genfs_vnops.c revision 1.128.4.3 1 1.128.4.3 ad /* $NetBSD: genfs_vnops.c,v 1.128.4.3 2007/01/30 13:51:42 ad Exp $ */
2 1.6 fvdl
3 1.6 fvdl /*
4 1.6 fvdl * Copyright (c) 1982, 1986, 1989, 1993
5 1.6 fvdl * The Regents of the University of California. All rights reserved.
6 1.6 fvdl *
7 1.6 fvdl * Redistribution and use in source and binary forms, with or without
8 1.6 fvdl * modification, are permitted provided that the following conditions
9 1.6 fvdl * are met:
10 1.6 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.6 fvdl * notice, this list of conditions and the following disclaimer.
12 1.6 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.6 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.6 fvdl * documentation and/or other materials provided with the distribution.
15 1.81 agc * 3. Neither the name of the University nor the names of its contributors
16 1.6 fvdl * may be used to endorse or promote products derived from this software
17 1.6 fvdl * without specific prior written permission.
18 1.6 fvdl *
19 1.6 fvdl * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.6 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.6 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.6 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.6 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.6 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.6 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.6 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.6 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.6 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.6 fvdl * SUCH DAMAGE.
30 1.6 fvdl *
31 1.6 fvdl */
32 1.40 lukem
33 1.40 lukem #include <sys/cdefs.h>
34 1.128.4.3 ad __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.128.4.3 2007/01/30 13:51:42 ad Exp $");
35 1.8 thorpej
36 1.1 mycroft #include <sys/param.h>
37 1.1 mycroft #include <sys/systm.h>
38 1.6 fvdl #include <sys/proc.h>
39 1.1 mycroft #include <sys/kernel.h>
40 1.1 mycroft #include <sys/mount.h>
41 1.1 mycroft #include <sys/namei.h>
42 1.1 mycroft #include <sys/vnode.h>
43 1.13 wrstuden #include <sys/fcntl.h>
44 1.128.4.1 ad #include <sys/kmem.h>
45 1.3 mycroft #include <sys/poll.h>
46 1.37 chs #include <sys/mman.h>
47 1.66 jdolecek #include <sys/file.h>
48 1.125 elad #include <sys/kauth.h>
49 1.1 mycroft
50 1.1 mycroft #include <miscfs/genfs/genfs.h>
51 1.37 chs #include <miscfs/genfs/genfs_node.h>
52 1.6 fvdl #include <miscfs/specfs/specdev.h>
53 1.1 mycroft
54 1.21 chs #include <uvm/uvm.h>
55 1.21 chs #include <uvm/uvm_pager.h>
56 1.21 chs
57 1.128.4.1 ad static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
58 1.128.4.1 ad off_t, enum uio_rw);
59 1.128.4.1 ad static void genfs_dio_iodone(struct buf *);
60 1.128.4.1 ad
61 1.128.4.1 ad static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 1.128.4.1 ad void (*)(struct buf *));
63 1.118 perry static inline void genfs_rel_pages(struct vm_page **, int);
64 1.70 christos static void filt_genfsdetach(struct knote *);
65 1.70 christos static int filt_genfsread(struct knote *, long);
66 1.70 christos static int filt_genfsvnode(struct knote *, long);
67 1.70 christos
68 1.110 yamt #define MAX_READ_PAGES 16 /* XXXUBC 16 */
69 1.41 christos
70 1.128.4.1 ad int genfs_maxdio = MAXPHYS;
71 1.128.4.1 ad
72 1.1 mycroft int
73 1.53 enami genfs_poll(void *v)
74 1.1 mycroft {
75 1.3 mycroft struct vop_poll_args /* {
76 1.1 mycroft struct vnode *a_vp;
77 1.3 mycroft int a_events;
78 1.116 christos struct lwp *a_l;
79 1.1 mycroft } */ *ap = v;
80 1.1 mycroft
81 1.3 mycroft return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
82 1.1 mycroft }
83 1.1 mycroft
84 1.1 mycroft int
85 1.53 enami genfs_seek(void *v)
86 1.4 kleink {
87 1.4 kleink struct vop_seek_args /* {
88 1.4 kleink struct vnode *a_vp;
89 1.4 kleink off_t a_oldoff;
90 1.4 kleink off_t a_newoff;
91 1.125 elad kauth_cred_t cred;
92 1.4 kleink } */ *ap = v;
93 1.4 kleink
94 1.4 kleink if (ap->a_newoff < 0)
95 1.4 kleink return (EINVAL);
96 1.4 kleink
97 1.4 kleink return (0);
98 1.4 kleink }
99 1.4 kleink
100 1.4 kleink int
101 1.53 enami genfs_abortop(void *v)
102 1.1 mycroft {
103 1.1 mycroft struct vop_abortop_args /* {
104 1.1 mycroft struct vnode *a_dvp;
105 1.1 mycroft struct componentname *a_cnp;
106 1.1 mycroft } */ *ap = v;
107 1.53 enami
108 1.1 mycroft if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
109 1.19 thorpej PNBUF_PUT(ap->a_cnp->cn_pnbuf);
110 1.1 mycroft return (0);
111 1.13 wrstuden }
112 1.13 wrstuden
113 1.13 wrstuden int
114 1.53 enami genfs_fcntl(void *v)
115 1.13 wrstuden {
116 1.13 wrstuden struct vop_fcntl_args /* {
117 1.13 wrstuden struct vnode *a_vp;
118 1.13 wrstuden u_int a_command;
119 1.13 wrstuden caddr_t a_data;
120 1.13 wrstuden int a_fflag;
121 1.125 elad kauth_cred_t a_cred;
122 1.116 christos struct lwp *a_l;
123 1.13 wrstuden } */ *ap = v;
124 1.13 wrstuden
125 1.13 wrstuden if (ap->a_command == F_SETFL)
126 1.13 wrstuden return (0);
127 1.13 wrstuden else
128 1.13 wrstuden return (EOPNOTSUPP);
129 1.1 mycroft }
130 1.1 mycroft
131 1.1 mycroft /*ARGSUSED*/
132 1.1 mycroft int
133 1.53 enami genfs_badop(void *v)
134 1.1 mycroft {
135 1.1 mycroft
136 1.1 mycroft panic("genfs: bad op");
137 1.1 mycroft }
138 1.1 mycroft
139 1.1 mycroft /*ARGSUSED*/
140 1.1 mycroft int
141 1.53 enami genfs_nullop(void *v)
142 1.1 mycroft {
143 1.1 mycroft
144 1.1 mycroft return (0);
145 1.10 kleink }
146 1.10 kleink
147 1.10 kleink /*ARGSUSED*/
148 1.10 kleink int
149 1.53 enami genfs_einval(void *v)
150 1.10 kleink {
151 1.10 kleink
152 1.10 kleink return (EINVAL);
153 1.1 mycroft }
154 1.1 mycroft
155 1.12 wrstuden /*
156 1.74 jdolecek * Called when an fs doesn't support a particular vop.
157 1.74 jdolecek * This takes care to vrele, vput, or vunlock passed in vnodes.
158 1.12 wrstuden */
159 1.12 wrstuden int
160 1.75 jdolecek genfs_eopnotsupp(void *v)
161 1.12 wrstuden {
162 1.12 wrstuden struct vop_generic_args /*
163 1.12 wrstuden struct vnodeop_desc *a_desc;
164 1.53 enami / * other random data follows, presumably * /
165 1.12 wrstuden } */ *ap = v;
166 1.12 wrstuden struct vnodeop_desc *desc = ap->a_desc;
167 1.74 jdolecek struct vnode *vp, *vp_last = NULL;
168 1.12 wrstuden int flags, i, j, offset;
169 1.12 wrstuden
170 1.12 wrstuden flags = desc->vdesc_flags;
171 1.12 wrstuden for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
172 1.12 wrstuden if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
173 1.12 wrstuden break; /* stop at end of list */
174 1.12 wrstuden if ((j = flags & VDESC_VP0_WILLPUT)) {
175 1.53 enami vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
176 1.74 jdolecek
177 1.74 jdolecek /* Skip if NULL */
178 1.74 jdolecek if (!vp)
179 1.74 jdolecek continue;
180 1.74 jdolecek
181 1.12 wrstuden switch (j) {
182 1.12 wrstuden case VDESC_VP0_WILLPUT:
183 1.74 jdolecek /* Check for dvp == vp cases */
184 1.74 jdolecek if (vp == vp_last)
185 1.74 jdolecek vrele(vp);
186 1.74 jdolecek else {
187 1.74 jdolecek vput(vp);
188 1.74 jdolecek vp_last = vp;
189 1.74 jdolecek }
190 1.12 wrstuden break;
191 1.12 wrstuden case VDESC_VP0_WILLUNLOCK:
192 1.12 wrstuden VOP_UNLOCK(vp, 0);
193 1.12 wrstuden break;
194 1.12 wrstuden case VDESC_VP0_WILLRELE:
195 1.12 wrstuden vrele(vp);
196 1.12 wrstuden break;
197 1.12 wrstuden }
198 1.12 wrstuden }
199 1.12 wrstuden }
200 1.12 wrstuden
201 1.12 wrstuden return (EOPNOTSUPP);
202 1.12 wrstuden }
203 1.12 wrstuden
204 1.1 mycroft /*ARGSUSED*/
205 1.1 mycroft int
206 1.53 enami genfs_ebadf(void *v)
207 1.1 mycroft {
208 1.1 mycroft
209 1.1 mycroft return (EBADF);
210 1.9 matthias }
211 1.9 matthias
212 1.9 matthias /* ARGSUSED */
213 1.9 matthias int
214 1.53 enami genfs_enoioctl(void *v)
215 1.9 matthias {
216 1.9 matthias
217 1.51 atatat return (EPASSTHROUGH);
218 1.6 fvdl }
219 1.6 fvdl
220 1.6 fvdl
221 1.6 fvdl /*
222 1.15 fvdl * Eliminate all activity associated with the requested vnode
223 1.6 fvdl * and with all vnodes aliased to the requested vnode.
