genfs_io.c revision 1.95 1 /* $NetBSD: genfs_io.c,v 1.95 2020/03/22 18:32:41 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.95 2020/03/22 18:32:41 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/vnode.h>
42 #include <sys/kmem.h>
43 #include <sys/kauth.h>
44 #include <sys/fstrans.h>
45 #include <sys/buf.h>
46 #include <sys/atomic.h>
47
48 #include <miscfs/genfs/genfs.h>
49 #include <miscfs/genfs/genfs_node.h>
50 #include <miscfs/specfs/specdev.h>
51
52 #include <uvm/uvm.h>
53 #include <uvm/uvm_pager.h>
54 #include <uvm/uvm_page_array.h>
55
56 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
57 off_t, enum uio_rw);
58 static void genfs_dio_iodone(struct buf *);
59
60 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
61 off_t, bool, bool, bool, bool);
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static void genfs_rel_pages(struct vm_page **, unsigned int);
65
66 int genfs_maxdio = MAXPHYS;
67
68 static void
69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
70 {
71 unsigned int i;
72
73 for (i = 0; i < npages; i++) {
74 struct vm_page *pg = pgs[i];
75
76 if (pg == NULL || pg == PGO_DONTCARE)
77 continue;
78 KASSERT(uvm_page_owner_locked_p(pg, true));
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 uvm_page_unbusy(pgs, npages);
84 }
85
86 /*
87 * generic VM getpages routine.
88 * Return PG_BUSY pages for the given range,
89 * reading from backing store if necessary.
90 */
91
92 int
93 genfs_getpages(void *v)
94 {
95 struct vop_getpages_args /* {
96 struct vnode *a_vp;
97 voff_t a_offset;
98 struct vm_page **a_m;
99 int *a_count;
100 int a_centeridx;
101 vm_prot_t a_access_type;
102 int a_advice;
103 int a_flags;
104 } */ * const ap = v;
105
106 off_t diskeof, memeof;
107 int i, error, npages, iflag;
108 const int flags = ap->a_flags;
109 struct vnode * const vp = ap->a_vp;
110 struct uvm_object * const uobj = &vp->v_uobj;
111 const bool async = (flags & PGO_SYNCIO) == 0;
112 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
113 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
114 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
115 const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
116 (flags & PGO_JOURNALLOCKED) == 0);
117 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
118 bool holds_wapbl = false;
119 struct mount *trans_mount = NULL;
120 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
121
122 UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
123 (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
124
125 KASSERT(memwrite >= overwrite);
126 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
127 vp->v_type == VLNK || vp->v_type == VBLK);
128
129 /*
130 * the object must be locked. it can only be a read lock when
131 * processing a read fault with PGO_LOCKED | PGO_NOBUSY.
132 */
133
134 KASSERT(rw_lock_held(uobj->vmobjlock));
135 KASSERT(rw_write_held(uobj->vmobjlock) ||
136 ((~flags & (PGO_LOCKED | PGO_NOBUSY)) == 0 && !memwrite));
137
138 #ifdef DIAGNOSTIC
139 if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
140 WAPBL_JLOCK_ASSERT(vp->v_mount);
141 #endif
142
143 /*
144 * check for reclaimed vnode. v_interlock is not held here, but
145 * VI_DEADCHECK is set with vmobjlock held.
146 */
147
148 iflag = atomic_load_relaxed(&vp->v_iflag);
149 if (__predict_false((iflag & VI_DEADCHECK) != 0)) {
150 mutex_enter(vp->v_interlock);
151 error = vdead_check(vp, VDEAD_NOWAIT);
152 mutex_exit(vp->v_interlock);
153 if (error) {
154 if ((flags & PGO_LOCKED) == 0)
155 rw_exit(uobj->vmobjlock);
156 return error;
157 }
158 }
159
160 startover:
161 error = 0;
162 const voff_t origvsize = vp->v_size;
163 const off_t origoffset = ap->a_offset;
164 const int orignpages = *ap->a_count;
165
166 GOP_SIZE(vp, origvsize, &diskeof, 0);
167 if (flags & PGO_PASTEOF) {
168 off_t newsize;
169 #if defined(DIAGNOSTIC)
170 off_t writeeof;
171 #endif /* defined(DIAGNOSTIC) */
172
173 newsize = MAX(origvsize,
174 origoffset + (orignpages << PAGE_SHIFT));
175 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
176 #if defined(DIAGNOSTIC)
177 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
178 if (newsize > round_page(writeeof)) {
179 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
180 __func__, newsize, round_page(writeeof));
181 }
182 #endif /* defined(DIAGNOSTIC) */
183 } else {
184 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
185 }
186 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
187 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
188 KASSERT(orignpages > 0);
189
190 /*
191 * Bounds-check the request.
192 */
193
194 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
195 if ((flags & PGO_LOCKED) == 0) {
196 rw_exit(uobj->vmobjlock);
197 }
198 UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
199 origoffset, *ap->a_count, memeof,0);
200 error = EINVAL;
201 goto out_err;
202 }
203
204 /* uobj is locked */
205
206 if ((flags & PGO_NOTIMESTAMP) == 0 &&
207 (vp->v_type != VBLK ||
208 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
209 int updflags = 0;
210
211 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
212 updflags = GOP_UPDATE_ACCESSED;
213 }
214 if (memwrite) {
215 updflags |= GOP_UPDATE_MODIFIED;
216 }
217 if (updflags != 0) {
218 GOP_MARKUPDATE(vp, updflags);
219 }
220 }
221
222 /*
223 * For PGO_LOCKED requests, just return whatever's in memory.
224 */
225
226 if (flags & PGO_LOCKED) {
227 int nfound;
228 struct vm_page *pg;
229
230 KASSERT(!glocked);
231 npages = *ap->a_count;
232 #if defined(DEBUG)
233 for (i = 0; i < npages; i++) {
234 pg = ap->a_m[i];
235 KASSERT(pg == NULL || pg == PGO_DONTCARE);
236 }
237 #endif /* defined(DEBUG) */
238 nfound = uvn_findpages(uobj, origoffset, &npages,
239 ap->a_m, NULL,
240 UFP_NOWAIT | UFP_NOALLOC |
241 (memwrite ? UFP_NORDONLY : 0) |
242 ((flags & PGO_NOBUSY) != 0 ? UFP_NOBUSY : 0));
243 KASSERT(npages == *ap->a_count);
244 if (nfound == 0) {
245 error = EBUSY;
246 goto out_err;
247 }
248 /*
249 * lock and unlock g_glock to ensure that no one is truncating
250 * the file behind us.
251 */
252 if (!genfs_node_rdtrylock(vp)) {
253 if ((flags & PGO_NOBUSY) == 0) {
254 genfs_rel_pages(ap->a_m, npages);
255 }
256
257 /*
258 * restore the array.
