Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.93
      1 /*	$NetBSD: genfs_io.c,v 1.93 2020/03/14 20:45:23 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.93 2020/03/14 20:45:23 ad Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 
     47 #include <miscfs/genfs/genfs.h>
     48 #include <miscfs/genfs/genfs_node.h>
     49 #include <miscfs/specfs/specdev.h>
     50 
     51 #include <uvm/uvm.h>
     52 #include <uvm/uvm_pager.h>
     53 #include <uvm/uvm_page_array.h>
     54 
     55 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     56     off_t, enum uio_rw);
     57 static void genfs_dio_iodone(struct buf *);
     58 
     59 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
     60     off_t, bool, bool, bool, bool);
     61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     62     void (*)(struct buf *));
     63 static void genfs_rel_pages(struct vm_page **, unsigned int);
     64 
     65 int genfs_maxdio = MAXPHYS;
     66 
     67 static void
     68 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     69 {
     70 	unsigned int i;
     71 
     72 	for (i = 0; i < npages; i++) {
     73 		struct vm_page *pg = pgs[i];
     74 
     75 		if (pg == NULL || pg == PGO_DONTCARE)
     76 			continue;
     77 		KASSERT(uvm_page_owner_locked_p(pg, true));
     78 		if (pg->flags & PG_FAKE) {
     79 			pg->flags |= PG_RELEASED;
     80 		}
     81 	}
     82 	uvm_page_unbusy(pgs, npages);
     83 }
     84 
     85 /*
     86  * generic VM getpages routine.
     87  * Return PG_BUSY pages for the given range,
     88  * reading from backing store if necessary.
     89  */
     90 
     91 int
     92 genfs_getpages(void *v)
     93 {
     94 	struct vop_getpages_args /* {
     95 		struct vnode *a_vp;
     96 		voff_t a_offset;
     97 		struct vm_page **a_m;
     98 		int *a_count;
     99 		int a_centeridx;
    100 		vm_prot_t a_access_type;
    101 		int a_advice;
    102 		int a_flags;
    103 	} */ * const ap = v;
    104 
    105 	off_t diskeof, memeof;
    106 	int i, error, npages;
    107 	const int flags = ap->a_flags;
    108 	struct vnode * const vp = ap->a_vp;
    109 	struct uvm_object * const uobj = &vp->v_uobj;
    110 	const bool async = (flags & PGO_SYNCIO) == 0;
    111 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    112 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    113 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    114 	const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
    115 			(flags & PGO_JOURNALLOCKED) == 0);
    116 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    117 	bool holds_wapbl = false;
    118 	struct mount *trans_mount = NULL;
    119 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    120 
    121 	UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
    122 	    (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    123 
    124 	KASSERT(memwrite >= overwrite);
    125 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    126 	    vp->v_type == VLNK || vp->v_type == VBLK);
    127 
    128 #ifdef DIAGNOSTIC
    129 	if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    130                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    131 #endif
    132 
    133 	mutex_enter(vp->v_interlock);
    134 	error = vdead_check(vp, VDEAD_NOWAIT);
    135 	mutex_exit(vp->v_interlock);
    136 	if (error) {
    137 		if ((flags & PGO_LOCKED) == 0)
    138 			rw_exit(uobj->vmobjlock);
    139 		return error;
    140 	}
    141 
    142 startover:
    143 	error = 0;
    144 	const voff_t origvsize = vp->v_size;
    145 	const off_t origoffset = ap->a_offset;
    146 	const int orignpages = *ap->a_count;
    147 
    148 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    149 	if (flags & PGO_PASTEOF) {
    150 		off_t newsize;
    151 #if defined(DIAGNOSTIC)
    152 		off_t writeeof;
    153 #endif /* defined(DIAGNOSTIC) */
    154 
    155 		newsize = MAX(origvsize,
    156 		    origoffset + (orignpages << PAGE_SHIFT));
    157 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    158 #if defined(DIAGNOSTIC)
    159 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    160 		if (newsize > round_page(writeeof)) {
    161 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    162 			    __func__, newsize, round_page(writeeof));
    163 		}
    164 #endif /* defined(DIAGNOSTIC) */
    165 	} else {
    166 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    167 	}
    168 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    169 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    170 	KASSERT(orignpages > 0);
    171 
    172 	/*
    173 	 * Bounds-check the request.
    174 	 */
    175 
    176 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    177 		if ((flags & PGO_LOCKED) == 0) {
    178 			rw_exit(uobj->vmobjlock);
    179 		}
    180 		UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
    181 		    origoffset, *ap->a_count, memeof,0);
    182 		error = EINVAL;
    183 		goto out_err;
    184 	}
    185 
    186 	/* uobj is locked */
    187 
    188 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    189 	    (vp->v_type != VBLK ||
    190 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    191 		int updflags = 0;
    192 
    193 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    194 			updflags = GOP_UPDATE_ACCESSED;
    195 		}
    196 		if (memwrite) {
    197 			updflags |= GOP_UPDATE_MODIFIED;
    198 		}
    199 		if (updflags != 0) {
    200 			GOP_MARKUPDATE(vp, updflags);
    201 		}
    202 	}
    203 
    204 	/*
    205 	 * For PGO_LOCKED requests, just return whatever's in memory.
    206 	 */
    207 
    208 	if (flags & PGO_LOCKED) {
    209 		int nfound;
    210 		struct vm_page *pg;
    211 
    212 		KASSERT(!glocked);
    213 		npages = *ap->a_count;
    214 #if defined(DEBUG)
    215 		for (i = 0; i < npages; i++) {
    216 			pg = ap->a_m[i];
    217 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    218 		}
    219 #endif /* defined(DEBUG) */
    220 		nfound = uvn_findpages(uobj, origoffset, &npages,
    221 		    ap->a_m, NULL,
    222 		    UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    223 		KASSERT(npages == *ap->a_count);
    224 		if (nfound == 0) {
    225 			error = EBUSY;
    226 			goto out_err;
    227 		}
    228 		/*
    229 		 * lock and unlock g_glock to ensure that no one is truncating
    230 		 * the file behind us.
    231 		 */
    232 		if (!genfs_node_rdtrylock(vp)) {
    233 			genfs_rel_pages(ap->a_m, npages);
    234 
    235 			/*
    236 			 * restore the array.
    237 			 */
    238 
    239 			for (i = 0; i < npages; i++) {
    240 				pg = ap->a_m[i];
    241 
    242 				if (pg != NULL && pg != PGO_DONTCARE) {
    243 					ap->a_m[i] = NULL;
    244 				}
    245 				KASSERT(ap->a_m[i] == NULL ||
    246 				    ap->a_m[i] == PGO_DONTCARE);
    247 			}
    248 		} else {
    249 			genfs_node_unlock(vp);
    250 		}
    251 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    252 		if (error == 0 && memwrite) {
    253 			for (i = 0; i < npages; i++) {
    254 				pg = ap->a_m[i];
    255 				if (pg == NULL || pg == PGO_DONTCARE) {
    256 					continue;
    257 				}
    258 				if (uvm_pagegetdirty(pg) ==
    259 				    UVM_PAGE_STATUS_CLEAN) {
    260 					uvm_pagemarkdirty(pg,
    261 					    UVM_PAGE_STATUS_UNKNOWN);
    262 				}
    263 			}
    264 		}
    265 		goto out_err;
    266 	}
    267 	rw_exit(uobj->vmobjlock);
    268 
    269 	/*
    270 	 * find the requested pages and make some simple checks.
    271 	 * leave space in the page array for a whole block.
    272 	 */
    273 
    274 	const int fs_bshift = (vp->v_type != VBLK) ?