224 1.6 fvdl */
225 1.6 fvdl int
226 1.53 enami genfs_revoke(void *v)
227 1.6 fvdl {
228 1.6 fvdl struct vop_revoke_args /* {
229 1.6 fvdl struct vnode *a_vp;
230 1.6 fvdl int a_flags;
231 1.6 fvdl } */ *ap = v;
232 1.6 fvdl struct vnode *vp, *vq;
233 1.116 christos struct lwp *l = curlwp; /* XXX */
234 1.6 fvdl
235 1.6 fvdl #ifdef DIAGNOSTIC
236 1.6 fvdl if ((ap->a_flags & REVOKEALL) == 0)
237 1.6 fvdl panic("genfs_revoke: not revokeall");
238 1.6 fvdl #endif
239 1.6 fvdl
240 1.6 fvdl vp = ap->a_vp;
241 1.6 fvdl simple_lock(&vp->v_interlock);
242 1.6 fvdl
243 1.6 fvdl if (vp->v_flag & VALIASED) {
244 1.6 fvdl /*
245 1.6 fvdl * If a vgone (or vclean) is already in progress,
246 1.6 fvdl * wait until it is done and return.
247 1.6 fvdl */
248 1.6 fvdl if (vp->v_flag & VXLOCK) {
249 1.6 fvdl vp->v_flag |= VXWANT;
250 1.83 pk ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
251 1.83 pk &vp->v_interlock);
252 1.6 fvdl return (0);
253 1.6 fvdl }
254 1.6 fvdl /*
255 1.6 fvdl * Ensure that vp will not be vgone'd while we
256 1.6 fvdl * are eliminating its aliases.
257 1.6 fvdl */
258 1.6 fvdl vp->v_flag |= VXLOCK;
259 1.6 fvdl simple_unlock(&vp->v_interlock);
260 1.6 fvdl while (vp->v_flag & VALIASED) {
261 1.6 fvdl simple_lock(&spechash_slock);
262 1.6 fvdl for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
263 1.6 fvdl if (vq->v_rdev != vp->v_rdev ||
264 1.6 fvdl vq->v_type != vp->v_type || vp == vq)
265 1.6 fvdl continue;
266 1.6 fvdl simple_unlock(&spechash_slock);
267 1.6 fvdl vgone(vq);
268 1.6 fvdl break;
269 1.6 fvdl }
270 1.6 fvdl if (vq == NULLVP)
271 1.6 fvdl simple_unlock(&spechash_slock);
272 1.6 fvdl }
273 1.6 fvdl /*
274 1.6 fvdl * Remove the lock so that vgone below will
275 1.6 fvdl * really eliminate the vnode after which time
276 1.6 fvdl * vgone will awaken any sleepers.
277 1.6 fvdl */
278 1.6 fvdl simple_lock(&vp->v_interlock);
279 1.6 fvdl vp->v_flag &= ~VXLOCK;
280 1.6 fvdl }
281 1.116 christos vgonel(vp, l);
282 1.6 fvdl return (0);
283 1.6 fvdl }
284 1.6 fvdl
285 1.6 fvdl /*
286 1.12 wrstuden * Lock the node.
287 1.6 fvdl */
288 1.6 fvdl int
289 1.53 enami genfs_lock(void *v)
290 1.6 fvdl {
291 1.6 fvdl struct vop_lock_args /* {
292 1.6 fvdl struct vnode *a_vp;
293 1.6 fvdl int a_flags;
294 1.6 fvdl } */ *ap = v;
295 1.6 fvdl struct vnode *vp = ap->a_vp;
296 1.6 fvdl
297 1.86 hannken return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
298 1.6 fvdl }
299 1.6 fvdl
300 1.6 fvdl /*
301 1.12 wrstuden * Unlock the node.
302 1.6 fvdl */
303 1.6 fvdl int
304 1.53 enami genfs_unlock(void *v)
305 1.6 fvdl {
306 1.6 fvdl struct vop_unlock_args /* {
307 1.6 fvdl struct vnode *a_vp;
308 1.6 fvdl int a_flags;
309 1.6 fvdl } */ *ap = v;
310 1.6 fvdl struct vnode *vp = ap->a_vp;
311 1.6 fvdl
312 1.86 hannken return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
313 1.53 enami &vp->v_interlock));
314 1.6 fvdl }
315 1.6 fvdl
316 1.6 fvdl /*
317 1.12 wrstuden * Return whether or not the node is locked.
318 1.6 fvdl */
319 1.6 fvdl int
320 1.53 enami genfs_islocked(void *v)
321 1.6 fvdl {
322 1.6 fvdl struct vop_islocked_args /* {
323 1.6 fvdl struct vnode *a_vp;
324 1.6 fvdl } */ *ap = v;
325 1.6 fvdl struct vnode *vp = ap->a_vp;
326 1.6 fvdl
327 1.86 hannken return (lockstatus(vp->v_vnlock));
328 1.12 wrstuden }
329 1.12 wrstuden
330 1.12 wrstuden /*
331 1.12 wrstuden * Stubs to use when there is no locking to be done on the underlying object.
332 1.12 wrstuden */
333 1.12 wrstuden int
334 1.53 enami genfs_nolock(void *v)
335 1.12 wrstuden {
336 1.12 wrstuden struct vop_lock_args /* {
337 1.12 wrstuden struct vnode *a_vp;
338 1.12 wrstuden int a_flags;
339 1.116 christos struct lwp *a_l;
340 1.12 wrstuden } */ *ap = v;
341 1.12 wrstuden
342 1.12 wrstuden /*
343 1.12 wrstuden * Since we are not using the lock manager, we must clear
344 1.12 wrstuden * the interlock here.
345 1.12 wrstuden */
346 1.12 wrstuden if (ap->a_flags & LK_INTERLOCK)
347 1.12 wrstuden simple_unlock(&ap->a_vp->v_interlock);
348 1.12 wrstuden return (0);
349 1.12 wrstuden }
350 1.12 wrstuden
351 1.12 wrstuden int
352 1.53 enami genfs_nounlock(void *v)
353 1.12 wrstuden {
354 1.53 enami
355 1.12 wrstuden return (0);
356 1.12 wrstuden }
357 1.12 wrstuden
358 1.12 wrstuden int
359 1.53 enami genfs_noislocked(void *v)
360 1.12 wrstuden {
361 1.53 enami
362 1.12 wrstuden return (0);
363 1.8 thorpej }
364 1.8 thorpej
365 1.8 thorpej /*
366 1.128.4.2 ad * Local lease check.
367 1.8 thorpej */
368 1.8 thorpej int
369 1.53 enami genfs_lease_check(void *v)
370 1.8 thorpej {
371 1.8 thorpej
372 1.8 thorpej return (0);
373 1.34 chs }
374 1.34 chs
375 1.34 chs int
376 1.53 enami genfs_mmap(void *v)
377 1.34 chs {
378 1.53 enami
379 1.53 enami return (0);
380 1.21 chs }
381 1.21 chs
382 1.118 perry static inline void
383 1.63 enami genfs_rel_pages(struct vm_page **pgs, int npages)
384 1.63 enami {
385 1.63 enami int i;
386 1.63 enami
387 1.63 enami for (i = 0; i < npages; i++) {
388 1.63 enami struct vm_page *pg = pgs[i];
389 1.63 enami
390 1.127 yamt if (pg == NULL || pg == PGO_DONTCARE)
391 1.63 enami continue;
392 1.63 enami if (pg->flags & PG_FAKE) {
393 1.63 enami pg->flags |= PG_RELEASED;
394 1.63 enami }
395 1.63 enami }
396 1.64 enami uvm_lock_pageq();
397 1.63 enami uvm_page_unbusy(pgs, npages);
398 1.64 enami uvm_unlock_pageq();
399 1.63 enami }
400 1.63 enami
401 1.21 chs /*
402 1.21 chs * generic VM getpages routine.
403 1.21 chs * Return PG_BUSY pages for the given range,
404 1.21 chs * reading from backing store if necessary.
