genfs_io.c revision 1.88 1 /* $NetBSD: genfs_io.c,v 1.88 2020/02/27 22:12:54 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.88 2020/02/27 22:12:54 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46
47 #include <miscfs/genfs/genfs.h>
48 #include <miscfs/genfs/genfs_node.h>
49 #include <miscfs/specfs/specdev.h>
50
51 #include <uvm/uvm.h>
52 #include <uvm/uvm_pager.h>
53 #include <uvm/uvm_page_array.h>
54
55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
56 off_t, enum uio_rw);
57 static void genfs_dio_iodone(struct buf *);
58
59 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
60 off_t, bool, bool, bool, bool);
61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 void (*)(struct buf *));
63 static void genfs_rel_pages(struct vm_page **, unsigned int);
64 static void genfs_markdirty(struct vnode *);
65
66 int genfs_maxdio = MAXPHYS;
67
68 static void
69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70 {
71 unsigned int i;
72
73 for (i = 0; i < npages; i++) {
74 struct vm_page *pg = pgs[i];
75
76 if (pg == NULL || pg == PGO_DONTCARE)
77 continue;
78 KASSERT(uvm_page_owner_locked_p(pg, true));
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 uvm_page_unbusy(pgs, npages);
84 }
85
86 static void
87 genfs_markdirty(struct vnode *vp)
88 {
89
90 KASSERT(rw_write_held(vp->v_uobj.vmobjlock));
91
92 mutex_enter(vp->v_interlock);
93 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
94 vn_syncer_add_to_worklist(vp, filedelay);
95 }
96 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
97 vp->v_iflag |= VI_WRMAPDIRTY;
98 }
99 mutex_exit(vp->v_interlock);
100 }
101
102 /*
103 * generic VM getpages routine.
104 * Return PG_BUSY pages for the given range,
105 * reading from backing store if necessary.
106 */
107
108 int
109 genfs_getpages(void *v)
110 {
111 struct vop_getpages_args /* {
112 struct vnode *a_vp;
113 voff_t a_offset;
114 struct vm_page **a_m;
115 int *a_count;
116 int a_centeridx;
117 vm_prot_t a_access_type;
118 int a_advice;
119 int a_flags;
120 } */ * const ap = v;
121
122 off_t diskeof, memeof;
123 int i, error, npages;
124 const int flags = ap->a_flags;
125 struct vnode * const vp = ap->a_vp;
126 struct uvm_object * const uobj = &vp->v_uobj;
127 const bool async = (flags & PGO_SYNCIO) == 0;
128 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
131 const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
132 (flags & PGO_JOURNALLOCKED) == 0);
133 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
134 bool holds_wapbl = false;
135 struct mount *trans_mount = NULL;
136 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
137
138 UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
139 (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
140
141 KASSERT(memwrite >= overwrite);
142 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
143 vp->v_type == VLNK || vp->v_type == VBLK);
144
145 #ifdef DIAGNOSTIC
146 if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
147 WAPBL_JLOCK_ASSERT(vp->v_mount);
148 #endif
149
150 mutex_enter(vp->v_interlock);
151 error = vdead_check(vp, VDEAD_NOWAIT);
152 mutex_exit(vp->v_interlock);
153 if (error) {
154 if ((flags & PGO_LOCKED) == 0)
155 rw_exit(uobj->vmobjlock);
156 return error;
157 }
158
159 startover:
160 error = 0;
161 const voff_t origvsize = vp->v_size;
162 const off_t origoffset = ap->a_offset;
163 const int orignpages = *ap->a_count;
164
165 GOP_SIZE(vp, origvsize, &diskeof, 0);
166 if (flags & PGO_PASTEOF) {
167 off_t newsize;
168 #if defined(DIAGNOSTIC)
169 off_t writeeof;
170 #endif /* defined(DIAGNOSTIC) */
171
172 newsize = MAX(origvsize,
173 origoffset + (orignpages << PAGE_SHIFT));
174 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
175 #if defined(DIAGNOSTIC)
176 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
177 if (newsize > round_page(writeeof)) {
178 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
179 __func__, newsize, round_page(writeeof));
180 }
181 #endif /* defined(DIAGNOSTIC) */
182 } else {
183 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
184 }
185 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
186 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
187 KASSERT(orignpages > 0);
188
189 /*
190 * Bounds-check the request.
191 */
192
193 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
194 if ((flags & PGO_LOCKED) == 0) {
195 rw_exit(uobj->vmobjlock);
196 }
197 UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
198 origoffset, *ap->a_count, memeof,0);
199 error = EINVAL;
200 goto out_err;
201 }
202
203 /* uobj is locked */
204
205 if ((flags & PGO_NOTIMESTAMP) == 0 &&
206 (vp->v_type != VBLK ||
207 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
208 int updflags = 0;
209
210 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
211 updflags = GOP_UPDATE_ACCESSED;
212 }
213 if (memwrite) {
214 updflags |= GOP_UPDATE_MODIFIED;
215 }
216 if (updflags != 0) {
217 GOP_MARKUPDATE(vp, updflags);
218 }
219 }
220
221 /*
222 * For PGO_LOCKED requests, just return whatever's in memory.
223 */
224
225 if (flags & PGO_LOCKED) {
226 int nfound;
227 struct vm_page *pg;
228
229 KASSERT(!glocked);
230 npages = *ap->a_count;
231 #if defined(DEBUG)
232 for (i = 0; i < npages; i++) {
233 pg = ap->a_m[i];
234 KASSERT(pg == NULL || pg == PGO_DONTCARE);
235 }
236 #endif /* defined(DEBUG) */
237 nfound = uvn_findpages(uobj, origoffset, &npages,
238 ap->a_m, NULL,
239 UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
240 KASSERT(npages == *ap->a_count);
241 if (nfound == 0) {
242 error = EBUSY;
243 goto out_err;
244 }
245 /*
246 * lock and unlock g_glock to ensure that no one is truncating
247 * the file behind us.
248 */
249 if (!genfs_node_rdtrylock(vp)) {
250 genfs_rel_pages(ap->a_m, npages);
251
252 /*
253 * restore the array.
254 */
255
256 for (i = 0; i < npages; i++) {
257 pg = ap->a_m[i];
258
259 if (pg != NULL && pg != PGO_DONTCARE) {
260 ap->a_m[i] = NULL;
261 }
262 KASSERT(ap->a_m[i] == NULL ||
263 ap->a_m[i] == PGO_DONTCARE);
264 }
265 } else {
266 genfs_node_unlock(vp);
267 }
268 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
269 if (error == 0 && memwrite) {
270 for (i = 0; i < npages; i++) {
271 pg = ap->a_m[i];
272 if (pg == NULL || pg == PGO_DONTCARE) {
273 continue;
274 }
275 if (uvm_pagegetdirty(pg) ==
276 UVM_PAGE_STATUS_CLEAN) {
277 uvm_pagemarkdirty(pg,
278 UVM_PAGE_STATUS_UNKNOWN);
279 }
280 }
281 genfs_markdirty(vp);
282 }
283 goto out_err;
284 }
285 rw_exit(uobj->vmobjlock);
286
287 /*
288 * find the requested pages and make some simple checks.
