Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.98
      1 /*	$NetBSD: genfs_io.c,v 1.98 2020/06/14 00:25:22 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.98 2020/06/14 00:25:22 ad Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/vnode.h>
     42 #include <sys/kmem.h>
     43 #include <sys/kauth.h>
     44 #include <sys/fstrans.h>
     45 #include <sys/buf.h>
     46 #include <sys/atomic.h>
     47 
     48 #include <miscfs/genfs/genfs.h>
     49 #include <miscfs/genfs/genfs_node.h>
     50 #include <miscfs/specfs/specdev.h>
     51 
     52 #include <uvm/uvm.h>
     53 #include <uvm/uvm_pager.h>
     54 #include <uvm/uvm_page_array.h>
     55 
     56 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     57     off_t, enum uio_rw);
     58 static void genfs_dio_iodone(struct buf *);
     59 
     60 static int genfs_getpages_read(struct vnode *, struct vm_page **, int, off_t,
     61     off_t, bool, bool, bool, bool);
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static void genfs_rel_pages(struct vm_page **, unsigned int);
     65 
     66 int genfs_maxdio = MAXPHYS;
     67 
     68 static void
     69 genfs_rel_pages(struct vm_page **pgs, unsigned int npages)
     70 {
     71 	unsigned int i;
     72 
     73 	for (i = 0; i < npages; i++) {
     74 		struct vm_page *pg = pgs[i];
     75 
     76 		if (pg == NULL || pg == PGO_DONTCARE)
     77 			continue;
     78 		KASSERT(uvm_page_owner_locked_p(pg, true));
     79 		if (pg->flags & PG_FAKE) {
     80 			pg->flags |= PG_RELEASED;
     81 		}
     82 	}
     83 	uvm_page_unbusy(pgs, npages);
     84 }
     85 
     86 /*
     87  * generic VM getpages routine.
     88  * Return PG_BUSY pages for the given range,
     89  * reading from backing store if necessary.
     90  */
     91 
     92 int
     93 genfs_getpages(void *v)
     94 {
     95 	struct vop_getpages_args /* {
     96 		struct vnode *a_vp;
     97 		voff_t a_offset;
     98 		struct vm_page **a_m;
     99 		int *a_count;
    100 		int a_centeridx;
    101 		vm_prot_t a_access_type;
    102 		int a_advice;
    103 		int a_flags;
    104 	} */ * const ap = v;
    105 
    106 	off_t diskeof, memeof;
    107 	int i, error, npages, iflag;
    108 	const int flags = ap->a_flags;
    109 	struct vnode * const vp = ap->a_vp;
    110 	struct uvm_object * const uobj = &vp->v_uobj;
    111 	const bool async = (flags & PGO_SYNCIO) == 0;
    112 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    113 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    114 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    115 	const bool need_wapbl = (vp->v_mount->mnt_wapbl &&
    116 			(flags & PGO_JOURNALLOCKED) == 0);
    117 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    118 	bool holds_wapbl = false;
    119 	struct mount *trans_mount = NULL;
    120 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    121 
    122 	UVMHIST_LOG(ubchist, "vp %#jx off 0x%jx/%jx count %jd",
    123 	    (uintptr_t)vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    124 
    125 	KASSERT(memwrite >= overwrite);
    126 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    127 	    vp->v_type == VLNK || vp->v_type == VBLK);
    128 
    129 	/*
    130 	 * the object must be locked.  it can only be a read lock when
    131 	 * processing a read fault with PGO_LOCKED.
    132 	 */
    133 
    134 	KASSERT(rw_lock_held(uobj->vmobjlock));
    135 	KASSERT(rw_write_held(uobj->vmobjlock) ||
    136 	   ((flags & PGO_LOCKED) != 0 && !memwrite));
    137 
    138 #ifdef DIAGNOSTIC
    139 	if ((flags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    140                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    141 #endif
    142 
    143 	/*
    144 	 * check for reclaimed vnode.  v_interlock is not held here, but
    145 	 * VI_DEADCHECK is set with vmobjlock held.
    146 	 */
    147 
    148 	iflag = atomic_load_relaxed(&vp->v_iflag);
    149 	if (__predict_false((iflag & VI_DEADCHECK) != 0)) {
    150 		mutex_enter(vp->v_interlock);
    151 		error = vdead_check(vp, VDEAD_NOWAIT);
    152 		mutex_exit(vp->v_interlock);
    153 		if (error) {
    154 			if ((flags & PGO_LOCKED) == 0)
    155 				rw_exit(uobj->vmobjlock);
    156 			return error;
    157 		}
    158 	}
    159 
    160 startover:
    161 	error = 0;
    162 	const voff_t origvsize = vp->v_size;
    163 	const off_t origoffset = ap->a_offset;
    164 	const int orignpages = *ap->a_count;
    165 
    166 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    167 	if (flags & PGO_PASTEOF) {
    168 		off_t newsize;
    169 #if defined(DIAGNOSTIC)
    170 		off_t writeeof;
    171 #endif /* defined(DIAGNOSTIC) */
    172 
    173 		newsize = MAX(origvsize,
    174 		    origoffset + (orignpages << PAGE_SHIFT));
    175 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    176 #if defined(DIAGNOSTIC)
    177 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    178 		if (newsize > round_page(writeeof)) {
    179 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    180 			    __func__, newsize, round_page(writeeof));
    181 		}
    182 #endif /* defined(DIAGNOSTIC) */
    183 	} else {
    184 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    185 	}
    186 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    187 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    188 	KASSERT(orignpages > 0);
    189 
    190 	/*
    191 	 * Bounds-check the request.
    192 	 */
    193 
    194 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    195 		if ((flags & PGO_LOCKED) == 0) {
    196 			rw_exit(uobj->vmobjlock);
    197 		}
    198 		UVMHIST_LOG(ubchist, "off 0x%jx count %jd goes past EOF 0x%jx",
    199 		    origoffset, *ap->a_count, memeof,0);
    200 		error = EINVAL;
    201 		goto out_err;
    202 	}
    203 
    204 	/* uobj is locked */
    205 
    206 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    207 	    (vp->v_type != VBLK ||
    208 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    209 		int updflags = 0;
    210 
    211 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    212 			updflags = GOP_UPDATE_ACCESSED;
    213 		}
    214 		if (memwrite) {
    215 			updflags |= GOP_UPDATE_MODIFIED;
    216 		}
    217 		if (updflags != 0) {
    218 			GOP_MARKUPDATE(vp, updflags);
    219 		}
    220 	}
    221 
    222 	/*
    223 	 * For PGO_LOCKED requests, just return whatever's in memory.
    224 	 */
    225 
    226 	if (flags & PGO_LOCKED) {
    227 		int nfound;
    228 		struct vm_page *pg;
    229 
    230 		KASSERT(!glocked);
    231 		npages = *ap->a_count;
    232 #if defined(DEBUG)
    233 		for (i = 0; i < npages; i++) {
    234 			pg = ap->a_m[i];
    235 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    236 		}
    237 #endif /* defined(DEBUG) */
    238  		nfound = uvn_findpages(uobj, origoffset, &npages,
    239 		    ap->a_m, NULL,
    240 		    UFP_NOWAIT | UFP_NOALLOC | UFP_NOBUSY |
    241 		    (memwrite ? UFP_NORDONLY : 0));
    242 		KASSERT(npages == *ap->a_count);
    243 		if (nfound == 0) {
    244 			error = EBUSY;
    245 			goto out_err;
    246 		}
    247 		/*
    248 		 * lock and unlock g_glock to ensure that no one is truncating
    249 		 * the file behind us.
    250 		 */
    251 		if (!genfs_node_rdtrylock(vp)) {
    252 			/*
    253 			 * restore the array.
    254 			 */
    255 
    256 			for (i = 0; i < npages; i++) {
    257 				pg = ap->a_m[i];
    258 
    259 				if (pg != NULL && pg != PGO_DONTCARE) {
    260 					ap->a_m[i] = NULL;
    261 				}
    262 				KASSERT(ap->a_m[i] == NULL ||
    263 				    ap->a_m[i] == PGO_DONTCARE);
    264 			}
    265 		} else {
    266 			genfs_node_unlock(vp);
    267 		}
    268 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    269 		if (error == 0 && memwrite) {
    270 			for (i = 0; i < npages; i++) {
    271 				pg = ap->a_m[i];
    272 				if (pg == NULL || pg == PGO_DONTCARE) {
    273 					continue;
    274 				}
    275 				if (uvm_pagegetdirty(pg) ==
    276 				    UVM_PAGE_STATUS_CLEAN) {
    277 					uvm_pagemarkdirty(pg,
    278 					    UVM_PAGE_STATUS_UNKNOWN);
    279 				}
    280 			}
    281 		}
    282 		goto out_err;
    283 	}
    284 	rw_exit(uobj->vmobjlock);
    285 
    286 	/*
    287 	 * find the requested pages and make some simple checks.