259 */
260
261 for (i = 0; i < npages; i++) {
262 pg = ap->a_m[i];
263
264 if (pg != NULL && pg != PGO_DONTCARE) {
265 ap->a_m[i] = NULL;
266 }
267 KASSERT(ap->a_m[i] == NULL ||
268 ap->a_m[i] == PGO_DONTCARE);
269 }
270 } else {
271 genfs_node_unlock(vp);
272 }
273 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
274 if (error == 0 && memwrite) {
275 for (i = 0; i < npages; i++) {
276 pg = ap->a_m[i];
277 if (pg == NULL || pg == PGO_DONTCARE) {
278 continue;
279 }
280 if (uvm_pagegetdirty(pg) ==
281 UVM_PAGE_STATUS_CLEAN) {
282 uvm_pagemarkdirty(pg,
283 UVM_PAGE_STATUS_UNKNOWN);
284 }
285 }
286 }
287 goto out_err;
288 }
289 rw_exit(uobj->vmobjlock);
290
291 /*
292 * find the requested pages and make some simple checks.
293 * leave space in the page array for a whole block.
294 */
295
296 const int fs_bshift = (vp->v_type != VBLK) ?
297 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
298 const int fs_bsize = 1 << fs_bshift;
299 #define blk_mask (fs_bsize - 1)
300 #define trunc_blk(x) ((x) & ~blk_mask)
301 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
302
303 const int orignmempages = MIN(orignpages,
304 round_page(memeof - origoffset) >> PAGE_SHIFT);
305 npages = orignmempages;
306 const off_t startoffset = trunc_blk(origoffset);
307 const off_t endoffset = MIN(
308 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
309 round_page(memeof));
310 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
311
312 const int pgs_size = sizeof(struct vm_page *) *
313 ((endoffset - startoffset) >> PAGE_SHIFT);
314 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
315
316 if (pgs_size > sizeof(pgs_onstack)) {
317 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
318 if (pgs == NULL) {
319 pgs = pgs_onstack;
320 error = ENOMEM;
321 goto out_err;
322 }
323 } else {
324 pgs = pgs_onstack;
325 (void)memset(pgs, 0, pgs_size);
326 }
327
328 UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
329 ridx, npages, startoffset, endoffset);
330
331 if (trans_mount == NULL) {
332 trans_mount = vp->v_mount;
333 fstrans_start(trans_mount);
334 /*
335 * check if this vnode is still valid.
336 */
337 mutex_enter(vp->v_interlock);
338 error = vdead_check(vp, 0);
339 mutex_exit(vp->v_interlock);
340 if (error)
341 goto out_err_free;
342 /*
343 * XXX: This assumes that we come here only via
344 * the mmio path
345 */
346 if (blockalloc && need_wapbl) {
347 error = WAPBL_BEGIN(trans_mount);
348 if (error)
349 goto out_err_free;
350 holds_wapbl = true;
351 }
352 }
353
354 /*
355 * hold g_glock to prevent a race with truncate.
356 *
357 * check if our idea of v_size is still valid.
358 */
359
360 KASSERT(!glocked || genfs_node_wrlocked(vp));
361 if (!glocked) {
362 if (blockalloc) {
363 genfs_node_wrlock(vp);
364 } else {
365 genfs_node_rdlock(vp);
366 }
367 }
368 rw_enter(uobj->vmobjlock, RW_WRITER);
369 if (vp->v_size < origvsize) {
370 if (!glocked) {
371 genfs_node_unlock(vp);
372 }
373 if (pgs != pgs_onstack)
374 kmem_free(pgs, pgs_size);
375 goto startover;
376 }
377
378 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
379 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
380 if (!glocked) {
381 genfs_node_unlock(vp);
382 }
383 KASSERT(async != 0);
384 genfs_rel_pages(&pgs[ridx], orignmempages);
385 rw_exit(uobj->vmobjlock);
386 error = EBUSY;
387 goto out_err_free;
388 }
389
390 /*
391 * if PGO_OVERWRITE is set, don't bother reading the pages.
392 */
393
394 if (overwrite) {
395 if (!glocked) {
396 genfs_node_unlock(vp);
397 }
398 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
399
400 for (i = 0; i < npages; i++) {
401 struct vm_page *pg = pgs[ridx + i];
402
403 /*
404 * it's caller's responsibility to allocate blocks
405 * beforehand for the overwrite case.
406 */
407
408 KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
409 pg->flags &= ~PG_RDONLY;
410
411 /*
412 * mark the page DIRTY.
413 * otherwise another thread can do putpages and pull
414 * our vnode from syncer's queue before our caller does
415 * ubc_release. note that putpages won't see CLEAN
416 * pages even if they are BUSY.
417 */
418
419 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
420 }
421 npages += ridx;
422 goto out;
423 }
424
425 /*
426 * if the pages are already resident, just return them.
427 */
428
429 for (i = 0; i < npages; i++) {
430 struct vm_page *pg = pgs[ridx + i];
431
432 if ((pg->flags & PG_FAKE) ||
433 (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
434 break;
435 }
436 }
437 if (i == npages) {
438 if (!glocked) {
439 genfs_node_unlock(vp);
440 }
441 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
442 npages += ridx;
443 goto out;
444 }
445
446 /*
447 * the page wasn't resident and we're not overwriting,
448 * so we're going to have to do some i/o.
449 * find any additional pages needed to cover the expanded range.
450 */
451
452 npages = (endoffset - startoffset) >> PAGE_SHIFT;
453 if (startoffset != origoffset || npages != orignmempages) {
454 int npgs;
455
456 /*
457 * we need to avoid deadlocks caused by locking
458 * additional pages at lower offsets than pages we
459 * already have locked. unlock them all and start over.
460 */
461
462 genfs_rel_pages(&pgs[ridx], orignmempages);
463 memset(pgs, 0, pgs_size);
464
465 UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
466 startoffset, endoffset, 0,0);
467 npgs = npages;
468 if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
469 async ? UFP_NOWAIT : UFP_ALL) != npages) {
470 if (!glocked) {
471 genfs_node_unlock(vp);
472 }
473 KASSERT(async != 0);
474 genfs_rel_pages(pgs, npages);
475 rw_exit(uobj->vmobjlock);
476 error = EBUSY;
477 goto out_err_free;
478 }
479 }
480
481 rw_exit(uobj->vmobjlock);
482 error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
483 async, memwrite, blockalloc, glocked);
484 if (!glocked) {
485 genfs_node_unlock(vp);
486 }
487 if (error == 0 && async)
488 goto out_err_free;
489 rw_enter(uobj->vmobjlock, RW_WRITER);
490
491 /*
492 * we're almost done! release the pages...
493 * for errors, we free the pages.
494 * otherwise we activate them and mark them as valid and clean.
495 * also, unbusy pages that were not actually requested.
496 */
497
498 if (error) {
499 genfs_rel_pages(pgs, npages);
500 rw_exit(uobj->vmobjlock);
501 UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
502 goto out_err_free;
503 }
504
505 out:
506 UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
507 error = 0;
508 for (i = 0; i < npages; i++) {
509 struct vm_page *pg = pgs[i];
510 if (pg == NULL) {
511 continue;
512 }
513 UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
514 (uintptr_t)pg, pg->flags, 0,0);
515 if (pg->flags & PG_FAKE && !overwrite) {
516 /*
517 * we've read page's contents from the backing storage.
518 *
519 * for a read fault, we keep them CLEAN; if we
520 * encountered a hole while reading, the pages can
521 * already been dirtied with zeros.