289 * leave space in the page array for a whole block.
290 */
291
292 const int fs_bshift = (vp->v_type != VBLK) ?
293 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
294 const int fs_bsize = 1 << fs_bshift;
295 #define blk_mask (fs_bsize - 1)
296 #define trunc_blk(x) ((x) & ~blk_mask)
297 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
298
299 const int orignmempages = MIN(orignpages,
300 round_page(memeof - origoffset) >> PAGE_SHIFT);
301 npages = orignmempages;
302 const off_t startoffset = trunc_blk(origoffset);
303 const off_t endoffset = MIN(
304 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
305 round_page(memeof));
306 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
307
308 const int pgs_size = sizeof(struct vm_page *) *
309 ((endoffset - startoffset) >> PAGE_SHIFT);
310 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
311
312 if (pgs_size > sizeof(pgs_onstack)) {
313 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
314 if (pgs == NULL) {
315 pgs = pgs_onstack;
316 error = ENOMEM;
317 goto out_err;
318 }
319 } else {
320 pgs = pgs_onstack;
321 (void)memset(pgs, 0, pgs_size);
322 }
323
324 UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
325 ridx, npages, startoffset, endoffset);
326
327 if (trans_mount == NULL) {
328 trans_mount = vp->v_mount;
329 fstrans_start(trans_mount);
330 /*
331 * check if this vnode is still valid.
332 */
333 mutex_enter(vp->v_interlock);
334 error = vdead_check(vp, 0);
335 mutex_exit(vp->v_interlock);
336 if (error)
337 goto out_err_free;
338 /*
339 * XXX: This assumes that we come here only via
340 * the mmio path
341 */
342 if (blockalloc && need_wapbl) {
343 error = WAPBL_BEGIN(trans_mount);
344 if (error)
345 goto out_err_free;
346 holds_wapbl = true;
347 }
348 }
349
350 /*
351 * hold g_glock to prevent a race with truncate.
352 *
353 * check if our idea of v_size is still valid.
354 */
355
356 KASSERT(!glocked || genfs_node_wrlocked(vp));
357 if (!glocked) {
358 if (blockalloc) {
359 genfs_node_wrlock(vp);
360 } else {
361 genfs_node_rdlock(vp);
362 }
363 }
364 rw_enter(uobj->vmobjlock, RW_WRITER);
365 if (vp->v_size < origvsize) {
366 if (!glocked) {
367 genfs_node_unlock(vp);
368 }
369 if (pgs != pgs_onstack)
370 kmem_free(pgs, pgs_size);
371 goto startover;
372 }
373
374 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
375 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
376 if (!glocked) {
377 genfs_node_unlock(vp);
378 }
379 KASSERT(async != 0);
380 genfs_rel_pages(&pgs[ridx], orignmempages);
381 rw_exit(uobj->vmobjlock);
382 error = EBUSY;
383 goto out_err_free;
384 }
385
386 /*
387 * if PGO_OVERWRITE is set, don't bother reading the pages.
388 */
389
390 if (overwrite) {
391 if (!glocked) {
392 genfs_node_unlock(vp);
393 }
394 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
395
396 for (i = 0; i < npages; i++) {
397 struct vm_page *pg = pgs[ridx + i];
398
399 /*
400 * it's caller's responsibility to allocate blocks
401 * beforehand for the overwrite case.
402 */
403
404 KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
405 pg->flags &= ~PG_RDONLY;
406
407 /*
408 * mark the page DIRTY.
409 * otherwise another thread can do putpages and pull
410 * our vnode from syncer's queue before our caller does
411 * ubc_release. note that putpages won't see CLEAN
412 * pages even if they are BUSY.
413 */
414
415 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
416 }
417 npages += ridx;
418 goto out;
419 }
420
421 /*
422 * if the pages are already resident, just return them.
423 */
424
425 for (i = 0; i < npages; i++) {
426 struct vm_page *pg = pgs[ridx + i];
427
428 if ((pg->flags & PG_FAKE) ||
429 (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
430 break;
431 }
432 }
433 if (i == npages) {
434 if (!glocked) {
435 genfs_node_unlock(vp);
436 }
437 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
438 npages += ridx;
439 goto out;
440 }
441
442 /*
443 * the page wasn't resident and we're not overwriting,
444 * so we're going to have to do some i/o.
445 * find any additional pages needed to cover the expanded range.
446 */
447
448 npages = (endoffset - startoffset) >> PAGE_SHIFT;
449 if (startoffset != origoffset || npages != orignmempages) {
450 int npgs;
451
452 /*
453 * we need to avoid deadlocks caused by locking
454 * additional pages at lower offsets than pages we
455 * already have locked. unlock them all and start over.
456 */
457
458 genfs_rel_pages(&pgs[ridx], orignmempages);
459 memset(pgs, 0, pgs_size);
460
461 UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
462 startoffset, endoffset, 0,0);
463 npgs = npages;
464 if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
465 async ? UFP_NOWAIT : UFP_ALL) != npages) {
466 if (!glocked) {
467 genfs_node_unlock(vp);
468 }
469 KASSERT(async != 0);
470 genfs_rel_pages(pgs, npages);
471 rw_exit(uobj->vmobjlock);
472 error = EBUSY;
473 goto out_err_free;
474 }
475 }
476
477 rw_exit(uobj->vmobjlock);
478 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
479 async, memwrite, blockalloc, glocked);
480 if (!glocked) {
481 genfs_node_unlock(vp);
482 }
483 if (error == 0 && async)
484 goto out_err_free;
485 rw_enter(uobj->vmobjlock, RW_WRITER);
486
487 /*
488 * we're almost done! release the pages...
489 * for errors, we free the pages.
490 * otherwise we activate them and mark them as valid and clean.
491 * also, unbusy pages that were not actually requested.
492 */
493
494 if (error) {
495 genfs_rel_pages(pgs, npages);
496 rw_exit(uobj->vmobjlock);
497 UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
498 goto out_err_free;
499 }
500
501 out:
502 UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
503 error = 0;
504 for (i = 0; i < npages; i++) {
505 struct vm_page *pg = pgs[i];
506 if (pg == NULL) {
507 continue;
508 }
509 UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
510 (uintptr_t)pg, pg->flags, 0,0);
511 if (pg->flags & PG_FAKE && !overwrite) {
512 /*
513 * we've read page's contents from the backing storage.
514 *
515 * for a read fault, we keep them CLEAN; if we
516 * encountered a hole while reading, the pages can
517 * already been dirtied with zeros.
518 */
519 KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
520 UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
521 pg->flags &= ~PG_FAKE;
522 }
523 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
524 if (i < ridx || i >= ridx + orignmempages || async) {
525 UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
526 (uintptr_t)pg, pg->offset,0,0);
527 if (pg->flags & PG_WANTED) {
528 wakeup(pg);
529 }
530 if (pg->flags & PG_FAKE) {
531 KASSERT(overwrite);
532 uvm_pagezero(pg);
533 }
534 if (pg->flags & PG_RELEASED) {
535 uvm_pagefree(pg);
536 continue;
537 }
538 uvm_pagelock(pg);
539 uvm_pageenqueue(pg);
540 uvm_pageunlock(pg);
541 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
542 UVM_PAGE_OWN(pg, NULL);
543 } else if (memwrite && !overwrite &&
544 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
545 /*
546 * for a write fault, start dirtiness tracking of
547 * requested pages.