    288 	 * leave space in the page array for a whole block.
    289 	 */
    290 
    291 	const int fs_bshift = (vp->v_type != VBLK) ?
    292 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    293 	const int fs_bsize = 1 << fs_bshift;
    294 #define	blk_mask	(fs_bsize - 1)
    295 #define	trunc_blk(x)	((x) & ~blk_mask)
    296 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    297 
    298 	const int orignmempages = MIN(orignpages,
    299 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    300 	npages = orignmempages;
    301 	const off_t startoffset = trunc_blk(origoffset);
    302 	const off_t endoffset = MIN(
    303 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    304 	    round_page(memeof));
    305 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    306 
    307 	const int pgs_size = sizeof(struct vm_page *) *
    308 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    309 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    310 
    311 	if (pgs_size > sizeof(pgs_onstack)) {
    312 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    313 		if (pgs == NULL) {
    314 			pgs = pgs_onstack;
    315 			error = ENOMEM;
    316 			goto out_err;
    317 		}
    318 	} else {
    319 		pgs = pgs_onstack;
    320 		(void)memset(pgs, 0, pgs_size);
    321 	}
    322 
    323 	UVMHIST_LOG(ubchist, "ridx %jd npages %jd startoff %jd endoff %jd",
    324 	    ridx, npages, startoffset, endoffset);
    325 
    326 	if (trans_mount == NULL) {
    327 		trans_mount = vp->v_mount;
    328 		fstrans_start(trans_mount);
    329 		/*
    330 		 * check if this vnode is still valid.
    331 		 */
    332 		mutex_enter(vp->v_interlock);
    333 		error = vdead_check(vp, 0);
    334 		mutex_exit(vp->v_interlock);
    335 		if (error)
    336 			goto out_err_free;
    337 		/*
    338 		 * XXX: This assumes that we come here only via
    339 		 * the mmio path
    340 		 */
    341 		if (blockalloc && need_wapbl) {
    342 			error = WAPBL_BEGIN(trans_mount);
    343 			if (error)
    344 				goto out_err_free;
    345 			holds_wapbl = true;
    346 		}
    347 	}
    348 
    349 	/*
    350 	 * hold g_glock to prevent a race with truncate.
    351 	 *
    352 	 * check if our idea of v_size is still valid.
    353 	 */
    354 
    355 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    356 	if (!glocked) {
    357 		if (blockalloc) {
    358 			genfs_node_wrlock(vp);
    359 		} else {
    360 			genfs_node_rdlock(vp);
    361 		}
    362 	}
    363 	rw_enter(uobj->vmobjlock, RW_WRITER);
    364 	if (vp->v_size < origvsize) {
    365 		if (!glocked) {
    366 			genfs_node_unlock(vp);
    367 		}
    368 		if (pgs != pgs_onstack)
    369 			kmem_free(pgs, pgs_size);
    370 		goto startover;
    371 	}
    372 
    373 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], NULL,
    374 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    375 		if (!glocked) {
    376 			genfs_node_unlock(vp);
    377 		}
    378 		KASSERT(async != 0);
    379 		genfs_rel_pages(&pgs[ridx], orignmempages);
    380 		rw_exit(uobj->vmobjlock);
    381 		error = EBUSY;
    382 		goto out_err_free;
    383 	}
    384 
    385 	/*
    386 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    387 	 */
    388 
    389 	if (overwrite) {
    390 		if (!glocked) {
    391 			genfs_node_unlock(vp);
    392 		}
    393 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    394 
    395 		for (i = 0; i < npages; i++) {
    396 			struct vm_page *pg = pgs[ridx + i];
    397 
    398 			/*
    399 			 * it's caller's responsibility to allocate blocks
    400 			 * beforehand for the overwrite case.
    401 			 */
    402 
    403 			KASSERT((pg->flags & PG_RDONLY) == 0 || !blockalloc);
    404 			pg->flags &= ~PG_RDONLY;
    405 
    406 			/*
    407 			 * mark the page DIRTY.
    408 			 * otherwise another thread can do putpages and pull
    409 			 * our vnode from syncer's queue before our caller does
    410 			 * ubc_release.  note that putpages won't see CLEAN
    411 			 * pages even if they are BUSY.
    412 			 */
    413 
    414 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    415 		}
    416 		npages += ridx;
    417 		goto out;
    418 	}
    419 
    420 	/*
    421 	 * if the pages are already resident, just return them.
    422 	 */
    423 
    424 	for (i = 0; i < npages; i++) {
    425 		struct vm_page *pg = pgs[ridx + i];
    426 
    427 		if ((pg->flags & PG_FAKE) ||
    428 		    (blockalloc && (pg->flags & PG_RDONLY) != 0)) {
    429 			break;
    430 		}
    431 	}
    432 	if (i == npages) {
    433 		if (!glocked) {
    434 			genfs_node_unlock(vp);
    435 		}
    436 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    437 		npages += ridx;
    438 		goto out;
    439 	}
    440 
    441 	/*
    442 	 * the page wasn't resident and we're not overwriting,
    443 	 * so we're going to have to do some i/o.
    444 	 * find any additional pages needed to cover the expanded range.
    445 	 */
    446 
    447 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    448 	if (startoffset != origoffset || npages != orignmempages) {
    449 		int npgs;
    450 
    451 		/*
    452 		 * we need to avoid deadlocks caused by locking
    453 		 * additional pages at lower offsets than pages we
    454 		 * already have locked.  unlock them all and start over.
    455 		 */
    456 
    457 		genfs_rel_pages(&pgs[ridx], orignmempages);
    458 		memset(pgs, 0, pgs_size);
    459 
    460 		UVMHIST_LOG(ubchist, "reset npages start 0x%jx end 0x%jx",
    461 		    startoffset, endoffset, 0,0);
    462 		npgs = npages;
    463 		if (uvn_findpages(uobj, startoffset, &npgs, pgs, NULL,
    464 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    465 			if (!glocked) {
    466 				genfs_node_unlock(vp);
    467 			}
    468 			KASSERT(async != 0);
    469 			genfs_rel_pages(pgs, npages);
    470 			rw_exit(uobj->vmobjlock);
    471 			error = EBUSY;
    472 			goto out_err_free;
    473 		}
    474 	}
    475 
    476 	rw_exit(uobj->vmobjlock);
    477 	error = genfs_getpages_read(vp, pgs, npages, startoffset, diskeof,
    478 	    async, memwrite, blockalloc, glocked);
    479 	if (!glocked) {
    480 		genfs_node_unlock(vp);
    481 	}
    482 	if (error == 0 && async)
    483 		goto out_err_free;
    484 	rw_enter(uobj->vmobjlock, RW_WRITER);
    485 
    486 	/*
    487 	 * we're almost done!  release the pages...
    488 	 * for errors, we free the pages.
    489 	 * otherwise we activate them and mark them as valid and clean.
    490 	 * also, unbusy pages that were not actually requested.
    491 	 */
    492 
    493 	if (error) {
    494 		genfs_rel_pages(pgs, npages);
    495 		rw_exit(uobj->vmobjlock);
    496 		UVMHIST_LOG(ubchist, "returning error %jd", error,0,0,0);
    497 		goto out_err_free;
    498 	}
    499 
    500 out:
    501 	UVMHIST_LOG(ubchist, "succeeding, npages %jd", npages,0,0,0);
    502 	error = 0;
    503 	for (i = 0; i < npages; i++) {
    504 		struct vm_page *pg = pgs[i];
    505 		if (pg == NULL) {
    506 			continue;
    507 		}
    508 		UVMHIST_LOG(ubchist, "examining pg %#jx flags 0x%jx",
    509 		    (uintptr_t)pg, pg->flags, 0,0);
    510 		if (pg->flags & PG_FAKE && !overwrite) {
    511 			/*
    512 			 * we've read page's contents from the backing storage.
    513 			 *
    514 			 * for a read fault, we keep them CLEAN;  if we
    515 			 * encountered a hole while reading, the pages can
    516 			 * already been dirtied with zeros.
