 genfs_node_unlock(vp);
363 }
364 if (pgs != pgs_onstack)
365 kmem_free(pgs, pgs_size);
366 goto startover;
367 }
368
369 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
370 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
371 if (!glocked) {
372 genfs_node_unlock(vp);
373 }
374 KASSERT(async != 0);
375 genfs_rel_pages(&pgs[ridx], orignmempages);
376 mutex_exit(uobj->vmobjlock);
377 error = EBUSY;
378 goto out_err_free;
379 }
380
381 /*
382 * if PGO_OVERWRITE is set, don't bother reading the pages.
383 */
384
385 if (overwrite) {
386 if (!glocked) {
387 genfs_node_unlock(vp);
388 }
389 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
390
391 for (i = 0; i < npages; i++) {
392 struct vm_page *pg = pgs[ridx + i];
393
394 /*
395 * it's caller's responsibility to allocate blocks
396 * beforehand for the overwrite case.
397 */
398
399 KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
400 pg->flags &= ~PG_RDONLY;
401
402 /*
403 * mark the page DIRTY.
404 * otherwise another thread can do putpages and pull
405 * our vnode from syncer's queue before our caller does
406 * ubc_release. note that putpages won't see CLEAN
407 * pages even if they are BUSY.
408 */
409
410 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
411 }
412 npages += ridx;
413 goto out;
414 }
415
416 /*
417 * if the pages are already resident, just return them.
418 */
419
420 for (i = 0; i < npages; i++) {
421 struct vm_page *pg = pgs[ridx + i];
422
423 if ((pg->flags & PG_FAKE) ||
424 (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
425 break;
426 }
427 }
428 if (i == npages) {
429 if (!glocked) {
430 genfs_node_unlock(vp);
431 }
432 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
433 npages += ridx;
434 goto out;
435 }
436
437 /*
438 * the page wasn't resident and we're not overwriting,
439 * so we're going to have to do some i/o.
440 * find any additional pages needed to cover the expanded range.
441 */
442
443 npages = (endoffset - startoffset) >> PAGE_SHIFT;
444 if (startoffset != origoffset || npages != orignmempages) {
445 int npgs;
446
447 /*
448 * we need to avoid deadlocks caused by locking
449 * additional pages at lower offsets than pages we
450 * already have locked. unlock them all and start over.
451 */
452
453 genfs_rel_pages(&pgs[ridx], orignmempages);
454 memset(pgs, 0, pgs_size);
455
456 UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
457 startoffset, endoffset, 0,0);
458 npgs = npages;
459 if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
460 async ? UFP_NOWAIT : UFP_ALL) != npages) {
461 if (!glocked) {
462 genfs_node_unlock(vp);
463 }
464 KASSERT(async != 0);
465 genfs_rel_pages(pgs, npages);
466 mutex_exit(uobj->vmobjlock);
467 error = EBUSY;
468 goto out_err_free;
469 }
470 }
471
472 mutex_exit(uobj->vmobjlock);
473 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
474 async, memwrite, blockalloc, glocked);
475 if (!glocked) {
476 genfs_node_unlock(vp);
477 }
478 if (error == 0 && async)
479 goto out_err_free;
480 mutex_enter(uobj->vmobjlock);
481
482 /*
483 * we're almost done! release the pages...
484 * for errors, we free the pages.
485 * otherwise we activate them and mark them as valid and clean.
486 * also, unbusy pages that were not actually requested.
487 */
488
489 if (error) {
490 genfs_rel_pages(pgs, npages);
491 mutex_exit(uobj->vmobjlock);
492 UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
493 goto out_err_free;
494 }
495
496 out:
497 UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
498 error = 0;
499 for (i = 0; i < npages; i++) {
500 struct vm_page *pg = pgs[i];
501 if (pg == NULL) {
502 continue;
503 }
504 UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
505 (uintptr_t)pg, pg->flags, 0,0);
506 if (pg->flags & PG_FAKE && !overwrite) {
507 /*
508 * we've read page's contents from the backing storage.
509 *
510 * for a read fault, we keep them CLEAN; if we
511 * encountered a hole while reading, the pages can
512 * already been dirtied with zeros.
513 */
514 KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
515 UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
516 pg->flags &= ~PG_FAKE;
517 }
518 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
519 if (i < ridx || i >= ridx + orignmempages || async) {
520 UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
521 (uintptr_t)pg, pg->offset,0,0);
522 if (pg->flags & PG_WANTED) {
523 wakeup(pg);
524 }
525 if (pg->flags & PG_FAKE) {
526 KASSERT(overwrite);
527 uvm_pagezero(pg);
528 }
529 if (pg->flags & PG_RELEASED) {
530 uvm_pagefree(pg);
531 continue;
532 }
533 uvm_pagelock(pg);
534 uvm_pageenqueue(pg);
535 uvm_pageunlock(pg);
536 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
537 UVM_PAGE_OWN(pg, NULL);
538 } else if (memwrite && !overwrite &&
539 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
540 /*
541 * for a write fault, start dirtiness tracking of
542 * requested pages.
543 */
544 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
545 }
546 }
547 if (memwrite) {
548 genfs_markdirty(vp);
549 }
550 mutex_exit(uobj->vmobjlock);
551 if (ap->a_m != NULL) {
552 memcpy(ap->a_m, &pgs[ridx],
553 orignmempages * sizeof(struct vm_page *));
554 }
555
556 out_err_free:
557 if (pgs != NULL && pgs != pgs_onstack)
558 kmem_free(pgs, pgs_size);
559 out_err:
560 if (trans_mount != NULL) {
561 if (holds_wapbl)
562 WAPBL_END(trans_mount);
563 fstrans_done(trans_mount);
564 }
565 return error;
566 }
567
568 /*
569 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
570 *
571 * "glocked" (which is currently not actually used) tells us not whether
572 * the genfs_node is locked on entry (it always is) but whether it was
573 * locked on entry to genfs_getpages.