405 1.21 chs */
406 1.21 chs
407 1.21 chs int
408 1.53 enami genfs_getpages(void *v)
409 1.21 chs {
410 1.21 chs struct vop_getpages_args /* {
411 1.21 chs struct vnode *a_vp;
412 1.21 chs voff_t a_offset;
413 1.33 chs struct vm_page **a_m;
414 1.21 chs int *a_count;
415 1.21 chs int a_centeridx;
416 1.21 chs vm_prot_t a_access_type;
417 1.21 chs int a_advice;
418 1.21 chs int a_flags;
419 1.21 chs } */ *ap = v;
420 1.21 chs
421 1.30 chs off_t newsize, diskeof, memeof;
422 1.124 yamt off_t offset, origoffset, startoffset, endoffset;
423 1.21 chs daddr_t lbn, blkno;
424 1.120 yamt int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
425 1.37 chs int fs_bshift, fs_bsize, dev_bshift;
426 1.21 chs int flags = ap->a_flags;
427 1.21 chs size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
428 1.21 chs vaddr_t kva;
429 1.21 chs struct buf *bp, *mbp;
430 1.21 chs struct vnode *vp = ap->a_vp;
431 1.36 chs struct vnode *devvp;
432 1.37 chs struct genfs_node *gp = VTOG(vp);
433 1.37 chs struct uvm_object *uobj = &vp->v_uobj;
434 1.110 yamt struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
435 1.77 yamt int pgs_size;
436 1.128 ad kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
437 1.21 chs boolean_t async = (flags & PGO_SYNCIO) == 0;
438 1.21 chs boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
439 1.21 chs boolean_t sawhole = FALSE;
440 1.37 chs boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
441 1.100 yamt boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
442 1.126 yamt voff_t origvsize;
443 1.21 chs UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
444 1.21 chs
445 1.30 chs UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
446 1.53 enami vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
447 1.30 chs
448 1.121 reinoud KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
449 1.121 reinoud vp->v_type == VLNK || vp->v_type == VBLK);
450 1.109 yamt
451 1.21 chs /* XXXUBC temp limit */
452 1.110 yamt if (*ap->a_count > MAX_READ_PAGES) {
453 1.37 chs panic("genfs_getpages: too many pages");
454 1.21 chs }
455 1.21 chs
456 1.126 yamt startover:
457 1.26 chs error = 0;
458 1.126 yamt origvsize = vp->v_size;
459 1.26 chs origoffset = ap->a_offset;
460 1.26 chs orignpages = *ap->a_count;
461 1.123 yamt GOP_SIZE(vp, vp->v_size, &diskeof, 0);
462 1.26 chs if (flags & PGO_PASTEOF) {
463 1.37 chs newsize = MAX(vp->v_size,
464 1.53 enami origoffset + (orignpages << PAGE_SHIFT));
465 1.123 yamt GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
466 1.26 chs } else {
467 1.123 yamt GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
468 1.21 chs }
469 1.30 chs KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
470 1.30 chs KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
471 1.30 chs KASSERT(orignpages > 0);
472 1.95 chs
473 1.95 chs /*
474 1.95 chs * Bounds-check the request.
475 1.95 chs */
476 1.95 chs
477 1.95 chs if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
478 1.95 chs if ((flags & PGO_LOCKED) == 0) {
479 1.95 chs simple_unlock(&uobj->vmobjlock);
480 1.95 chs }
481 1.95 chs UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
482 1.95 chs origoffset, *ap->a_count, memeof,0);
483 1.95 chs return (EINVAL);
484 1.95 chs }
485 1.21 chs
486 1.99 yamt /* uobj is locked */
487 1.99 yamt
488 1.103 yamt if ((flags & PGO_NOTIMESTAMP) == 0 &&
489 1.121 reinoud (vp->v_type != VBLK ||
490 1.103 yamt (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
491 1.103 yamt int updflags = 0;
492 1.103 yamt
493 1.103 yamt if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
494 1.103 yamt updflags = GOP_UPDATE_ACCESSED;
495 1.103 yamt }
496 1.103 yamt if (write) {
497 1.103 yamt updflags |= GOP_UPDATE_MODIFIED;
498 1.103 yamt }
499 1.103 yamt if (updflags != 0) {
500 1.103 yamt GOP_MARKUPDATE(vp, updflags);
501 1.103 yamt }
502 1.103 yamt }
503 1.103 yamt
504 1.101 yamt if (write) {
505 1.101 yamt gp->g_dirtygen++;
506 1.101 yamt if ((vp->v_flag & VONWORKLST) == 0) {
507 1.101 yamt vn_syncer_add_to_worklist(vp, filedelay);
508 1.101 yamt }
509 1.103 yamt if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
510 1.103 yamt vp->v_flag |= VWRITEMAPDIRTY;
511 1.103 yamt }
512 1.99 yamt }
513 1.99 yamt
514 1.21 chs /*
515 1.21 chs * For PGO_LOCKED requests, just return whatever's in memory.
516 1.21 chs */
517 1.21 chs
518 1.21 chs if (flags & PGO_LOCKED) {
519 1.127 yamt int nfound;
520 1.127 yamt
521 1.127 yamt npages = *ap->a_count;
522 1.127 yamt #if defined(DEBUG)
523 1.127 yamt for (i = 0; i < npages; i++) {
524 1.127 yamt pg = ap->a_m[i];
525 1.127 yamt KASSERT(pg == NULL || pg == PGO_DONTCARE);
526 1.127 yamt }
527 1.127 yamt #endif /* defined(DEBUG) */
528 1.127 yamt nfound = uvn_findpages(uobj, origoffset, &npages,
529 1.127 yamt ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
530 1.127 yamt KASSERT(npages == *ap->a_count);
531 1.127 yamt if (nfound == 0) {
532 1.127 yamt return EBUSY;
533 1.127 yamt }
534 1.127 yamt if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) {
535 1.127 yamt genfs_rel_pages(ap->a_m, npages);
536 1.127 yamt
537 1.127 yamt /*
538 1.127 yamt * restore the array.
539 1.127 yamt */
540 1.127 yamt
541 1.127 yamt for (i = 0; i < npages; i++) {
542 1.127 yamt pg = ap->a_m[i];
543 1.21 chs
544 1.127 yamt if (pg != NULL || pg != PGO_DONTCARE) {
545 1.127 yamt ap->a_m[i] = NULL;
546 1.127 yamt }
547 1.127 yamt }
548 1.127 yamt } else {
549 1.127 yamt lockmgr(&gp->g_glock, LK_RELEASE, NULL);
550 1.127 yamt }
551 1.53 enami return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
552 1.21 chs }
553 1.126 yamt simple_unlock(&uobj->vmobjlock);
554 1.21 chs
555 1.21 chs /*
556 1.21 chs * find the requested pages and make some simple checks.
557 1.21 chs * leave space in the page array for a whole block.
558 1.21 chs */
559 1.21 chs
560 1.121 reinoud if (vp->v_type != VBLK) {
561 1.36 chs fs_bshift = vp->v_mount->mnt_fs_bshift;
562 1.36 chs dev_bshift = vp->v_mount->mnt_dev_bshift;
563 1.36 chs } else {
564 1.36 chs fs_bshift = DEV_BSHIFT;
565 1.36 chs dev_bshift = DEV_BSHIFT;
566 1.36 chs }
567 1.21 chs fs_bsize = 1 << fs_bshift;
568 1.21 chs
569 1.30 chs orignpages = MIN(orignpages,
570 1.30 chs round_page(memeof - origoffset) >> PAGE_SHIFT);
571 1.21 chs npages = orignpages;
572 1.21 chs startoffset = origoffset & ~(fs_bsize - 1);
573 1.53 enami endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
574 1.53 enami fs_bsize - 1) & ~(fs_bsize - 1));
575 1.30 chs endoffset = MIN(endoffset, round_page(memeof));
576 1.21 chs ridx = (origoffset - startoffset) >> PAGE_SHIFT;
577 1.21 chs
578 1.77 yamt pgs_size = sizeof(struct vm_page *) *
579 1.77 yamt ((endoffset - startoffset) >> PAGE_SHIFT);
580 1.77 yamt if (pgs_size > sizeof(pgs_onstack)) {
581 1.128.4.1 ad pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
582 1.78 simonb if (pgs == NULL) {
583 1.78 simonb return (ENOMEM);
584 1.78 simonb }
585 1.77 yamt } else {
586 1.77 yamt pgs = pgs_onstack;
587 1.77 yamt memset(pgs, 0, pgs_size);
588 1.77 yamt }
589 1.63 enami UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
590 1.63 enami ridx, npages, startoffset, endoffset);
591 1.126 yamt
592 1.126 yamt /*
593 1.126 yamt * hold g_glock to prevent a race with truncate.
594 1.126 yamt *
595 1.126 yamt * check if our idea of v_size is still valid.