    275 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    276 	const int fs_bsize = 1 << fs_bshift;
    277 #define	blk_mask	(fs_bsize - 1)
    278 #define	trunc_blk(x)	((x) & ~blk_mask)
    279 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    280 
    281 	const int orignmempages = MIN(orignpages,
    282 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    283 	npages = orignmempages;
    284 	const off_t startoffset = trunc_blk(origoffset);
    285 	const off_t endoffset = MIN(
    286 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    287 	    round_page(memeof));
    288 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    289 
    290 	const int pgs_size = sizeof(struct vm_page *) *
    291 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    292 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    293 
    294 	if (pgs_size > sizeof(pgs_onstack)) {
    295 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    296 		if (pgs == NULL) {
    297 			pgs = pgs_onstack;
    298 			error = ENOMEM;
    299 			goto out_err;
    300 		}
    301 	} else {
    302 		pgs = pgs_onstack;
    303 		(void)memset(pgs, 0, pgs_size);
    304 	}
    305 
    306 	UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
    307 	    ridx, npages, startoffset, endoffset);
    308 
    309 	if (trans_mount == NULL) {
    310 		trans_mount = vp->v_mount;
    311 		fstrans_start(trans_mount);
    312 		/*
    313 		 * check if this vnode is still valid.
    314 		 */
    315 		mutex_enter(vp->v_interlock);
    316 		error = vdead_check(vp, 0);
    317 		mutex_exit(vp->v_interlock);
    318 		if (error)
    319 			goto out_err_free;
    320 		/*
    321 		 * XXX: This assumes that we come here only via
    322 		 * the mmio path
    323 		 */
    324 		if (blockalloc && need_wapbl) {
    325 			error = WAPBL_BEGIN(trans_mount);
    326 			if (error)
    327 				goto out_err_free;
    328 			holds_wapbl = true;
    329 		}
    330 	}
    331 
    332 	/*
    333 	 * hold g_glock to prevent a race with truncate.
    334 	 *
    335 	 * check if our idea of v_size is still valid.
    336 	 */
    337 
    338 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    339 	if (!glocked) {
    340 		if (blockalloc) {
    341 			genfs_node_wrlock(vp);
    342 		} else {
    343 			genfs_node_rdlock(vp);
    344 		}
    345 	}
    346 	rw_enter(uobj->vmobjlock, RW_WRITER);
    347 	if (vp->v_size < origvsize) {
    348 		if (!glocked) {
    349 			genfs_node_unlock(vp);
    350 		}
    351 		if (pgs != pgs_onstack)
    352 			kmem_free(pgs, pgs_size);
    353 		goto startover;
    354 	}
    355 
    356 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
    357 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    358 		if (!glocked) {
    359 			genfs_node_unlock(vp);
    360 		}
    361 		KASSERT(async != 0);
    362 		genfs_rel_pages(&pgs[ridx], orignmempages);
    363 		rw_exit(uobj->vmobjlock);
    364 		error = EBUSY;
    365 		goto out_err_free;
    366 	}
    367 
    368 	/*
    369 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    370 	 */
    371 
    372 	if (overwrite) {
    373 		if (!glocked) {
    374 			genfs_node_unlock(vp);
    375 		}
    376 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    377 
    378 		for (i = 0; i < npages; i++) {
    379 			struct vm_page *pg = pgs[ridx + i];
    380 
    381 			/*
    382 			 * it's caller's responsibility to allocate blocks
    383 			 * beforehand for the overwrite case.
    384 			 */
    385 
    386 			KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
    387 			pg->flags &= ~PG_RDONLY;
    388 
    389 			/*
    390 			 * mark the page DIRTY.
    391 			 * otherwise another thread can do putpages and pull
    392 			 * our vnode from syncer's queue before our caller does
    393 			 * ubc_release.  note that putpages won't see CLEAN
    394 			 * pages even if they are BUSY.
    395 			 */
    396 
    397 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    398 		}
    399 		npages += ridx;
    400 		goto out;
    401 	}
    402 
    403 	/*
    404 	 * if the pages are already resident, just return them.
    405 	 */
    406 
    407 	for (i = 0; i < npages; i++) {
    408 		struct vm_page *pg = pgs[ridx + i];
    409 
    410 		if ((pg->flags & PG_FAKE) ||
    411 		    (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
    412 			break;
    413 		}
    414 	}
    415 	if (i == npages) {
    416 		if (!glocked) {
    417 			genfs_node_unlock(vp);
    418 		}
    419 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    420 		npages += ridx;
    421 		goto out;
    422 	}
    423 
    424 	/*
    425 	 * the page wasn't resident and we're not overwriting,
    426 	 * so we're going to have to do some i/o.
    427 	 * find any additional pages needed to cover the expanded range.
    428 	 */
    429 
    430 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    431 	if (startoffset != origoffset || npages != orignmempages) {
    432 		int npgs;
    433 
    434 		/*
    435 		 * we need to avoid deadlocks caused by locking
    436 		 * additional pages at lower offsets than pages we
    437 		 * already have locked.  unlock them all and start over.
    438 		 */
    439 
    440 		genfs_rel_pages(&pgs[ridx], orignmempages);
    441 		memset(pgs, 0, pgs_size);
    442 
    443 		UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
    444 		    startoffset, endoffset, 0,0);
    445 		npgs = npages;
    446 		if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
    447 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    448 			if (!glocked) {
    449 				genfs_node_unlock(vp);
    450 			}
    451 			KASSERT(async != 0);
    452 			genfs_rel_pages(pgs, npages);
    453 			rw_exit(uobj->vmobjlock);
    454 			error = EBUSY;
    455 			goto out_err_free;
    456 		}
    457 	}
    458 
    459 	rw_exit(uobj->vmobjlock);
    460 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
    461 	    async, memwrite, blockalloc, glocked);
    462 	if (!glocked) {
    463 		genfs_node_unlock(vp);
    464 	}
    465 	if (error == 0 && async)
    466 		goto out_err_free;
    467 	rw_enter(uobj->vmobjlock, RW_WRITER);
    468 
    469 	/*
    470 	 * we're almost done!  release the pages...
    471 	 * for errors, we free the pages.
    472 	 * otherwise we activate them and mark them as valid and clean.
    473 	 * also, unbusy pages that were not actually requested.
    474 	 */
    475 
    476 	if (error) {
    477 		genfs_rel_pages(pgs, npages);
    478 		rw_exit(uobj->vmobjlock);
    479 		UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
    480 		goto out_err_free;
    481 	}
    482 
    483 out:
    484 	UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
    485 	error = 0;
    486 	for (i = 0; i < npages; i++) {
    487 		struct vm_page *pg = pgs[i];
    488 		if (pg == NULL) {
    489 			continue;
    490 		}
    491 		UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
    492 		    (uintptr_t)pg, pg->flags, 0,0);
    493 		if (pg->flags & PG_FAKE && !overwrite) {
    494 			/*
    495 			 * we've read page's contents from the backing storage.
    496 			 *
    497 			 * for a read fault, we keep them CLEAN;  if we
    498 			 * encountered a hole while reading, the pages can
    499 			 * already been dirtied with zeros.
    500 			 */
    501 			KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
    502 			    UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
    503 			pg->flags &= ~PG_FAKE;
    504 		}
    505 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    506 		if (i < ridx || i >= ridx + orignmempages || async) {
    507 			UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
    508 			    (uintptr_t)pg, pg->offset,0,0);
    509 			if (pg->flags & PG_FAKE) {
    510 				KASSERT(overwrite);
    511 				uvm_pagezero(pg);
    512 			}
    513 			if (pg->flags & PG_RELEASED) {
    514 				uvm_pagefree(pg);
    515 				continue;
    516 			}
    517 			uvm_pagelock(pg);
    518 			uvm_pageenqueue(pg);
    519 			uvm_pageunbusy(pg);
    520 			uvm_pageunlock(pg);
    521 			pg->flags &= ~PG_FAKE;
    522 			UVM_PAGE_OWN(pg, NULL);
    523 		} else if (memwrite && !overwrite &&
    524 		    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
    525 			/*
    526 			 * for a write fault, start dirtiness tracking of
    527 			 * requested pages.