574 */
575 static int
576 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
577 off_t startoffset, off_t diskeof,
578 bool async, bool memwrite, bool blockalloc, bool glocked)
579 {
580 struct uvm_object * const uobj = &vp->v_uobj;
581 const int fs_bshift = (vp->v_type != VBLK) ?
582 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
583 const int dev_bshift = (vp->v_type != VBLK) ?
584 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
585 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
586 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
587 vaddr_t kva;
588 struct buf *bp, *mbp;
589 bool sawhole = false;
590 int i;
591 int error = 0;
592
593 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
594
595 /*
596 * read the desired page(s).
597 */
598
599 totalbytes = npages << PAGE_SHIFT;
600 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
601 tailbytes = totalbytes - bytes;
602 skipbytes = 0;
603
604 kva = uvm_pagermapin(pgs, npages,
605 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
606 if (kva == 0)
607 return EBUSY;
608
609 if (uvm.aiodone_queue == NULL)
610 async = 0;
611
612 mbp = getiobuf(vp, true);
613 mbp->b_bufsize = totalbytes;
614 mbp->b_data = (void *)kva;
615 mbp->b_resid = mbp->b_bcount = bytes;
616 mbp->b_cflags = BC_BUSY;
617 if (async) {
618 mbp->b_flags = B_READ | B_ASYNC;
619 mbp->b_iodone = uvm_aio_biodone;
620 } else {
621 mbp->b_flags = B_READ;
622 mbp->b_iodone = NULL;
623 }
624 if (async)
625 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
626 else
627 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
628
629 /*
630 * if EOF is in the middle of the range, zero the part past EOF.
631 * skip over pages which are not PG_FAKE since in that case they have
632 * valid data that we need to preserve.
633 */
634
635 tailstart = bytes;
636 while (tailbytes > 0) {
637 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
638
639 KASSERT(len <= tailbytes);
640 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
641 memset((void *)(kva + tailstart), 0, len);
642 UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
643 (uintptr_t)kva, tailstart, len, 0);
644 }
645 tailstart += len;
646 tailbytes -= len;
647 }
648
649 /*
650 * now loop over the pages, reading as needed.
651 */
652
653 bp = NULL;
654 off_t offset;
655 for (offset = startoffset;
656 bytes > 0;
657 offset += iobytes, bytes -= iobytes) {
658 int run;
659 daddr_t lbn, blkno;
660 int pidx;
661 struct vnode *devvp;
662
663 /*
664 * skip pages which don't need to be read.
665 */
666
667 pidx = (offset - startoffset) >> PAGE_SHIFT;
668 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
669 size_t b;
670
671 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
672 if ((pgs[pidx]->flags & PG_RDONLY)) {
673 sawhole = true;
674 }
675 b = MIN(PAGE_SIZE, bytes);
676 offset += b;
677 bytes -= b;
678 skipbytes += b;
679 pidx++;
680 UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
681 offset, 0,0,0);
682 if (bytes == 0) {
683 goto loopdone;
684 }
685 }
686
687 /*
688 * bmap the file to find out the blkno to read from and
689 * how much we can read in one i/o. if bmap returns an error,
690 * skip the rest of the top-level i/o.
691 */
692
693 lbn = offset >> fs_bshift;
694 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
695 if (error) {
696 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
697 lbn,error,0,0);
698 skipbytes += bytes;
699 bytes = 0;
700 goto loopdone;
701 }
702
703 /*
704 * see how many pages can be read with this i/o.
705 * reduce the i/o size if necessary to avoid
706 * overwriting pages with valid data.
707 */
708
709 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
710 bytes);
711 if (offset + iobytes > round_page(offset)) {
712 int pcount;
713
714 pcount = 1;
715 while (pidx + pcount < npages &&
716 pgs[pidx + pcount]->flags & PG_FAKE) {
717 pcount++;
718 }
719 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
720 (offset - trunc_page(offset)));
721 }
722
723 /*
724 * if this block isn't allocated, zero it instead of
725 * reading it. unless we are going to allocate blocks,
726 * mark the pages we zeroed PG_RDONLY.
727 */
728
729 if (blkno == (daddr_t)-1) {
730 int holepages = (round_page(offset + iobytes) -
731 trunc_page(offset)) >> PAGE_SHIFT;
732 UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
733
734 sawhole = true;
735 memset((char *)kva + (offset - startoffset), 0,
736 iobytes);
737 skipbytes += iobytes;
738
739 if (!blockalloc) {
740 mutex_enter(uobj->vmobjlock);
741 for (i = 0; i < holepages; i++) {
742 pgs[pidx + i]->flags |= PG_RDONLY;
743 }
744 mutex_exit(uobj->vmobjlock);
745 }
746 continue;
747 }
748
749 /*
750 * allocate a sub-buf for this piece of the i/o
751 * (or just use mbp if there's only 1 piece),
752 * and start it going.
753 */
754
755 if (offset == startoffset && iobytes == bytes) {
756 bp = mbp;
757 } else {
758 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
759 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
760 bp = getiobuf(vp, true);
761 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
762 }
763 bp->b_lblkno = 0;
764
765 /* adjust physical blkno for partial blocks */
766 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
767 dev_bshift);
768
769 UVMHIST_LOG(ubchist,
770 "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
771 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
772
773 VOP_STRATEGY(devvp, bp);
774 }
775
776 loopdone:
777 nestiobuf_done(mbp, skipbytes, error);
778 if (async) {
779 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
780 return 0;
781 }
782 if (bp != NULL) {
783 error = biowait(mbp);
784 }
785
786 /* Remove the mapping (make KVA available as soon as possible) */
787 uvm_pagermapout(kva, npages);
788
789 /*
790 * if this we encountered a hole then we have to do a little more work.
791 * for read faults, we marked the page PG_RDONLY so that future
792 * write accesses to the page will fault again.