522 */
523 KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
524 UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
525 pg->flags &= ~PG_FAKE;
526 }
527 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
528 if (i < ridx || i >= ridx + orignmempages || async) {
529 UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
530 (uintptr_t)pg, pg->offset,0,0);
531 if (pg->flags & PG_FAKE) {
532 KASSERT(overwrite);
533 uvm_pagezero(pg);
534 }
535 if (pg->flags & PG_RELEASED) {
536 uvm_pagefree(pg);
537 continue;
538 }
539 uvm_pagelock(pg);
540 uvm_pageenqueue(pg);
541 uvm_pagewakeup(pg);
542 uvm_pageunlock(pg);
543 pg->flags &= ~(PG_BUSY|PG_FAKE);
544 UVM_PAGE_OWN(pg, NULL);
545 } else if (memwrite && !overwrite &&
546 uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
547 /*
548 * for a write fault, start dirtiness tracking of
549 * requested pages.
550 */
551 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
552 }
553 }
554 rw_exit(uobj->vmobjlock);
555 if (ap->a_m != NULL) {
556 memcpy(ap->a_m, &pgs[ridx],
557 orignmempages * sizeof(struct vm_page *));
558 }
559
560 out_err_free:
561 if (pgs != NULL && pgs != pgs_onstack)
562 kmem_free(pgs, pgs_size);
563 out_err:
564 if (trans_mount != NULL) {
565 if (holds_wapbl)
566 WAPBL_END(trans_mount);
567 fstrans_done(trans_mount);
568 }
569 return error;
570 }
571
572 /*
573 * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
574 *
575 * "glocked" (which is currently not actually used) tells us not whether
576 * the genfs_node is locked on entry (it always is) but whether it was
577 * locked on entry to genfs_getpages.
578 */
579 static int
580 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
581 off_t startoffset, off_t diskeof,
582 bool async, bool memwrite, bool blockalloc, bool glocked)
583 {
584 struct uvm_object * const uobj = &vp->v_uobj;
585 const int fs_bshift = (vp->v_type != VBLK) ?
586 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
587 const int dev_bshift = (vp->v_type != VBLK) ?
588 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
589 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
590 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
591 vaddr_t kva;
592 struct buf *bp, *mbp;
593 bool sawhole = false;
594 int i;
595 int error = 0;
596
597 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
598
599 /*
600 * read the desired page(s).
601 */
602
603 totalbytes = npages << PAGE_SHIFT;
604 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
605 tailbytes = totalbytes - bytes;
606 skipbytes = 0;
607
608 kva = uvm_pagermapin(pgs, npages,
609 UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
610 if (kva == 0)
611 return EBUSY;
612
613 mbp = getiobuf(vp, true);
614 mbp->b_bufsize = totalbytes;
615 mbp->b_data = (void *)kva;
616 mbp->b_resid = mbp->b_bcount = bytes;
617 mbp->b_cflags |= BC_BUSY;
618 if (async) {
619 mbp->b_flags = B_READ | B_ASYNC;
620 mbp->b_iodone = uvm_aio_aiodone;
621 } else {
622 mbp->b_flags = B_READ;
623 mbp->b_iodone = NULL;
624 }
625 if (async)
626 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
627 else
628 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
629
630 /*
631 * if EOF is in the middle of the range, zero the part past EOF.
632 * skip over pages which are not PG_FAKE since in that case they have
633 * valid data that we need to preserve.
634 */
635
636 tailstart = bytes;
637 while (tailbytes > 0) {
638 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
639
640 KASSERT(len <= tailbytes);
641 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
642 memset((void *)(kva + tailstart), 0, len);
643 UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
644 (uintptr_t)kva, tailstart, len, 0);
645 }
646 tailstart += len;
647 tailbytes -= len;
648 }
649
650 /*
651 * now loop over the pages, reading as needed.
652 */
653
654 bp = NULL;
655 off_t offset;
656 for (offset = startoffset;
657 bytes > 0;
658 offset += iobytes, bytes -= iobytes) {
659 int run;
660 daddr_t lbn, blkno;
661 int pidx;
662 struct vnode *devvp;
663
664 /*
665 * skip pages which don't need to be read.
666 */
667
668 pidx = (offset - startoffset) >> PAGE_SHIFT;
669 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
670 size_t b;
671
672 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
673 if ((pgs[pidx]->flags & PG_RDONLY)) {
674 sawhole = true;
675 }
676 b = MIN(PAGE_SIZE, bytes);
677 offset += b;
678 bytes -= b;
679 skipbytes += b;
680 pidx++;
681 UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
682 offset, 0,0,0);
683 if (bytes == 0) {
684 goto loopdone;
685 }
686 }
687
688 /*
689 * bmap the file to find out the blkno to read from and
690 * how much we can read in one i/o. if bmap returns an error,
691 * skip the rest of the top-level i/o.
692 */
693
694 lbn = offset >> fs_bshift;
695 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
696 if (error) {
697 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
698 lbn,error,0,0);
699 skipbytes += bytes;
700 bytes = 0;
701 goto loopdone;
702 }
703
704 /*
705 * see how many pages can be read with this i/o.
706 * reduce the i/o size if necessary to avoid
707 * overwriting pages with valid data.
708 */
709
710 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
711 bytes);
712 if (offset + iobytes > round_page(offset)) {
713 int pcount;
714
715 pcount = 1;
716 while (pidx + pcount < npages &&
717 pgs[pidx + pcount]->flags & PG_FAKE) {
718 pcount++;
719 }
720 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
721 (offset - trunc_page(offset)));
722 }
723
724 /*
725 * if this block isn't allocated, zero it instead of
726 * reading it. unless we are going to allocate blocks,
727 * mark the pages we zeroed PG_RDONLY.
728 */
729
730 if (blkno == (daddr_t)-1) {
731 int holepages = (round_page(offset + iobytes) -
732 trunc_page(offset)) >> PAGE_SHIFT;
733 UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
734
735 sawhole = true;
736 memset((char *)kva + (offset - startoffset), 0,
737 iobytes);
738 skipbytes += iobytes;
739
740 if (!blockalloc) {
741 rw_enter(uobj->vmobjlock, RW_WRITER);
742 for (i = 0; i < holepages; i++) {
743 pgs[pidx + i]->flags |= PG_RDONLY;
744 }
745 rw_exit(uobj->vmobjlock);
746 }
747 continue;
748 }
749
750 /*
751 * allocate a sub-buf for this piece of the i/o
752 * (or just use mbp if there's only 1 piece),
753 * and start it going.
754 */
755
756 if (offset == startoffset && iobytes == bytes) {
757 bp = mbp;
758 } else {
759 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
760 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
761 bp = getiobuf(vp, true);
762 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
763 }
764 bp->b_lblkno = 0;
765
766 /* adjust physical blkno for partial blocks */
767 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
768 dev_bshift);
769
770 UVMHIST_LOG(ubchist,
771 "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
772 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
773
774 VOP_STRATEGY(devvp, bp);
775 }
776
777 loopdone:
778 nestiobuf_done(mbp, skipbytes, error);
779 if (async) {
780 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
781 return 0;
782 }
783 if (bp != NULL) {
784 error = biowait(mbp);
785 }
786
787 /* Remove the mapping (make KVA available as soon as possible) */
788 uvm_pagermapout(kva, npages);
789
790 /*
791 * if this we encountered a hole then we have to do a little more work.