    528 			 */
    529 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
    530 		}
    531 	}
    532 	rw_exit(uobj->vmobjlock);
    533 	if (ap->a_m != NULL) {
    534 		memcpy(ap->a_m, &pgs[ridx],
    535 		    orignmempages * sizeof(struct vm_page *));
    536 	}
    537 
    538 out_err_free:
    539 	if (pgs != NULL && pgs != pgs_onstack)
    540 		kmem_free(pgs, pgs_size);
    541 out_err:
    542 	if (trans_mount != NULL) {
    543 		if (holds_wapbl)
    544 			WAPBL_END(trans_mount);
    545 		fstrans_done(trans_mount);
    546 	}
    547 	return error;
    548 }
    549 
    550 /*
    551  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
    552  *
    553  * "glocked" (which is currently not actually used) tells us not whether
    554  * the genfs_node is locked on entry (it always is) but whether it was
    555  * locked on entry to genfs_getpages.
    556  */
    557 static int
    558 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
    559     off_t startoffset, off_t diskeof,
    560     bool async, bool memwrite, bool blockalloc, bool glocked)
    561 {
    562 	struct uvm_object * const uobj = &vp->v_uobj;
    563 	const int fs_bshift = (vp->v_type != VBLK) ?
    564 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    565 	const int dev_bshift = (vp->v_type != VBLK) ?
    566 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    567 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    568 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    569 	vaddr_t kva;
    570 	struct buf *bp, *mbp;
    571 	bool sawhole = false;
    572 	int i;
    573 	int error = 0;
    574 
    575 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
    576 
    577 	/*
    578 	 * read the desired page(s).
    579 	 */
    580 
    581 	totalbytes = npages << PAGE_SHIFT;
    582 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    583 	tailbytes = totalbytes - bytes;
    584 	skipbytes = 0;
    585 
    586 	kva = uvm_pagermapin(pgs, npages,
    587 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    588 	if (kva == 0)
    589 		return EBUSY;
    590 
    591 	mbp = getiobuf(vp, true);
    592 	mbp->b_bufsize = totalbytes;
    593 	mbp->b_data = (void *)kva;
    594 	mbp->b_resid = mbp->b_bcount = bytes;
    595 	mbp->b_cflags |= BC_BUSY;
    596 	if (async) {
    597 		mbp->b_flags = B_READ | B_ASYNC;
    598 		mbp->b_iodone = uvm_aio_aiodone;
    599 	} else {
    600 		mbp->b_flags = B_READ;
    601 		mbp->b_iodone = NULL;
    602 	}
    603 	if (async)
    604 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    605 	else
    606 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    607 
    608 	/*
    609 	 * if EOF is in the middle of the range, zero the part past EOF.
    610 	 * skip over pages which are not PG_FAKE since in that case they have
    611 	 * valid data that we need to preserve.
    612 	 */
    613 
    614 	tailstart = bytes;
    615 	while (tailbytes > 0) {
    616 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    617 
    618 		KASSERT(len <= tailbytes);
    619 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    620 			memset((void *)(kva + tailstart), 0, len);
    621 			UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
    622 			    (uintptr_t)kva, tailstart, len, 0);
    623 		}
    624 		tailstart += len;
    625 		tailbytes -= len;
    626 	}
    627 
    628 	/*
    629 	 * now loop over the pages, reading as needed.
    630 	 */
    631 
    632 	bp = NULL;
    633 	off_t offset;
    634 	for (offset = startoffset;
    635 	    bytes > 0;
    636 	    offset += iobytes, bytes -= iobytes) {
    637 		int run;
    638 		daddr_t lbn, blkno;
    639 		int pidx;
    640 		struct vnode *devvp;
    641 
    642 		/*
    643 		 * skip pages which don't need to be read.
    644 		 */
    645 
    646 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    647 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    648 			size_t b;
    649 
    650 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    651 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    652 				sawhole = true;
    653 			}
    654 			b = MIN(PAGE_SIZE, bytes);
    655 			offset += b;
    656 			bytes -= b;
    657 			skipbytes += b;
    658 			pidx++;
    659 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
    660 			    offset, 0,0,0);
    661 			if (bytes == 0) {
    662 				goto loopdone;
    663 			}
    664 		}
    665 
    666 		/*
    667 		 * bmap the file to find out the blkno to read from and
    668 		 * how much we can read in one i/o.  if bmap returns an error,
    669 		 * skip the rest of the top-level i/o.
    670 		 */
    671 
    672 		lbn = offset >> fs_bshift;
    673 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    674 		if (error) {
    675 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
    676 			    lbn,error,0,0);
    677 			skipbytes += bytes;
    678 			bytes = 0;
    679 			goto loopdone;
    680 		}
    681 
    682 		/*
    683 		 * see how many pages can be read with this i/o.
    684 		 * reduce the i/o size if necessary to avoid
    685 		 * overwriting pages with valid data.
    686 		 */
    687 
    688 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    689 		    bytes);
    690 		if (offset + iobytes > round_page(offset)) {
    691 			int pcount;
    692 
    693 			pcount = 1;
    694 			while (pidx + pcount < npages &&
    695 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    696 				pcount++;
    697 			}
    698 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    699 			    (offset - trunc_page(offset)));
    700 		}
    701 
    702 		/*
    703 		 * if this block isn't allocated, zero it instead of
    704 		 * reading it.  unless we are going to allocate blocks,
    705 		 * mark the pages we zeroed PG_RDONLY.
    706 		 */
    707 
    708 		if (blkno == (daddr_t)-1) {
    709 			int holepages = (round_page(offset + iobytes) -
    710 			    trunc_page(offset)) >> PAGE_SHIFT;
    711 			UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
    712 
    713 			sawhole = true;
    714 			memset((char *)kva + (offset - startoffset), 0,
    715 			    iobytes);
    716 			skipbytes += iobytes;
    717 
    718 			if (!blockalloc) {
    719 				rw_enter(uobj->vmobjlock, RW_WRITER);
    720 				for (i = 0; i < holepages; i++) {
    721 					pgs[pidx + i]->flags |= PG_RDONLY;
    722 				}
    723 				rw_exit(uobj->vmobjlock);
    724 			}
    725 			continue;
    726 		}
    727 
    728 		/*
    729 		 * allocate a sub-buf for this piece of the i/o
    730 		 * (or just use mbp if there's only 1 piece),
    731 		 * and start it going.
    732 		 */
    733 
    734 		if (offset == startoffset && iobytes == bytes) {
    735 			bp = mbp;
    736 		} else {
    737 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
    738 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
    739 			bp = getiobuf(vp, true);
    740 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    741 		}
    742 		bp->b_lblkno = 0;
    743 
    744 		/* adjust physical blkno for partial blocks */
    745 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    746 		    dev_bshift);
    747 
    748 		UVMHIST_LOG(ubchist,
    749 		    "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
    750 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
    751 
    752 		VOP_STRATEGY(devvp, bp);
    753 	}
    754 
    755 loopdone:
    756 	nestiobuf_done(mbp, skipbytes, error);
    757 	if (async) {
    758 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    759 		return 0;
    760 	}
    761 	if (bp != NULL) {
    762 		error = biowait(mbp);
    763 	}
    764 
    765 	/* Remove the mapping (make KVA available as soon as possible) */
    766 	uvm_pagermapout(kva, npages);
    767 
    768 	/*
    769 	 * if this we encountered a hole then we have to do a little more work.
    770 	 * for read faults, we marked the page PG_RDONLY so that future
    771 	 * write accesses to the page will fault again.
    772 	 * for write faults, we must make sure that the backing store for
    773 	 * the page is completely allocated while the pages are locked.