548 */
549 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
550 }
551 }
552 if (memwrite) {
553 genfs_markdirty(vp);
554 }
555 rw_exit(uobj->vmobjlock);
556 if (ap->a_m != NULL) {
557 memcpy(ap->a_m, &pgs[ridx],
558 orignmempages * sizeof(struct vm_page *));
559 }
560
561 out_err_free:
562 if (pgs != NULL && pgs != pgs_onstack)
563 kmem_free(pgs, pgs_size);
564 out_err:
565 if (trans_mount != NULL) {
566 if (holds_wapbl)
567 WAPBL_END(trans_mount);
568 fstrans_done(trans_mount);
569 }
570 return error;
571 }
572
573 /*
574 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
575 *
576 * "glocked" (which is currently not actually used) tells us not whether
577 * the genfs_node is locked on entry (it always is) but whether it was
578 * locked on entry to genfs_getpages.
579 */
580 static int
581 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
582 off_t startoffset, off_t diskeof,
583 bool async, bool memwrite, bool blockalloc, bool glocked)
584 {
585 struct uvm_object * const uobj = &vp->v_uobj;
586 const int fs_bshift = (vp->v_type != VBLK) ?
587 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
588 const int dev_bshift = (vp->v_type != VBLK) ?
589 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
590 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
591 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
592 vaddr_t kva;
593 struct buf *bp, *mbp;
594 bool sawhole = false;
595 int i;
596 int error = 0;
597
598 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
599
600 /*
601 * read the desired page(s).
602 */
603
604 totalbytes = npages << PAGE_SHIFT;
605 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
606 tailbytes = totalbytes - bytes;
607 skipbytes = 0;
608
609 kva = uvm_pagermapin(pgs, npages,
610 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
611 if (kva == 0)
612 return EBUSY;
613
614 mbp = getiobuf(vp, true);
615 mbp->b_bufsize = totalbytes;
616 mbp->b_data = (void *)kva;
617 mbp->b_resid = mbp->b_bcount = bytes;
618 mbp->b_cflags = BC_BUSY;
619 if (async) {
620 mbp->b_flags = B_READ | B_ASYNC;
621 mbp->b_iodone = uvm_aio_aiodone;
622 } else {
623 mbp->b_flags = B_READ;
624 mbp->b_iodone = NULL;
625 }
626 if (async)
627 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
628 else
629 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
630
631 /*
632 * if EOF is in the middle of the range, zero the part past EOF.
633 * skip over pages which are not PG_FAKE since in that case they have
634 * valid data that we need to preserve.
635 */
636
637 tailstart = bytes;
638 while (tailbytes > 0) {
639 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
640
641 KASSERT(len <= tailbytes);
642 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
643 memset((void *)(kva + tailstart), 0, len);
644 UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
645 (uintptr_t)kva, tailstart, len, 0);
646 }
647 tailstart += len;
648 tailbytes -= len;
649 }
650
651 /*
652 * now loop over the pages, reading as needed.
653 */
654
655 bp = NULL;
656 off_t offset;
657 for (offset = startoffset;
658 bytes > 0;
659 offset += iobytes, bytes -= iobytes) {
660 int run;
661 daddr_t lbn, blkno;
662 int pidx;
663 struct vnode *devvp;
664
665 /*
666 * skip pages which don't need to be read.
667 */
668
669 pidx = (offset - startoffset) >> PAGE_SHIFT;
670 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
671 size_t b;
672
673 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
674 if ((pgs[pidx]->flags & PG_RDONLY)) {
675 sawhole = true;
676 }
677 b = MIN(PAGE_SIZE, bytes);
678 offset += b;
679 bytes -= b;
680 skipbytes += b;
681 pidx++;
682 UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
683 offset, 0,0,0);
684 if (bytes == 0) {
685 goto loopdone;
686 }
687 }
688
689 /*
690 * bmap the file to find out the blkno to read from and
691 * how much we can read in one i/o. if bmap returns an error,
692 * skip the rest of the top-level i/o.
693 */
694
695 lbn = offset >> fs_bshift;
696 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
697 if (error) {
698 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
699 lbn,error,0,0);
700 skipbytes += bytes;
701 bytes = 0;
702 goto loopdone;
703 }
704
705 /*
706 * see how many pages can be read with this i/o.
707 * reduce the i/o size if necessary to avoid
708 * overwriting pages with valid data.
709 */
710
711 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
712 bytes);
713 if (offset + iobytes > round_page(offset)) {
714 int pcount;
715
716 pcount = 1;
717 while (pidx + pcount < npages &&
718 pgs[pidx + pcount]->flags & PG_FAKE) {
719 pcount++;
720 }
721 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
722 (offset - trunc_page(offset)));
723 }
724
725 /*
726 * if this block isn't allocated, zero it instead of
727 * reading it. unless we are going to allocate blocks,
728 * mark the pages we zeroed PG_RDONLY.
729 */
730
731 if (blkno == (daddr_t)-1) {
732 int holepages = (round_page(offset + iobytes) -
733 trunc_page(offset)) >> PAGE_SHIFT;
734 UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
735
736 sawhole = true;
737 memset((char *)kva + (offset - startoffset), 0,
738 iobytes);
739 skipbytes += iobytes;
740
741 if (!blockalloc) {
742 rw_enter(uobj->vmobjlock, RW_WRITER);
743 for (i = 0; i < holepages; i++) {
744 pgs[pidx + i]->flags |= PG_RDONLY;
745 }
746 rw_exit(uobj->vmobjlock);
747 }
748 continue;
749 }
750
751 /*
752 * allocate a sub-buf for this piece of the i/o
753 * (or just use mbp if there's only 1 piece),
754 * and start it going.
755 */
756
757 if (offset == startoffset && iobytes == bytes) {
758 bp = mbp;
759 } else {
760 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
761 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
762 bp = getiobuf(vp, true);
763 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
764 }
765 bp->b_lblkno = 0;
766
767 /* adjust physical blkno for partial blocks */
768 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
769 dev_bshift);
770
771 UVMHIST_LOG(ubchist,
772 "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
773 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
774
775 VOP_STRATEGY(devvp, bp);
776 }
777
778 loopdone:
779 nestiobuf_done(mbp, skipbytes, error);
780 if (async) {
781 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
782 return 0;
783 }
784 if (bp != NULL) {
785 error = biowait(mbp);
786 }
787
788 /* Remove the mapping (make KVA available as soon as possible) */
789 uvm_pagermapout(kva, npages);
790
791 /*
792 * if this we encountered a hole then we have to do a little more work.
793 * for read faults, we marked the page PG_RDONLY so that future
794 * write accesses to the page will fault again.