792 * for read faults, we marked the page PG_RDONLY so that future
793 * write accesses to the page will fault again.
794 * for write faults, we must make sure that the backing store for
795 * the page is completely allocated while the pages are locked.
796 */
797
798 if (!error && sawhole && blockalloc) {
799 error = GOP_ALLOC(vp, startoffset,
800 npages << PAGE_SHIFT, 0, cred);
801 UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
802 startoffset, npages << PAGE_SHIFT, error,0);
803 if (!error) {
804 rw_enter(uobj->vmobjlock, RW_WRITER);
805 for (i = 0; i < npages; i++) {
806 struct vm_page *pg = pgs[i];
807
808 if (pg == NULL) {
809 continue;
810 }
811 pg->flags &= ~PG_RDONLY;
812 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
813 UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
814 (uintptr_t)pg, 0, 0, 0);
815 }
816 rw_exit(uobj->vmobjlock);
817 }
818 }
819
820 putiobuf(mbp);
821 return error;
822 }
823
824 /*
825 * generic VM putpages routine.
826 * Write the given range of pages to backing store.
827 *
828 * => "offhi == 0" means flush all pages at or after "offlo".
829 * => object should be locked by caller. we return with the
830 * object unlocked.
831 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
832 * thus, a caller might want to unlock higher level resources
833 * (e.g. vm_map) before calling flush.
834 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
835 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
836 *
837 * note on "cleaning" object and PG_BUSY pages:
838 * this routine is holding the lock on the object. the only time
839 * that it can run into a PG_BUSY page that it does not own is if
840 * some other process has started I/O on the page (e.g. either
841 * a pagein, or a pageout). if the PG_BUSY page is being paged
842 * in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
843 * one has had a chance to modify it yet. if the PG_BUSY page is
844 * being paged out then it means that someone else has already started
845 * cleaning the page for us (how nice!). in this case, if we
846 * have syncio specified, then after we make our pass through the
847 * object we need to wait for the other PG_BUSY pages to clear
848 * off (i.e. we need to do an iosync). also note that once a
849 * page is PG_BUSY it must stay in its object until it is un-busyed.
850 */
851
852 int
853 genfs_putpages(void *v)
854 {
855 struct vop_putpages_args /* {
856 struct vnode *a_vp;
857 voff_t a_offlo;
858 voff_t a_offhi;
859 int a_flags;
860 } */ * const ap = v;
861
862 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
863 ap->a_flags, NULL);
864 }
865
866 int
867 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
868 int origflags, struct vm_page **busypg)
869 {
870 struct uvm_object * const uobj = &vp->v_uobj;
871 krwlock_t * const slock = uobj->vmobjlock;
872 off_t nextoff;
873 int i, error, npages, nback;
874 int freeflag;
875 /*
876 * This array is larger than it should so that it's size is constant.
877 * The right size is MAXPAGES.
878 */
879 struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
880 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
881 struct vm_page *pg, *tpg;
882 struct uvm_page_array a;
883 bool wasclean, needs_clean;
884 bool async = (origflags & PGO_SYNCIO) == 0;
885 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
886 struct mount *trans_mp;
887 int flags;
888 bool modified; /* if we write out any pages */
889 bool holds_wapbl;
890 bool cleanall; /* try to pull off from the syncer's list */
891 bool onworklst;
892 bool nodirty;
893 const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
894
895 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
896
897 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
898 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
899 KASSERT(startoff < endoff || endoff == 0);
900 KASSERT(rw_write_held(slock));
901
902 UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
903 (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
904
905 #ifdef DIAGNOSTIC
906 if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
907 WAPBL_JLOCK_ASSERT(vp->v_mount);
908 #endif
909
910 trans_mp = NULL;
911 holds_wapbl = false;
912
913 retry:
914 modified = false;
915 flags = origflags;
916
917 /*
918 * shortcut if we have no pages to process.
919 */
920
921 nodirty = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
922 UVM_PAGE_DIRTY_TAG);
923 #ifdef DIAGNOSTIC
924 mutex_enter(vp->v_interlock);
925 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 || nodirty);
926 mutex_exit(vp->v_interlock);
927 #endif
928 if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
929 mutex_enter(vp->v_interlock);
930 if (vp->v_iflag & VI_ONWORKLST) {
931 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
932 vn_syncer_remove_from_worklist(vp);
933 }
934 mutex_exit(vp->v_interlock);
935 if (trans_mp) {
936 if (holds_wapbl)
937 WAPBL_END(trans_mp);
938 fstrans_done(trans_mp);
939 }
940 rw_exit(slock);
941 return (0);
942 }
943
944 /*
945 * the vnode has pages, set up to process the request.
946 */
947
948 if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
949 if (pagedaemon) {
950 /* Pagedaemon must not sleep here. */
951 trans_mp = vp->v_mount;
952 error = fstrans_start_nowait(trans_mp);
953 if (error) {
954 rw_exit(slock);
955 return error;
956 }
957 } else {
958 /*
959 * Cannot use vdeadcheck() here as this operation
960 * usually gets used from VOP_RECLAIM(). Test for
961 * change of v_mount instead and retry on change.
962 */
963 rw_exit(slock);
964 trans_mp = vp->v_mount;
965 fstrans_start(trans_mp);
966 if (vp->v_mount != trans_mp) {
967 fstrans_done(trans_mp);
968 trans_mp = NULL;
969 } else {
970 holds_wapbl = (trans_mp->mnt_wapbl &&
971 (origflags & PGO_JOURNALLOCKED) == 0);
972 if (holds_wapbl) {
973 error = WAPBL_BEGIN(trans_mp);
974 if (error) {
975 fstrans_done(trans_mp);
976 return error;
977 }
978 }
979 }
980 rw_enter(slock, RW_WRITER);
981 goto retry;
982 }
983 }
984
985 error = 0;
986 wasclean = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
987 UVM_PAGE_WRITEBACK_TAG);
988 nextoff = startoff;
989 if (endoff == 0 || flags & PGO_ALLPAGES) {
990 endoff = trunc_page(LLONG_MAX);
991 }
992
993 /*
994 * if this vnode is known not to have dirty pages,
995 * don't bother to clean it out.
996 */
997
998 if (nodirty) {
999 #if !defined(DEBUG)
1000 if (dirtyonly) {
1001 goto skip_scan;
1002 }
1003 #endif /* !defined(DEBUG) */
1004 flags &= ~PGO_CLEANIT;
1005 }
1006
1007 /*
1008 * start the loop to scan pages.
1009 */
1010
1011 cleanall = true;
1012 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1013 uvm_page_array_init(&a);
1014 for (;;) {
1015 bool pgprotected;
1016
1017 /*
1018 * if !dirtyonly, iterate over all resident pages in the range.
1019 *
1020 * if dirtyonly, only possibly dirty pages are interesting.