    774 	 */
    775 
    776 	if (!error && sawhole && blockalloc) {
    777 		error = GOP_ALLOC(vp, startoffset,
    778 		    npages << PAGE_SHIFT, 0, cred);
    779 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
    780 		    startoffset, npages << PAGE_SHIFT, error,0);
    781 		if (!error) {
    782 			rw_enter(uobj->vmobjlock, RW_WRITER);
    783 			for (i = 0; i < npages; i++) {
    784 				struct vm_page *pg = pgs[i];
    785 
    786 				if (pg == NULL) {
    787 					continue;
    788 				}
    789 				pg->flags &= ~PG_RDONLY;
    790 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    791 				UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
    792 				    (uintptr_t)pg, 0, 0, 0);
    793 			}
    794 			rw_exit(uobj->vmobjlock);
    795 		}
    796 	}
    797 
    798 	putiobuf(mbp);
    799 	return error;
    800 }
    801 
    802 /*
    803  * generic VM putpages routine.
    804  * Write the given range of pages to backing store.
    805  *
    806  * => "offhi == 0" means flush all pages at or after "offlo".
    807  * => object should be locked by caller.  we return with the
    808  *      object unlocked.
    809  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    810  *	thus, a caller might want to unlock higher level resources
    811  *	(e.g. vm_map) before calling flush.
    812  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    813  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    814  *
    815  * note on "cleaning" object and PG_BUSY pages:
    816  *	this routine is holding the lock on the object.   the only time
    817  *	that it can run into a PG_BUSY page that it does not own is if
    818  *	some other process has started I/O on the page (e.g. either
    819  *	a pagein, or a pageout).  if the PG_BUSY page is being paged
    820  *	in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
    821  *	one has	had a chance to modify it yet.  if the PG_BUSY page is
    822  *	being paged out then it means that someone else has already started
    823  *	cleaning the page for us (how nice!).  in this case, if we
    824  *	have syncio specified, then after we make our pass through the
    825  *	object we need to wait for the other PG_BUSY pages to clear
    826  *	off (i.e. we need to do an iosync).   also note that once a
    827  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    828  */
    829 
    830 int
    831 genfs_putpages(void *v)
    832 {
    833 	struct vop_putpages_args /* {
    834 		struct vnode *a_vp;
    835 		voff_t a_offlo;
    836 		voff_t a_offhi;
    837 		int a_flags;
    838 	} */ * const ap = v;
    839 
    840 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    841 	    ap->a_flags, NULL);
    842 }
    843 
    844 int
    845 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    846     int origflags, struct vm_page **busypg)
    847 {
    848 	struct uvm_object * const uobj = &vp->v_uobj;
    849 	krwlock_t * const slock = uobj->vmobjlock;
    850 	off_t nextoff;
    851 	int i, error, npages, nback;
    852 	int freeflag;
    853 	/*
    854 	 * This array is larger than it should so that it's size is constant.
    855 	 * The right size is MAXPAGES.
    856 	 */
    857 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
    858 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
    859 	struct vm_page *pg, *tpg;
    860 	struct uvm_page_array a;
    861 	bool wasclean, needs_clean;
    862 	bool async = (origflags & PGO_SYNCIO) == 0;
    863 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    864 	struct mount *trans_mp;
    865 	int flags;
    866 	bool modified;		/* if we write out any pages */
    867 	bool holds_wapbl;
    868 	bool cleanall;		/* try to pull off from the syncer's list */
    869 	bool onworklst;
    870 	bool nodirty;
    871 	const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
    872 
    873 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    874 
    875 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    876 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    877 	KASSERT(startoff < endoff || endoff == 0);
    878 	KASSERT(rw_write_held(slock));
    879 
    880 	UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
    881 	    (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
    882 
    883 #ifdef DIAGNOSTIC
    884 	if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    885                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    886 #endif
    887 
    888 	trans_mp = NULL;
    889 	holds_wapbl = false;
    890 
    891 retry:
    892 	modified = false;
    893 	flags = origflags;
    894 
    895 	/*
    896 	 * shortcut if we have no pages to process.
    897 	 */
    898 
    899 	nodirty = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
    900             UVM_PAGE_DIRTY_TAG);
    901 #ifdef DIAGNOSTIC
    902 	mutex_enter(vp->v_interlock);
    903 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 || nodirty);
    904 	mutex_exit(vp->v_interlock);
    905 #endif
    906 	if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
    907 		mutex_enter(vp->v_interlock);
    908 		if (vp->v_iflag & VI_ONWORKLST) {
    909 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    910 				vn_syncer_remove_from_worklist(vp);
    911 		}
    912 		mutex_exit(vp->v_interlock);
    913 		if (trans_mp) {
    914 			if (holds_wapbl)
    915 				WAPBL_END(trans_mp);
    916 			fstrans_done(trans_mp);
    917 		}
    918 		rw_exit(slock);
    919 		return (0);
    920 	}
    921 
    922 	/*
    923 	 * the vnode has pages, set up to process the request.
    924 	 */
    925 
    926 	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
    927 		if (pagedaemon) {
    928 			/* Pagedaemon must not sleep here. */
    929 			trans_mp = vp->v_mount;
    930 			error = fstrans_start_nowait(trans_mp);
    931 			if (error) {
    932 				rw_exit(slock);
    933 				return error;
    934 			}
    935 		} else {
    936 			/*
    937 			 * Cannot use vdeadcheck() here as this operation
    938 			 * usually gets used from VOP_RECLAIM().  Test for
    939 			 * change of v_mount instead and retry on change.
    940 			 */
    941 			rw_exit(slock);
    942 			trans_mp = vp->v_mount;
    943 			fstrans_start(trans_mp);
    944 			if (vp->v_mount != trans_mp) {
    945 				fstrans_done(trans_mp);
    946 				trans_mp = NULL;
    947 			} else {
    948 				holds_wapbl = (trans_mp->mnt_wapbl &&
    949 				    (origflags & PGO_JOURNALLOCKED) == 0);
    950 				if (holds_wapbl) {
    951 					error = WAPBL_BEGIN(trans_mp);
    952 					if (error) {
    953 						fstrans_done(trans_mp);
    954 						return error;
    955 					}
    956 				}
    957 			}
    958 			rw_enter(slock, RW_WRITER);
    959 			goto retry;
    960 		}
    961 	}
    962 
    963 	error = 0;
    964 	wasclean = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
    965             UVM_PAGE_WRITEBACK_TAG);
    966 	nextoff = startoff;
    967 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    968 		endoff = trunc_page(LLONG_MAX);
    969 	}
    970 
    971 	/*
    972 	 * if this vnode is known not to have dirty pages,
    973 	 * don't bother to clean it out.
    974 	 */
    975 
    976 	if (nodirty) {
    977 #if !defined(DEBUG)
    978 		if (dirtyonly) {
    979 			goto skip_scan;
    980 		}
    981 #endif /* !defined(DEBUG) */
    982 		flags &= ~PGO_CLEANIT;
    983 	}
    984 
    985 	/*
    986 	 * start the loop to scan pages.
    987 	 */
    988 
    989 	cleanall = true;
    990 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    991 	uvm_page_array_init(&a);
    992 	for (;;) {
    993 		bool pgprotected;
    994 
    995 		/*
    996 		 * if !dirtyonly, iterate over all resident pages in the range.
    997 		 *
    998 		 * if dirtyonly, only possibly dirty pages are interesting.
    999 		 * however, if we are asked to sync for integrity, we should
   1000 		 * wait on pages being written back by other threads as well.
   1001 		 */
   1002 
   1003 		pg = uvm_page_array_fill_and_peek(&a, uobj, nextoff, 0,
   1004 		    dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
   1005 		    (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
   1006 		if (pg == NULL) {
   1007 			break;
   1008 		}
   1009 
   1010 		KASSERT(pg->uobject == uobj);
   1011 		KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1012 		    (pg->flags & (PG_BUSY)) != 0);
   1013 		KASSERT(pg->offset >= startoff);
   1014 		KASSERT(pg->offset >= nextoff);
   1015 		KASSERT(!dirtyonly ||
   1016 		    uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
   1017 		    radix_tree_get_tag(&uobj->uo_pages,
   1018 			pg->offset >> PAGE_SHIFT, UVM_PAGE_WRITEBACK_TAG));
   1019 
   1020 		if (pg->offset >= endoff) {
   1021 			break;
   1022 		}
   1023 
   1024 		/*
   1025 		 * a preempt point.