    517 			 */
    518 			KASSERTMSG(blockalloc || uvm_pagegetdirty(pg) ==
    519 			    UVM_PAGE_STATUS_CLEAN, "page %p not clean", pg);
    520 			pg->flags &= ~PG_FAKE;
    521 		}
    522 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    523 		if (i < ridx || i >= ridx + orignmempages || async) {
    524 			UVMHIST_LOG(ubchist, "unbusy pg %#jx offset 0x%jx",
    525 			    (uintptr_t)pg, pg->offset,0,0);
    526 			if (pg->flags & PG_FAKE) {
    527 				KASSERT(overwrite);
    528 				uvm_pagezero(pg);
    529 			}
    530 			if (pg->flags & PG_RELEASED) {
    531 				uvm_pagefree(pg);
    532 				continue;
    533 			}
    534 			uvm_pagelock(pg);
    535 			uvm_pageenqueue(pg);
    536 			uvm_pagewakeup(pg);
    537 			uvm_pageunlock(pg);
    538 			pg->flags &= ~(PG_BUSY|PG_FAKE);
    539 			UVM_PAGE_OWN(pg, NULL);
    540 		} else if (memwrite && !overwrite &&
    541 		    uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
    542 			/*
    543 			 * for a write fault, start dirtiness tracking of
    544 			 * requested pages.
    545 			 */
    546 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
    547 		}
    548 	}
    549 	rw_exit(uobj->vmobjlock);
    550 	if (ap->a_m != NULL) {
    551 		memcpy(ap->a_m, &pgs[ridx],
    552 		    orignmempages * sizeof(struct vm_page *));
    553 	}
    554 
    555 out_err_free:
    556 	if (pgs != NULL && pgs != pgs_onstack)
    557 		kmem_free(pgs, pgs_size);
    558 out_err:
    559 	if (trans_mount != NULL) {
    560 		if (holds_wapbl)
    561 			WAPBL_END(trans_mount);
    562 		fstrans_done(trans_mount);
    563 	}
    564 	return error;
    565 }
    566 
    567 /*
    568  * genfs_getpages_read: Read the pages in with VOP_BMAP/VOP_STRATEGY.
    569  *
    570  * "glocked" (which is currently not actually used) tells us not whether
    571  * the genfs_node is locked on entry (it always is) but whether it was
    572  * locked on entry to genfs_getpages.
    573  */
    574 static int
    575 genfs_getpages_read(struct vnode *vp, struct vm_page **pgs, int npages,
    576     off_t startoffset, off_t diskeof,
    577     bool async, bool memwrite, bool blockalloc, bool glocked)
    578 {
    579 	struct uvm_object * const uobj = &vp->v_uobj;
    580 	const int fs_bshift = (vp->v_type != VBLK) ?
    581 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    582 	const int dev_bshift = (vp->v_type != VBLK) ?
    583 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    584 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    585 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    586 	vaddr_t kva;
    587 	struct buf *bp, *mbp;
    588 	bool sawhole = false;
    589 	int i;
    590 	int error = 0;
    591 
    592 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
    593 
    594 	/*
    595 	 * read the desired page(s).
    596 	 */
    597 
    598 	totalbytes = npages << PAGE_SHIFT;
    599 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    600 	tailbytes = totalbytes - bytes;
    601 	skipbytes = 0;
    602 
    603 	kva = uvm_pagermapin(pgs, npages,
    604 	    UVMPAGER_MAPIN_READ | (async ? 0 : UVMPAGER_MAPIN_WAITOK));
    605 	if (kva == 0)
    606 		return EBUSY;
    607 
    608 	mbp = getiobuf(vp, true);
    609 	mbp->b_bufsize = totalbytes;
    610 	mbp->b_data = (void *)kva;
    611 	mbp->b_resid = mbp->b_bcount = bytes;
    612 	mbp->b_cflags |= BC_BUSY;
    613 	if (async) {
    614 		mbp->b_flags = B_READ | B_ASYNC;
    615 		mbp->b_iodone = uvm_aio_aiodone;
    616 	} else {
    617 		mbp->b_flags = B_READ;
    618 		mbp->b_iodone = NULL;
    619 	}
    620 	if (async)
    621 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    622 	else
    623 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    624 
    625 	/*
    626 	 * if EOF is in the middle of the range, zero the part past EOF.
    627 	 * skip over pages which are not PG_FAKE since in that case they have
    628 	 * valid data that we need to preserve.
    629 	 */
    630 
    631 	tailstart = bytes;
    632 	while (tailbytes > 0) {
    633 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    634 
    635 		KASSERT(len <= tailbytes);
    636 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    637 			memset((void *)(kva + tailstart), 0, len);
    638 			UVMHIST_LOG(ubchist, "tailbytes %#jx 0x%jx 0x%jx",
    639 			    (uintptr_t)kva, tailstart, len, 0);
    640 		}
    641 		tailstart += len;
    642 		tailbytes -= len;
    643 	}
    644 
    645 	/*
    646 	 * now loop over the pages, reading as needed.
    647 	 */
    648 
    649 	bp = NULL;
    650 	off_t offset;
    651 	for (offset = startoffset;
    652 	    bytes > 0;
    653 	    offset += iobytes, bytes -= iobytes) {
    654 		int run;
    655 		daddr_t lbn, blkno;
    656 		int pidx;
    657 		struct vnode *devvp;
    658 
    659 		/*
    660 		 * skip pages which don't need to be read.
    661 		 */
    662 
    663 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    664 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    665 			size_t b;
    666 
    667 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    668 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    669 				sawhole = true;
    670 			}
    671 			b = MIN(PAGE_SIZE, bytes);
    672 			offset += b;
    673 			bytes -= b;
    674 			skipbytes += b;
    675 			pidx++;
    676 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%jx",
    677 			    offset, 0,0,0);
    678 			if (bytes == 0) {
    679 				goto loopdone;
    680 			}
    681 		}
    682 
    683 		/*
    684 		 * bmap the file to find out the blkno to read from and
    685 		 * how much we can read in one i/o.  if bmap returns an error,
    686 		 * skip the rest of the top-level i/o.
    687 		 */
    688 
    689 		lbn = offset >> fs_bshift;
    690 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    691 		if (error) {
    692 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
    693 			    lbn,error,0,0);
    694 			skipbytes += bytes;
    695 			bytes = 0;
    696 			goto loopdone;
    697 		}
    698 
    699 		/*
    700 		 * see how many pages can be read with this i/o.
    701 		 * reduce the i/o size if necessary to avoid
    702 		 * overwriting pages with valid data.
    703 		 */
    704 
    705 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    706 		    bytes);
    707 		if (offset + iobytes > round_page(offset)) {
    708 			int pcount;
    709 
    710 			pcount = 1;
    711 			while (pidx + pcount < npages &&
    712 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    713 				pcount++;
    714 			}
    715 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    716 			    (offset - trunc_page(offset)));
    717 		}
    718 
    719 		/*
    720 		 * if this block isn't allocated, zero it instead of
    721 		 * reading it.  unless we are going to allocate blocks,
    722 		 * mark the pages we zeroed PG_RDONLY.
    723 		 */
    724 
    725 		if (blkno == (daddr_t)-1) {
    726 			int holepages = (round_page(offset + iobytes) -
    727 			    trunc_page(offset)) >> PAGE_SHIFT;
    728 			UVMHIST_LOG(ubchist, "lbn 0x%jx -> HOLE", lbn,0,0,0);
    729 
    730 			sawhole = true;
    731 			memset((char *)kva + (offset - startoffset), 0,
    732 			    iobytes);
    733 			skipbytes += iobytes;
    734 
    735 			if (!blockalloc) {
    736 				rw_enter(uobj->vmobjlock, RW_WRITER);
    737 				for (i = 0; i < holepages; i++) {
    738 					pgs[pidx + i]->flags |= PG_RDONLY;
    739 				}
    740 				rw_exit(uobj->vmobjlock);
    741 			}
    742 			continue;
    743 		}
    744 
    745 		/*
    746 		 * allocate a sub-buf for this piece of the i/o
    747 		 * (or just use mbp if there's only 1 piece),
    748 		 * and start it going.
    749 		 */
    750 
    751 		if (offset == startoffset && iobytes == bytes) {
    752 			bp = mbp;
    753 		} else {
    754 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
    755 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
    756 			bp = getiobuf(vp, true);
    757 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    758 		}
    759 		bp->b_lblkno = 0;
    760 
    761 		/* adjust physical blkno for partial blocks */
    762 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    763 		    dev_bshift);
    764 
    765 		UVMHIST_LOG(ubchist,
    766 		    "bp %#jx offset 0x%x bcount 0x%x blkno 0x%x",
    767 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
    768 
    769 		VOP_STRATEGY(devvp, bp);
    770 	}
    771 
    772 loopdone:
    773 	nestiobuf_done(mbp, skipbytes, error);
    774 	if (async) {
    775 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    776 		return 0;
    777 	}
    778 	if (bp != NULL) {
    779 		error = biowait(mbp);
    780 	}
    781 
    782 	/* Remove the mapping (make KVA available as soon as possible) */
    783 	uvm_pagermapout(kva, npages);
    784 
    785 	/*
    786 	 * if this we encountered a hole then we have to do a little more work.