1021 * however, if we are asked to sync for integrity, we should
1022 * wait on pages being written back by other threads as well.
1023 */
1024
1025 pg = uvm_page_array_fill_and_peek(&a, uobj, nextoff, 0,
1026 dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
1027 (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
1028 if (pg == NULL) {
1029 break;
1030 }
1031
1032 KASSERT(pg->uobject == uobj);
1033 KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1034 (pg->flags & (PG_BUSY)) != 0);
1035 KASSERT(pg->offset >= startoff);
1036 KASSERT(pg->offset >= nextoff);
1037 KASSERT(!dirtyonly ||
1038 uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
1039 radix_tree_get_tag(&uobj->uo_pages,
1040 pg->offset >> PAGE_SHIFT, UVM_PAGE_WRITEBACK_TAG));
1041
1042 if (pg->offset >= endoff) {
1043 break;
1044 }
1045
1046 /*
1047 * a preempt point.
1048 */
1049
1050 if (preempt_needed()) {
1051 nextoff = pg->offset; /* visit this page again */
1052 rw_exit(slock);
1053 preempt();
1054 /*
1055 * as we dropped the object lock, our cached pages can
1056 * be stale.
1057 */
1058 uvm_page_array_clear(&a);
1059 rw_enter(slock, RW_WRITER);
1060 continue;
1061 }
1062
1063 /*
1064 * if the current page is busy, wait for it to become unbusy.
1065 */
1066
1067 if ((pg->flags & PG_BUSY) != 0) {
1068 UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
1069 0, 0, 0);
1070 if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
1071 && (flags & PGO_BUSYFAIL) != 0) {
1072 UVMHIST_LOG(ubchist, "busyfail %#jx",
1073 (uintptr_t)pg, 0, 0, 0);
1074 error = EDEADLK;
1075 if (busypg != NULL)
1076 *busypg = pg;
1077 break;
1078 }
1079 if (pagedaemon) {
1080 /*
1081 * someone has taken the page while we
1082 * dropped the lock for fstrans_start.
1083 */
1084 break;
1085 }
1086 /*
1087 * don't bother to wait on other's activities
1088 * unless we are asked to sync for integrity.
1089 */
1090 if (!async && (flags & PGO_RECLAIM) == 0) {
1091 wasclean = false;
1092 nextoff = pg->offset + PAGE_SIZE;
1093 uvm_page_array_advance(&a);
1094 continue;
1095 }
1096 nextoff = pg->offset; /* visit this page again */
1097 uvm_pagewait(pg, slock, "genput");
1098 /*
1099 * as we dropped the object lock, our cached pages can
1100 * be stale.
1101 */
1102 uvm_page_array_clear(&a);
1103 rw_enter(slock, RW_WRITER);
1104 continue;
1105 }
1106
1107 nextoff = pg->offset + PAGE_SIZE;
1108 uvm_page_array_advance(&a);
1109
1110 /*
1111 * if we're freeing, remove all mappings of the page now.
1112 * if we're cleaning, check if the page is needs to be cleaned.
1113 */
1114
1115 pgprotected = false;
1116 if (flags & PGO_FREE) {
1117 pmap_page_protect(pg, VM_PROT_NONE);
1118 pgprotected = true;
1119 } else if (flags & PGO_CLEANIT) {
1120
1121 /*
1122 * if we still have some hope to pull this vnode off
1123 * from the syncer queue, write-protect the page.
1124 */
1125
1126 if (cleanall && wasclean) {
1127
1128 /*
1129 * uobj pages get wired only by uvm_fault
1130 * where uobj is locked.
1131 */
1132
1133 if (pg->wire_count == 0) {
1134 pmap_page_protect(pg,
1135 VM_PROT_READ|VM_PROT_EXECUTE);
1136 pgprotected = true;
1137 } else {
1138 cleanall = false;
1139 }
1140 }
1141 }
1142
1143 if (flags & PGO_CLEANIT) {
1144 needs_clean = uvm_pagecheckdirty(pg, pgprotected);
1145 } else {
1146 needs_clean = false;
1147 }
1148
1149 /*
1150 * if we're cleaning, build a cluster.
1151 * the cluster will consist of pages which are currently dirty.
1152 * if not cleaning, just operate on the one page.
1153 */
1154
1155 if (needs_clean) {
1156 wasclean = false;
1157 memset(pgs, 0, sizeof(pgs));
1158 pg->flags |= PG_BUSY;
1159 UVM_PAGE_OWN(pg, "genfs_putpages");
1160
1161 /*
1162 * let the fs constrain the offset range of the cluster.
1163 * we additionally constrain the range here such that
1164 * it fits in the "pgs" pages array.
1165 */
1166
1167 off_t fslo, fshi, genlo, lo, off = pg->offset;
1168 GOP_PUTRANGE(vp, off, &fslo, &fshi);
1169 KASSERT(fslo == trunc_page(fslo));
1170 KASSERT(fslo <= off);
1171 KASSERT(fshi == trunc_page(fshi));
1172 KASSERT(fshi == 0 || off < fshi);
1173
1174 if (off > MAXPHYS / 2)
1175 genlo = trunc_page(off - (MAXPHYS / 2));
1176 else
1177 genlo = 0;
1178 lo = MAX(fslo, genlo);
1179
1180 /*
1181 * first look backward.
1182 */
1183
1184 npages = (off - lo) >> PAGE_SHIFT;
1185 nback = npages;
1186 uvn_findpages(uobj, off - PAGE_SIZE, &nback,
1187 &pgs[0], NULL,
1188 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1189 if (nback) {
1190 memmove(&pgs[0], &pgs[npages - nback],
1191 nback * sizeof(pgs[0]));
1192 if (npages - nback < nback)
1193 memset(&pgs[nback], 0,
1194 (npages - nback) * sizeof(pgs[0]));
1195 else
1196 memset(&pgs[npages - nback], 0,
1197 nback * sizeof(pgs[0]));
1198 }
1199
1200 /*
1201 * then plug in our page of interest.
1202 */
1203
1204 pgs[nback] = pg;
1205
1206 /*
1207 * then look forward to fill in the remaining space in
1208 * the array of pages.
1209 *
1210 * pass our cached array of pages so that hopefully
1211 * uvn_findpages can find some good pages in it.
1212 * the array a was filled above with the one of
1213 * following sets of flags:
1214 * 0
1215 * UVM_PAGE_ARRAY_FILL_DIRTY
1216 * UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
1217 */
1218
1219 npages = MAXPAGES - nback - 1;
1220 if (fshi)
1221 npages = MIN(npages,
1222 (fshi - off - 1) >> PAGE_SHIFT);
1223 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1224 &pgs[nback + 1], NULL,
1225 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1226 npages += nback + 1;
1227 } else {
1228 pgs[0] = pg;
1229 npages = 1;
1230 nback = 0;
1231 }
1232
1233 /*
1234 * apply FREE or DEACTIVATE options if requested.