793 * for write faults, we must make sure that the backing store for
794 * the page is completely allocated while the pages are locked.
795 */
796
797 if (!error && sawhole && blockalloc) {
798 error = GOP_ALLOC(vp, startoffset,
799 npages << PAGE_SHIFT, 0, cred);
800 UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
801 startoffset, npages << PAGE_SHIFT, error,0);
802 if (!error) {
803 mutex_enter(uobj->vmobjlock);
804 for (i = 0; i < npages; i++) {
805 struct vm_page *pg = pgs[i];
806
807 if (pg == NULL) {
808 continue;
809 }
810 pg->flags &= ~PG_RDONLY;
811 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
812 UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
813 (uintptr_t)pg, 0, 0, 0);
814 }
815 mutex_exit(uobj->vmobjlock);
816 }
817 }
818
819 putiobuf(mbp);
820 return error;
821 }
822
823 /*
824 * generic VM putpages routine.
825 * Write the given range of pages to backing store.
826 *
827 * => "offhi == 0" means flush all pages at or after "offlo".
828 * => object should be locked by caller. we return with the
829 * object unlocked.
830 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
831 * thus, a caller might want to unlock higher level resources
832 * (e.g. vm_map) before calling flush.
833 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
834 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
835 *
836 * note on "cleaning" object and PG_BUSY pages:
837 * this routine is holding the lock on the object. the only time
838 * that it can run into a PG_BUSY page that it does not own is if
839 * some other process has started I/O on the page (e.g. either
840 * a pagein, or a pageout). if the PG_BUSY page is being paged
841 * in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
842 * one has had a chance to modify it yet. if the PG_BUSY page is
843 * being paged out then it means that someone else has already started
844 * cleaning the page for us (how nice!). in this case, if we
845 * have syncio specified, then after we make our pass through the
846 * object we need to wait for the other PG_BUSY pages to clear
847 * off (i.e. we need to do an iosync). also note that once a
848 * page is PG_BUSY it must stay in its object until it is un-busyed.
849 */
850
851 int
852 genfs_putpages(void *v)
853 {
854 struct vop_putpages_args /* {
855 struct vnode *a_vp;
856 voff_t a_offlo;
857 voff_t a_offhi;
858 int a_flags;
859 } */ * const ap = v;
860
861 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
862 ap->a_flags, NULL);
863 }
864
865 int
866 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
867 int origflags, struct vm_page **busypg)
868 {
869 struct uvm_object * const uobj = &vp->v_uobj;
870 kmutex_t * const slock = uobj->vmobjlock;
871 off_t nextoff;
872 int i, error, npages, nback;
873 int freeflag;
874 /*
875 * This array is larger than it should so that it's size is constant.
876 * The right size is MAXPAGES.
877 */
878 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
879 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
880 struct vm_page *pg, *tpg;
881 struct uvm_page_array a;
882 bool wasclean, needs_clean;
883 bool async = (origflags & PGO_SYNCIO) == 0;
884 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
885 struct lwp * const l = curlwp ? curlwp : &lwp0;
886 struct mount *trans_mp;
887 int flags;
888 bool modified; /* if we write out any pages */
889 bool holds_wapbl;
890 bool cleanall; /* try to pull off from the syncer's list */
891 bool onworklst;
892 const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
893
894 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
895
896 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
897 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
898 KASSERT(startoff < endoff || endoff == 0);
899
900 UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
901 (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
902
903 #ifdef DIAGNOSTIC
904 if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
905 WAPBL_JLOCK_ASSERT(vp->v_mount);
906 #endif
907
908 trans_mp = NULL;
909 holds_wapbl = false;
910
911 retry:
912 modified = false;
913 flags = origflags;
914 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
915 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
916
917 /*
918 * shortcut if we have no pages to process.
919 */
920
921 if (uobj->uo_npages == 0 || (dirtyonly &&
922 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
923 UVM_PAGE_DIRTY_TAG))) {
924 if (vp->v_iflag & VI_ONWORKLST) {
925 vp->v_iflag &= ~VI_WRMAPDIRTY;
926 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
927 vn_syncer_remove_from_worklist(vp);
928 }
929 if (trans_mp) {
930 if (holds_wapbl)
931 WAPBL_END(trans_mp);
932 fstrans_done(trans_mp);
933 }
934 mutex_exit(slock);
935 return (0);
936 }
937
938 /*
939 * the vnode has pages, set up to process the request.
940 */
941
942 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
943 if (pagedaemon) {
944 /* Pagedaemon must not sleep here. */
945 trans_mp = vp->v_mount;
946 error = fstrans_start_nowait(trans_mp);
947 if (error) {
948 mutex_exit(slock);
949 return error;
950 }
951 } else {
952 /*
953 * Cannot use vdeadcheck() here as this operation
954 * usually gets used from VOP_RECLAIM(). Test for
955 * change of v_mount instead and retry on change.
956 */
957 mutex_exit(slock);
958 trans_mp = vp->v_mount;
959 fstrans_start(trans_mp);
960 if (vp->v_mount != trans_mp) {
961 fstrans_done(trans_mp);
962 trans_mp = NULL;
963 } else {
964 holds_wapbl = (trans_mp->mnt_wapbl &&
965 (origflags & PGO_JOURNALLOCKED) == 0);
966 if (holds_wapbl) {
967 error = WAPBL_BEGIN(trans_mp);
968 if (error) {
969 fstrans_done(trans_mp);
970 return error;
971 }
972 }
973 }
974 mutex_enter(slock);
975 goto retry;
976 }
977 }
978
979 error = 0;
980 wasclean = (vp->v_numoutput == 0);
981 nextoff = startoff;
982 if (endoff == 0 || flags & PGO_ALLPAGES) {
983 endoff = trunc_page(LLONG_MAX);
984 }
985
986 /*
987 * if this vnode is known not to have dirty pages,
988 * don't bother to clean it out.