    787 	 * for read faults, we marked the page PG_RDONLY so that future
    788 	 * write accesses to the page will fault again.
    789 	 * for write faults, we must make sure that the backing store for
    790 	 * the page is completely allocated while the pages are locked.
    791 	 */
    792 
    793 	if (!error && sawhole && blockalloc) {
    794 		error = GOP_ALLOC(vp, startoffset,
    795 		    npages << PAGE_SHIFT, 0, cred);
    796 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%jx/0x%jx -> %jd",
    797 		    startoffset, npages << PAGE_SHIFT, error,0);
    798 		if (!error) {
    799 			rw_enter(uobj->vmobjlock, RW_WRITER);
    800 			for (i = 0; i < npages; i++) {
    801 				struct vm_page *pg = pgs[i];
    802 
    803 				if (pg == NULL) {
    804 					continue;
    805 				}
    806 				pg->flags &= ~PG_RDONLY;
    807 				uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
    808 				UVMHIST_LOG(ubchist, "mark dirty pg %#jx",
    809 				    (uintptr_t)pg, 0, 0, 0);
    810 			}
    811 			rw_exit(uobj->vmobjlock);
    812 		}
    813 	}
    814 
    815 	putiobuf(mbp);
    816 	return error;
    817 }
    818 
    819 /*
    820  * generic VM putpages routine.
    821  * Write the given range of pages to backing store.
    822  *
    823  * => "offhi == 0" means flush all pages at or after "offlo".
    824  * => object should be locked by caller.  we return with the
    825  *      object unlocked.
    826  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    827  *	thus, a caller might want to unlock higher level resources
    828  *	(e.g. vm_map) before calling flush.
    829  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    830  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    831  *
    832  * note on "cleaning" object and PG_BUSY pages:
    833  *	this routine is holding the lock on the object.   the only time
    834  *	that it can run into a PG_BUSY page that it does not own is if
    835  *	some other process has started I/O on the page (e.g. either
    836  *	a pagein, or a pageout).  if the PG_BUSY page is being paged
    837  *	in, then it can not be dirty (!UVM_PAGE_STATUS_CLEAN) because no
    838  *	one has	had a chance to modify it yet.  if the PG_BUSY page is
    839  *	being paged out then it means that someone else has already started
    840  *	cleaning the page for us (how nice!).  in this case, if we
    841  *	have syncio specified, then after we make our pass through the
    842  *	object we need to wait for the other PG_BUSY pages to clear
    843  *	off (i.e. we need to do an iosync).   also note that once a
    844  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    845  */
    846 
    847 int
    848 genfs_putpages(void *v)
    849 {
    850 	struct vop_putpages_args /* {
    851 		struct vnode *a_vp;
    852 		voff_t a_offlo;
    853 		voff_t a_offhi;
    854 		int a_flags;
    855 	} */ * const ap = v;
    856 
    857 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    858 	    ap->a_flags, NULL);
    859 }
    860 
    861 int
    862 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    863     int origflags, struct vm_page **busypg)
    864 {
    865 	struct uvm_object * const uobj = &vp->v_uobj;
    866 	krwlock_t * const slock = uobj->vmobjlock;
    867 	off_t nextoff;
    868 	int i, error, npages, nback;
    869 	int freeflag;
    870 	/*
    871 	 * This array is larger than it should so that it's size is constant.
    872 	 * The right size is MAXPAGES.
    873 	 */
    874 	struct vm_page *pgs[MAXPHYS / MIN_PAGE_SIZE];
    875 #define MAXPAGES (MAXPHYS / PAGE_SIZE)
    876 	struct vm_page *pg, *tpg;
    877 	struct uvm_page_array a;
    878 	bool wasclean, needs_clean;
    879 	bool async = (origflags & PGO_SYNCIO) == 0;
    880 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    881 	struct mount *trans_mp;
    882 	int flags;
    883 	bool modified;		/* if we write out any pages */
    884 	bool holds_wapbl;
    885 	bool cleanall;		/* try to pull off from the syncer's list */
    886 	bool onworklst;
    887 	bool nodirty;
    888 	const bool dirtyonly = (origflags & (PGO_DEACTIVATE|PGO_FREE)) == 0;
    889 
    890 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    891 
    892 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    893 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    894 	KASSERT(startoff < endoff || endoff == 0);
    895 	KASSERT(rw_write_held(slock));
    896 
    897 	UVMHIST_LOG(ubchist, "vp %#jx pages %jd off 0x%jx len 0x%jx",
    898 	    (uintptr_t)vp, uobj->uo_npages, startoff, endoff - startoff);
    899 
    900 #ifdef DIAGNOSTIC
    901 	if ((origflags & PGO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
    902                 WAPBL_JLOCK_ASSERT(vp->v_mount);
    903 #endif
    904 
    905 	trans_mp = NULL;
    906 	holds_wapbl = false;
    907 
    908 retry:
    909 	modified = false;
    910 	flags = origflags;
    911 
    912 	/*
    913 	 * shortcut if we have no pages to process.
    914 	 */
    915 
    916 	nodirty = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
    917             UVM_PAGE_DIRTY_TAG);
    918 #ifdef DIAGNOSTIC
    919 	mutex_enter(vp->v_interlock);
    920 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 || nodirty);
    921 	mutex_exit(vp->v_interlock);
    922 #endif
    923 	if (uobj->uo_npages == 0 || (dirtyonly && nodirty)) {
    924 		mutex_enter(vp->v_interlock);
    925 		if (vp->v_iflag & VI_ONWORKLST) {
    926 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    927 				vn_syncer_remove_from_worklist(vp);
    928 		}
    929 		mutex_exit(vp->v_interlock);
    930 		if (trans_mp) {
    931 			if (holds_wapbl)
    932 				WAPBL_END(trans_mp);
    933 			fstrans_done(trans_mp);
    934 		}
    935 		rw_exit(slock);
    936 		return (0);
    937 	}
    938 
    939 	/*
    940 	 * the vnode has pages, set up to process the request.
    941 	 */
    942 
    943 	if (trans_mp == NULL && (flags & PGO_CLEANIT) != 0) {
    944 		if (pagedaemon) {
    945 			/* Pagedaemon must not sleep here. */
    946 			trans_mp = vp->v_mount;
    947 			error = fstrans_start_nowait(trans_mp);
    948 			if (error) {
    949 				rw_exit(slock);
    950 				return error;
    951 			}
    952 		} else {
    953 			/*
    954 			 * Cannot use vdeadcheck() here as this operation
    955 			 * usually gets used from VOP_RECLAIM().  Test for
    956 			 * change of v_mount instead and retry on change.
    957 			 */
    958 			rw_exit(slock);
    959 			trans_mp = vp->v_mount;
    960 			fstrans_start(trans_mp);
    961 			if (vp->v_mount != trans_mp) {
    962 				fstrans_done(trans_mp);
    963 				trans_mp = NULL;
    964 			} else {
    965 				holds_wapbl = (trans_mp->mnt_wapbl &&
    966 				    (origflags & PGO_JOURNALLOCKED) == 0);
    967 				if (holds_wapbl) {
    968 					error = WAPBL_BEGIN(trans_mp);
    969 					if (error) {
    970 						fstrans_done(trans_mp);
    971 						return error;
    972 					}
    973 				}
    974 			}
    975 			rw_enter(slock, RW_WRITER);
    976 			goto retry;
    977 		}
    978 	}
    979 
    980 	error = 0;
    981 	wasclean = radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
    982             UVM_PAGE_WRITEBACK_TAG);
    983 	nextoff = startoff;
    984 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    985 		endoff = trunc_page(LLONG_MAX);
    986 	}
    987 
    988 	/*
    989 	 * if this vnode is known not to have dirty pages,
    990 	 * don't bother to clean it out.
    991 	 */
    992 
    993 	if (nodirty) {
    994 #if !defined(DEBUG)
    995 		if (dirtyonly) {
    996 			goto skip_scan;
    997 		}
    998 #endif /* !defined(DEBUG) */
    999 		flags &= ~PGO_CLEANIT;
   1000 	}
   1001 
   1002 	/*
   1003 	 * start the loop to scan pages.
   1004 	 */
   1005 
   1006 	cleanall = true;
   1007 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1008 	uvm_page_array_init(&a, uobj, dirtyonly ? (UVM_PAGE_ARRAY_FILL_DIRTY |
   1009 	    (!async ? UVM_PAGE_ARRAY_FILL_WRITEBACK : 0)) : 0);
   1010 	for (;;) {
   1011 		bool pgprotected;
   1012 
   1013 		/*
   1014 		 * if !dirtyonly, iterate over all resident pages in the range.