1235 */
1236
1237 for (i = 0; i < npages; i++) {
1238 tpg = pgs[i];
1239 KASSERT(tpg->uobject == uobj);
1240 KASSERT(i == 0 ||
1241 pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
1242 KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
1243 UVM_PAGE_STATUS_DIRTY);
1244 if (needs_clean) {
1245 /*
1246 * mark pages as WRITEBACK so that concurrent
1247 * fsync can find and wait for our activities.
1248 */
1249 radix_tree_set_tag(&uobj->uo_pages,
1250 pgs[i]->offset >> PAGE_SHIFT,
1251 UVM_PAGE_WRITEBACK_TAG);
1252 }
1253 if (tpg->offset < startoff || tpg->offset >= endoff)
1254 continue;
1255 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1256 uvm_pagelock(tpg);
1257 uvm_pagedeactivate(tpg);
1258 uvm_pageunlock(tpg);
1259 } else if (flags & PGO_FREE) {
1260 pmap_page_protect(tpg, VM_PROT_NONE);
1261 if (tpg->flags & PG_BUSY) {
1262 tpg->flags |= freeflag;
1263 if (pagedaemon) {
1264 uvm_pageout_start(1);
1265 uvm_pagelock(tpg);
1266 uvm_pagedequeue(tpg);
1267 uvm_pageunlock(tpg);
1268 }
1269 } else {
1270
1271 /*
1272 * ``page is not busy''
1273 * implies that npages is 1
1274 * and needs_clean is false.
1275 */
1276
1277 KASSERT(npages == 1);
1278 KASSERT(!needs_clean);
1279 KASSERT(pg == tpg);
1280 KASSERT(nextoff ==
1281 tpg->offset + PAGE_SIZE);
1282 uvm_pagefree(tpg);
1283 if (pagedaemon)
1284 uvmexp.pdfreed++;
1285 }
1286 }
1287 }
1288 if (needs_clean) {
1289 modified = true;
1290 KASSERT(nextoff == pg->offset + PAGE_SIZE);
1291 KASSERT(nback < npages);
1292 nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
1293 KASSERT(pgs[nback] == pg);
1294 KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
1295
1296 /*
1297 * start the i/o.
1298 */
1299 rw_exit(slock);
1300 error = GOP_WRITE(vp, pgs, npages, flags);
1301 /*
1302 * as we dropped the object lock, our cached pages can
1303 * be stale.
1304 */
1305 uvm_page_array_clear(&a);
1306 rw_enter(slock, RW_WRITER);
1307 if (error) {
1308 break;
1309 }
1310 }
1311 }
1312 uvm_page_array_fini(&a);
1313
1314 /*
1315 * update ctime/mtime if the modification we started writing out might
1316 * be from mmap'ed write.
1317 *
1318 * this is necessary when an application keeps a file mmaped and
1319 * repeatedly modifies it via the window. note that, because we
1320 * don't always write-protect pages when cleaning, such modifications
1321 * might not involve any page faults.
1322 */
1323
1324 mutex_enter(vp->v_interlock);
1325 if (modified && (vp->v_iflag & VI_WRMAP) != 0 &&
1326 (vp->v_type != VBLK ||
1327 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1328 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1329 }
1330
1331 /*
1332 * if we no longer have any possibly dirty pages, take us off the
1333 * syncer list.
1334 */
1335
1336 if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
1337 radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
1338 UVM_PAGE_DIRTY_TAG)) {
1339 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1340 vn_syncer_remove_from_worklist(vp);
1341 }
1342
1343 #if !defined(DEBUG)
1344 skip_scan:
1345 #endif /* !defined(DEBUG) */
1346
1347 /* Wait for output to complete. */
1348 rw_exit(slock);
1349 if (!wasclean && !async && vp->v_numoutput != 0) {
1350 while (vp->v_numoutput != 0)
1351 cv_wait(&vp->v_cv, vp->v_interlock);
1352 }
1353 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1354 mutex_exit(vp->v_interlock);
1355
1356 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1357 /*
1358 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1359 * retrying is not a big deal because, in many cases,
1360 * uobj->uo_npages is already 0 here.
1361 */
1362 rw_enter(slock, RW_WRITER);
1363 goto retry;
1364 }
1365
1366 if (trans_mp) {
1367 if (holds_wapbl)
1368 WAPBL_END(trans_mp);
1369 fstrans_done(trans_mp);
1370 }
1371
1372 return (error);
1373 }
1374
1375 /*
1376 * Default putrange method for file systems that do not care
1377 * how many pages are given to one GOP_WRITE() call.
1378 */
1379 void
1380 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
1381 {
1382
1383 *lop = 0;
1384 *hip = 0;
1385 }
1386
1387 int
1388 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1389 {
1390 off_t off;
1391 vaddr_t kva;
1392 size_t len;
1393 int error;
1394 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1395
1396 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1397 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1398
1399 off = pgs[0]->offset;
1400 kva = uvm_pagermapin(pgs, npages,
1401 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1402 len = npages << PAGE_SHIFT;
1403
1404 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1405 uvm_aio_aiodone);
1406
1407 return error;
1408 }
1409
1410 /*
1411 * genfs_gop_write_rwmap:
1412 *
1413 * a variant of genfs_gop_write. it's used by UDF for its directory buffers.
1414 * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
1415 * the contents before writing it out to the underlying storage.
1416 */
1417
1418 int
1419 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
1420 int flags)
1421 {
1422 off_t off;
1423 vaddr_t kva;
1424 size_t len;
1425 int error;
1426 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1427
1428 UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
1429 (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
1430
1431 off = pgs[0]->offset;
1432 kva = uvm_pagermapin(pgs, npages,
1433 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1434 len = npages << PAGE_SHIFT;
1435
1436 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1437 uvm_aio_aiodone);
1438
1439 return error;
1440 }
1441
1442 /*
1443 * Backend routine for doing I/O to vnode pages. Pages are already locked
1444 * and mapped into kernel memory. Here we just look up the underlying
1445 * device block addresses and call the strategy routine.
1446 */
1447
1448 static int
1449 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1450 enum uio_rw rw, void (*iodone)(struct buf *))
1451 {
1452 int s, error;
1453 int fs_bshift, dev_bshift;
1454 off_t eof, offset, startoffset;
1455 size_t bytes, iobytes, skipbytes;
1456 struct buf *mbp, *bp;
1457 const bool async = (flags & PGO_SYNCIO) == 0;
1458 const bool lazy = (flags & PGO_LAZY) == 0;
1459 const bool iowrite = rw == UIO_WRITE;
1460 const int brw = iowrite ? B_WRITE : B_READ;
1461 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1462
1463 UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
1464 (uintptr_t)vp, (uintptr_t)kva, len, flags);
1465
1466 KASSERT(vp->v_size <= vp->v_writesize);
1467 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1468 if (vp->v_type != VBLK) {
1469 fs_bshift = vp->v_mount->mnt_fs_bshift;
1470 dev_bshift = vp->v_mount->mnt_dev_bshift;
1471 } else {
1472 fs_bshift = DEV_BSHIFT;
1473 dev_bshift = DEV_BSHIFT;
1474 }
1475 error = 0;
1476 startoffset = off;
1477 bytes = MIN(len, eof - startoffset);
1478 skipbytes = 0;
1479 KASSERT(bytes != 0);
1480
1481 if (iowrite) {
1482 /*
1483 * why += 2?