989 */
990
991 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
992 #if !defined(DEBUG)
993 if (dirtyonly) {
994 goto skip_scan;
995 }
996 #endif /* !defined(DEBUG) */
997 flags &= ~PGO_CLEANIT;
998 }
999
1000 /*
1001 * start the loop to scan pages.
1002 */
1003
1004 cleanall = true;
1005 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1006 uvm_page_array_init(&a);
1007 for (;;) {
1008 bool pgprotected;
1009
1010 /*
1011 * if !dirtyonly, iterate over all resident pages in the range.
1012 *
1013 * if dirtyonly, only possibly dirty pages are interesting.
1014 * however, if we are asked to sync for integrity, we should
1015 * wait on pages being written back by other threads as well.
1016 */
1017
1018 pg = uvm_page_array_fill_and_peek(&a, uobj, nextoff, 0,
1019 dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
1020 (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
1021 if (pg == NULL) {
1022 break;
1023 }
1024
1025 KASSERT(pg->uobject == uobj);
1026 KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1027 (pg->flags & (PG_BUSY)) != 0);
1028 KASSERT(pg->offset >= startoff);
1029 KASSERT(pg->offset >= nextoff);
1030 KASSERT(!dirtyonly ||
1031 uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
1032 radix_tree_get_tag(&uobj->uo_pages,
1033 pg->offset >> PAGE_SHIFT, UVM_PAGE_WRITEBACK_TAG));
1034
1035 if (pg->offset >= endoff) {
1036 break;
1037 }
1038
1039 /*
1040 * a preempt point.
1041 */
1042
1043 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1044 != 0) {
1045 nextoff = pg->offset; /* visit this page again */
1046 mutex_exit(slock);
1047 preempt();
1048 /*
1049 * as we dropped the object lock, our cached pages can
1050 * be stale.
1051 */
1052 uvm_page_array_clear(&a);
1053 mutex_enter(slock);
1054 continue;
1055 }
1056
1057 /*
1058 * if the current page is busy, wait for it to become unbusy.
1059 */
1060
1061 if ((pg->flags & PG_BUSY) != 0) {
1062 UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1063 0, 0, 0);
1064 if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
1065 && (flags & PGO_BUSYFAIL) != 0) {
1066 UVMHIST_LOG(ubchist, "busyfail %#jx",
1067 (uintptr_t)pg, 0, 0, 0);
1068 error = EDEADLK;
1069 if (busypg != NULL)
1070 *busypg = pg;
1071 break;
1072 }
1073 if (pagedaemon) {
1074 /*
1075 * someone has taken the page while we
1076 * dropped the lock for fstrans_start.
1077 */
1078 break;
1079 }
1080 /*
1081 * don't bother to wait on other's activities
1082 * unless we are asked to sync for integrity.
1083 */
1084 if (!async && (flags & PGO_RECLAIM) == 0) {
1085 wasclean = false;
1086 nextoff = pg->offset + PAGE_SIZE;
1087 uvm_page_array_advance(&a);
1088 continue;
1089 }
1090 nextoff = pg->offset; /* visit this page again */
1091 pg->flags |= PG_WANTED;
1092 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1093 /*
1094 * as we dropped the object lock, our cached pages can
1095 * be stale.
1096 */
1097 uvm_page_array_clear(&a);
1098 mutex_enter(slock);
1099 continue;
1100 }
1101
1102 nextoff = pg->offset + PAGE_SIZE;
1103 uvm_page_array_advance(&a);
1104
1105 /*
1106 * if we're freeing, remove all mappings of the page now.
1107 * if we're cleaning, check if the page is needs to be cleaned.
1108 */
1109
1110 pgprotected = false;
1111 if (flags & PGO_FREE) {
1112 pmap_page_protect(pg, VM_PROT_NONE);
1113 pgprotected = true;
1114 } else if (flags & PGO_CLEANIT) {
1115
1116 /*
1117 * if we still have some hope to pull this vnode off
1118 * from the syncer queue, write-protect the page.
1119 */
1120
1121 if (cleanall && wasclean) {
1122
1123 /*
1124 * uobj pages get wired only by uvm_fault
1125 * where uobj is locked.
1126 */
1127
1128 if (pg->wire_count == 0) {
1129 pmap_page_protect(pg,
1130 VM_PROT_READ|VM_PROT_EXECUTE);
1131 pgprotected = true;
1132 } else {
1133 cleanall = false;
1134 }
1135 }
1136 }
1137
1138 if (flags & PGO_CLEANIT) {
1139 needs_clean = uvm_pagecheckdirty(pg, pgprotected);
1140 } else {
1141 needs_clean = false;
1142 }
1143
1144 /*
1145 * if we're cleaning, build a cluster.
1146 * the cluster will consist of pages which are currently dirty.
1147 * if not cleaning, just operate on the one page.
1148 */
1149
1150 if (needs_clean) {
1151 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1152 wasclean = false;
1153 memset(pgs, 0, sizeof(pgs));
1154 pg->flags |= PG_BUSY;
1155 UVM_PAGE_OWN(pg, "genfs_putpages");
1156
1157 /*
1158 * let the fs constrain the offset range of the cluster.
1159 * we additionally constrain the range here such that
1160 * it fits in the "pgs" pages array.
1161 */
1162
1163 off_t fslo, fshi, genlo, lo, off = pg->offset;
1164 GOP_PUTRANGE(vp, off, &fslo, &fshi);
1165 KASSERT(fslo == trunc_page(fslo));
1166 KASSERT(fslo <= off);
1167 KASSERT(fshi == trunc_page(fshi));
1168 KASSERT(fshi == 0 || off < fshi);
1169
1170 if (off > MAXPHYS / 2)
1171 genlo = trunc_page(off - (MAXPHYS / 2));
1172 else
1173 genlo = 0;
1174 lo = MAX(fslo, genlo);
1175
1176 /*
1177 * first look backward.