   1015 		 *
   1016 		 * if dirtyonly, only possibly dirty pages are interesting.
   1017 		 * however, if we are asked to sync for integrity, we should
   1018 		 * wait on pages being written back by other threads as well.
   1019 		 */
   1020 
   1021 		pg = uvm_page_array_fill_and_peek(&a, nextoff, 0);
   1022 		if (pg == NULL) {
   1023 			break;
   1024 		}
   1025 
   1026 		KASSERT(pg->uobject == uobj);
   1027 		KASSERT((pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1028 		    (pg->flags & (PG_BUSY)) != 0);
   1029 		KASSERT(pg->offset >= startoff);
   1030 		KASSERT(pg->offset >= nextoff);
   1031 		KASSERT(!dirtyonly ||
   1032 		    uvm_pagegetdirty(pg) != UVM_PAGE_STATUS_CLEAN ||
   1033 		    radix_tree_get_tag(&uobj->uo_pages,
   1034 			pg->offset >> PAGE_SHIFT, UVM_PAGE_WRITEBACK_TAG));
   1035 
   1036 		if (pg->offset >= endoff) {
   1037 			break;
   1038 		}
   1039 
   1040 		/*
   1041 		 * a preempt point.
   1042 		 */
   1043 
   1044 		if (preempt_needed()) {
   1045 			nextoff = pg->offset; /* visit this page again */
   1046 			rw_exit(slock);
   1047 			preempt();
   1048 			/*
   1049 			 * as we dropped the object lock, our cached pages can
   1050 			 * be stale.
   1051 			 */
   1052 			uvm_page_array_clear(&a);
   1053 			rw_enter(slock, RW_WRITER);
   1054 			continue;
   1055 		}
   1056 
   1057 		/*
   1058 		 * if the current page is busy, wait for it to become unbusy.
   1059 		 */
   1060 
   1061 		if ((pg->flags & PG_BUSY) != 0) {
   1062 			UVMHIST_LOG(ubchist, "busy %#jx", (uintptr_t)pg,
   1063 			   0, 0, 0);
   1064 			if ((pg->flags & (PG_RELEASED|PG_PAGEOUT)) != 0
   1065 			    && (flags & PGO_BUSYFAIL) != 0) {
   1066 				UVMHIST_LOG(ubchist, "busyfail %#jx",
   1067 				    (uintptr_t)pg, 0, 0, 0);
   1068 				error = EDEADLK;
   1069 				if (busypg != NULL)
   1070 					*busypg = pg;
   1071 				break;
   1072 			}
   1073 			if (pagedaemon) {
   1074 				/*
   1075 				 * someone has taken the page while we
   1076 				 * dropped the lock for fstrans_start.
   1077 				 */
   1078 				break;
   1079 			}
   1080 			/*
   1081 			 * don't bother to wait on other's activities
   1082 			 * unless we are asked to sync for integrity.
   1083 			 */
   1084 			if (!async && (flags & PGO_RECLAIM) == 0) {
   1085 				wasclean = false;
   1086 				nextoff = pg->offset + PAGE_SIZE;
   1087 				uvm_page_array_advance(&a);
   1088 				continue;
   1089 			}
   1090 			nextoff = pg->offset; /* visit this page again */
   1091 			uvm_pagewait(pg, slock, "genput");
   1092 			/*
   1093 			 * as we dropped the object lock, our cached pages can
   1094 			 * be stale.
   1095 			 */
   1096 			uvm_page_array_clear(&a);
   1097 			rw_enter(slock, RW_WRITER);
   1098 			continue;
   1099 		}
   1100 
   1101 		nextoff = pg->offset + PAGE_SIZE;
   1102 		uvm_page_array_advance(&a);
   1103 
   1104 		/*
   1105 		 * if we're freeing, remove all mappings of the page now.
   1106 		 * if we're cleaning, check if the page is needs to be cleaned.
   1107 		 */
   1108 
   1109 		pgprotected = false;
   1110 		if (flags & PGO_FREE) {
   1111 			pmap_page_protect(pg, VM_PROT_NONE);
   1112 			pgprotected = true;
   1113 		} else if (flags & PGO_CLEANIT) {
   1114 
   1115 			/*
   1116 			 * if we still have some hope to pull this vnode off
   1117 			 * from the syncer queue, write-protect the page.
   1118 			 */
   1119 
   1120 			if (cleanall && wasclean) {
   1121 
   1122 				/*
   1123 				 * uobj pages get wired only by uvm_fault
   1124 				 * where uobj is locked.
   1125 				 */
   1126 
   1127 				if (pg->wire_count == 0) {
   1128 					pmap_page_protect(pg,
   1129 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1130 					pgprotected = true;
   1131 				} else {
   1132 					cleanall = false;
   1133 				}
   1134 			}
   1135 		}
   1136 
   1137 		if (flags & PGO_CLEANIT) {
   1138 			needs_clean = uvm_pagecheckdirty(pg, pgprotected);
   1139 		} else {
   1140 			needs_clean = false;
   1141 		}
   1142 
   1143 		/*
   1144 		 * if we're cleaning, build a cluster.
   1145 		 * the cluster will consist of pages which are currently dirty.
   1146 		 * if not cleaning, just operate on the one page.
   1147 		 */
   1148 
   1149 		if (needs_clean) {
   1150 			wasclean = false;
   1151 			memset(pgs, 0, sizeof(pgs));
   1152 			pg->flags |= PG_BUSY;
   1153 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1154 
   1155 			/*
   1156 			 * let the fs constrain the offset range of the cluster.
   1157 			 * we additionally constrain the range here such that
   1158 			 * it fits in the "pgs" pages array.
   1159 			 */
   1160 
   1161 			off_t fslo, fshi, genlo, lo, off = pg->offset;
   1162 			GOP_PUTRANGE(vp, off, &fslo, &fshi);
   1163 			KASSERT(fslo == trunc_page(fslo));
   1164 			KASSERT(fslo <= off);
   1165 			KASSERT(fshi == trunc_page(fshi));
   1166 			KASSERT(fshi == 0 || off < fshi);
   1167 
   1168 			if (off > MAXPHYS / 2)
   1169 				genlo = trunc_page(off - (MAXPHYS / 2));
   1170 			else
   1171 				genlo = 0;
   1172 			lo = MAX(fslo, genlo);
   1173 
   1174 			/*
   1175 			 * first look backward.
   1176 			 */
   1177 
   1178 			npages = (off - lo) >> PAGE_SHIFT;
   1179 			nback = npages;
   1180 			uvn_findpages(uobj, off - PAGE_SIZE, &nback,
   1181 			    &pgs[0], NULL,
   1182 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1183 			if (nback) {
   1184 				memmove(&pgs[0], &pgs[npages - nback],
   1185 				    nback * sizeof(pgs[0]));
   1186 				if (npages - nback < nback)
   1187 					memset(&pgs[nback], 0,
   1188 					    (npages - nback) * sizeof(pgs[0]));
   1189 				else
   1190 					memset(&pgs[npages - nback], 0,
   1191 					    nback * sizeof(pgs[0]));
   1192 			}
   1193 
   1194 			/*
   1195 			 * then plug in our page of interest.
   1196 			 */
   1197 
   1198 			pgs[nback] = pg;
   1199 
   1200 			/*
   1201 			 * then look forward to fill in the remaining space in
   1202 			 * the array of pages.
   1203 			 *
   1204 			 * pass our cached array of pages so that hopefully
   1205 			 * uvn_findpages can find some good pages in it.
   1206 			 * the array a was filled above with the one of
   1207 			 * following sets of flags:
   1208 			 *	0
   1209 			 *	UVM_PAGE_ARRAY_FILL_DIRTY
   1210 			 *	UVM_PAGE_ARRAY_FILL_DIRTY|WRITEBACK
   1211 			 *
   1212 			 * XXX this is fragile but it'll work: the array
   1213 			 * was earlier filled sparsely, but UFP_DIRTYONLY
   1214 			 * implies dense.  see corresponding comment in
   1215 			 * uvn_findpages().
   1216 			 */
   1217 
   1218 			npages = MAXPAGES - nback - 1;
   1219 			if (fshi)
   1220 				npages = MIN(npages,
   1221 					     (fshi - off - 1) >> PAGE_SHIFT);
   1222 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1223 			    &pgs[nback + 1], &a,
   1224 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1225 			npages += nback + 1;
   1226 		} else {
   1227 			pgs[0] = pg;
   1228 			npages = 1;
   1229 			nback = 0;
   1230 		}
   1231 
   1232 		/*
   1233 		 * apply FREE or DEACTIVATE options if requested.