1484 * 1 for biodone, 1 for uvm_aio_aiodone.
1485 */
1486 mutex_enter(vp->v_interlock);
1487 vp->v_numoutput += 2;
1488 mutex_exit(vp->v_interlock);
1489 }
1490 mbp = getiobuf(vp, true);
1491 UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
1492 (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
1493 mbp->b_bufsize = len;
1494 mbp->b_data = (void *)kva;
1495 mbp->b_resid = mbp->b_bcount = bytes;
1496 mbp->b_cflags |= BC_BUSY | BC_AGE;
1497 if (async) {
1498 mbp->b_flags = brw | B_ASYNC;
1499 mbp->b_iodone = iodone;
1500 } else {
1501 mbp->b_flags = brw;
1502 mbp->b_iodone = NULL;
1503 }
1504 if (curlwp == uvm.pagedaemon_lwp)
1505 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1506 else if (async || lazy)
1507 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1508 else
1509 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1510
1511 bp = NULL;
1512 for (offset = startoffset;
1513 bytes > 0;
1514 offset += iobytes, bytes -= iobytes) {
1515 int run;
1516 daddr_t lbn, blkno;
1517 struct vnode *devvp;
1518
1519 /*
1520 * bmap the file to find out the blkno to read from and
1521 * how much we can read in one i/o. if bmap returns an error,
1522 * skip the rest of the top-level i/o.
1523 */
1524
1525 lbn = offset >> fs_bshift;
1526 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1527 if (error) {
1528 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
1529 lbn, error, 0, 0);
1530 skipbytes += bytes;
1531 bytes = 0;
1532 goto loopdone;
1533 }
1534
1535 /*
1536 * see how many pages can be read with this i/o.
1537 * reduce the i/o size if necessary to avoid
1538 * overwriting pages with valid data.
1539 */
1540
1541 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1542 bytes);
1543
1544 /*
1545 * if this block isn't allocated, zero it instead of
1546 * reading it. unless we are going to allocate blocks,
1547 * mark the pages we zeroed PG_RDONLY.
1548 */
1549
1550 if (blkno == (daddr_t)-1) {
1551 if (!iowrite) {
1552 memset((char *)kva + (offset - startoffset), 0,
1553 iobytes);
1554 }
1555 skipbytes += iobytes;
1556 continue;
1557 }
1558
1559 /*
1560 * allocate a sub-buf for this piece of the i/o
1561 * (or just use mbp if there's only 1 piece),
1562 * and start it going.
1563 */
1564
1565 if (offset == startoffset && iobytes == bytes) {
1566 bp = mbp;
1567 } else {
1568 UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
1569 (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
1570 bp = getiobuf(vp, true);
1571 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1572 }
1573 bp->b_lblkno = 0;
1574
1575 /* adjust physical blkno for partial blocks */
1576 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1577 dev_bshift);
1578
1579 UVMHIST_LOG(ubchist,
1580 "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
1581 (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
1582
1583 VOP_STRATEGY(devvp, bp);
1584 }
1585
1586 loopdone:
1587 if (skipbytes) {
1588 UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
1589 }
1590 nestiobuf_done(mbp, skipbytes, error);
1591 if (async) {
1592 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1593 return (0);
1594 }
1595 UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
1596 error = biowait(mbp);
1597 s = splbio();
1598 (*iodone)(mbp);
1599 splx(s);
1600 UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
1601 return (error);
1602 }
1603
1604 int
1605 genfs_compat_getpages(void *v)
1606 {
1607 struct vop_getpages_args /* {
1608 struct vnode *a_vp;
1609 voff_t a_offset;
1610 struct vm_page **a_m;
1611 int *a_count;
1612 int a_centeridx;
1613 vm_prot_t a_access_type;
1614 int a_advice;
1615 int a_flags;
1616 } */ *ap = v;
1617
1618 off_t origoffset;
1619 struct vnode *vp = ap->a_vp;
1620 struct uvm_object *uobj = &vp->v_uobj;
1621 struct vm_page *pg, **pgs;
1622 vaddr_t kva;
1623 int i, error, orignpages, npages;
1624 struct iovec iov;
1625 struct uio uio;
1626 kauth_cred_t cred = curlwp->l_cred;
1627 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1628
1629 error = 0;
1630 origoffset = ap->a_offset;
1631 orignpages = *ap->a_count;
1632 pgs = ap->a_m;
1633
1634 if (ap->a_flags & PGO_LOCKED) {
1635 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
1636 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1637
1638 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1639 return error;
1640 }
1641 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1642 rw_exit(uobj->vmobjlock);
1643 return EINVAL;
1644 }
1645 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1646 rw_exit(uobj->vmobjlock);
1647 return 0;
1648 }
1649 npages = orignpages;
1650 uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
1651 rw_exit(uobj->vmobjlock);
1652 kva = uvm_pagermapin(pgs, npages,
1653 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1654 for (i = 0; i < npages; i++) {
1655 pg = pgs[i];
1656 if ((pg->flags & PG_FAKE) == 0) {
1657 continue;
1658 }
1659 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1660 iov.iov_len = PAGE_SIZE;
1661 uio.uio_iov = &iov;
1662 uio.uio_iovcnt = 1;
1663 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1664 uio.uio_rw = UIO_READ;
1665 uio.uio_resid = PAGE_SIZE;
1666 UIO_SETUP_SYSSPACE(&uio);
1667 /* XXX vn_lock */
1668 error = VOP_READ(vp, &uio, 0, cred);
1669 if (error) {
1670 break;
1671 }
1672 if (uio.uio_resid) {
1673 memset(iov.iov_base, 0, uio.uio_resid);
1674 }
1675 }
1676 uvm_pagermapout(kva, npages);
1677 rw_enter(uobj->vmobjlock, RW_WRITER);
1678 for (i = 0; i < npages; i++) {
1679 pg = pgs[i];
1680 if (error && (pg->flags & PG_FAKE) != 0) {
1681 pg->flags |= PG_RELEASED;
1682 } else {
1683 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
1684 uvm_pagelock(pg);
1685 uvm_pageactivate(pg);
1686 uvm_pageunlock(pg);
1687 }
1688 }
1689 if (error) {
1690 uvm_page_unbusy(pgs, npages);
1691 }
1692 rw_exit(uobj->vmobjlock);
1693 return error;
1694 }
1695
1696 int
1697 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1698 int flags)
1699 {
1700 off_t offset;
1701 struct iovec iov;
1702 struct uio uio;
1703 kauth_cred_t cred = curlwp->l_cred;
1704 struct buf *bp;
1705 vaddr_t kva;
1706 int error;
1707
1708 offset = pgs[0]->offset;
1709 kva = uvm_pagermapin(pgs, npages,
1710 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1711
1712 iov.iov_base = (void *)kva;
1713 iov.iov_len = npages << PAGE_SHIFT;
1714 uio.uio_iov = &iov;
1715 uio.uio_iovcnt = 1;
1716 uio.uio_offset = offset;
1717 uio.uio_rw = UIO_WRITE;
1718 uio.uio_resid = npages << PAGE_SHIFT;
1719 UIO_SETUP_SYSSPACE(&uio);
1720 /* XXX vn_lock */
1721 error = VOP_WRITE(vp, &uio, 0, cred);
1722
1723 mutex_enter(vp->v_interlock);
1724 vp->v_numoutput++;
1725 mutex_exit(vp->v_interlock);
1726
1727 bp = getiobuf(vp, true);
1728 bp->b_cflags |= BC_BUSY | BC_AGE;
1729 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1730 bp->b_data = (char *)kva;
1731 bp->b_bcount = npages << PAGE_SHIFT;
1732 bp->b_bufsize = npages << PAGE_SHIFT;
1733 bp->b_resid = 0;
1734 bp->b_error = error;
1735 uvm_aio_aiodone(bp);
1736 return (error);
1737 }
1738
1739 /*
1740 * Process a uio using direct I/O. If we reach a part of the request
1741 * which cannot be processed in this fashion for some reason, just return.