596 1.126 yamt */
597 1.126 yamt
598 1.126 yamt if (blockalloc) {
599 1.126 yamt lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
600 1.126 yamt } else {
601 1.126 yamt lockmgr(&gp->g_glock, LK_SHARED, NULL);
602 1.126 yamt }
603 1.126 yamt simple_lock(&uobj->vmobjlock);
604 1.126 yamt if (vp->v_size < origvsize) {
605 1.126 yamt lockmgr(&gp->g_glock, LK_RELEASE, NULL);
606 1.126 yamt if (pgs != pgs_onstack)
607 1.128.4.1 ad kmem_free(pgs, pgs_size);
608 1.126 yamt goto startover;
609 1.126 yamt }
610 1.126 yamt
611 1.63 enami if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
612 1.63 enami async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
613 1.126 yamt lockmgr(&gp->g_glock, LK_RELEASE, NULL);
614 1.63 enami KASSERT(async != 0);
615 1.63 enami genfs_rel_pages(&pgs[ridx], orignpages);
616 1.63 enami simple_unlock(&uobj->vmobjlock);
617 1.77 yamt if (pgs != pgs_onstack)
618 1.128.4.1 ad kmem_free(pgs, pgs_size);
619 1.63 enami return (EBUSY);
620 1.63 enami }
621 1.21 chs
622 1.21 chs /*
623 1.21 chs * if the pages are already resident, just return them.
624 1.21 chs */
625 1.21 chs
626 1.21 chs for (i = 0; i < npages; i++) {
627 1.97 christos struct vm_page *pg1 = pgs[ridx + i];
628 1.21 chs
629 1.97 christos if ((pg1->flags & PG_FAKE) ||
630 1.100 yamt (blockalloc && (pg1->flags & PG_RDONLY))) {
631 1.21 chs break;
632 1.21 chs }
633 1.21 chs }
634 1.21 chs if (i == npages) {
635 1.126 yamt lockmgr(&gp->g_glock, LK_RELEASE, NULL);
636 1.21 chs UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
637 1.26 chs npages += ridx;
638 1.110 yamt goto out;
639 1.21 chs }
640 1.21 chs
641 1.21 chs /*
642 1.37 chs * if PGO_OVERWRITE is set, don't bother reading the pages.
643 1.37 chs */
644 1.37 chs
645 1.124 yamt if (overwrite) {
646 1.126 yamt lockmgr(&gp->g_glock, LK_RELEASE, NULL);
647 1.37 chs UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
648 1.37 chs
649 1.37 chs for (i = 0; i < npages; i++) {
650 1.97 christos struct vm_page *pg1 = pgs[ridx + i];
651 1.37 chs
652 1.97 christos pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
653 1.37 chs }
654 1.37 chs npages += ridx;
655 1.37 chs goto out;
656 1.37 chs }
657 1.37 chs
658 1.37 chs /*
659 1.21 chs * the page wasn't resident and we're not overwriting,
660 1.21 chs * so we're going to have to do some i/o.
661 1.21 chs * find any additional pages needed to cover the expanded range.
662 1.21 chs */
663 1.21 chs
664 1.35 chs npages = (endoffset - startoffset) >> PAGE_SHIFT;
665 1.35 chs if (startoffset != origoffset || npages != orignpages) {
666 1.21 chs
667 1.21 chs /*
668 1.37 chs * we need to avoid deadlocks caused by locking
669 1.21 chs * additional pages at lower offsets than pages we
670 1.37 chs * already have locked. unlock them all and start over.
671 1.21 chs */
672 1.21 chs
673 1.63 enami genfs_rel_pages(&pgs[ridx], orignpages);
674 1.77 yamt memset(pgs, 0, pgs_size);
675 1.21 chs
676 1.21 chs UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
677 1.53 enami startoffset, endoffset, 0,0);
678 1.21 chs npgs = npages;
679 1.63 enami if (uvn_findpages(uobj, startoffset, &npgs, pgs,
680 1.63 enami async ? UFP_NOWAIT : UFP_ALL) != npages) {
681 1.126 yamt lockmgr(&gp->g_glock, LK_RELEASE, NULL);
682 1.63 enami KASSERT(async != 0);
683 1.63 enami genfs_rel_pages(pgs, npages);
684 1.63 enami simple_unlock(&uobj->vmobjlock);
685 1.77 yamt if (pgs != pgs_onstack)
686 1.128.4.1 ad kmem_free(pgs, pgs_size);
687 1.63 enami return (EBUSY);
688 1.63 enami }
689 1.21 chs }
690 1.21 chs simple_unlock(&uobj->vmobjlock);
691 1.21 chs
692 1.21 chs /*
693 1.21 chs * read the desired page(s).
694 1.21 chs */
695 1.21 chs
696 1.21 chs totalbytes = npages << PAGE_SHIFT;
697 1.30 chs bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
698 1.21 chs tailbytes = totalbytes - bytes;
699 1.21 chs skipbytes = 0;
700 1.21 chs
701 1.53 enami kva = uvm_pagermapin(pgs, npages,
702 1.53 enami UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
703 1.21 chs
704 1.119 yamt mbp = getiobuf();
705 1.21 chs mbp->b_bufsize = totalbytes;
706 1.21 chs mbp->b_data = (void *)kva;
707 1.21 chs mbp->b_resid = mbp->b_bcount = bytes;
708 1.65 fvdl mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
709 1.37 chs mbp->b_iodone = (async ? uvm_aio_biodone : 0);
710 1.21 chs mbp->b_vp = vp;
711 1.120 yamt if (async)
712 1.120 yamt BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
713 1.120 yamt else
714 1.120 yamt BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
715 1.21 chs
716 1.21 chs /*
717 1.31 chs * if EOF is in the middle of the range, zero the part past EOF.
718 1.38 chs * if the page including EOF is not PG_FAKE, skip over it since
719 1.38 chs * in that case it has valid data that we need to preserve.
720 1.21 chs */
721 1.21 chs
722 1.31 chs if (tailbytes > 0) {
723 1.38 chs size_t tailstart = bytes;
724 1.38 chs
725 1.38 chs if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
726 1.38 chs tailstart = round_page(tailstart);
727 1.38 chs tailbytes -= tailstart - bytes;
728 1.38 chs }
729 1.37 chs UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
730 1.53 enami kva, tailstart, tailbytes,0);
731 1.38 chs memset((void *)(kva + tailstart), 0, tailbytes);
732 1.21 chs }
733 1.21 chs
734 1.21 chs /*
735 1.21 chs * now loop over the pages, reading as needed.
736 1.21 chs */
737 1.21 chs
738 1.21 chs bp = NULL;
739 1.21 chs for (offset = startoffset;
740 1.53 enami bytes > 0;
741 1.53 enami offset += iobytes, bytes -= iobytes) {
742 1.21 chs
743 1.21 chs /*
744 1.21 chs * skip pages which don't need to be read.
745 1.21 chs */
746 1.21 chs
747 1.21 chs pidx = (offset - startoffset) >> PAGE_SHIFT;
748 1.100 yamt while ((pgs[pidx]->flags & PG_FAKE) == 0) {
749 1.21 chs size_t b;
750 1.21 chs
751 1.24 chs KASSERT((offset & (PAGE_SIZE - 1)) == 0);
752 1.100 yamt if ((pgs[pidx]->flags & PG_RDONLY)) {
753 1.100 yamt sawhole = TRUE;
754 1.100 yamt }
755 1.26 chs b = MIN(PAGE_SIZE, bytes);
756 1.21 chs offset += b;
757 1.21 chs bytes -= b;
758 1.21 chs skipbytes += b;
759 1.21 chs pidx++;
760 1.21 chs UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
761 1.53 enami offset, 0,0,0);
762 1.21 chs if (bytes == 0) {
763 1.21 chs goto loopdone;
764 1.21 chs }
765 1.21 chs }
766 1.21 chs
767 1.21 chs /*
768 1.21 chs * bmap the file to find out the blkno to read from and
769 1.21 chs * how much we can read in one i/o. if bmap returns an error,
770 1.21 chs * skip the rest of the top-level i/o.
771 1.21 chs */
772 1.21 chs
773 1.21 chs lbn = offset >> fs_bshift;
774 1.36 chs error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
775 1.21 chs if (error) {
776 1.21 chs UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
777 1.53 enami lbn, error,0,0);
778 1.21 chs skipbytes += bytes;
779 1.21 chs goto loopdone;
780 1.21 chs }
781 1.21 chs
782 1.21 chs /*
783 1.21 chs * see how many pages can be read with this i/o.
784 1.21 chs * reduce the i/o size if necessary to avoid
785 1.21 chs * overwriting pages with valid data.
786 1.21 chs */
787 1.21 chs
788 1.26 chs iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
789 1.26 chs bytes);
790 1.21 chs if (offset + iobytes > round_page(offset)) {
791 1.21 chs pcount = 1;
792 1.21 chs while (pidx + pcount < npages &&
793 1.53 enami pgs[pidx + pcount]->flags & PG_FAKE) {
794 1.21 chs pcount++;
795 1.21 chs }
796 1.26 chs iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
797 1.53 enami (offset - trunc_page(offset)));
798 1.21 chs }
799 1.21 chs
800 1.21 chs /*
801 1.53 enami * if this block isn't allocated, zero it instead of
802 1.100 yamt * reading it. unless we are going to allocate blocks,
803 1.100 yamt * mark the pages we zeroed PG_RDONLY.