   1026 		 */
   1027 
   1028 		if (preempt_needed()) {
   1029 			nextoff = pg->offset; /* visit this page again */
   1030 			rw_exit(slock);
   1031 			preempt();
   1032 			/*
   1033 			 * as we dropped the object lock, our cached pages can
   1034 			 * be stale.
   1035 			 */
   1036 			uvm_page_array_clear(&a);
   1037 			rw_enter(slock, RW_WRITER);
   1038 			continue;
   1039 		}
   1040 
   1041 		/*
   1042 		 * if the current page is busy, wait for it to become unbusy.
   1043 		 */
   1044 
   1045 		if ((pg->flags & PG_BUSY) != 0) {
   1046 			UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
   1047 			   0, 0, 0);
   1048 			if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
   1049 			    && (flags & PGO_BUSYFAIL) != 0) {
   1050 				UVMHIST_LOG(ubchist, "busyfail %#jx",
   1051 				    (uintptr_t)pg, 0, 0, 0);
   1052 				error = EDEADLK;
   1053 				if (busypg != NULL)
   1054 					*busypg = pg;
   1055 				break;
   1056 			}
   1057 			if (pagedaemon) {
   1058 				/*
   1059 				 * someone has taken the page while we
   1060 				 * dropped the lock for fstrans_start.
   1061 				 */
   1062 				break;
   1063 			}
   1064 			/*
   1065 			 * don't bother to wait on other's activities
   1066 			 * unless we are asked to sync for integrity.
   1067 			 */
   1068 			if (!async && (flags & PGO_RECLAIM) == 0) {
   1069 				wasclean = false;
   1070 				nextoff = pg->offset + PAGE_SIZE;
   1071 				uvm_page_array_advance(&a);
   1072 				continue;
   1073 			}
   1074 			nextoff = pg->offset; /* visit this page again */
   1075 			uvm_pagewait(pg, slock, "genput");
   1076 			/*
   1077 			 * as we dropped the object lock, our cached pages can
   1078 			 * be stale.
   1079 			 */
   1080 			uvm_page_array_clear(&a);
   1081 			rw_enter(slock, RW_WRITER);
   1082 			continue;
   1083 		}
   1084 
   1085 		nextoff = pg->offset + PAGE_SIZE;
   1086 		uvm_page_array_advance(&a);
   1087 
   1088 		/*
   1089 		 * if we're freeing, remove all mappings of the page now.
   1090 		 * if we're cleaning, check if the page is needs to be cleaned.
   1091 		 */
   1092 
   1093 		pgprotected = false;
   1094 		if (flags & PGO_FREE) {
   1095 			pmap_page_protect(pg, VM_PROT_NONE);
   1096 			pgprotected = true;
   1097 		} else if (flags & PGO_CLEANIT) {
   1098 
   1099 			/*
   1100 			 * if we still have some hope to pull this vnode off
   1101 			 * from the syncer queue, write-protect the page.
   1102 			 */
   1103 
   1104 			if (cleanall && wasclean) {
   1105 
   1106 				/*
   1107 				 * uobj pages get wired only by uvm_fault
   1108 				 * where uobj is locked.
   1109 				 */
   1110 
   1111 				if (pg->wire_count == 0) {
   1112 					pmap_page_protect(pg,
   1113 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1114 					pgprotected = true;
   1115 				} else {
   1116 					cleanall = false;
   1117 				}
   1118 			}
   1119 		}
   1120 
   1121 		if (flags & PGO_CLEANIT) {
   1122 			needs_clean = uvm_pagecheckdirty(pg, pgprotected);
   1123 		} else {
   1124 			needs_clean = false;
   1125 		}
   1126 
   1127 		/*
   1128 		 * if we're cleaning, build a cluster.
   1129 		 * the cluster will consist of pages which are currently dirty.
   1130 		 * if not cleaning, just operate on the one page.
   1131 		 */
   1132 
   1133 		if (needs_clean) {
   1134 			wasclean = false;
   1135 			memset(pgs, 0, sizeof(pgs));
   1136 			pg->flags |= PG_BUSY;
   1137 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1138 
   1139 			/*
   1140 			 * let the fs constrain the offset range of the cluster.
   1141 			 * we additionally constrain the range here such that
   1142 			 * it fits in the "pgs" pages array.
   1143 			 */
   1144 
   1145 			off_t fslo, fshi, genlo, lo, off = pg->offset;
   1146 			GOP_PUTRANGE(vp, off, &fslo, &fshi);
   1147 			KASSERT(fslo == trunc_page(fslo));
   1148 			KASSERT(fslo <= off);
   1149 			KASSERT(fshi == trunc_page(fshi));
   1150 			KASSERT(fshi == 0 || off < fshi);
   1151 
   1152 			if (off > MAXPHYS / 2)
   1153 				genlo = trunc_page(off - (MAXPHYS / 2));
   1154 			else
   1155 				genlo = 0;
   1156 			lo = MAX(fslo, genlo);
   1157 
   1158 			/*
   1159 			 * first look backward.
   1160 			 */
   1161 
   1162 			npages = (off - lo) >> PAGE_SHIFT;
   1163 			nback = npages;
   1164 			uvn_findpages(uobj, off - PAGE_SIZE, &nback,
   1165 			    &pgs[0], NULL,
   1166 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1167 			if (nback) {
   1168 				memmove(&pgs[0], &pgs[npages - nback],
   1169 				    nback * sizeof(pgs[0]));
   1170 				if (npages - nback < nback)
   1171 					memset(&pgs[nback], 0,
   1172 					    (npages - nback) * sizeof(pgs[0]));
   1173 				else
   1174 					memset(&pgs[npages - nback], 0,
   1175 					    nback * sizeof(pgs[0]));
   1176 			}
   1177 
   1178 			/*
   1179 			 * then plug in our page of interest.
   1180 			 */
   1181 
   1182 			pgs[nback] = pg;
   1183 
   1184 			/*
   1185 			 * then look forward to fill in the remaining space in
   1186 			 * the array of pages.
   1187 			 *
   1188 			 * pass our cached array of pages so that hopefully
   1189 			 * uvn_findpages can find some good pages in it.
   1190 			 * the array a was filled above with the one of
   1191 			 * following sets of flags:
   1192 			 *	0
   1193 			 *	UVM_PAGE_ARRAY_FILL_DIRTY
   1194 			 *	UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
   1195 			 */
   1196 
   1197 			npages = MAXPAGES - nback - 1;
   1198 			if (fshi)
   1199 				npages = MIN(npages,
   1200 					     (fshi - off - 1) >> PAGE_SHIFT);
   1201 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1202 			    &pgs[nback + 1], NULL,
   1203 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1204 			npages += nback + 1;
   1205 		} else {
   1206 			pgs[0] = pg;
   1207 			npages = 1;
   1208 			nback = 0;
   1209 		}
   1210 
   1211 		/*
   1212 		 * apply FREE or DEACTIVATE options if requested.
   1213 		 */
   1214 
   1215 		for (i = 0; i < npages; i++) {
   1216 			tpg = pgs[i];
   1217 			KASSERT(tpg->uobject == uobj);
   1218 			KASSERT(i == 0 ||
   1219 			    pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
   1220 			KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
   1221 			    UVM_PAGE_STATUS_DIRTY);
   1222 			if (needs_clean) {
   1223 				/*
   1224 				 * mark pages as WRITEBACK so that concurrent
   1225 				 * fsync can find and wait for our activities.