795 * for write faults, we must make sure that the backing store for
796 * the page is completely allocated while the pages are locked.
797 */
798
799 if (!error && sawhole && blockalloc) {
800 error = GOP_ALLOC(vp, startoffset,
801 npages << PAGE_SHIFT, 0, cred);
802 UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
803 startoffset, npages << PAGE_SHIFT, error,0);
804 if (!error) {
805 rw_enter(uobj->vmobjlock, RW_WRITER);
806 for (i = 0; i < npages; i++) {
807 struct vm_page *pg = pgs[i];
808
809 if (pg == NULL) {
810 continue;
811 }
812 pg->flags &= ~PG_RDONLY;
813 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
814 UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
815 (uintptr_t)pg, 0, 0, 0);
816 }
817 rw_exit(uobj->vmobjlock);
818 }
819 }
820
821 putiobuf(mbp);
822 return error;
823 }
824
825 /*
826 * generic VM putpages routine.
827 * Write the given range of pages to backing store.
828 *
829 * => "offhi == 0" means flush all pages at or after "offlo".
830 * => object should be locked by caller. we return with the
831 * object unlocked.
832 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
833 * thus, a caller might want to unlock higher level resources
834 * (e.g. vm_map) before calling flush.
835 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
836 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
837 *
838 * note on "cleaning" object and PG_BUSY pages:
839 * this routine is holding the lock on the object. the only time
840 * that it can run into a PG_BUSY page that it does not own is if
841 * some other process has started I/O on the page (e.g. either
842 * a pagein, or a pageout). if the PG_BUSY page is being paged
843 * in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
844 * one has had a chance to modify it yet. if the PG_BUSY page is
845 * being paged out then it means that someone else has already started
846 * cleaning the page for us (how nice!). in this case, if we
847 * have syncio specified, then after we make our pass through the
848 * object we need to wait for the other PG_BUSY pages to clear
849 * off (i.e. we need to do an iosync). also note that once a
850 * page is PG_BUSY it must stay in its object until it is un-busyed.
851 */
852
853 int
854 genfs_putpages(void *v)
855 {
856 struct vop_putpages_args /* {
857 struct vnode *a_vp;
858 voff_t a_offlo;
859 voff_t a_offhi;
860 int a_flags;
861 } */ * const ap = v;
862
863 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
864 ap->a_flags, NULL);
865 }
866
867 int
868 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
869 int origflags, struct vm_page **busypg)
870 {
871 struct uvm_object * const uobj = &vp->v_uobj;
872 krwlock_t * const slock = uobj->vmobjlock;
873 off_t nextoff;
874 int i, error, npages, nback;
875 int freeflag;
876 /*
877 * This array is larger than it should so that it's size is constant.
878 * The right size is MAXPAGES.
879 */
880 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
881 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
882 struct vm_page *pg, *tpg;
883 struct uvm_page_array a;
884 bool wasclean, needs_clean;
885 bool async = (origflags & PGO_SYNCIO) == 0;
886 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
887 struct lwp * const l = curlwp ? curlwp : &lwp0;
888 struct mount *trans_mp;
889 int flags;
890 bool modified; /* if we write out any pages */
891 bool holds_wapbl;
892 bool cleanall; /* try to pull off from the syncer's list */
893 bool onworklst;
894 bool nodirty;
895 const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
896
897 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
898
899 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
900 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
901 KASSERT(startoff < endoff || endoff == 0);
902 KASSERT(rw_write_held(slock));
903
904 UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
905 (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
906
907 #ifdef DIAGNOSTIC
908 if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
909 WAPBL_JLOCK_ASSERT(vp->v_mount);
910 #endif
911
912 trans_mp = NULL;
913 holds_wapbl = false;
914
915 retry:
916 modified = false;
917 flags = origflags;
918 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
919 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
920
921 /*
922 * shortcut if we have no pages to process.
923 */
924
925 nodirty = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
926 UVM_PAGE_DIRTY_TAG);
927 if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
928 mutex_enter(vp->v_interlock);
929 if (vp->v_iflag & VI_ONWORKLST) {
930 vp->v_iflag &= ~VI_WRMAPDIRTY;
931 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
932 vn_syncer_remove_from_worklist(vp);
933 }
934 mutex_exit(vp->v_interlock);
935 if (trans_mp) {
936 if (holds_wapbl)
937 WAPBL_END(trans_mp);
938 fstrans_done(trans_mp);
939 }
940 rw_exit(slock);
941 return (0);
942 }
943
944 /*
945 * the vnode has pages, set up to process the request.
946 */
947
948 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
949 if (pagedaemon) {
950 /* Pagedaemon must not sleep here. */
951 trans_mp = vp->v_mount;
952 error = fstrans_start_nowait(trans_mp);
953 if (error) {
954 rw_exit(slock);
955 return error;
956 }
957 } else {
958 /*
959 * Cannot use vdeadcheck() here as this operation
960 * usually gets used from VOP_RECLAIM(). Test for
961 * change of v_mount instead and retry on change.
962 */
963 rw_exit(slock);
964 trans_mp = vp->v_mount;
965 fstrans_start(trans_mp);
966 if (vp->v_mount != trans_mp) {
967 fstrans_done(trans_mp);
968 trans_mp = NULL;
969 } else {
970 holds_wapbl = (trans_mp->mnt_wapbl &&
971 (origflags & PGO_JOURNALLOCKED) == 0);
972 if (holds_wapbl) {
973 error = WAPBL_BEGIN(trans_mp);
974 if (error) {
975 fstrans_done(trans_mp);
976 return error;
977 }
978 }
979 }
980 rw_enter(slock, RW_WRITER);
981 goto retry;
982 }
983 }
984
985 error = 0;
986 wasclean = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
987 UVM_PAGE_WRITEBACK_TAG);
988 nextoff = startoff;
989 if (endoff == 0 || flags & PGO_ALLPAGES) {
990 endoff = trunc_page(LLONG_MAX);
991 }
992
993 /*
994 * if this vnode is known not to have dirty pages,
995 * don't bother to clean it out.
996 */
997
998 if (nodirty) {
999 #if !defined(DEBUG)
1000 if (dirtyonly) {
1001 goto skip_scan;
1002 }
1003 #endif /* !defined(DEBUG) */
1004 flags &= ~PGO_CLEANIT;
1005 }
1006
1007 /*
1008 * start the loop to scan pages.
1009 */
1010
1011 cleanall = true;
1012 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1013 uvm_page_array_init(&a);
1014 for (;;) {
1015 bool pgprotected;
1016
1017 /*
1018 * if !dirtyonly, iterate over all resident pages in the range.
1019 *
1020 * if dirtyonly, only possibly dirty pages are interesting.
1021 * however, if we are asked to sync for integrity, we should
1022 * wait on pages being written back by other threads as well.