1178 */
1179
1180 npages = (off - lo) >> PAGE_SHIFT;
1181 nback = npages;
1182 uvn_findpages(uobj, off - PAGE_SIZE, &nback,
1183 &pgs[0], NULL,
1184 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1185 if (nback) {
1186 memmove(&pgs[0], &pgs[npages - nback],
1187 nback * sizeof(pgs[0]));
1188 if (npages - nback < nback)
1189 memset(&pgs[nback], 0,
1190 (npages - nback) * sizeof(pgs[0]));
1191 else
1192 memset(&pgs[npages - nback], 0,
1193 nback * sizeof(pgs[0]));
1194 }
1195
1196 /*
1197 * then plug in our page of interest.
1198 */
1199
1200 pgs[nback] = pg;
1201
1202 /*
1203 * then look forward to fill in the remaining space in
1204 * the array of pages.
1205 *
1206 * pass our cached array of pages so that hopefully
1207 * uvn_findpages can find some good pages in it.
1208 * the array a was filled above with the one of
1209 * following sets of flags:
1210 * 0
1211 * UVM_PAGE_ARRAY_FILL_DIRTY
1212 * UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
1213 */
1214
1215 npages = MAXPAGES - nback - 1;
1216 if (fshi)
1217 npages = MIN(npages,
1218 (fshi - off - 1) >> PAGE_SHIFT);
1219 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1220 &pgs[nback + 1], NULL,
1221 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1222 npages += nback + 1;
1223 } else {
1224 pgs[0] = pg;
1225 npages = 1;
1226 nback = 0;
1227 }
1228
1229 /*
1230 * apply FREE or DEACTIVATE options if requested.
1231 */
1232
1233 for (i = 0; i < npages; i++) {
1234 tpg = pgs[i];
1235 KASSERT(tpg->uobject == uobj);
1236 KASSERT(i == 0 ||
1237 pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1238 KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1239 UVM_PAGE_STATUS_DIRTY);
1240 if (needs_clean) {
1241 /*
1242 * mark pages as WRITEBACK so that concurrent
1243 * fsync can find and wait for our activities.
1244 */
1245 radix_tree_set_tag(&uobj->uo_pages,
1246 pgs[i]->offset >> PAGE_SHIFT,
1247 UVM_PAGE_WRITEBACK_TAG);
1248 }
1249 if (tpg->offset < startoff || tpg->offset >= endoff)
1250 continue;
1251 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1252 uvm_pagelock(tpg);
1253 uvm_pagedeactivate(tpg);
1254 uvm_pageunlock(tpg);
1255 } else if (flags & PGO_FREE) {
1256 pmap_page_protect(tpg, VM_PROT_NONE);
1257 if (tpg->flags & PG_BUSY) {
1258 tpg->flags |= freeflag;
1259 if (pagedaemon) {
1260 uvm_pageout_start(1);
1261 uvm_pagelock(tpg);
1262 uvm_pagedequeue(tpg);
1263 uvm_pageunlock(tpg);
1264 }
1265 } else {
1266
1267 /*
1268 * ``page is not busy''
1269 * implies that npages is 1
1270 * and needs_clean is false.
1271 */
1272
1273 KASSERT(npages == 1);
1274 KASSERT(!needs_clean);
1275 KASSERT(pg == tpg);
1276 KASSERT(nextoff ==
1277 tpg->offset + PAGE_SIZE);
1278 uvm_pagefree(tpg);
1279 if (pagedaemon)
1280 uvmexp.pdfreed++;
1281 }
1282 }
1283 }
1284 if (needs_clean) {
1285 modified = true;
1286 KASSERT(nextoff == pg->offset + PAGE_SIZE);
1287 KASSERT(nback < npages);
1288 nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1289 KASSERT(pgs[nback] == pg);
1290 KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1291
1292 /*
1293 * start the i/o.
1294 */
1295 mutex_exit(slock);
1296 error = GOP_WRITE(vp, pgs, npages, flags);
1297 /*
1298 * as we dropped the object lock, our cached pages can
1299 * be stale.
1300 */
1301 uvm_page_array_clear(&a);
1302 mutex_enter(slock);
1303 if (error) {
1304 break;
1305 }
1306 }
1307 }
1308 uvm_page_array_fini(&a);
1309
1310 /*
1311 * update ctime/mtime if the modification we started writing out might
1312 * be from mmap'ed write.
1313 *
1314 * this is necessary when an application keeps a file mmaped and
1315 * repeatedly modifies it via the window. note that, because we
1316 * don't always write-protect pages when cleaning, such modifications
1317 * might not involve any page faults.
1318 */
1319
1320 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1321 (vp->v_type != VBLK ||
1322 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1323 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1324 }
1325
1326 /*
1327 * if we no longer have any possibly dirty pages, take us off the
1328 * syncer list.
1329 */
1330
1331 if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
1332 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
1333 UVM_PAGE_DIRTY_TAG)) {
1334 vp->v_iflag &= ~VI_WRMAPDIRTY;
1335 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1336 vn_syncer_remove_from_worklist(vp);
1337 }
1338
1339 #if !defined(DEBUG)
1340 skip_scan:
1341 #endif /* !defined(DEBUG) */
1342
1343 /* Wait for output to complete. */
1344 if (!wasclean && !async && vp->v_numoutput != 0) {
1345 while (vp->v_numoutput != 0)
1346 cv_wait(&vp->v_cv, slock);
1347 }
1348 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1349 mutex_exit(slock);
1350
1351 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1352 /*
1353 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1354 * retrying is not a big deal because, in many cases,
1355 * uobj->uo_npages is already 0 here.
1356 */
1357 mutex_enter(slock);
1358 goto retry;
1359 }
1360
1361 if (trans_mp) {
1362 if (holds_wapbl)
1363 WAPBL_END(trans_mp);
1364 fstrans_done(trans_mp);
1365 }
1366
1367 return (error);
1368 }
1369
1370 /*
1371 * Default putrange method for file systems that do not care
1372 * how many pages are given to one GOP_WRITE() call.