   1226 				 */
   1227 				radix_tree_set_tag(&uobj->uo_pages,
   1228 				    pgs[i]->offset >> PAGE_SHIFT,
   1229 				    UVM_PAGE_WRITEBACK_TAG);
   1230 			}
   1231 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1232 				continue;
   1233 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1234 				uvm_pagelock(tpg);
   1235 				uvm_pagedeactivate(tpg);
   1236 				uvm_pageunlock(tpg);
   1237 			} else if (flags & PGO_FREE) {
   1238 				pmap_page_protect(tpg, VM_PROT_NONE);
   1239 				if (tpg->flags & PG_BUSY) {
   1240 					tpg->flags |= freeflag;
   1241 					if (pagedaemon) {
   1242 						uvm_pageout_start(1);
   1243 						uvm_pagelock(tpg);
   1244 						uvm_pagedequeue(tpg);
   1245 						uvm_pageunlock(tpg);
   1246 					}
   1247 				} else {
   1248 
   1249 					/*
   1250 					 * ``page is not busy''
   1251 					 * implies that npages is 1
   1252 					 * and needs_clean is false.
   1253 					 */
   1254 
   1255 					KASSERT(npages == 1);
   1256 					KASSERT(!needs_clean);
   1257 					KASSERT(pg == tpg);
   1258 					KASSERT(nextoff ==
   1259 					    tpg->offset + PAGE_SIZE);
   1260 					uvm_pagefree(tpg);
   1261 					if (pagedaemon)
   1262 						uvmexp.pdfreed++;
   1263 				}
   1264 			}
   1265 		}
   1266 		if (needs_clean) {
   1267 			modified = true;
   1268 			KASSERT(nextoff == pg->offset + PAGE_SIZE);
   1269 			KASSERT(nback < npages);
   1270 			nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
   1271 			KASSERT(pgs[nback] == pg);
   1272 			KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
   1273 
   1274 			/*
   1275 			 * start the i/o.
   1276 			 */
   1277 			rw_exit(slock);
   1278 			error = GOP_WRITE(vp, pgs, npages, flags);
   1279 			/*
   1280 			 * as we dropped the object lock, our cached pages can
   1281 			 * be stale.
   1282 			 */
   1283 			uvm_page_array_clear(&a);
   1284 			rw_enter(slock, RW_WRITER);
   1285 			if (error) {
   1286 				break;
   1287 			}
   1288 		}
   1289 	}
   1290 	uvm_page_array_fini(&a);
   1291 
   1292 	/*
   1293 	 * update ctime/mtime if the modification we started writing out might
   1294 	 * be from mmap'ed write.
   1295 	 *
   1296 	 * this is necessary when an application keeps a file mmaped and
   1297 	 * repeatedly modifies it via the window.  note that, because we
   1298 	 * don't always write-protect pages when cleaning, such modifications
   1299 	 * might not involve any page faults.
   1300 	 */
   1301 
   1302 	mutex_enter(vp->v_interlock);
   1303 	if (modified && (vp->v_iflag & VI_WRMAP) != 0 &&
   1304 	    (vp->v_type != VBLK ||
   1305 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1306 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1307 	}
   1308 
   1309 	/*
   1310 	 * if we no longer have any possibly dirty pages, take us off the
   1311 	 * syncer list.
   1312 	 */
   1313 
   1314 	if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
   1315 	    radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
   1316 	    UVM_PAGE_DIRTY_TAG)) {
   1317 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1318 			vn_syncer_remove_from_worklist(vp);
   1319 	}
   1320 
   1321 #if !defined(DEBUG)
   1322 skip_scan:
   1323 #endif /* !defined(DEBUG) */
   1324 
   1325 	/* Wait for output to complete. */
   1326 	rw_exit(slock);
   1327 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1328 		while (vp->v_numoutput != 0)
   1329 			cv_wait(&vp->v_cv, vp->v_interlock);
   1330 	}
   1331 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1332 	mutex_exit(vp->v_interlock);
   1333 
   1334 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1335 		/*
   1336 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1337 		 * retrying is not a big deal because, in many cases,
   1338 		 * uobj->uo_npages is already 0 here.
   1339 		 */
   1340 		rw_enter(slock, RW_WRITER);
   1341 		goto retry;
   1342 	}
   1343 
   1344 	if (trans_mp) {
   1345 		if (holds_wapbl)
   1346 			WAPBL_END(trans_mp);
   1347 		fstrans_done(trans_mp);
   1348 	}
   1349 
   1350 	return (error);
   1351 }
   1352 
   1353 /*
   1354  * Default putrange method for file systems that do not care
   1355  * how many pages are given to one GOP_WRITE() call.
   1356  */
   1357 void
   1358 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
   1359 {
   1360 
   1361 	*lop = 0;
   1362 	*hip = 0;
   1363 }
   1364 
   1365 int
   1366 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1367 {
   1368 	off_t off;
   1369 	vaddr_t kva;
   1370 	size_t len;
   1371 	int error;
   1372 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1373 
   1374 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1375 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1376 
   1377 	off = pgs[0]->offset;
   1378 	kva = uvm_pagermapin(pgs, npages,
   1379 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1380 	len = npages << PAGE_SHIFT;
   1381 
   1382 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1383 			    uvm_aio_aiodone);
   1384 
   1385 	return error;
   1386 }
   1387 
   1388 /*
   1389  * genfs_gop_write_rwmap:
   1390  *
   1391  * a variant of genfs_gop_write.  it's used by UDF for its directory buffers.
   1392  * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
   1393  * the contents before writing it out to the underlying storage.
   1394  */
   1395 
   1396 int
   1397 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
   1398     int flags)
   1399 {
   1400 	off_t off;
   1401 	vaddr_t kva;
   1402 	size_t len;
   1403 	int error;
   1404 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1405 
   1406 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1407 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1408 
   1409 	off = pgs[0]->offset;
   1410 	kva = uvm_pagermapin(pgs, npages,
   1411 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1412 	len = npages << PAGE_SHIFT;
   1413 
   1414 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1415 			    uvm_aio_aiodone);
   1416 
   1417 	return error;
   1418 }
   1419 
   1420 /*
   1421  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1422  * and mapped into kernel memory.  Here we just look up the underlying
   1423  * device block addresses and call the strategy routine.
   1424  */
   1425 
   1426 static int
   1427 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1428     enum uio_rw rw, void (*iodone)(struct buf *))
   1429 {
   1430 	int s, error;
   1431 	int fs_bshift, dev_bshift;
   1432 	off_t eof, offset, startoffset;
   1433 	size_t bytes, iobytes, skipbytes;
   1434 	struct buf *mbp, *bp;
   1435 	const bool async = (flags & PGO_SYNCIO) == 0;
   1436 	const bool lazy = (flags & PGO_LAZY) == 0;
   1437 	const bool iowrite = rw == UIO_WRITE;
   1438 	const int brw = iowrite ? B_WRITE : B_READ;
   1439 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1440 
   1441 	UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
   1442 	    (uintptr_t)vp, (uintptr_t)kva, len, flags);
   1443 
   1444 	KASSERT(vp->v_size <= vp->v_writesize);
   1445 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1446 	if (vp->v_type != VBLK) {
   1447 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1448 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1449 	} else {
   1450 		fs_bshift = DEV_BSHIFT;
   1451 		dev_bshift = DEV_BSHIFT;
   1452 	}
   1453 	error = 0;
   1454 	startoffset = off;
   1455 	bytes = MIN(len, eof - startoffset);
   1456 	skipbytes = 0;
   1457 	KASSERT(bytes != 0);
   1458 
   1459 	if (iowrite) {
   1460 		/*
   1461 		 * why += 2?
   1462 		 * 1 for biodone, 1 for uvm_aio_aiodone.