1023 */
1024
1025 pg = uvm_page_array_fill_and_peek(&a, uobj, nextoff, 0,
1026 dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
1027 (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
1028 if (pg == NULL) {
1029 break;
1030 }
1031
1032 KASSERT(pg->uobject == uobj);
1033 KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1034 (pg->flags & (PG_BUSY)) != 0);
1035 KASSERT(pg->offset >= startoff);
1036 KASSERT(pg->offset >= nextoff);
1037 KASSERT(!dirtyonly ||
1038 uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
1039 radix_tree_get_tag(&uobj->uo_pages,
1040 pg->offset >> PAGE_SHIFT, UVM_PAGE_WRITEBACK_TAG));
1041
1042 if (pg->offset >= endoff) {
1043 break;
1044 }
1045
1046 /*
1047 * a preempt point.
1048 */
1049
1050 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
1051 != 0) {
1052 nextoff = pg->offset; /* visit this page again */
1053 rw_exit(slock);
1054 preempt();
1055 /*
1056 * as we dropped the object lock, our cached pages can
1057 * be stale.
1058 */
1059 uvm_page_array_clear(&a);
1060 rw_enter(slock, RW_WRITER);
1061 continue;
1062 }
1063
1064 /*
1065 * if the current page is busy, wait for it to become unbusy.
1066 */
1067
1068 if ((pg->flags & PG_BUSY) != 0) {
1069 UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1070 0, 0, 0);
1071 if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
1072 && (flags & PGO_BUSYFAIL) != 0) {
1073 UVMHIST_LOG(ubchist, "busyfail %#jx",
1074 (uintptr_t)pg, 0, 0, 0);
1075 error = EDEADLK;
1076 if (busypg != NULL)
1077 *busypg = pg;
1078 break;
1079 }
1080 if (pagedaemon) {
1081 /*
1082 * someone has taken the page while we
1083 * dropped the lock for fstrans_start.
1084 */
1085 break;
1086 }
1087 /*
1088 * don't bother to wait on other's activities
1089 * unless we are asked to sync for integrity.
1090 */
1091 if (!async && (flags & PGO_RECLAIM) == 0) {
1092 wasclean = false;
1093 nextoff = pg->offset + PAGE_SIZE;
1094 uvm_page_array_advance(&a);
1095 continue;
1096 }
1097 nextoff = pg->offset; /* visit this page again */
1098 pg->flags |= PG_WANTED;
1099 UVM_UNLOCK_AND_WAIT_RW(pg, slock, 0, "genput", 0);
1100 /*
1101 * as we dropped the object lock, our cached pages can
1102 * be stale.
1103 */
1104 uvm_page_array_clear(&a);
1105 rw_enter(slock, RW_WRITER);
1106 continue;
1107 }
1108
1109 nextoff = pg->offset + PAGE_SIZE;
1110 uvm_page_array_advance(&a);
1111
1112 /*
1113 * if we're freeing, remove all mappings of the page now.
1114 * if we're cleaning, check if the page is needs to be cleaned.
1115 */
1116
1117 pgprotected = false;
1118 if (flags & PGO_FREE) {
1119 pmap_page_protect(pg, VM_PROT_NONE);
1120 pgprotected = true;
1121 } else if (flags & PGO_CLEANIT) {
1122
1123 /*
1124 * if we still have some hope to pull this vnode off
1125 * from the syncer queue, write-protect the page.
1126 */
1127
1128 if (cleanall && wasclean) {
1129
1130 /*
1131 * uobj pages get wired only by uvm_fault
1132 * where uobj is locked.
1133 */
1134
1135 if (pg->wire_count == 0) {
1136 pmap_page_protect(pg,
1137 VM_PROT_READ|VM_PROT_EXECUTE);
1138 pgprotected = true;
1139 } else {
1140 cleanall = false;
1141 }
1142 }
1143 }
1144
1145 if (flags & PGO_CLEANIT) {
1146 needs_clean = uvm_pagecheckdirty(pg, pgprotected);
1147 } else {
1148 needs_clean = false;
1149 }
1150
1151 /*
1152 * if we're cleaning, build a cluster.
1153 * the cluster will consist of pages which are currently dirty.
1154 * if not cleaning, just operate on the one page.
1155 */
1156
1157 if (needs_clean) {
1158 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1159 wasclean = false;
1160 memset(pgs, 0, sizeof(pgs));
1161 pg->flags |= PG_BUSY;
1162 UVM_PAGE_OWN(pg, "genfs_putpages");
1163
1164 /*
1165 * let the fs constrain the offset range of the cluster.
1166 * we additionally constrain the range here such that
1167 * it fits in the "pgs" pages array.
1168 */
1169
1170 off_t fslo, fshi, genlo, lo, off = pg->offset;
1171 GOP_PUTRANGE(vp, off, &fslo, &fshi);
1172 KASSERT(fslo == trunc_page(fslo));
1173 KASSERT(fslo <= off);
1174 KASSERT(fshi == trunc_page(fshi));
1175 KASSERT(fshi == 0 || off < fshi);
1176
1177 if (off > MAXPHYS / 2)
1178 genlo = trunc_page(off - (MAXPHYS / 2));
1179 else
1180 genlo = 0;
1181 lo = MAX(fslo, genlo);
1182
1183 /*
1184 * first look backward.
1185 */
1186
1187 npages = (off - lo) >> PAGE_SHIFT;
1188 nback = npages;
1189 uvn_findpages(uobj, off - PAGE_SIZE, &nback,
1190 &pgs[0], NULL,
1191 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1192 if (nback) {
1193 memmove(&pgs[0], &pgs[npages - nback],
1194 nback * sizeof(pgs[0]));
1195 if (npages - nback < nback)
1196 memset(&pgs[nback], 0,
1197 (npages - nback) * sizeof(pgs[0]));
1198 else
1199 memset(&pgs[npages - nback], 0,
1200 nback * sizeof(pgs[0]));
1201 }
1202
1203 /*
1204 * then plug in our page of interest.
1205 */
1206
1207 pgs[nback] = pg;
1208
1209 /*
1210 * then look forward to fill in the remaining space in
1211 * the array of pages.
1212 *
1213 * pass our cached array of pages so that hopefully
1214 * uvn_findpages can find some good pages in it.
1215 * the array a was filled above with the one of
1216 * following sets of flags:
1217 * 0
1218 * UVM_PAGE_ARRAY_FILL_DIRTY
1219 * UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
1220 */
1221
1222 npages = MAXPAGES - nback - 1;
1223 if (fshi)
1224 npages = MIN(npages,
1225 (fshi - off - 1) >> PAGE_SHIFT);
1226 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1227 &pgs[nback + 1], NULL,
1228 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1229 npages += nback + 1;
1230 } else {
1231 pgs[0] = pg;
1232 npages = 1;
1233 nback = 0;
1234 }
1235
1236 /*
1237 * apply FREE or DEACTIVATE options if requested.
1238 */
1239
1240 for (i = 0; i < npages; i++) {
1241 tpg = pgs[i];
1242 KASSERT(tpg->uobject == uobj);
1243 KASSERT(i == 0 ||
1244 pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1245 KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1246 UVM_PAGE_STATUS_DIRTY);
1247 if (needs_clean) {
1248 /*
1249 * mark pages as WRITEBACK so that concurrent
1250 * fsync can find and wait for our activities.