804 1.21 chs */
805 1.21 chs
806 1.21 chs if (blkno < 0) {
807 1.53 enami int holepages = (round_page(offset + iobytes) -
808 1.53 enami trunc_page(offset)) >> PAGE_SHIFT;
809 1.21 chs UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
810 1.21 chs
811 1.21 chs sawhole = TRUE;
812 1.21 chs memset((char *)kva + (offset - startoffset), 0,
813 1.53 enami iobytes);
814 1.21 chs skipbytes += iobytes;
815 1.21 chs
816 1.35 chs for (i = 0; i < holepages; i++) {
817 1.35 chs if (write) {
818 1.35 chs pgs[pidx + i]->flags &= ~PG_CLEAN;
819 1.100 yamt }
820 1.100 yamt if (!blockalloc) {
821 1.21 chs pgs[pidx + i]->flags |= PG_RDONLY;
822 1.21 chs }
823 1.21 chs }
824 1.21 chs continue;
825 1.21 chs }
826 1.21 chs
827 1.21 chs /*
828 1.21 chs * allocate a sub-buf for this piece of the i/o
829 1.21 chs * (or just use mbp if there's only 1 piece),
830 1.21 chs * and start it going.
831 1.21 chs */
832 1.21 chs
833 1.21 chs if (offset == startoffset && iobytes == bytes) {
834 1.21 chs bp = mbp;
835 1.21 chs } else {
836 1.119 yamt bp = getiobuf();
837 1.120 yamt nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
838 1.21 chs }
839 1.112 yamt bp->b_lblkno = 0;
840 1.21 chs
841 1.21 chs /* adjust physical blkno for partial blocks */
842 1.25 fvdl bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
843 1.53 enami dev_bshift);
844 1.21 chs
845 1.53 enami UVMHIST_LOG(ubchist,
846 1.53 enami "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
847 1.53 enami bp, offset, iobytes, bp->b_blkno);
848 1.21 chs
849 1.109 yamt VOP_STRATEGY(devvp, bp);
850 1.21 chs }
851 1.21 chs
852 1.21 chs loopdone:
853 1.120 yamt nestiobuf_done(mbp, skipbytes, error);
854 1.21 chs if (async) {
855 1.32 chs UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
856 1.37 chs lockmgr(&gp->g_glock, LK_RELEASE, NULL);
857 1.77 yamt if (pgs != pgs_onstack)
858 1.128.4.1 ad kmem_free(pgs, pgs_size);
859 1.53 enami return (0);
860 1.21 chs }
861 1.21 chs if (bp != NULL) {
862 1.21 chs error = biowait(mbp);
863 1.21 chs }
864 1.119 yamt putiobuf(mbp);
865 1.21 chs uvm_pagermapout(kva, npages);
866 1.21 chs
867 1.21 chs /*
868 1.21 chs * if this we encountered a hole then we have to do a little more work.
869 1.21 chs * for read faults, we marked the page PG_RDONLY so that future
870 1.21 chs * write accesses to the page will fault again.
871 1.21 chs * for write faults, we must make sure that the backing store for
872 1.21 chs * the page is completely allocated while the pages are locked.
873 1.21 chs */
874 1.21 chs
875 1.100 yamt if (!error && sawhole && blockalloc) {
876 1.37 chs error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
877 1.53 enami cred);
878 1.37 chs UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
879 1.37 chs startoffset, npages << PAGE_SHIFT, error,0);
880 1.100 yamt if (!error) {
881 1.100 yamt for (i = 0; i < npages; i++) {
882 1.100 yamt if (pgs[i] == NULL) {
883 1.100 yamt continue;
884 1.100 yamt }
885 1.100 yamt pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
886 1.100 yamt UVMHIST_LOG(ubchist, "mark dirty pg %p",
887 1.100 yamt pgs[i],0,0,0);
888 1.100 yamt }
889 1.100 yamt }
890 1.21 chs }
891 1.37 chs lockmgr(&gp->g_glock, LK_RELEASE, NULL);
892 1.21 chs simple_lock(&uobj->vmobjlock);
893 1.21 chs
894 1.21 chs /*
895 1.21 chs * we're almost done! release the pages...
896 1.21 chs * for errors, we free the pages.
897 1.21 chs * otherwise we activate them and mark them as valid and clean.
898 1.21 chs * also, unbusy pages that were not actually requested.
899 1.21 chs */
900 1.21 chs
901 1.21 chs if (error) {
902 1.21 chs for (i = 0; i < npages; i++) {
903 1.21 chs if (pgs[i] == NULL) {
904 1.21 chs continue;
905 1.21 chs }
906 1.21 chs UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
907 1.53 enami pgs[i], pgs[i]->flags, 0,0);
908 1.26 chs if (pgs[i]->flags & PG_FAKE) {
909 1.37 chs pgs[i]->flags |= PG_RELEASED;
910 1.21 chs }
911 1.21 chs }
912 1.37 chs uvm_lock_pageq();
913 1.37 chs uvm_page_unbusy(pgs, npages);
914 1.21 chs uvm_unlock_pageq();
915 1.21 chs simple_unlock(&uobj->vmobjlock);
916 1.21 chs UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
917 1.77 yamt if (pgs != pgs_onstack)
918 1.128.4.1 ad kmem_free(pgs, pgs_size);
919 1.53 enami return (error);
920 1.21 chs }
921 1.21 chs
922 1.37 chs out:
923 1.21 chs UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
924 1.26 chs uvm_lock_pageq();
925 1.21 chs for (i = 0; i < npages; i++) {
926 1.37 chs pg = pgs[i];
927 1.37 chs if (pg == NULL) {
928 1.21 chs continue;
929 1.21 chs }
930 1.21 chs UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
931 1.53 enami pg, pg->flags, 0,0);
932 1.37 chs if (pg->flags & PG_FAKE && !overwrite) {
933 1.37 chs pg->flags &= ~(PG_FAKE);
934 1.21 chs pmap_clear_modify(pgs[i]);
935 1.21 chs }
936 1.100 yamt KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
937 1.21 chs if (i < ridx || i >= ridx + orignpages || async) {
938 1.21 chs UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
939 1.53 enami pg, pg->offset,0,0);
940 1.37 chs if (pg->flags & PG_WANTED) {
941 1.37 chs wakeup(pg);
942 1.37 chs }
943 1.37 chs if (pg->flags & PG_FAKE) {
944 1.37 chs KASSERT(overwrite);
945 1.37 chs uvm_pagezero(pg);
946 1.37 chs }
947 1.37 chs if (pg->flags & PG_RELEASED) {
948 1.37 chs uvm_pagefree(pg);
949 1.26 chs continue;
950 1.21 chs }
951 1.128.4.1 ad uvm_pageenqueue(pg);
952 1.37 chs pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
953 1.37 chs UVM_PAGE_OWN(pg, NULL);
954 1.21 chs }
955 1.21 chs }
956 1.26 chs uvm_unlock_pageq();
957 1.21 chs simple_unlock(&uobj->vmobjlock);
958 1.21 chs if (ap->a_m != NULL) {
959 1.21 chs memcpy(ap->a_m, &pgs[ridx],
960 1.53 enami orignpages * sizeof(struct vm_page *));
961 1.21 chs }
962 1.77 yamt if (pgs != pgs_onstack)
963 1.128.4.1 ad kmem_free(pgs, pgs_size);
964 1.53 enami return (0);
965 1.21 chs }
966 1.21 chs
967 1.21 chs /*
968 1.21 chs * generic VM putpages routine.
969 1.21 chs * Write the given range of pages to backing store.
970 1.37 chs *
971 1.37 chs * => "offhi == 0" means flush all pages at or after "offlo".
972 1.128.4.2 ad * => object should be locked by caller. we return with the
973 1.128.4.2 ad * object unlocked.
974 1.37 chs * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
975 1.37 chs * thus, a caller might want to unlock higher level resources
976 1.37 chs * (e.g. vm_map) before calling flush.
977 1.128.4.2 ad * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
978 1.37 chs * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
979 1.37 chs * => NOTE: we rely on the fact that the object's memq is a TAILQ and
980 1.37 chs * that new pages are inserted on the tail end of the list. thus,
981 1.37 chs * we can make a complete pass through the object in one go by starting
982 1.37 chs * at the head and working towards the tail (new pages are put in
983 1.37 chs * front of us).
984 1.37 chs * => NOTE: we are allowed to lock the page queues, so the caller
985 1.37 chs * must not be holding the page queue lock.
986 1.37 chs *
987 1.37 chs * note on "cleaning" object and PG_BUSY pages:
988 1.37 chs * this routine is holding the lock on the object. the only time
989 1.37 chs * that it can run into a PG_BUSY page that it does not own is if
990 1.37 chs * some other process has started I/O on the page (e.g. either
991 1.37 chs * a pagein, or a pageout). if the PG_BUSY page is being paged
992 1.37 chs * in, then it can not be dirty (!PG_CLEAN) because no one has
993 1.37 chs * had a chance to modify it yet. if the PG_BUSY page is being
994 1.37 chs * paged out then it means that someone else has already started
995 1.53 enami * cleaning the page for us (how nice!). in this case, if we
996 1.37 chs * have syncio specified, then after we make our pass through the
997 1.53 enami * object we need to wait for the other PG_BUSY pages to clear
998 1.37 chs * off (i.e. we need to do an iosync). also note that once a
999 1.37 chs * page is PG_BUSY it must stay in its object until it is un-busyed.