   1463 		 */
   1464 		mutex_enter(vp->v_interlock);
   1465 		vp->v_numoutput += 2;
   1466 		mutex_exit(vp->v_interlock);
   1467 	}
   1468 	mbp = getiobuf(vp, true);
   1469 	UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
   1470 	    (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
   1471 	mbp->b_bufsize = len;
   1472 	mbp->b_data = (void *)kva;
   1473 	mbp->b_resid = mbp->b_bcount = bytes;
   1474 	mbp->b_cflags |= BC_BUSY | BC_AGE;
   1475 	if (async) {
   1476 		mbp->b_flags = brw | B_ASYNC;
   1477 		mbp->b_iodone = iodone;
   1478 	} else {
   1479 		mbp->b_flags = brw;
   1480 		mbp->b_iodone = NULL;
   1481 	}
   1482 	if (curlwp == uvm.pagedaemon_lwp)
   1483 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1484 	else if (async || lazy)
   1485 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1486 	else
   1487 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1488 
   1489 	bp = NULL;
   1490 	for (offset = startoffset;
   1491 	    bytes > 0;
   1492 	    offset += iobytes, bytes -= iobytes) {
   1493 		int run;
   1494 		daddr_t lbn, blkno;
   1495 		struct vnode *devvp;
   1496 
   1497 		/*
   1498 		 * bmap the file to find out the blkno to read from and
   1499 		 * how much we can read in one i/o.  if bmap returns an error,
   1500 		 * skip the rest of the top-level i/o.
   1501 		 */
   1502 
   1503 		lbn = offset >> fs_bshift;
   1504 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1505 		if (error) {
   1506 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
   1507 			    lbn, error, 0, 0);
   1508 			skipbytes += bytes;
   1509 			bytes = 0;
   1510 			goto loopdone;
   1511 		}
   1512 
   1513 		/*
   1514 		 * see how many pages can be read with this i/o.
   1515 		 * reduce the i/o size if necessary to avoid
   1516 		 * overwriting pages with valid data.
   1517 		 */
   1518 
   1519 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1520 		    bytes);
   1521 
   1522 		/*
   1523 		 * if this block isn't allocated, zero it instead of
   1524 		 * reading it.  unless we are going to allocate blocks,
   1525 		 * mark the pages we zeroed PG_RDONLY.
   1526 		 */
   1527 
   1528 		if (blkno == (daddr_t)-1) {
   1529 			if (!iowrite) {
   1530 				memset((char *)kva + (offset - startoffset), 0,
   1531 				    iobytes);
   1532 			}
   1533 			skipbytes += iobytes;
   1534 			continue;
   1535 		}
   1536 
   1537 		/*
   1538 		 * allocate a sub-buf for this piece of the i/o
   1539 		 * (or just use mbp if there's only 1 piece),
   1540 		 * and start it going.
   1541 		 */
   1542 
   1543 		if (offset == startoffset && iobytes == bytes) {
   1544 			bp = mbp;
   1545 		} else {
   1546 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
   1547 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
   1548 			bp = getiobuf(vp, true);
   1549 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1550 		}
   1551 		bp->b_lblkno = 0;
   1552 
   1553 		/* adjust physical blkno for partial blocks */
   1554 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1555 		    dev_bshift);
   1556 
   1557 		UVMHIST_LOG(ubchist,
   1558 		    "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
   1559 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
   1560 
   1561 		VOP_STRATEGY(devvp, bp);
   1562 	}
   1563 
   1564 loopdone:
   1565 	if (skipbytes) {
   1566 		UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
   1567 	}
   1568 	nestiobuf_done(mbp, skipbytes, error);
   1569 	if (async) {
   1570 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1571 		return (0);
   1572 	}
   1573 	UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
   1574 	error = biowait(mbp);
   1575 	s = splbio();
   1576 	(*iodone)(mbp);
   1577 	splx(s);
   1578 	UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
   1579 	return (error);
   1580 }
   1581 
   1582 int
   1583 genfs_compat_getpages(void *v)
   1584 {
   1585 	struct vop_getpages_args /* {
   1586 		struct vnode *a_vp;
   1587 		voff_t a_offset;
   1588 		struct vm_page **a_m;
   1589 		int *a_count;
   1590 		int a_centeridx;
   1591 		vm_prot_t a_access_type;
   1592 		int a_advice;
   1593 		int a_flags;
   1594 	} */ *ap = v;
   1595 
   1596 	off_t origoffset;
   1597 	struct vnode *vp = ap->a_vp;
   1598 	struct uvm_object *uobj = &vp->v_uobj;
   1599 	struct vm_page *pg, **pgs;
   1600 	vaddr_t kva;
   1601 	int i, error, orignpages, npages;
   1602 	struct iovec iov;
   1603 	struct uio uio;
   1604 	kauth_cred_t cred = curlwp->l_cred;
   1605 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1606 
   1607 	error = 0;
   1608 	origoffset = ap->a_offset;
   1609 	orignpages = *ap->a_count;
   1610 	pgs = ap->a_m;
   1611 
   1612 	if (ap->a_flags & PGO_LOCKED) {
   1613 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
   1614 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1615 
   1616 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1617 		return error;
   1618 	}
   1619 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1620 		rw_exit(uobj->vmobjlock);
   1621 		return EINVAL;
   1622 	}
   1623 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1624 		rw_exit(uobj->vmobjlock);
   1625 		return 0;
   1626 	}
   1627 	npages = orignpages;
   1628 	uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
   1629 	rw_exit(uobj->vmobjlock);
   1630 	kva = uvm_pagermapin(pgs, npages,
   1631 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1632 	for (i = 0; i < npages; i++) {
   1633 		pg = pgs[i];
   1634 		if ((pg->flags & PG_FAKE) == 0) {
   1635 			continue;
   1636 		}
   1637 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1638 		iov.iov_len = PAGE_SIZE;
   1639 		uio.uio_iov = &iov;
   1640 		uio.uio_iovcnt = 1;
   1641 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1642 		uio.uio_rw = UIO_READ;
   1643 		uio.uio_resid = PAGE_SIZE;
   1644 		UIO_SETUP_SYSSPACE(&uio);
   1645 		/* XXX vn_lock */
   1646 		error = VOP_READ(vp, &uio, 0, cred);
   1647 		if (error) {
   1648 			break;
   1649 		}
   1650 		if (uio.uio_resid) {
   1651 			memset(iov.iov_base, 0, uio.uio_resid);
   1652 		}
   1653 	}
   1654 	uvm_pagermapout(kva, npages);
   1655 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1656 	for (i = 0; i < npages; i++) {
   1657 		pg = pgs[i];
   1658 		if (error && (pg->flags & PG_FAKE) != 0) {
   1659 			pg->flags |= PG_RELEASED;
   1660 		} else {
   1661 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
   1662 			uvm_pagelock(pg);
   1663 			uvm_pageactivate(pg);
   1664 			uvm_pageunlock(pg);
   1665 		}
   1666 	}
   1667 	if (error) {
   1668 		uvm_page_unbusy(pgs, npages);
   1669 	}
   1670 	rw_exit(uobj->vmobjlock);
   1671 	return error;
   1672 }
   1673 
   1674 int
   1675 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1676     int flags)
   1677 {
   1678 	off_t offset;
   1679 	struct iovec iov;
   1680 	struct uio uio;
   1681 	kauth_cred_t cred = curlwp->l_cred;
   1682 	struct buf *bp;
   1683 	vaddr_t kva;
   1684 	int error;
   1685 
   1686 	offset = pgs[0]->offset;
   1687 	kva = uvm_pagermapin(pgs, npages,
   1688 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1689 
   1690 	iov.iov_base = (void *)kva;
   1691 	iov.iov_len = npages << PAGE_SHIFT;
   1692 	uio.uio_iov = &iov;
   1693 	uio.uio_iovcnt = 1;
   1694 	uio.uio_offset = offset;
   1695 	uio.uio_rw = UIO_WRITE;
   1696 	uio.uio_resid = npages << PAGE_SHIFT;
   1697 	UIO_SETUP_SYSSPACE(&uio);
   1698 	/* XXX vn_lock */
   1699 	error = VOP_WRITE(vp, &uio, 0, cred);
   1700 
   1701 	mutex_enter(vp->v_interlock);
   1702 	vp->v_numoutput++;
   1703 	mutex_exit(vp->v_interlock);
   1704 
   1705 	bp = getiobuf(vp, true);
   1706 	bp->b_cflags |= BC_BUSY | BC_AGE;
   1707 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1708 	bp->b_data = (char *)kva;
   1709 	bp->b_bcount = npages << PAGE_SHIFT;
   1710 	bp->b_bufsize = npages << PAGE_SHIFT;
   1711 	bp->b_resid = 0;
   1712 	bp->b_error = error;
   1713 	uvm_aio_aiodone(bp);
   1714 	return (error);
   1715 }
   1716 
   1717 /*
   1718  * Process a uio using direct I/O.  If we reach a part of the request
   1719  * which cannot be processed in this fashion for some reason, just return.