1251 */
1252 radix_tree_set_tag(&uobj->uo_pages,
1253 pgs[i]->offset >> PAGE_SHIFT,
1254 UVM_PAGE_WRITEBACK_TAG);
1255 }
1256 if (tpg->offset < startoff || tpg->offset >= endoff)
1257 continue;
1258 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1259 uvm_pagelock(tpg);
1260 uvm_pagedeactivate(tpg);
1261 uvm_pageunlock(tpg);
1262 } else if (flags & PGO_FREE) {
1263 pmap_page_protect(tpg, VM_PROT_NONE);
1264 if (tpg->flags & PG_BUSY) {
1265 tpg->flags |= freeflag;
1266 if (pagedaemon) {
1267 uvm_pageout_start(1);
1268 uvm_pagelock(tpg);
1269 uvm_pagedequeue(tpg);
1270 uvm_pageunlock(tpg);
1271 }
1272 } else {
1273
1274 /*
1275 * ``page is not busy''
1276 * implies that npages is 1
1277 * and needs_clean is false.
1278 */
1279
1280 KASSERT(npages == 1);
1281 KASSERT(!needs_clean);
1282 KASSERT(pg == tpg);
1283 KASSERT(nextoff ==
1284 tpg->offset + PAGE_SIZE);
1285 uvm_pagefree(tpg);
1286 if (pagedaemon)
1287 uvmexp.pdfreed++;
1288 }
1289 }
1290 }
1291 if (needs_clean) {
1292 modified = true;
1293 KASSERT(nextoff == pg->offset + PAGE_SIZE);
1294 KASSERT(nback < npages);
1295 nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1296 KASSERT(pgs[nback] == pg);
1297 KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1298
1299 /*
1300 * start the i/o.
1301 */
1302 rw_exit(slock);
1303 error = GOP_WRITE(vp, pgs, npages, flags);
1304 /*
1305 * as we dropped the object lock, our cached pages can
1306 * be stale.
1307 */
1308 uvm_page_array_clear(&a);
1309 rw_enter(slock, RW_WRITER);
1310 if (error) {
1311 break;
1312 }
1313 }
1314 }
1315 uvm_page_array_fini(&a);
1316
1317 /*
1318 * update ctime/mtime if the modification we started writing out might
1319 * be from mmap'ed write.
1320 *
1321 * this is necessary when an application keeps a file mmaped and
1322 * repeatedly modifies it via the window. note that, because we
1323 * don't always write-protect pages when cleaning, such modifications
1324 * might not involve any page faults.
1325 */
1326
1327 mutex_enter(vp->v_interlock);
1328 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1329 (vp->v_type != VBLK ||
1330 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1331 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1332 }
1333
1334 /*
1335 * if we no longer have any possibly dirty pages, take us off the
1336 * syncer list.
1337 */
1338
1339 if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
1340 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
1341 UVM_PAGE_DIRTY_TAG)) {
1342 vp->v_iflag &= ~VI_WRMAPDIRTY;
1343 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1344 vn_syncer_remove_from_worklist(vp);
1345 }
1346
1347 #if !defined(DEBUG)
1348 skip_scan:
1349 #endif /* !defined(DEBUG) */
1350
1351 /* Wait for output to complete. */
1352 rw_exit(slock);
1353 if (!wasclean && !async && vp->v_numoutput != 0) {
1354 while (vp->v_numoutput != 0)
1355 cv_wait(&vp->v_cv, vp->v_interlock);
1356 }
1357 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1358 mutex_exit(vp->v_interlock);
1359
1360 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1361 /*
1362 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1363 * retrying is not a big deal because, in many cases,
1364 * uobj->uo_npages is already 0 here.
1365 */
1366 rw_enter(slock, RW_WRITER);
1367 goto retry;
1368 }
1369
1370 if (trans_mp) {
1371 if (holds_wapbl)
1372 WAPBL_END(trans_mp);
1373 fstrans_done(trans_mp);
1374 }
1375
1376 return (error);
1377 }
1378
1379 /*
1380 * Default putrange method for file systems that do not care
1381 * how many pages are given to one GOP_WRITE() call.
1382 */
1383 void
1384 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1385 {
1386
1387 *lop = 0;
1388 *hip = 0;
1389 }
1390
1391 int
1392 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1393 {
1394 off_t off;
1395 vaddr_t kva;
1396 size_t len;
1397 int error;
1398 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1399
1400 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1401 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1402
1403 off = pgs[0]->offset;
1404 kva = uvm_pagermapin(pgs, npages,
1405 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1406 len = npages << PAGE_SHIFT;
1407
1408 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1409 uvm_aio_aiodone);
1410
1411 return error;
1412 }
1413
1414 /*
1415 * genfs_gop_write_rwmap:
1416 *
1417 * a variant of genfs_gop_write. it's used by UDF for its directory buffers.
1418 * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1419 * the contents before writing it out to the underlying storage.
1420 */
1421
1422 int
1423 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1424 int flags)
1425 {
1426 off_t off;
1427 vaddr_t kva;
1428 size_t len;
1429 int error;
1430 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1431
1432 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1433 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1434
1435 off = pgs[0]->offset;
1436 kva = uvm_pagermapin(pgs, npages,
1437 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1438 len = npages << PAGE_SHIFT;
1439
1440 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1441 uvm_aio_aiodone);
1442
1443 return error;
1444 }
1445
1446 /*
1447 * Backend routine for doing I/O to vnode pages. Pages are already locked
1448 * and mapped into kernel memory. Here we just look up the underlying
1449 * device block addresses and call the strategy routine.
1450 */
1451
1452 static int
1453 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1454 enum uio_rw rw, void (*iodone)(struct buf *))
1455 {
1456 int s, error;
1457 int fs_bshift, dev_bshift;
1458 off_t eof, offset, startoffset;
1459 size_t bytes, iobytes, skipbytes;
1460 struct buf *mbp, *bp;
1461 const bool async = (flags & PGO_SYNCIO) == 0;
1462 const bool lazy = (flags & PGO_LAZY) == 0;
1463 const bool iowrite = rw == UIO_WRITE;
1464 const int brw = iowrite ? B_WRITE : B_READ;
1465 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1466
1467 UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1468 (uintptr_t)vp, (uintptr_t)kva, len, flags);
1469
1470 KASSERT(vp->v_size <= vp->v_writesize);
1471 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1472 if (vp->v_type != VBLK) {
1473 fs_bshift = vp->v_mount->mnt_fs_bshift;
1474 dev_bshift = vp->v_mount->mnt_dev_bshift;
1475 } else {
1476 fs_bshift = DEV_BSHIFT;
1477 dev_bshift = DEV_BSHIFT;
1478 }
1479 error = 0;
1480 startoffset = off;
1481 bytes = MIN(len, eof - startoffset);
1482 skipbytes = 0;
1483 KASSERT(bytes != 0);
1484
1485 if (iowrite) {
1486 /*
1487 * why += 2?
1488 * 1 for biodone, 1 for uvm_aio_aiodone.