   1234 		 */
   1235 
   1236 		for (i = 0; i < npages; i++) {
   1237 			tpg = pgs[i];
   1238 			KASSERT(tpg->uobject == uobj);
   1239 			KASSERT(i == 0 ||
   1240 			    pgs[i-1]->offset + PAGE_SIZE == tpg->offset);
   1241 			KASSERT(!needs_clean || uvm_pagegetdirty(pgs[i]) !=
   1242 			    UVM_PAGE_STATUS_DIRTY);
   1243 			if (needs_clean) {
   1244 				/*
   1245 				 * mark pages as WRITEBACK so that concurrent
   1246 				 * fsync can find and wait for our activities.
   1247 				 */
   1248 				radix_tree_set_tag(&uobj->uo_pages,
   1249 				    pgs[i]->offset >> PAGE_SHIFT,
   1250 				    UVM_PAGE_WRITEBACK_TAG);
   1251 			}
   1252 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1253 				continue;
   1254 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1255 				uvm_pagelock(tpg);
   1256 				uvm_pagedeactivate(tpg);
   1257 				uvm_pageunlock(tpg);
   1258 			} else if (flags & PGO_FREE) {
   1259 				pmap_page_protect(tpg, VM_PROT_NONE);
   1260 				if (tpg->flags & PG_BUSY) {
   1261 					tpg->flags |= freeflag;
   1262 					if (pagedaemon) {
   1263 						uvm_pageout_start(1);
   1264 						uvm_pagelock(tpg);
   1265 						uvm_pagedequeue(tpg);
   1266 						uvm_pageunlock(tpg);
   1267 					}
   1268 				} else {
   1269 
   1270 					/*
   1271 					 * ``page is not busy''
   1272 					 * implies that npages is 1
   1273 					 * and needs_clean is false.
   1274 					 */
   1275 
   1276 					KASSERT(npages == 1);
   1277 					KASSERT(!needs_clean);
   1278 					KASSERT(pg == tpg);
   1279 					KASSERT(nextoff ==
   1280 					    tpg->offset + PAGE_SIZE);
   1281 					uvm_pagefree(tpg);
   1282 					if (pagedaemon)
   1283 						uvmexp.pdfreed++;
   1284 				}
   1285 			}
   1286 		}
   1287 		if (needs_clean) {
   1288 			modified = true;
   1289 			KASSERT(nextoff == pg->offset + PAGE_SIZE);
   1290 			KASSERT(nback < npages);
   1291 			nextoff = pg->offset + ((npages - nback) << PAGE_SHIFT);
   1292 			KASSERT(pgs[nback] == pg);
   1293 			KASSERT(nextoff == pgs[npages - 1]->offset + PAGE_SIZE);
   1294 
   1295 			/*
   1296 			 * start the i/o.
   1297 			 */
   1298 			rw_exit(slock);
   1299 			error = GOP_WRITE(vp, pgs, npages, flags);
   1300 			/*
   1301 			 * as we dropped the object lock, our cached pages can
   1302 			 * be stale.
   1303 			 */
   1304 			uvm_page_array_clear(&a);
   1305 			rw_enter(slock, RW_WRITER);
   1306 			if (error) {
   1307 				break;
   1308 			}
   1309 		}
   1310 	}
   1311 	uvm_page_array_fini(&a);
   1312 
   1313 	/*
   1314 	 * update ctime/mtime if the modification we started writing out might
   1315 	 * be from mmap'ed write.
   1316 	 *
   1317 	 * this is necessary when an application keeps a file mmaped and
   1318 	 * repeatedly modifies it via the window.  note that, because we
   1319 	 * don't always write-protect pages when cleaning, such modifications
   1320 	 * might not involve any page faults.
   1321 	 */
   1322 
   1323 	mutex_enter(vp->v_interlock);
   1324 	if (modified && (vp->v_iflag & VI_WRMAP) != 0 &&
   1325 	    (vp->v_type != VBLK ||
   1326 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1327 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1328 	}
   1329 
   1330 	/*
   1331 	 * if we no longer have any possibly dirty pages, take us off the
   1332 	 * syncer list.
   1333 	 */
   1334 
   1335 	if ((vp->v_iflag & VI_ONWORKLST) != 0 &&
   1336 	    radix_tree_empty_tagged_tree_p(&uobj->uo_pages,
   1337 	    UVM_PAGE_DIRTY_TAG)) {
   1338 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1339 			vn_syncer_remove_from_worklist(vp);
   1340 	}
   1341 
   1342 #if !defined(DEBUG)
   1343 skip_scan:
   1344 #endif /* !defined(DEBUG) */
   1345 
   1346 	/* Wait for output to complete. */
   1347 	rw_exit(slock);
   1348 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1349 		while (vp->v_numoutput != 0)
   1350 			cv_wait(&vp->v_cv, vp->v_interlock);
   1351 	}
   1352 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1353 	mutex_exit(vp->v_interlock);
   1354 
   1355 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1356 		/*
   1357 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1358 		 * retrying is not a big deal because, in many cases,
   1359 		 * uobj->uo_npages is already 0 here.
   1360 		 */
   1361 		rw_enter(slock, RW_WRITER);
   1362 		goto retry;
   1363 	}
   1364 
   1365 	if (trans_mp) {
   1366 		if (holds_wapbl)
   1367 			WAPBL_END(trans_mp);
   1368 		fstrans_done(trans_mp);
   1369 	}
   1370 
   1371 	return (error);
   1372 }
   1373 
   1374 /*
   1375  * Default putrange method for file systems that do not care
   1376  * how many pages are given to one GOP_WRITE() call.
   1377  */
   1378 void
   1379 genfs_gop_putrange(struct vnode *vp, off_t off, off_t *lop, off_t *hip)
   1380 {
   1381 
   1382 	*lop = 0;
   1383 	*hip = 0;
   1384 }
   1385 
   1386 int
   1387 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1388 {
   1389 	off_t off;
   1390 	vaddr_t kva;
   1391 	size_t len;
   1392 	int error;
   1393 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1394 
   1395 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1396 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1397 
   1398 	off = pgs[0]->offset;
   1399 	kva = uvm_pagermapin(pgs, npages,
   1400 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1401 	len = npages << PAGE_SHIFT;
   1402 
   1403 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1404 			    uvm_aio_aiodone);
   1405 
   1406 	return error;
   1407 }
   1408 
   1409 /*
   1410  * genfs_gop_write_rwmap:
   1411  *
   1412  * a variant of genfs_gop_write.  it's used by UDF for its directory buffers.
   1413  * this maps pages with PROT_WRITE so that VOP_STRATEGY can modifies
   1414  * the contents before writing it out to the underlying storage.
   1415  */
   1416 
   1417 int
   1418 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages,
   1419     int flags)
   1420 {
   1421 	off_t off;
   1422 	vaddr_t kva;
   1423 	size_t len;
   1424 	int error;
   1425 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1426 
   1427 	UVMHIST_LOG(ubchist, "vp %#jx pgs %#jx npages %jd flags 0x%jx",
   1428 	    (uintptr_t)vp, (uintptr_t)pgs, npages, flags);
   1429 
   1430 	off = pgs[0]->offset;
   1431 	kva = uvm_pagermapin(pgs, npages,
   1432 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1433 	len = npages << PAGE_SHIFT;
   1434 
   1435 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1436 			    uvm_aio_aiodone);
   1437 
   1438 	return error;
   1439 }
   1440 
   1441 /*
   1442  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1443  * and mapped into kernel memory.  Here we just look up the underlying
   1444  * device block addresses and call the strategy routine.
   1445  */
   1446 
   1447 static int
   1448 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1449     enum uio_rw rw, void (*iodone)(struct buf *))
   1450 {
   1451 	int s, error;
   1452 	int fs_bshift, dev_bshift;
   1453 	off_t eof, offset, startoffset;
   1454 	size_t bytes, iobytes, skipbytes;
   1455 	struct buf *mbp, *bp;
   1456 	const bool async = (flags & PGO_SYNCIO) == 0;
   1457 	const bool lazy = (flags & PGO_LAZY) == 0;
   1458 	const bool iowrite = rw == UIO_WRITE;
   1459 	const int brw = iowrite ? B_WRITE : B_READ;
   1460 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1461 
   1462 	UVMHIST_LOG(ubchist, "vp %#jx kva %#jx len 0x%jx flags 0x%jx",
   1463 	    (uintptr_t)vp, (uintptr_t)kva, len, flags);
   1464 
   1465 	KASSERT(vp->v_size <= vp->v_writesize);
   1466 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1467 	if (vp->v_type != VBLK) {
   1468 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1469 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1470 	} else {
   1471 		fs_bshift = DEV_BSHIFT;
   1472 		dev_bshift = DEV_BSHIFT;
   1473 	}
   1474 	error = 0;
   1475 	startoffset = off;
   1476 	bytes = MIN(len, eof - startoffset);
   1477 	skipbytes = 0;
   1478 	KASSERT(bytes != 0);
   1479 
   1480 	if (iowrite) {
   1481 		/*
   1482 		 * why += 2?