1373 */
1374 void
1375 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1376 {
1377
1378 *lop = 0;
1379 *hip = 0;
1380 }
1381
1382 int
1383 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1384 {
1385 off_t off;
1386 vaddr_t kva;
1387 size_t len;
1388 int error;
1389 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1390
1391 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1392 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1393
1394 off = pgs[0]->offset;
1395 kva = uvm_pagermapin(pgs, npages,
1396 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1397 len = npages << PAGE_SHIFT;
1398
1399 KASSERT(uvm.aiodone_queue != NULL);
1400 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1401 uvm_aio_biodone);
1402
1403 return error;
1404 }
1405
1406 /*
1407 * genfs_gop_write_rwmap:
1408 *
1409 * a variant of genfs_gop_write. it's used by UDF for its directory buffers.
1410 * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1411 * the contents before writing it out to the underlying storage.
1412 */
1413
1414 int
1415 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1416 int flags)
1417 {
1418 off_t off;
1419 vaddr_t kva;
1420 size_t len;
1421 int error;
1422 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1423
1424 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1425 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1426
1427 off = pgs[0]->offset;
1428 kva = uvm_pagermapin(pgs, npages,
1429 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1430 len = npages << PAGE_SHIFT;
1431
1432 KASSERT(uvm.aiodone_queue != NULL);
1433 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1434 uvm_aio_biodone);
1435
1436 return error;
1437 }
1438
1439 /*
1440 * Backend routine for doing I/O to vnode pages. Pages are already locked
1441 * and mapped into kernel memory. Here we just look up the underlying
1442 * device block addresses and call the strategy routine.
1443 */
1444
1445 static int
1446 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1447 enum uio_rw rw, void (*iodone)(struct buf *))
1448 {
1449 int s, error;
1450 int fs_bshift, dev_bshift;
1451 off_t eof, offset, startoffset;
1452 size_t bytes, iobytes, skipbytes;
1453 struct buf *mbp, *bp;
1454 const bool async = (flags & PGO_SYNCIO) == 0;
1455 const bool lazy = (flags & PGO_LAZY) == 0;
1456 const bool iowrite = rw == UIO_WRITE;
1457 const int brw = iowrite ? B_WRITE : B_READ;
1458 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1459
1460 UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1461 (uintptr_t)vp, (uintptr_t)kva, len, flags);
1462
1463 KASSERT(vp->v_size <= vp->v_writesize);
1464 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1465 if (vp->v_type != VBLK) {
1466 fs_bshift = vp->v_mount->mnt_fs_bshift;
1467 dev_bshift = vp->v_mount->mnt_dev_bshift;
1468 } else {
1469 fs_bshift = DEV_BSHIFT;
1470 dev_bshift = DEV_BSHIFT;
1471 }
1472 error = 0;
1473 startoffset = off;
1474 bytes = MIN(len, eof - startoffset);
1475 skipbytes = 0;
1476 KASSERT(bytes != 0);
1477
1478 if (iowrite) {
1479 /*
1480 * why += 2?
1481 * 1 for biodone, 1 for uvm_aio_aiodone.
1482 */
1483 mutex_enter(vp->v_interlock);
1484 vp->v_numoutput += 2;
1485 mutex_exit(vp->v_interlock);
1486 }
1487 mbp = getiobuf(vp, true);
1488 UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1489 (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1490 mbp->b_bufsize = len;
1491 mbp->b_data = (void *)kva;
1492 mbp->b_resid = mbp->b_bcount = bytes;
1493 mbp->b_cflags = BC_BUSY | BC_AGE;
1494 if (async) {
1495 mbp->b_flags = brw | B_ASYNC;
1496 mbp->b_iodone = iodone;
1497 } else {
1498 mbp->b_flags = brw;
1499 mbp->b_iodone = NULL;
1500 }
1501 if (curlwp == uvm.pagedaemon_lwp)
1502 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1503 else if (async || lazy)
1504 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1505 else
1506 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1507
1508 bp = NULL;
1509 for (offset = startoffset;
1510 bytes > 0;
1511 offset += iobytes, bytes -= iobytes) {
1512 int run;
1513 daddr_t lbn, blkno;
1514 struct vnode *devvp;
1515
1516 /*
1517 * bmap the file to find out the blkno to read from and
1518 * how much we can read in one i/o. if bmap returns an error,
1519 * skip the rest of the top-level i/o.
1520 */
1521
1522 lbn = offset >> fs_bshift;
1523 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1524 if (error) {
1525 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
1526 lbn, error, 0, 0);
1527 skipbytes += bytes;
1528 bytes = 0;
1529 goto loopdone;
1530 }
1531
1532 /*
1533 * see how many pages can be read with this i/o.
1534 * reduce the i/o size if necessary to avoid
1535 * overwriting pages with valid data.
1536 */
1537
1538 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1539 bytes);
1540
1541 /*
1542 * if this block isn't allocated, zero it instead of
1543 * reading it. unless we are going to allocate blocks,
1544 * mark the pages we zeroed PG_RDONLY.
1545 */
1546
1547 if (blkno == (daddr_t)-1) {
1548 if (!iowrite) {
1549 memset((char *)kva + (offset - startoffset), 0,
1550 iobytes);
1551 }
1552 skipbytes += iobytes;
1553 continue;
1554 }
1555
1556 /*
1557 * allocate a sub-buf for this piece of the i/o
1558 * (or just use mbp if there's only 1 piece),
1559 * and start it going.