1489 */
1490 mutex_enter(vp->v_interlock);
1491 vp->v_numoutput += 2;
1492 mutex_exit(vp->v_interlock);
1493 }
1494 mbp = getiobuf(vp, true);
1495 UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1496 (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1497 mbp->b_bufsize = len;
1498 mbp->b_data = (void *)kva;
1499 mbp->b_resid = mbp->b_bcount = bytes;
1500 mbp->b_cflags = BC_BUSY | BC_AGE;
1501 if (async) {
1502 mbp->b_flags = brw | B_ASYNC;
1503 mbp->b_iodone = iodone;
1504 } else {
1505 mbp->b_flags = brw;
1506 mbp->b_iodone = NULL;
1507 }
1508 if (curlwp == uvm.pagedaemon_lwp)
1509 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1510 else if (async || lazy)
1511 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1512 else
1513 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1514
1515 bp = NULL;
1516 for (offset = startoffset;
1517 bytes > 0;
1518 offset += iobytes, bytes -= iobytes) {
1519 int run;
1520 daddr_t lbn, blkno;
1521 struct vnode *devvp;
1522
1523 /*
1524 * bmap the file to find out the blkno to read from and
1525 * how much we can read in one i/o. if bmap returns an error,
1526 * skip the rest of the top-level i/o.
1527 */
1528
1529 lbn = offset >> fs_bshift;
1530 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1531 if (error) {
1532 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
1533 lbn, error, 0, 0);
1534 skipbytes += bytes;
1535 bytes = 0;
1536 goto loopdone;
1537 }
1538
1539 /*
1540 * see how many pages can be read with this i/o.
1541 * reduce the i/o size if necessary to avoid
1542 * overwriting pages with valid data.
1543 */
1544
1545 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1546 bytes);
1547
1548 /*
1549 * if this block isn't allocated, zero it instead of
1550 * reading it. unless we are going to allocate blocks,
1551 * mark the pages we zeroed PG_RDONLY.
1552 */
1553
1554 if (blkno == (daddr_t)-1) {
1555 if (!iowrite) {
1556 memset((char *)kva + (offset - startoffset), 0,
1557 iobytes);
1558 }
1559 skipbytes += iobytes;
1560 continue;
1561 }
1562
1563 /*
1564 * allocate a sub-buf for this piece of the i/o
1565 * (or just use mbp if there's only 1 piece),
1566 * and start it going.
1567 */
1568
1569 if (offset == startoffset && iobytes == bytes) {
1570 bp = mbp;
1571 } else {
1572 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1573 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1574 bp = getiobuf(vp, true);
1575 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1576 }
1577 bp->b_lblkno = 0;
1578
1579 /* adjust physical blkno for partial blocks */
1580 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1581 dev_bshift);
1582
1583 UVMHIST_LOG(ubchist,
1584 "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1585 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1586
1587 VOP_STRATEGY(devvp, bp);
1588 }
1589
1590 loopdone:
1591 if (skipbytes) {
1592 UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1593 }
1594 nestiobuf_done(mbp, skipbytes, error);
1595 if (async) {
1596 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1597 return (0);
1598 }
1599 UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1600 error = biowait(mbp);
1601 s = splbio();
1602 (*iodone)(mbp);
1603 splx(s);
1604 UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1605 return (error);
1606 }
1607
1608 int
1609 genfs_compat_getpages(void *v)
1610 {
1611 struct vop_getpages_args /* {
1612 struct vnode *a_vp;
1613 voff_t a_offset;
1614 struct vm_page **a_m;
1615 int *a_count;
1616 int a_centeridx;
1617 vm_prot_t a_access_type;
1618 int a_advice;
1619 int a_flags;
1620 } */ *ap = v;
1621
1622 off_t origoffset;
1623 struct vnode *vp = ap->a_vp;
1624 struct uvm_object *uobj = &vp->v_uobj;
1625 struct vm_page *pg, **pgs;
1626 vaddr_t kva;
1627 int i, error, orignpages, npages;
1628 struct iovec iov;
1629 struct uio uio;
1630 kauth_cred_t cred = curlwp->l_cred;
1631 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1632
1633 error = 0;
1634 origoffset = ap->a_offset;
1635 orignpages = *ap->a_count;
1636 pgs = ap->a_m;
1637
1638 if (ap->a_flags & PGO_LOCKED) {
1639 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1640 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1641
1642 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1643 if (error == 0 && memwrite) {
1644 genfs_markdirty(vp);
1645 }
1646 return error;
1647 }
1648 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1649 rw_exit(uobj->vmobjlock);
1650 return EINVAL;
1651 }
1652 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1653 rw_exit(uobj->vmobjlock);
1654 return 0;
1655 }
1656 npages = orignpages;
1657 uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1658 rw_exit(uobj->vmobjlock);
1659 kva = uvm_pagermapin(pgs, npages,
1660 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1661 for (i = 0; i < npages; i++) {
1662 pg = pgs[i];
1663 if ((pg->flags & PG_FAKE) == 0) {
1664 continue;
1665 }
1666 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1667 iov.iov_len = PAGE_SIZE;
1668 uio.uio_iov = &iov;
1669 uio.uio_iovcnt = 1;
1670 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1671 uio.uio_rw = UIO_READ;
1672 uio.uio_resid = PAGE_SIZE;
1673 UIO_SETUP_SYSSPACE(&uio);
1674 /* XXX vn_lock */
1675 error = VOP_READ(vp, &uio, 0, cred);
1676 if (error) {
1677 break;
1678 }
1679 if (uio.uio_resid) {
1680 memset(iov.iov_base, 0, uio.uio_resid);
1681 }
1682 }
1683 uvm_pagermapout(kva, npages);
1684 rw_enter(uobj->vmobjlock, RW_WRITER);
1685 for (i = 0; i < npages; i++) {
1686 pg = pgs[i];
1687 if (error && (pg->flags & PG_FAKE) != 0) {
1688 pg->flags |= PG_RELEASED;
1689 } else {
1690 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1691 uvm_pagelock(pg);
1692 uvm_pageactivate(pg);
1693 uvm_pageunlock(pg);
1694 }
1695 }
1696 if (error) {
1697 uvm_page_unbusy(pgs, npages);
1698 }
1699 if (error == 0 && memwrite) {
1700 genfs_markdirty(vp);
1701 }
1702 rw_exit(uobj->vmobjlock);
1703 return error;
1704 }
1705
1706 int
1707 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1708 int flags)
1709 {
1710 off_t offset;
1711 struct iovec iov;
1712 struct uio uio;
1713 kauth_cred_t cred = curlwp->l_cred;
1714 struct buf *bp;
1715 vaddr_t kva;
1716 int error;
1717
1718 offset = pgs[0]->offset;
1719 kva = uvm_pagermapin(pgs, npages,
1720 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1721
1722 iov.iov_base = (void *)kva;
1723 iov.iov_len = npages << PAGE_SHIFT;
1724 uio.uio_iov = &iov;
1725 uio.uio_iovcnt = 1;
1726 uio.uio_offset = offset;
1727 uio.uio_rw = UIO_WRITE;
1728 uio.uio_resid = npages << PAGE_SHIFT;
1729 UIO_SETUP_SYSSPACE(&uio);
1730 /* XXX vn_lock */
1731 error = VOP_WRITE(vp, &uio, 0, cred);
1732
1733 mutex_enter(vp->v_interlock);
1734 vp->v_numoutput++;
1735 mutex_exit(vp->v_interlock);
1736
1737 bp = getiobuf(vp, true);
1738 bp->b_cflags = BC_BUSY | BC_AGE;
1739 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1740 bp->b_data = (char *)kva;
1741 bp->b_bcount = npages << PAGE_SHIFT;
1742 bp->b_bufsize = npages << PAGE_SHIFT;
1743 bp->b_resid = 0;
1744 bp->b_error = error;
1745 uvm_aio_aiodone(bp);
1746 return (error);
1747 }
1748
1749 /*
1750 * Process a uio using direct I/O. If we reach a part of the request
1751 * which cannot be processed in this fashion for some reason, just return.