1742 * The caller must handle some additional part of the request using
1743 * buffered I/O before trying direct I/O again.
1744 */
1745
1746 void
1747 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1748 {
1749 struct vmspace *vs;
1750 struct iovec *iov;
1751 vaddr_t va;
1752 size_t len;
1753 const int mask = DEV_BSIZE - 1;
1754 int error;
1755 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1756 (ioflag & IO_JOURNALLOCKED) == 0);
1757
1758 #ifdef DIAGNOSTIC
1759 if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
1760 WAPBL_JLOCK_ASSERT(vp->v_mount);
1761 #endif
1762
1763 /*
1764 * We only support direct I/O to user space for now.
1765 */
1766
1767 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1768 return;
1769 }
1770
1771 /*
1772 * If the vnode is mapped, we would need to get the getpages lock
1773 * to stabilize the bmap, but then we would get into trouble while
1774 * locking the pages if the pages belong to this same vnode (or a
1775 * multi-vnode cascade to the same effect). Just fall back to
1776 * buffered I/O if the vnode is mapped to avoid this mess.
1777 */
1778
1779 if (vp->v_vflag & VV_MAPPED) {
1780 return;
1781 }
1782
1783 if (need_wapbl) {
1784 error = WAPBL_BEGIN(vp->v_mount);
1785 if (error)
1786 return;
1787 }
1788
1789 /*
1790 * Do as much of the uio as possible with direct I/O.
1791 */
1792
1793 vs = uio->uio_vmspace;
1794 while (uio->uio_resid) {
1795 iov = uio->uio_iov;
1796 if (iov->iov_len == 0) {
1797 uio->uio_iov++;
1798 uio->uio_iovcnt--;
1799 continue;
1800 }
1801 va = (vaddr_t)iov->iov_base;
1802 len = MIN(iov->iov_len, genfs_maxdio);
1803 len &= ~mask;
1804
1805 /*
1806 * If the next chunk is smaller than DEV_BSIZE or extends past
1807 * the current EOF, then fall back to buffered I/O.
1808 */
1809
1810 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1811 break;
1812 }
1813
1814 /*
1815 * Check alignment. The file offset must be at least
1816 * sector-aligned. The exact constraint on memory alignment
1817 * is very hardware-dependent, but requiring sector-aligned
1818 * addresses there too is safe.
1819 */
1820
1821 if (uio->uio_offset & mask || va & mask) {
1822 break;
1823 }
1824 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1825 uio->uio_rw);
1826 if (error) {
1827 break;
1828 }
1829 iov->iov_base = (char *)iov->iov_base + len;
1830 iov->iov_len -= len;
1831 uio->uio_offset += len;
1832 uio->uio_resid -= len;
1833 }
1834
1835 if (need_wapbl)
1836 WAPBL_END(vp->v_mount);
1837 }
1838
1839 /*
1840 * Iodone routine for direct I/O. We don't do much here since the request is
1841 * always synchronous, so the caller will do most of the work after biowait().
1842 */
1843
1844 static void
1845 genfs_dio_iodone(struct buf *bp)
1846 {
1847
1848 KASSERT((bp->b_flags & B_ASYNC) == 0);
1849 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1850 mutex_enter(bp->b_objlock);
1851 vwakeup(bp);
1852 mutex_exit(bp->b_objlock);
1853 }
1854 putiobuf(bp);
1855 }
1856
1857 /*
1858 * Process one chunk of a direct I/O request.
1859 */
1860
1861 static int
1862 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1863 off_t off, enum uio_rw rw)
1864 {
1865 struct vm_map *map;
1866 struct pmap *upm, *kpm __unused;
1867 size_t klen = round_page(uva + len) - trunc_page(uva);
1868 off_t spoff, epoff;
1869 vaddr_t kva, puva;
1870 paddr_t pa;
1871 vm_prot_t prot;
1872 int error, rv __diagused, poff, koff;
1873 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1874 (rw == UIO_WRITE ? PGO_FREE : 0);
1875
1876 /*
1877 * For writes, verify that this range of the file already has fully
1878 * allocated backing store. If there are any holes, just punt and
1879 * make the caller take the buffered write path.
1880 */
1881
1882 if (rw == UIO_WRITE) {
1883 daddr_t lbn, elbn, blkno;
1884 int bsize, bshift, run;
1885
1886 bshift = vp->v_mount->mnt_fs_bshift;
1887 bsize = 1 << bshift;
1888 lbn = off >> bshift;
1889 elbn = (off + len + bsize - 1) >> bshift;
1890 while (lbn < elbn) {
1891 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1892 if (error) {
1893 return error;
1894 }
1895 if (blkno == (daddr_t)-1) {
1896 return ENOSPC;
1897 }
1898 lbn += 1 + run;
1899 }
1900 }
1901
1902 /*
1903 * Flush any cached pages for parts of the file that we're about to
1904 * access. If we're writing, invalidate pages as well.
1905 */
1906
1907 spoff = trunc_page(off);
1908 epoff = round_page(off + len);
1909 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
1910 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1911 if (error) {
1912 return error;
1913 }
1914
1915 /*
1916 * Wire the user pages and remap them into kernel memory.
1917 */
1918
1919 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1920 error = uvm_vslock(vs, (void *)uva, len, prot);
1921 if (error) {
1922 return error;
1923 }
1924
1925 map = &vs->vm_map;
1926 upm = vm_map_pmap(map);
1927 kpm = vm_map_pmap(kernel_map);
1928 puva = trunc_page(uva);
1929 kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
1930 UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
1931 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1932 rv = pmap_extract(upm, puva + poff, &pa);
1933 KASSERT(rv);
1934 pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
1935 }
1936 pmap_update(kpm);
1937
1938 /*
1939 * Do the I/O.
1940 */
1941
1942 koff = uva - trunc_page(uva);
1943 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1944 genfs_dio_iodone);
1945
1946 /*
1947 * Tear down the kernel mapping.
1948 */
1949
1950 pmap_kremove(kva, klen);
1951 pmap_update(kpm);
1952 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1953
1954 /*
1955 * Unwire the user pages.
1956 */
1957
1958 uvm_vsunlock(vs, (void *)uva, len);
1959 return error;
1960 }
1961