1560 */
1561
1562 if (offset == startoffset && iobytes == bytes) {
1563 bp = mbp;
1564 } else {
1565 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1566 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1567 bp = getiobuf(vp, true);
1568 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1569 }
1570 bp->b_lblkno = 0;
1571
1572 /* adjust physical blkno for partial blocks */
1573 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1574 dev_bshift);
1575
1576 UVMHIST_LOG(ubchist,
1577 "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1578 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1579
1580 VOP_STRATEGY(devvp, bp);
1581 }
1582
1583 loopdone:
1584 if (skipbytes) {
1585 UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1586 }
1587 nestiobuf_done(mbp, skipbytes, error);
1588 if (async) {
1589 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1590 return (0);
1591 }
1592 UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1593 error = biowait(mbp);
1594 s = splbio();
1595 (*iodone)(mbp);
1596 splx(s);
1597 UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1598 return (error);
1599 }
1600
1601 int
1602 genfs_compat_getpages(void *v)
1603 {
1604 struct vop_getpages_args /* {
1605 struct vnode *a_vp;
1606 voff_t a_offset;
1607 struct vm_page **a_m;
1608 int *a_count;
1609 int a_centeridx;
1610 vm_prot_t a_access_type;
1611 int a_advice;
1612 int a_flags;
1613 } */ *ap = v;
1614
1615 off_t origoffset;
1616 struct vnode *vp = ap->a_vp;
1617 struct uvm_object *uobj = &vp->v_uobj;
1618 struct vm_page *pg, **pgs;
1619 vaddr_t kva;
1620 int i, error, orignpages, npages;
1621 struct iovec iov;
1622 struct uio uio;
1623 kauth_cred_t cred = curlwp->l_cred;
1624 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1625
1626 error = 0;
1627 origoffset = ap->a_offset;
1628 orignpages = *ap->a_count;
1629 pgs = ap->a_m;
1630
1631 if (ap->a_flags & PGO_LOCKED) {
1632 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1633 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1634
1635 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1636 if (error == 0 && memwrite) {
1637 genfs_markdirty(vp);
1638 }
1639 return error;
1640 }
1641 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1642 mutex_exit(uobj->vmobjlock);
1643 return EINVAL;
1644 }
1645 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1646 mutex_exit(uobj->vmobjlock);
1647 return 0;
1648 }
1649 npages = orignpages;
1650 uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1651 mutex_exit(uobj->vmobjlock);
1652 kva = uvm_pagermapin(pgs, npages,
1653 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1654 for (i = 0; i < npages; i++) {
1655 pg = pgs[i];
1656 if ((pg->flags & PG_FAKE) == 0) {
1657 continue;
1658 }
1659 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1660 iov.iov_len = PAGE_SIZE;
1661 uio.uio_iov = &iov;
1662 uio.uio_iovcnt = 1;
1663 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1664 uio.uio_rw = UIO_READ;
1665 uio.uio_resid = PAGE_SIZE;
1666 UIO_SETUP_SYSSPACE(&uio);
1667 /* XXX vn_lock */
1668 error = VOP_READ(vp, &uio, 0, cred);
1669 if (error) {
1670 break;
1671 }
1672 if (uio.uio_resid) {
1673 memset(iov.iov_base, 0, uio.uio_resid);
1674 }
1675 }
1676 uvm_pagermapout(kva, npages);
1677 mutex_enter(uobj->vmobjlock);
1678 for (i = 0; i < npages; i++) {
1679 pg = pgs[i];
1680 if (error && (pg->flags & PG_FAKE) != 0) {
1681 pg->flags |= PG_RELEASED;
1682 } else {
1683 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1684 uvm_pagelock(pg);
1685 uvm_pageactivate(pg);
1686 uvm_pageunlock(pg);
1687 }
1688 }
1689 if (error) {
1690 uvm_page_unbusy(pgs, npages);
1691 }
1692 if (error == 0 && memwrite) {
1693 genfs_markdirty(vp);
1694 }
1695 mutex_exit(uobj->vmobjlock);
1696 return error;
1697 }
1698
1699 int
1700 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1701 int flags)
1702 {
1703 off_t offset;
1704 struct iovec iov;
1705 struct uio uio;
1706 kauth_cred_t cred = curlwp->l_cred;
1707 struct buf *bp;
1708 vaddr_t kva;
1709 int error;
1710
1711 offset = pgs[0]->offset;
1712 kva = uvm_pagermapin(pgs, npages,
1713 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1714
1715 iov.iov_base = (void *)kva;
1716 iov.iov_len = npages << PAGE_SHIFT;
1717 uio.uio_iov = &iov;
1718 uio.uio_iovcnt = 1;
1719 uio.uio_offset = offset;
1720 uio.uio_rw = UIO_WRITE;
1721 uio.uio_resid = npages << PAGE_SHIFT;
1722 UIO_SETUP_SYSSPACE(&uio);
1723 /* XXX vn_lock */
1724 error = VOP_WRITE(vp, &uio, 0, cred);
1725
1726 mutex_enter(vp->v_interlock);
1727 vp->v_numoutput++;
1728 mutex_exit(vp->v_interlock);
1729
1730 bp = getiobuf(vp, true);
1731 bp->b_cflags = BC_BUSY | BC_AGE;
1732 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1733 bp->b_data = (char *)kva;
1734 bp->b_bcount = npages << PAGE_SHIFT;
1735 bp->b_bufsize = npages << PAGE_SHIFT;
1736 bp->b_resid = 0;
1737 bp->b_error = error;
1738 uvm_aio_aiodone(bp);
1739 return (error);
1740 }
1741
1742 /*
1743 * Process a uio using direct I/O. If we reach a part of the request
1744 * which cannot be processed in this fashion for some reason, just return.
1745 * The caller must handle some additional part of the request using
1746 * buffered I/O before trying direct I/O again.