1000 1.37 chs *
1001 1.37 chs * note on page traversal:
1002 1.37 chs * we can traverse the pages in an object either by going down the
1003 1.37 chs * linked list in "uobj->memq", or we can go over the address range
1004 1.37 chs * by page doing hash table lookups for each address. depending
1005 1.53 enami * on how many pages are in the object it may be cheaper to do one
1006 1.37 chs * or the other. we set "by_list" to true if we are using memq.
1007 1.37 chs * if the cost of a hash lookup was equal to the cost of the list
1008 1.37 chs * traversal we could compare the number of pages in the start->stop
1009 1.37 chs * range to the total number of pages in the object. however, it
1010 1.37 chs * seems that a hash table lookup is more expensive than the linked
1011 1.53 enami * list traversal, so we multiply the number of pages in the
1012 1.37 chs * range by an estimate of the relatively higher cost of the hash lookup.
1013 1.21 chs */
1014 1.21 chs
1015 1.21 chs int
1016 1.53 enami genfs_putpages(void *v)
1017 1.21 chs {
1018 1.21 chs struct vop_putpages_args /* {
1019 1.21 chs struct vnode *a_vp;
1020 1.37 chs voff_t a_offlo;
1021 1.37 chs voff_t a_offhi;
1022 1.21 chs int a_flags;
1023 1.21 chs } */ *ap = v;
1024 1.37 chs struct vnode *vp = ap->a_vp;
1025 1.37 chs struct uvm_object *uobj = &vp->v_uobj;
1026 1.46 chs struct simplelock *slock = &uobj->vmobjlock;
1027 1.37 chs off_t startoff = ap->a_offlo;
1028 1.37 chs off_t endoff = ap->a_offhi;
1029 1.37 chs off_t off;
1030 1.37 chs int flags = ap->a_flags;
1031 1.76 tls /* Even for strange MAXPHYS, the shift rounds down to a page */
1032 1.128.4.2 ad #define maxpages (MAXPHYS >> PAGE_SHIFT)
1033 1.37 chs int i, s, error, npages, nback;
1034 1.37 chs int freeflag;
1035 1.60 enami struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1036 1.97 christos boolean_t wasclean, by_list, needs_clean, yld;
1037 1.37 chs boolean_t async = (flags & PGO_SYNCIO) == 0;
1038 1.56 enami boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1039 1.70 christos struct lwp *l = curlwp ? curlwp : &lwp0;
1040 1.101 yamt struct genfs_node *gp = VTOG(vp);
1041 1.101 yamt int dirtygen;
1042 1.103 yamt boolean_t modified = FALSE;
1043 1.104 yamt boolean_t cleanall;
1044 1.70 christos
1045 1.37 chs UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1046 1.37 chs
1047 1.37 chs KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1048 1.37 chs KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1049 1.37 chs KASSERT(startoff < endoff || endoff == 0);
1050 1.37 chs
1051 1.37 chs UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1052 1.37 chs vp, uobj->uo_npages, startoff, endoff - startoff);
1053 1.103 yamt
1054 1.103 yamt KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1055 1.103 yamt (vp->v_flag & VWRITEMAPDIRTY) == 0);
1056 1.37 chs if (uobj->uo_npages == 0) {
1057 1.62 perseant s = splbio();
1058 1.103 yamt if (vp->v_flag & VONWORKLST) {
1059 1.103 yamt vp->v_flag &= ~VWRITEMAPDIRTY;
1060 1.128.4.1 ad if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1061 1.128.4.1 ad vn_syncer_remove_from_worklist(vp);
1062 1.37 chs }
1063 1.62 perseant splx(s);
1064 1.46 chs simple_unlock(slock);
1065 1.53 enami return (0);
1066 1.37 chs }
1067 1.37 chs
1068 1.37 chs /*
1069 1.37 chs * the vnode has pages, set up to process the request.
1070 1.37 chs */
1071 1.37 chs
1072 1.37 chs error = 0;
1073 1.44 chs s = splbio();
1074 1.71 pk simple_lock(&global_v_numoutput_slock);
1075 1.44 chs wasclean = (vp->v_numoutput == 0);
1076 1.71 pk simple_unlock(&global_v_numoutput_slock);
1077 1.44 chs splx(s);
1078 1.37 chs off = startoff;
1079 1.37 chs if (endoff == 0 || flags & PGO_ALLPAGES) {
1080 1.37 chs endoff = trunc_page(LLONG_MAX);
1081 1.37 chs }
1082 1.37 chs by_list = (uobj->uo_npages <=
1083 1.37 chs ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1084 1.37 chs
1085 1.102 yamt #if !defined(DEBUG)
1086 1.102 yamt /*
1087 1.102 yamt * if this vnode is known not to have dirty pages,
1088 1.102 yamt * don't bother to clean it out.
1089 1.102 yamt */
1090 1.102 yamt
1091 1.102 yamt if ((vp->v_flag & VONWORKLST) == 0) {
1092 1.102 yamt if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1093 1.102 yamt goto skip_scan;
1094 1.102 yamt }
1095 1.102 yamt flags &= ~PGO_CLEANIT;
1096 1.102 yamt }
1097 1.102 yamt #endif /* !defined(DEBUG) */
1098 1.102 yamt
1099 1.37 chs /*
1100 1.37 chs * start the loop. when scanning by list, hold the last page
1101 1.37 chs * in the list before we start. pages allocated after we start
1102 1.37 chs * will be added to the end of the list, so we can stop at the
1103 1.37 chs * current last page.
1104 1.37 chs */
1105 1.37 chs
1106 1.104 yamt cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1107 1.104 yamt startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1108 1.104 yamt (vp->v_flag & VONWORKLST) != 0;
1109 1.101 yamt dirtygen = gp->g_dirtygen;
1110 1.56 enami freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1111 1.37 chs if (by_list) {
1112 1.113 yamt curmp.uobject = uobj;
1113 1.113 yamt curmp.offset = (voff_t)-1;
1114 1.113 yamt curmp.flags = PG_BUSY;
1115 1.113 yamt endmp.uobject = uobj;
1116 1.113 yamt endmp.offset = (voff_t)-1;
1117 1.113 yamt endmp.flags = PG_BUSY;
1118 1.37 chs pg = TAILQ_FIRST(&uobj->memq);
1119 1.37 chs TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1120 1.70 christos PHOLD(l);
1121 1.37 chs } else {
1122 1.37 chs pg = uvm_pagelookup(uobj, off);
1123 1.37 chs }
1124 1.37 chs nextpg = NULL;
1125 1.37 chs while (by_list || off < endoff) {
1126 1.37 chs
1127 1.37 chs /*
1128 1.37 chs * if the current page is not interesting, move on to the next.
1129 1.37 chs */
1130 1.37 chs
1131 1.37 chs KASSERT(pg == NULL || pg->uobject == uobj);
1132 1.37 chs KASSERT(pg == NULL ||
1133 1.53 enami (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1134 1.53 enami (pg->flags & PG_BUSY) != 0);
1135 1.37 chs if (by_list) {
1136 1.37 chs if (pg == &endmp) {
1137 1.37 chs break;
1138 1.37 chs }
1139 1.37 chs if (pg->offset < startoff || pg->offset >= endoff ||
1140 1.37 chs pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1141 1.101 yamt if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1142 1.101 yamt wasclean = FALSE;
1143 1.101 yamt }
1144 1.37 chs pg = TAILQ_NEXT(pg, listq);
1145 1.37 chs continue;
1146 1.37 chs }
1147 1.37 chs off = pg->offset;
1148 1.101 yamt } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1149 1.101 yamt if (pg != NULL) {
1150 1.101 yamt wasclean = FALSE;
1151 1.101 yamt }
1152 1.37 chs off += PAGE_SIZE;
1153 1.37 chs if (off < endoff) {
1154 1.37 chs pg = uvm_pagelookup(uobj, off);
1155 1.37 chs }
1156 1.37 chs continue;
1157 1.37 chs }
1158 1.21 chs
1159 1.37 chs /*
1160 1.37 chs * if the current page needs to be cleaned and it's busy,
1161 1.37 chs * wait for it to become unbusy.
1162 1.37 chs */
1163 1.37 chs
1164 1.97 christos yld = (l->l_cpu->ci_schedstate.spc_flags &
1165 1.56 enami SPCF_SHOULDYIELD) && !pagedaemon;
1166 1.97 christos if (pg->flags & PG_BUSY || yld) {
1167 1.72 perseant UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1168 1.72 perseant if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1169 1.72 perseant UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1170 1.72 perseant error = EDEADLK;
1171 1.72 perseant break;
1172 1.72 perseant }
1173 1.56 enami KASSERT(!pagedaemon);
1174 1.37 chs if (by_list) {
1175 1.37 chs TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1176 1.37 chs UVMHIST_LOG(ubchist, "curmp next %p",
1177 1.53 enami TAILQ_NEXT(&curmp, listq), 0,0,0);
1178 1.37 chs }
1179 1.97 christos if (yld) {
1180 1.49 chs simple_unlock(slock);
1181 1.128.4.3 ad preempt();
1182 1.49 chs simple_lock(slock);
1183 1.49 chs } else {
1184 1.49 chs pg->flags |= PG_WANTED;
1185 1.49 chs UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1186 1.49 chs simple_lock(slock);
1187 1.49 chs }
1188 1.37 chs if (by_list) {
1189 1.37 chs UVMHIST_LOG(ubchist, "after next %p",
1190 1.53 enami TAILQ_NEXT(&curmp, listq), 0,0,0);
1191 1.37 chs pg = TAILQ_NEXT(&curmp, listq);
1192 1.37 chs TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1193 1.37 chs } else {
1194 1.37 chs pg = uvm_pagelookup(uobj, off);
1195 1.37 chs }
1196 1.37 chs continue;
1197 1.49 chs }
1198 1.49 chs
1199 1.49 chs /*
1200 1.49 chs * if we're freeing, remove all mappings of the page now.