   1720  * The caller must handle some additional part of the request using
   1721  * buffered I/O before trying direct I/O again.
   1722  */
   1723 
   1724 void
   1725 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1726 {
   1727 	struct vmspace *vs;
   1728 	struct iovec *iov;
   1729 	vaddr_t va;
   1730 	size_t len;
   1731 	const int mask = DEV_BSIZE - 1;
   1732 	int error;
   1733 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1734 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1735 
   1736 #ifdef DIAGNOSTIC
   1737 	if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
   1738                 WAPBL_JLOCK_ASSERT(vp->v_mount);
   1739 #endif
   1740 
   1741 	/*
   1742 	 * We only support direct I/O to user space for now.
   1743 	 */
   1744 
   1745 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1746 		return;
   1747 	}
   1748 
   1749 	/*
   1750 	 * If the vnode is mapped, we would need to get the getpages lock
   1751 	 * to stabilize the bmap, but then we would get into trouble while
   1752 	 * locking the pages if the pages belong to this same vnode (or a
   1753 	 * multi-vnode cascade to the same effect).  Just fall back to
   1754 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1755 	 */
   1756 
   1757 	if (vp->v_vflag & VV_MAPPED) {
   1758 		return;
   1759 	}
   1760 
   1761 	if (need_wapbl) {
   1762 		error = WAPBL_BEGIN(vp->v_mount);
   1763 		if (error)
   1764 			return;
   1765 	}
   1766 
   1767 	/*
   1768 	 * Do as much of the uio as possible with direct I/O.
   1769 	 */
   1770 
   1771 	vs = uio->uio_vmspace;
   1772 	while (uio->uio_resid) {
   1773 		iov = uio->uio_iov;
   1774 		if (iov->iov_len == 0) {
   1775 			uio->uio_iov++;
   1776 			uio->uio_iovcnt--;
   1777 			continue;
   1778 		}
   1779 		va = (vaddr_t)iov->iov_base;
   1780 		len = MIN(iov->iov_len, genfs_maxdio);
   1781 		len &= ~mask;
   1782 
   1783 		/*
   1784 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1785 		 * the current EOF, then fall back to buffered I/O.
   1786 		 */
   1787 
   1788 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1789 			break;
   1790 		}
   1791 
   1792 		/*
   1793 		 * Check alignment.  The file offset must be at least
   1794 		 * sector-aligned.  The exact constraint on memory alignment
   1795 		 * is very hardware-dependent, but requiring sector-aligned
   1796 		 * addresses there too is safe.
   1797 		 */
   1798 
   1799 		if (uio->uio_offset & mask || va & mask) {
   1800 			break;
   1801 		}
   1802 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1803 					  uio->uio_rw);
   1804 		if (error) {
   1805 			break;
   1806 		}
   1807 		iov->iov_base = (char *)iov->iov_base + len;
   1808 		iov->iov_len -= len;
   1809 		uio->uio_offset += len;
   1810 		uio->uio_resid -= len;
   1811 	}
   1812 
   1813 	if (need_wapbl)
   1814 		WAPBL_END(vp->v_mount);
   1815 }
   1816 
   1817 /*
   1818  * Iodone routine for direct I/O.  We don't do much here since the request is
   1819  * always synchronous, so the caller will do most of the work after biowait().
   1820  */
   1821 
   1822 static void
   1823 genfs_dio_iodone(struct buf *bp)
   1824 {
   1825 
   1826 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1827 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1828 		mutex_enter(bp->b_objlock);
   1829 		vwakeup(bp);
   1830 		mutex_exit(bp->b_objlock);
   1831 	}
   1832 	putiobuf(bp);
   1833 }
   1834 
   1835 /*
   1836  * Process one chunk of a direct I/O request.
   1837  */
   1838 
   1839 static int
   1840 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1841     off_t off, enum uio_rw rw)
   1842 {
   1843 	struct vm_map *map;
   1844 	struct pmap *upm, *kpm __unused;
   1845 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1846 	off_t spoff, epoff;
   1847 	vaddr_t kva, puva;
   1848 	paddr_t pa;
   1849 	vm_prot_t prot;
   1850 	int error, rv __diagused, poff, koff;
   1851 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1852 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1853 
   1854 	/*
   1855 	 * For writes, verify that this range of the file already has fully
   1856 	 * allocated backing store.  If there are any holes, just punt and
   1857 	 * make the caller take the buffered write path.
   1858 	 */
   1859 
   1860 	if (rw == UIO_WRITE) {
   1861 		daddr_t lbn, elbn, blkno;
   1862 		int bsize, bshift, run;
   1863 
   1864 		bshift = vp->v_mount->mnt_fs_bshift;
   1865 		bsize = 1 << bshift;
   1866 		lbn = off >> bshift;
   1867 		elbn = (off + len + bsize - 1) >> bshift;
   1868 		while (lbn < elbn) {
   1869 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1870 			if (error) {
   1871 				return error;
   1872 			}
   1873 			if (blkno == (daddr_t)-1) {
   1874 				return ENOSPC;
   1875 			}
   1876 			lbn += 1 + run;
   1877 		}
   1878 	}
   1879 
   1880 	/*
   1881 	 * Flush any cached pages for parts of the file that we're about to
   1882 	 * access.  If we're writing, invalidate pages as well.
   1883 	 */
   1884 
   1885 	spoff = trunc_page(off);
   1886 	epoff = round_page(off + len);
   1887 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
   1888 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1889 	if (error) {
   1890 		return error;
   1891 	}
   1892 
   1893 	/*
   1894 	 * Wire the user pages and remap them into kernel memory.
   1895 	 */
   1896 
   1897 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1898 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1899 	if (error) {
   1900 		return error;
   1901 	}
   1902 
   1903 	map = &vs->vm_map;
   1904 	upm = vm_map_pmap(map);
   1905 	kpm = vm_map_pmap(kernel_map);
   1906 	puva = trunc_page(uva);
   1907 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1908 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1909 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1910 		rv = pmap_extract(upm, puva + poff, &pa);
   1911 		KASSERT(rv);
   1912 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1913 	}
   1914 	pmap_update(kpm);
   1915 
   1916 	/*
   1917 	 * Do the I/O.
   1918 	 */
   1919 
   1920 	koff = uva - trunc_page(uva);
   1921 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1922 			    genfs_dio_iodone);
   1923 
   1924 	/*
   1925 	 * Tear down the kernel mapping.
   1926 	 */
   1927 
   1928 	pmap_kremove(kva, klen);
   1929 	pmap_update(kpm);
   1930 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1931 
   1932 	/*
   1933 	 * Unwire the user pages.
   1934 	 */
   1935 
   1936 	uvm_vsunlock(vs, (void *)uva, len);
   1937 	return error;
   1938 }
   1939