1747 */
1748
1749 void
1750 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1751 {
1752 struct vmspace *vs;
1753 struct iovec *iov;
1754 vaddr_t va;
1755 size_t len;
1756 const int mask = DEV_BSIZE - 1;
1757 int error;
1758 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1759 (ioflag & IO_JOURNALLOCKED) == 0);
1760
1761 #ifdef DIAGNOSTIC
1762 if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
1763 WAPBL_JLOCK_ASSERT(vp->v_mount);
1764 #endif
1765
1766 /*
1767 * We only support direct I/O to user space for now.
1768 */
1769
1770 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1771 return;
1772 }
1773
1774 /*
1775 * If the vnode is mapped, we would need to get the getpages lock
1776 * to stabilize the bmap, but then we would get into trouble while
1777 * locking the pages if the pages belong to this same vnode (or a
1778 * multi-vnode cascade to the same effect). Just fall back to
1779 * buffered I/O if the vnode is mapped to avoid this mess.
1780 */
1781
1782 if (vp->v_vflag & VV_MAPPED) {
1783 return;
1784 }
1785
1786 if (need_wapbl) {
1787 error = WAPBL_BEGIN(vp->v_mount);
1788 if (error)
1789 return;
1790 }
1791
1792 /*
1793 * Do as much of the uio as possible with direct I/O.
1794 */
1795
1796 vs = uio->uio_vmspace;
1797 while (uio->uio_resid) {
1798 iov = uio->uio_iov;
1799 if (iov->iov_len == 0) {
1800 uio->uio_iov++;
1801 uio->uio_iovcnt--;
1802 continue;
1803 }
1804 va = (vaddr_t)iov->iov_base;
1805 len = MIN(iov->iov_len, genfs_maxdio);
1806 len &= ~mask;
1807
1808 /*
1809 * If the next chunk is smaller than DEV_BSIZE or extends past
1810 * the current EOF, then fall back to buffered I/O.
1811 */
1812
1813 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1814 break;
1815 }
1816
1817 /*
1818 * Check alignment. The file offset must be at least
1819 * sector-aligned. The exact constraint on memory alignment
1820 * is very hardware-dependent, but requiring sector-aligned
1821 * addresses there too is safe.
1822 */
1823
1824 if (uio->uio_offset & mask || va & mask) {
1825 break;
1826 }
1827 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1828 uio->uio_rw);
1829 if (error) {
1830 break;
1831 }
1832 iov->iov_base = (char *)iov->iov_base + len;
1833 iov->iov_len -= len;
1834 uio->uio_offset += len;
1835 uio->uio_resid -= len;
1836 }
1837
1838 if (need_wapbl)
1839 WAPBL_END(vp->v_mount);
1840 }
1841
1842 /*
1843 * Iodone routine for direct I/O. We don't do much here since the request is
1844 * always synchronous, so the caller will do most of the work after biowait().
1845 */
1846
1847 static void
1848 genfs_dio_iodone(struct buf *bp)
1849 {
1850
1851 KASSERT((bp->b_flags & B_ASYNC) == 0);
1852 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1853 mutex_enter(bp->b_objlock);
1854 vwakeup(bp);
1855 mutex_exit(bp->b_objlock);
1856 }
1857 putiobuf(bp);
1858 }
1859
1860 /*
1861 * Process one chunk of a direct I/O request.
1862 */
1863
1864 static int
1865 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1866 off_t off, enum uio_rw rw)
1867 {
1868 struct vm_map *map;
1869 struct pmap *upm, *kpm __unused;
1870 size_t klen = round_page(uva + len) - trunc_page(uva);
1871 off_t spoff, epoff;
1872 vaddr_t kva, puva;
1873 paddr_t pa;
1874 vm_prot_t prot;
1875 int error, rv __diagused, poff, koff;
1876 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1877 (rw == UIO_WRITE ? PGO_FREE : 0);
1878
1879 /*
1880 * For writes, verify that this range of the file already has fully
1881 * allocated backing store. If there are any holes, just punt and
1882 * make the caller take the buffered write path.
1883 */
1884
1885 if (rw == UIO_WRITE) {
1886 daddr_t lbn, elbn, blkno;
1887 int bsize, bshift, run;
1888
1889 bshift = vp->v_mount->mnt_fs_bshift;
1890 bsize = 1 << bshift;
1891 lbn = off >> bshift;
1892 elbn = (off + len + bsize - 1) >> bshift;
1893 while (lbn < elbn) {
1894 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1895 if (error) {
1896 return error;
1897 }
1898 if (blkno == (daddr_t)-1) {
1899 return ENOSPC;
1900 }
1901 lbn += 1 + run;
1902 }
1903 }
1904
1905 /*
1906 * Flush any cached pages for parts of the file that we're about to
1907 * access. If we're writing, invalidate pages as well.
1908 */
1909
1910 spoff = trunc_page(off);
1911 epoff = round_page(off + len);
1912 mutex_enter(vp->v_interlock);
1913 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1914 if (error) {
1915 return error;
1916 }
1917
1918 /*
1919 * Wire the user pages and remap them into kernel memory.
1920 */
1921
1922 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1923 error = uvm_vslock(vs, (void *)uva, len, prot);
1924 if (error) {
1925 return error;
1926 }
1927
1928 map = &vs->vm_map;
1929 upm = vm_map_pmap(map);
1930 kpm = vm_map_pmap(kernel_map);
1931 puva = trunc_page(uva);
1932 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1933 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1934 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1935 rv = pmap_extract(upm, puva + poff, &pa);
1936 KASSERT(rv);
1937 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1938 }
1939 pmap_update(kpm);
1940
1941 /*
1942 * Do the I/O.
1943 */
1944
1945 koff = uva - trunc_page(uva);
1946 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1947 genfs_dio_iodone);
1948
1949 /*
1950 * Tear down the kernel mapping.
1951 */
1952
1953 pmap_kremove(kva, klen);
1954 pmap_update(kpm);
1955 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1956
1957 /*
1958 * Unwire the user pages.
1959 */
1960
1961 uvm_vsunlock(vs, (void *)uva, len);
1962 return error;
1963 }
1964