   1483 		 * 1 for biodone, 1 for uvm_aio_aiodone.
   1484 		 */
   1485 		mutex_enter(vp->v_interlock);
   1486 		vp->v_numoutput += 2;
   1487 		mutex_exit(vp->v_interlock);
   1488 	}
   1489 	mbp = getiobuf(vp, true);
   1490 	UVMHIST_LOG(ubchist, "vp %#jx mbp %#jx num now %jd bytes 0x%jx",
   1491 	    (uintptr_t)vp, (uintptr_t)mbp, vp->v_numoutput, bytes);
   1492 	mbp->b_bufsize = len;
   1493 	mbp->b_data = (void *)kva;
   1494 	mbp->b_resid = mbp->b_bcount = bytes;
   1495 	mbp->b_cflags |= BC_BUSY | BC_AGE;
   1496 	if (async) {
   1497 		mbp->b_flags = brw | B_ASYNC;
   1498 		mbp->b_iodone = iodone;
   1499 	} else {
   1500 		mbp->b_flags = brw;
   1501 		mbp->b_iodone = NULL;
   1502 	}
   1503 	if (curlwp == uvm.pagedaemon_lwp)
   1504 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1505 	else if (async || lazy)
   1506 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1507 	else
   1508 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1509 
   1510 	bp = NULL;
   1511 	for (offset = startoffset;
   1512 	    bytes > 0;
   1513 	    offset += iobytes, bytes -= iobytes) {
   1514 		int run;
   1515 		daddr_t lbn, blkno;
   1516 		struct vnode *devvp;
   1517 
   1518 		/*
   1519 		 * bmap the file to find out the blkno to read from and
   1520 		 * how much we can read in one i/o.  if bmap returns an error,
   1521 		 * skip the rest of the top-level i/o.
   1522 		 */
   1523 
   1524 		lbn = offset >> fs_bshift;
   1525 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1526 		if (error) {
   1527 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%jx -> %jd\n",
   1528 			    lbn, error, 0, 0);
   1529 			skipbytes += bytes;
   1530 			bytes = 0;
   1531 			goto loopdone;
   1532 		}
   1533 
   1534 		/*
   1535 		 * see how many pages can be read with this i/o.
   1536 		 * reduce the i/o size if necessary to avoid
   1537 		 * overwriting pages with valid data.
   1538 		 */
   1539 
   1540 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1541 		    bytes);
   1542 
   1543 		/*
   1544 		 * if this block isn't allocated, zero it instead of
   1545 		 * reading it.  unless we are going to allocate blocks,
   1546 		 * mark the pages we zeroed PG_RDONLY.
   1547 		 */
   1548 
   1549 		if (blkno == (daddr_t)-1) {
   1550 			if (!iowrite) {
   1551 				memset((char *)kva + (offset - startoffset), 0,
   1552 				    iobytes);
   1553 			}
   1554 			skipbytes += iobytes;
   1555 			continue;
   1556 		}
   1557 
   1558 		/*
   1559 		 * allocate a sub-buf for this piece of the i/o
   1560 		 * (or just use mbp if there's only 1 piece),
   1561 		 * and start it going.
   1562 		 */
   1563 
   1564 		if (offset == startoffset && iobytes == bytes) {
   1565 			bp = mbp;
   1566 		} else {
   1567 			UVMHIST_LOG(ubchist, "vp %#jx bp %#jx num now %jd",
   1568 			    (uintptr_t)vp, (uintptr_t)bp, vp->v_numoutput, 0);
   1569 			bp = getiobuf(vp, true);
   1570 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1571 		}
   1572 		bp->b_lblkno = 0;
   1573 
   1574 		/* adjust physical blkno for partial blocks */
   1575 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1576 		    dev_bshift);
   1577 
   1578 		UVMHIST_LOG(ubchist,
   1579 		    "bp %#jx offset 0x%jx bcount 0x%jx blkno 0x%jx",
   1580 		    (uintptr_t)bp, offset, bp->b_bcount, bp->b_blkno);
   1581 
   1582 		VOP_STRATEGY(devvp, bp);
   1583 	}
   1584 
   1585 loopdone:
   1586 	if (skipbytes) {
   1587 		UVMHIST_LOG(ubchist, "skipbytes %jd", skipbytes, 0,0,0);
   1588 	}
   1589 	nestiobuf_done(mbp, skipbytes, error);
   1590 	if (async) {
   1591 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1592 		return (0);
   1593 	}
   1594 	UVMHIST_LOG(ubchist, "waiting for mbp %#jx", (uintptr_t)mbp, 0, 0, 0);
   1595 	error = biowait(mbp);
   1596 	s = splbio();
   1597 	(*iodone)(mbp);
   1598 	splx(s);
   1599 	UVMHIST_LOG(ubchist, "returning, error %jd", error, 0, 0, 0);
   1600 	return (error);
   1601 }
   1602 
   1603 int
   1604 genfs_compat_getpages(void *v)
   1605 {
   1606 	struct vop_getpages_args /* {
   1607 		struct vnode *a_vp;
   1608 		voff_t a_offset;
   1609 		struct vm_page **a_m;
   1610 		int *a_count;
   1611 		int a_centeridx;
   1612 		vm_prot_t a_access_type;
   1613 		int a_advice;
   1614 		int a_flags;
   1615 	} */ *ap = v;
   1616 
   1617 	off_t origoffset;
   1618 	struct vnode *vp = ap->a_vp;
   1619 	struct uvm_object *uobj = &vp->v_uobj;
   1620 	struct vm_page *pg, **pgs;
   1621 	vaddr_t kva;
   1622 	int i, error, orignpages, npages;
   1623 	struct iovec iov;
   1624 	struct uio uio;
   1625 	kauth_cred_t cred = curlwp->l_cred;
   1626 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1627 
   1628 	error = 0;
   1629 	origoffset = ap->a_offset;
   1630 	orignpages = *ap->a_count;
   1631 	pgs = ap->a_m;
   1632 
   1633 	if (ap->a_flags & PGO_LOCKED) {
   1634 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m, NULL,
   1635 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1636 
   1637 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1638 		return error;
   1639 	}
   1640 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1641 		rw_exit(uobj->vmobjlock);
   1642 		return EINVAL;
   1643 	}
   1644 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1645 		rw_exit(uobj->vmobjlock);
   1646 		return 0;
   1647 	}
   1648 	npages = orignpages;
   1649 	uvn_findpages(uobj, origoffset, &npages, pgs, NULL, UFP_ALL);
   1650 	rw_exit(uobj->vmobjlock);
   1651 	kva = uvm_pagermapin(pgs, npages,
   1652 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1653 	for (i = 0; i < npages; i++) {
   1654 		pg = pgs[i];
   1655 		if ((pg->flags & PG_FAKE) == 0) {
   1656 			continue;
   1657 		}
   1658 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1659 		iov.iov_len = PAGE_SIZE;
   1660 		uio.uio_iov = &iov;
   1661 		uio.uio_iovcnt = 1;
   1662 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1663 		uio.uio_rw = UIO_READ;
   1664 		uio.uio_resid = PAGE_SIZE;
   1665 		UIO_SETUP_SYSSPACE(&uio);
   1666 		/* XXX vn_lock */
   1667 		error = VOP_READ(vp, &uio, 0, cred);
   1668 		if (error) {
   1669 			break;
   1670 		}
   1671 		if (uio.uio_resid) {
   1672 			memset(iov.iov_base, 0, uio.uio_resid);
   1673 		}
   1674 	}
   1675 	uvm_pagermapout(kva, npages);
   1676 	rw_enter(uobj->vmobjlock, RW_WRITER);
   1677 	for (i = 0; i < npages; i++) {
   1678 		pg = pgs[i];
   1679 		if (error && (pg->flags & PG_FAKE) != 0) {
   1680 			pg->flags |= PG_RELEASED;
   1681 		} else {
   1682 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_UNKNOWN);
   1683 			uvm_pagelock(pg);
   1684 			uvm_pageactivate(pg);
   1685 			uvm_pageunlock(pg);
   1686 		}
   1687 	}
   1688 	if (error) {
   1689 		uvm_page_unbusy(pgs, npages);
   1690 	}
   1691 	rw_exit(uobj->vmobjlock);
   1692 	return error;
   1693 }
   1694 
   1695 int
   1696 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1697     int flags)
   1698 {
   1699 	off_t offset;
   1700 	struct iovec iov;
   1701 	struct uio uio;
   1702 	kauth_cred_t cred = curlwp->l_cred;
   1703 	struct buf *bp;
   1704 	vaddr_t kva;
   1705 	int error;
   1706 
   1707 	offset = pgs[0]->offset;
   1708 	kva = uvm_pagermapin(pgs, npages,
   1709 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1710 
   1711 	iov.iov_base = (void *)kva;
   1712 	iov.iov_len = npages << PAGE_SHIFT;
   1713 	uio.uio_iov = &iov;
   1714 	uio.uio_iovcnt = 1;
   1715 	uio.uio_offset = offset;
   1716 	uio.uio_rw = UIO_WRITE;
   1717 	uio.uio_resid = npages << PAGE_SHIFT;
   1718 	UIO_SETUP_SYSSPACE(&uio);
   1719 	/* XXX vn_lock */
   1720 	error = VOP_WRITE(vp, &uio, 0, cred);
   1721 
   1722 	mutex_enter(vp->v_interlock);
   1723 	vp->v_numoutput++;
   1724 	mutex_exit(vp->v_interlock);
   1725 
   1726 	bp = getiobuf(vp, true);
   1727 	bp->b_cflags |= BC_BUSY | BC_AGE;
   1728 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1729 	bp->b_data = (char *)kva;
   1730 	bp->b_bcount = npages << PAGE_SHIFT;
   1731 	bp->b_bufsize = npages << PAGE_SHIFT;
   1732 	bp->b_resid = 0;
   1733 	bp->b_error = error;
   1734 	uvm_aio_aiodone(bp);
   1735 	return (error);
   1736 }
   1737 
   1738 /*
   1739  * Process a uio using direct I/O.  If we reach a part of the request
   1740  * which cannot be processed in this fashion for some reason, just return.