1201 1.49 chs * if we're cleaning, check if the page is needs to be cleaned.
1202 1.49 chs */
1203 1.49 chs
1204 1.49 chs if (flags & PGO_FREE) {
1205 1.49 chs pmap_page_protect(pg, VM_PROT_NONE);
1206 1.101 yamt } else if (flags & PGO_CLEANIT) {
1207 1.101 yamt
1208 1.101 yamt /*
1209 1.101 yamt * if we still have some hope to pull this vnode off
1210 1.101 yamt * from the syncer queue, write-protect the page.
1211 1.101 yamt */
1212 1.101 yamt
1213 1.104 yamt if (cleanall && wasclean &&
1214 1.104 yamt gp->g_dirtygen == dirtygen) {
1215 1.104 yamt
1216 1.104 yamt /*
1217 1.104 yamt * uobj pages get wired only by uvm_fault
1218 1.104 yamt * where uobj is locked.
1219 1.104 yamt */
1220 1.104 yamt
1221 1.104 yamt if (pg->wire_count == 0) {
1222 1.104 yamt pmap_page_protect(pg,
1223 1.104 yamt VM_PROT_READ|VM_PROT_EXECUTE);
1224 1.104 yamt } else {
1225 1.104 yamt cleanall = FALSE;
1226 1.104 yamt }
1227 1.101 yamt }
1228 1.49 chs }
1229 1.101 yamt
1230 1.49 chs if (flags & PGO_CLEANIT) {
1231 1.49 chs needs_clean = pmap_clear_modify(pg) ||
1232 1.53 enami (pg->flags & PG_CLEAN) == 0;
1233 1.49 chs pg->flags |= PG_CLEAN;
1234 1.49 chs } else {
1235 1.49 chs needs_clean = FALSE;
1236 1.37 chs }
1237 1.37 chs
1238 1.37 chs /*
1239 1.37 chs * if we're cleaning, build a cluster.
1240 1.37 chs * the cluster will consist of pages which are currently dirty,
1241 1.37 chs * but they will be returned to us marked clean.
1242 1.37 chs * if not cleaning, just operate on the one page.
1243 1.37 chs */
1244 1.37 chs
1245 1.37 chs if (needs_clean) {
1246 1.101 yamt KDASSERT((vp->v_flag & VONWORKLST));
1247 1.37 chs wasclean = FALSE;
1248 1.37 chs memset(pgs, 0, sizeof(pgs));
1249 1.37 chs pg->flags |= PG_BUSY;
1250 1.37 chs UVM_PAGE_OWN(pg, "genfs_putpages");
1251 1.37 chs
1252 1.37 chs /*
1253 1.37 chs * first look backward.
1254 1.37 chs */
1255 1.37 chs
1256 1.60 enami npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1257 1.37 chs nback = npages;
1258 1.37 chs uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1259 1.37 chs UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1260 1.37 chs if (nback) {
1261 1.37 chs memmove(&pgs[0], &pgs[npages - nback],
1262 1.37 chs nback * sizeof(pgs[0]));
1263 1.47 enami if (npages - nback < nback)
1264 1.47 enami memset(&pgs[nback], 0,
1265 1.47 enami (npages - nback) * sizeof(pgs[0]));
1266 1.47 enami else
1267 1.47 enami memset(&pgs[npages - nback], 0,
1268 1.47 enami nback * sizeof(pgs[0]));
1269 1.37 chs }
1270 1.37 chs
1271 1.37 chs /*
1272 1.37 chs * then plug in our page of interest.
1273 1.37 chs */
1274 1.37 chs
1275 1.37 chs pgs[nback] = pg;
1276 1.37 chs
1277 1.37 chs /*
1278 1.37 chs * then look forward to fill in the remaining space in
1279 1.37 chs * the array of pages.
1280 1.37 chs */
1281 1.37 chs
1282 1.60 enami npages = maxpages - nback - 1;
1283 1.37 chs uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1284 1.37 chs &pgs[nback + 1],
1285 1.37 chs UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1286 1.37 chs npages += nback + 1;
1287 1.37 chs } else {
1288 1.37 chs pgs[0] = pg;
1289 1.37 chs npages = 1;
1290 1.61 enami nback = 0;
1291 1.37 chs }
1292 1.37 chs
1293 1.37 chs /*
1294 1.37 chs * apply FREE or DEACTIVATE options if requested.
1295 1.37 chs */
1296 1.37 chs
1297 1.37 chs if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1298 1.37 chs uvm_lock_pageq();
1299 1.37 chs }
1300 1.37 chs for (i = 0; i < npages; i++) {
1301 1.37 chs tpg = pgs[i];
1302 1.37 chs KASSERT(tpg->uobject == uobj);
1303 1.59 enami if (by_list && tpg == TAILQ_NEXT(pg, listq))
1304 1.59 enami pg = tpg;
1305 1.91 enami if (tpg->offset < startoff || tpg->offset >= endoff)
1306 1.91 enami continue;
1307 1.128.4.2 ad if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1308 1.37 chs (void) pmap_clear_reference(tpg);
1309 1.37 chs uvm_pagedeactivate(tpg);
1310 1.37 chs } else if (flags & PGO_FREE) {
1311 1.37 chs pmap_page_protect(tpg, VM_PROT_NONE);
1312 1.37 chs if (tpg->flags & PG_BUSY) {
1313 1.37 chs tpg->flags |= freeflag;
1314 1.56 enami if (pagedaemon) {
1315 1.37 chs uvmexp.paging++;
1316 1.37 chs uvm_pagedequeue(tpg);
1317 1.37 chs }
1318 1.37 chs } else {
1319 1.59 enami
1320 1.59 enami /*
1321 1.59 enami * ``page is not busy''
1322 1.59 enami * implies that npages is 1
1323 1.59 enami * and needs_clean is false.
1324 1.59 enami */
1325 1.59 enami
1326 1.37 chs nextpg = TAILQ_NEXT(tpg, listq);
1327 1.37 chs uvm_pagefree(tpg);
1328 1.89 enami if (pagedaemon)
1329 1.89 enami uvmexp.pdfreed++;
1330 1.37 chs }
1331 1.37 chs }
1332 1.37 chs }
1333 1.37 chs if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1334 1.37 chs uvm_unlock_pageq();
1335 1.37 chs }
1336 1.37 chs if (needs_clean) {
1337 1.103 yamt modified = TRUE;
1338 1.37 chs
1339 1.37 chs /*
1340 1.37 chs * start the i/o. if we're traversing by list,
1341 1.37 chs * keep our place in the list with a marker page.
1342 1.37 chs */
1343 1.37 chs
1344 1.37 chs if (by_list) {
1345 1.37 chs TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1346 1.37 chs listq);
1347 1.37 chs }
1348 1.46 chs simple_unlock(slock);
1349 1.37 chs error = GOP_WRITE(vp, pgs, npages, flags);
1350 1.46 chs simple_lock(slock);
1351 1.37 chs if (by_list) {
1352 1.37 chs pg = TAILQ_NEXT(&curmp, listq);
1353 1.37 chs TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1354 1.37 chs }
1355 1.37 chs if (error) {
1356 1.37 chs break;
1357 1.37 chs }
1358 1.37 chs if (by_list) {
1359 1.37 chs continue;
1360 1.37 chs }
1361 1.37 chs }
1362 1.37 chs
1363 1.37 chs /*
1364 1.37 chs * find the next page and continue if there was no error.
1365 1.37 chs */
1366 1.37 chs
1367 1.37 chs if (by_list) {
1368 1.37 chs if (nextpg) {
1369 1.37 chs pg = nextpg;
1370 1.37 chs nextpg = NULL;
1371 1.37 chs } else {
1372 1.37 chs pg = TAILQ_NEXT(pg, listq);
1373 1.37 chs }
1374 1.37 chs } else {
1375 1.61 enami off += (npages - nback) << PAGE_SHIFT;
1376 1.37 chs if (off < endoff) {
1377 1.37 chs pg = uvm_pagelookup(uobj, off);
1378 1.37 chs }
1379 1.37 chs }
1380 1.37 chs }
1381 1.37 chs if (by_list) {
1382 1.37 chs TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1383 1.70 christos PRELE(l);
1384 1.37 chs }
1385 1.37 chs
1386 1.103 yamt if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1387 1.121 reinoud (vp->v_type != VBLK ||
1388 1.103 yamt (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1389 1.103 yamt GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1390 1.103 yamt }
1391 1.103 yamt
1392 1.37 chs /*
1393 1.37 chs * if we're cleaning and there was nothing to clean,
1394 1.37 chs * take us off the syncer list. if we started any i/o
1395 1.37 chs * and we're doing sync i/o, wait for all writes to finish.