1752 * The caller must handle some additional part of the request using
1753 * buffered I/O before trying direct I/O again.
1754 */
1755
1756 void
1757 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1758 {
1759 struct vmspace *vs;
1760 struct iovec *iov;
1761 vaddr_t va;
1762 size_t len;
1763 const int mask = DEV_BSIZE - 1;
1764 int error;
1765 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1766 (ioflag & IO_JOURNALLOCKED) == 0);
1767
1768 #ifdef DIAGNOSTIC
1769 if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
1770 WAPBL_JLOCK_ASSERT(vp->v_mount);
1771 #endif
1772
1773 /*
1774 * We only support direct I/O to user space for now.
1775 */
1776
1777 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1778 return;
1779 }
1780
1781 /*
1782 * If the vnode is mapped, we would need to get the getpages lock
1783 * to stabilize the bmap, but then we would get into trouble while
1784 * locking the pages if the pages belong to this same vnode (or a
1785 * multi-vnode cascade to the same effect). Just fall back to
1786 * buffered I/O if the vnode is mapped to avoid this mess.
1787 */
1788
1789 if (vp->v_vflag & VV_MAPPED) {
1790 return;
1791 }
1792
1793 if (need_wapbl) {
1794 error = WAPBL_BEGIN(vp->v_mount);
1795 if (error)
1796 return;
1797 }
1798
1799 /*
1800 * Do as much of the uio as possible with direct I/O.
1801 */
1802
1803 vs = uio->uio_vmspace;
1804 while (uio->uio_resid) {
1805 iov = uio->uio_iov;
1806 if (iov->iov_len == 0) {
1807 uio->uio_iov++;
1808 uio->uio_iovcnt--;
1809 continue;
1810 }
1811 va = (vaddr_t)iov->iov_base;
1812 len = MIN(iov->iov_len, genfs_maxdio);
1813 len &= ~mask;
1814
1815 /*
1816 * If the next chunk is smaller than DEV_BSIZE or extends past
1817 * the current EOF, then fall back to buffered I/O.
1818 */
1819
1820 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1821 break;
1822 }
1823
1824 /*
1825 * Check alignment. The file offset must be at least
1826 * sector-aligned. The exact constraint on memory alignment
1827 * is very hardware-dependent, but requiring sector-aligned
1828 * addresses there too is safe.
1829 */
1830
1831 if (uio->uio_offset & mask || va & mask) {
1832 break;
1833 }
1834 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1835 uio->uio_rw);
1836 if (error) {
1837 break;
1838 }
1839 iov->iov_base = (char *)iov->iov_base + len;
1840 iov->iov_len -= len;
1841 uio->uio_offset += len;
1842 uio->uio_resid -= len;
1843 }
1844
1845 if (need_wapbl)
1846 WAPBL_END(vp->v_mount);
1847 }
1848
1849 /*
1850 * Iodone routine for direct I/O. We don't do much here since the request is
1851 * always synchronous, so the caller will do most of the work after biowait().
1852 */
1853
1854 static void
1855 genfs_dio_iodone(struct buf *bp)
1856 {
1857
1858 KASSERT((bp->b_flags & B_ASYNC) == 0);
1859 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1860 mutex_enter(bp->b_objlock);
1861 vwakeup(bp);
1862 mutex_exit(bp->b_objlock);
1863 }
1864 putiobuf(bp);
1865 }
1866
1867 /*
1868 * Process one chunk of a direct I/O request.
1869 */
1870
1871 static int
1872 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1873 off_t off, enum uio_rw rw)
1874 {
1875 struct vm_map *map;
1876 struct pmap *upm, *kpm __unused;
1877 size_t klen = round_page(uva + len) - trunc_page(uva);
1878 off_t spoff, epoff;
1879 vaddr_t kva, puva;
1880 paddr_t pa;
1881 vm_prot_t prot;
1882 int error, rv __diagused, poff, koff;
1883 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1884 (rw == UIO_WRITE ? PGO_FREE : 0);
1885
1886 /*
1887 * For writes, verify that this range of the file already has fully
1888 * allocated backing store. If there are any holes, just punt and
1889 * make the caller take the buffered write path.
1890 */
1891
1892 if (rw == UIO_WRITE) {
1893 daddr_t lbn, elbn, blkno;
1894 int bsize, bshift, run;
1895
1896 bshift = vp->v_mount->mnt_fs_bshift;
1897 bsize = 1 << bshift;
1898 lbn = off >> bshift;
1899 elbn = (off + len + bsize - 1) >> bshift;
1900 while (lbn < elbn) {
1901 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1902 if (error) {
1903 return error;
1904 }
1905 if (blkno == (daddr_t)-1) {
1906 return ENOSPC;
1907 }
1908 lbn += 1 + run;
1909 }
1910 }
1911
1912 /*
1913 * Flush any cached pages for parts of the file that we're about to
1914 * access. If we're writing, invalidate pages as well.
1915 */
1916
1917 spoff = trunc_page(off);
1918 epoff = round_page(off + len);
1919 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
1920 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1921 if (error) {
1922 return error;
1923 }
1924
1925 /*
1926 * Wire the user pages and remap them into kernel memory.
1927 */
1928
1929 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1930 error = uvm_vslock(vs, (void *)uva, len, prot);
1931 if (error) {
1932 return error;
1933 }
1934
1935 map = &vs->vm_map;
1936 upm = vm_map_pmap(map);
1937 kpm = vm_map_pmap(kernel_map);
1938 puva = trunc_page(uva);
1939 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1940 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1941 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1942 rv = pmap_extract(upm, puva + poff, &pa);
1943 KASSERT(rv);
1944 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1945 }
1946 pmap_update(kpm);
1947
1948 /*
1949 * Do the I/O.
1950 */
1951
1952 koff = uva - trunc_page(uva);
1953 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1954 genfs_dio_iodone);
1955
1956 /*
1957 * Tear down the kernel mapping.
1958 */
1959
1960 pmap_kremove(kva, klen);
1961 pmap_update(kpm);
1962 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1963
1964 /*
1965 * Unwire the user pages.
1966 */
1967
1968 uvm_vsunlock(vs, (void *)uva, len);
1969 return error;
1970 }
1971