   1741  * The caller must handle some additional part of the request using
   1742  * buffered I/O before trying direct I/O again.
   1743  */
   1744 
   1745 void
   1746 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1747 {
   1748 	struct vmspace *vs;
   1749 	struct iovec *iov;
   1750 	vaddr_t va;
   1751 	size_t len;
   1752 	const int mask = DEV_BSIZE - 1;
   1753 	int error;
   1754 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1755 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1756 
   1757 #ifdef DIAGNOSTIC
   1758 	if ((ioflag & IO_JOURNALLOCKED) && vp->v_mount->mnt_wapbl)
   1759                 WAPBL_JLOCK_ASSERT(vp->v_mount);
   1760 #endif
   1761 
   1762 	/*
   1763 	 * We only support direct I/O to user space for now.
   1764 	 */
   1765 
   1766 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1767 		return;
   1768 	}
   1769 
   1770 	/*
   1771 	 * If the vnode is mapped, we would need to get the getpages lock
   1772 	 * to stabilize the bmap, but then we would get into trouble while
   1773 	 * locking the pages if the pages belong to this same vnode (or a
   1774 	 * multi-vnode cascade to the same effect).  Just fall back to
   1775 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1776 	 */
   1777 
   1778 	if (vp->v_vflag & VV_MAPPED) {
   1779 		return;
   1780 	}
   1781 
   1782 	if (need_wapbl) {
   1783 		error = WAPBL_BEGIN(vp->v_mount);
   1784 		if (error)
   1785 			return;
   1786 	}
   1787 
   1788 	/*
   1789 	 * Do as much of the uio as possible with direct I/O.
   1790 	 */
   1791 
   1792 	vs = uio->uio_vmspace;
   1793 	while (uio->uio_resid) {
   1794 		iov = uio->uio_iov;
   1795 		if (iov->iov_len == 0) {
   1796 			uio->uio_iov++;
   1797 			uio->uio_iovcnt--;
   1798 			continue;
   1799 		}
   1800 		va = (vaddr_t)iov->iov_base;
   1801 		len = MIN(iov->iov_len, genfs_maxdio);
   1802 		len &= ~mask;
   1803 
   1804 		/*
   1805 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1806 		 * the current EOF, then fall back to buffered I/O.
   1807 		 */
   1808 
   1809 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1810 			break;
   1811 		}
   1812 
   1813 		/*
   1814 		 * Check alignment.  The file offset must be at least
   1815 		 * sector-aligned.  The exact constraint on memory alignment
   1816 		 * is very hardware-dependent, but requiring sector-aligned
   1817 		 * addresses there too is safe.
   1818 		 */
   1819 
   1820 		if (uio->uio_offset & mask || va & mask) {
   1821 			break;
   1822 		}
   1823 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1824 					  uio->uio_rw);
   1825 		if (error) {
   1826 			break;
   1827 		}
   1828 		iov->iov_base = (char *)iov->iov_base + len;
   1829 		iov->iov_len -= len;
   1830 		uio->uio_offset += len;
   1831 		uio->uio_resid -= len;
   1832 	}
   1833 
   1834 	if (need_wapbl)
   1835 		WAPBL_END(vp->v_mount);
   1836 }
   1837 
   1838 /*
   1839  * Iodone routine for direct I/O.  We don't do much here since the request is
   1840  * always synchronous, so the caller will do most of the work after biowait().
   1841  */
   1842 
   1843 static void
   1844 genfs_dio_iodone(struct buf *bp)
   1845 {
   1846 
   1847 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1848 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1849 		mutex_enter(bp->b_objlock);
   1850 		vwakeup(bp);
   1851 		mutex_exit(bp->b_objlock);
   1852 	}
   1853 	putiobuf(bp);
   1854 }
   1855 
   1856 /*
   1857  * Process one chunk of a direct I/O request.
   1858  */
   1859 
   1860 static int
   1861 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1862     off_t off, enum uio_rw rw)
   1863 {
   1864 	struct vm_map *map;
   1865 	struct pmap *upm, *kpm __unused;
   1866 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1867 	off_t spoff, epoff;
   1868 	vaddr_t kva, puva;
   1869 	paddr_t pa;
   1870 	vm_prot_t prot;
   1871 	int error, rv __diagused, poff, koff;
   1872 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1873 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1874 
   1875 	/*
   1876 	 * For writes, verify that this range of the file already has fully
   1877 	 * allocated backing store.  If there are any holes, just punt and
   1878 	 * make the caller take the buffered write path.
   1879 	 */
   1880 
   1881 	if (rw == UIO_WRITE) {
   1882 		daddr_t lbn, elbn, blkno;
   1883 		int bsize, bshift, run;
   1884 
   1885 		bshift = vp->v_mount->mnt_fs_bshift;
   1886 		bsize = 1 << bshift;
   1887 		lbn = off >> bshift;
   1888 		elbn = (off + len + bsize - 1) >> bshift;
   1889 		while (lbn < elbn) {
   1890 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1891 			if (error) {
   1892 				return error;
   1893 			}
   1894 			if (blkno == (daddr_t)-1) {
   1895 				return ENOSPC;
   1896 			}
   1897 			lbn += 1 + run;
   1898 		}
   1899 	}
   1900 
   1901 	/*
   1902 	 * Flush any cached pages for parts of the file that we're about to
   1903 	 * access.  If we're writing, invalidate pages as well.
   1904 	 */
   1905 
   1906 	spoff = trunc_page(off);
   1907 	epoff = round_page(off + len);
   1908 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
   1909 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1910 	if (error) {
   1911 		return error;
   1912 	}
   1913 
   1914 	/*
   1915 	 * Wire the user pages and remap them into kernel memory.
   1916 	 */
   1917 
   1918 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1919 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1920 	if (error) {
   1921 		return error;
   1922 	}
   1923 
   1924 	map = &vs->vm_map;
   1925 	upm = vm_map_pmap(map);
   1926 	kpm = vm_map_pmap(kernel_map);
   1927 	puva = trunc_page(uva);
   1928 	kva = uvm_km_alloc(kernel_map, klen, atop(puva) & uvmexp.colormask,
   1929 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
   1930 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1931 		rv = pmap_extract(upm, puva + poff, &pa);
   1932 		KASSERT(rv);
   1933 		pmap_kenter_pa(kva + poff, pa, prot, PMAP_WIRED);
   1934 	}
   1935 	pmap_update(kpm);
   1936 
   1937 	/*
   1938 	 * Do the I/O.
   1939 	 */
   1940 
   1941 	koff = uva - trunc_page(uva);
   1942 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1943 			    genfs_dio_iodone);
   1944 
   1945 	/*
   1946 	 * Tear down the kernel mapping.
   1947 	 */
   1948 
   1949 	pmap_kremove(kva, klen);
   1950 	pmap_update(kpm);
   1951 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1952 
   1953 	/*
   1954 	 * Unwire the user pages.
   1955 	 */
   1956 
   1957 	uvm_vsunlock(vs, (void *)uva, len);
   1958 	return error;
   1959 }
   1960