1396 1.37 chs */
1397 1.37 chs
1398 1.62 perseant s = splbio();
1399 1.104 yamt if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1400 1.104 yamt (vp->v_flag & VONWORKLST) != 0) {
1401 1.103 yamt vp->v_flag &= ~VWRITEMAPDIRTY;
1402 1.128.4.1 ad if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1403 1.128.4.1 ad vn_syncer_remove_from_worklist(vp);
1404 1.37 chs }
1405 1.62 perseant splx(s);
1406 1.102 yamt
1407 1.102 yamt #if !defined(DEBUG)
1408 1.102 yamt skip_scan:
1409 1.102 yamt #endif /* !defined(DEBUG) */
1410 1.37 chs if (!wasclean && !async) {
1411 1.37 chs s = splbio();
1412 1.71 pk /*
1413 1.71 pk * XXX - we want simple_unlock(&global_v_numoutput_slock);
1414 1.71 pk * but the slot in ltsleep() is taken!
1415 1.71 pk * XXX - try to recover from missed wakeups with a timeout..
1416 1.71 pk * must think of something better.
1417 1.71 pk */
1418 1.37 chs while (vp->v_numoutput != 0) {
1419 1.37 chs vp->v_flag |= VBWAIT;
1420 1.46 chs UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1421 1.71 pk "genput2", hz);
1422 1.46 chs simple_lock(slock);
1423 1.37 chs }
1424 1.37 chs splx(s);
1425 1.37 chs }
1426 1.128.4.2 ad simple_unlock(slock);
1427 1.53 enami return (error);
1428 1.37 chs }
1429 1.37 chs
1430 1.37 chs int
1431 1.37 chs genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1432 1.37 chs {
1433 1.128.4.1 ad off_t off;
1434 1.128.4.1 ad vaddr_t kva;
1435 1.128.4.1 ad size_t len;
1436 1.128.4.1 ad int error;
1437 1.128.4.1 ad UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1438 1.128.4.1 ad
1439 1.128.4.1 ad UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1440 1.128.4.1 ad vp, pgs, npages, flags);
1441 1.128.4.1 ad
1442 1.128.4.1 ad off = pgs[0]->offset;
1443 1.128.4.1 ad kva = uvm_pagermapin(pgs, npages,
1444 1.128.4.1 ad UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1445 1.128.4.1 ad len = npages << PAGE_SHIFT;
1446 1.128.4.1 ad
1447 1.128.4.1 ad error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1448 1.128.4.1 ad uvm_aio_biodone);
1449 1.128.4.1 ad
1450 1.128.4.1 ad return error;
1451 1.128.4.1 ad }
1452 1.128.4.1 ad
1453 1.128.4.1 ad /*
1454 1.128.4.1 ad * Backend routine for doing I/O to vnode pages. Pages are already locked
1455 1.128.4.1 ad * and mapped into kernel memory. Here we just look up the underlying
1456 1.128.4.1 ad * device block addresses and call the strategy routine.
1457 1.128.4.1 ad */
1458 1.128.4.1 ad
1459 1.128.4.1 ad static int
1460 1.128.4.1 ad genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1461 1.128.4.1 ad enum uio_rw rw, void (*iodone)(struct buf *))
1462 1.128.4.1 ad {
1463 1.37 chs int s, error, run;
1464 1.37 chs int fs_bshift, dev_bshift;
1465 1.21 chs off_t eof, offset, startoffset;
1466 1.21 chs size_t bytes, iobytes, skipbytes;
1467 1.21 chs daddr_t lbn, blkno;
1468 1.21 chs struct buf *mbp, *bp;
1469 1.36 chs struct vnode *devvp;
1470 1.37 chs boolean_t async = (flags & PGO_SYNCIO) == 0;
1471 1.128.4.1 ad boolean_t write = rw == UIO_WRITE;
1472 1.128.4.1 ad int brw = write ? B_WRITE : B_READ;
1473 1.128.4.1 ad UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1474 1.21 chs
1475 1.128.4.1 ad UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1476 1.128.4.1 ad vp, kva, len, flags);
1477 1.21 chs
1478 1.123 yamt GOP_SIZE(vp, vp->v_size, &eof, 0);
1479 1.121 reinoud if (vp->v_type != VBLK) {
1480 1.36 chs fs_bshift = vp->v_mount->mnt_fs_bshift;
1481 1.36 chs dev_bshift = vp->v_mount->mnt_dev_bshift;
1482 1.36 chs } else {
1483 1.36 chs fs_bshift = DEV_BSHIFT;
1484 1.36 chs dev_bshift = DEV_BSHIFT;
1485 1.36 chs }
1486 1.37 chs error = 0;
1487 1.128.4.1 ad startoffset = off;
1488 1.128.4.1 ad bytes = MIN(len, eof - startoffset);
1489 1.21 chs skipbytes = 0;
1490 1.21 chs KASSERT(bytes != 0);
1491 1.21 chs
1492 1.128.4.1 ad if (write) {
1493 1.128.4.1 ad s = splbio();
1494 1.128.4.1 ad simple_lock(&global_v_numoutput_slock);
1495 1.128.4.1 ad vp->v_numoutput += 2;
1496 1.128.4.1 ad simple_unlock(&global_v_numoutput_slock);
1497 1.128.4.1 ad splx(s);
1498 1.128.4.1 ad }
1499 1.119 yamt mbp = getiobuf();
1500 1.21 chs UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1501 1.53 enami vp, mbp, vp->v_numoutput, bytes);
1502 1.128.4.1 ad mbp->b_bufsize = len;
1503 1.21 chs mbp->b_data = (void *)kva;
1504 1.21 chs mbp->b_resid = mbp->b_bcount = bytes;
1505 1.128.4.1 ad mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1506 1.128.4.1 ad mbp->b_iodone = iodone;
1507 1.21 chs mbp->b_vp = vp;
1508 1.120 yamt if (curproc == uvm.pagedaemon_proc)
1509 1.120 yamt BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1510 1.120 yamt else if (async)
1511 1.120 yamt BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1512 1.120 yamt else
1513 1.120 yamt BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1514 1.21 chs
1515 1.21 chs bp = NULL;
1516 1.21 chs for (offset = startoffset;
1517 1.53 enami bytes > 0;
1518 1.53 enami offset += iobytes, bytes -= iobytes) {
1519 1.21 chs lbn = offset >> fs_bshift;
1520 1.36 chs error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1521 1.21 chs if (error) {
1522 1.21 chs UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1523 1.21 chs skipbytes += bytes;
1524 1.21 chs bytes = 0;
1525 1.21 chs break;
1526 1.21 chs }
1527 1.21 chs
1528 1.26 chs iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1529 1.26 chs bytes);
1530 1.21 chs if (blkno == (daddr_t)-1) {
1531 1.128.4.1 ad if (!write) {
1532 1.128.4.1 ad memset((char *)kva + (offset - startoffset), 0,
1533 1.128.4.1 ad iobytes);
1534 1.128.4.1 ad }
1535 1.21 chs skipbytes += iobytes;
1536 1.21 chs continue;
1537 1.21 chs }
1538 1.21 chs
1539 1.21 chs /* if it's really one i/o, don't make a second buf */
1540 1.21 chs if (offset == startoffset && iobytes == bytes) {
1541 1.21 chs bp = mbp;
1542 1.21 chs } else {
1543 1.21 chs UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1544 1.53 enami vp, bp, vp->v_numoutput, 0);
1545 1.120 yamt bp = getiobuf();
1546 1.128.4.1 ad nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1547 1.21 chs }
1548 1.21 chs bp->b_lblkno = 0;
1549 1.21 chs
1550 1.21 chs /* adjust physical blkno for partial blocks */
1551 1.25 fvdl bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1552 1.53 enami dev_bshift);
1553 1.53 enami UVMHIST_LOG(ubchist,
1554 1.53 enami "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1555 1.53 enami vp, offset, bp->b_bcount, bp->b_blkno);
1556 1.114 yamt
1557 1.114 yamt VOP_STRATEGY(devvp, bp);
1558 1.21 chs }
1559 1.21 chs if (skipbytes) {
1560 1.29 chs UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1561 1.21 chs }
1562 1.120 yamt nestiobuf_done(mbp, skipbytes, error);
1563 1.21 chs if (async) {
1564 1.32 chs UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1565 1.53 enami return (0);
1566 1.21 chs }
1567 1.37 chs UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1568 1.37 chs error = biowait(mbp);
1569 1.128.4.1 ad s = splbio();
1570 1.128.4.1 ad (*iodone)(mbp);
1571 1.128.4.1 ad splx(s);
1572 1.21 chs UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1573 1.53 enami return (error);
1574 1.42 chs }
1575 1.42 chs
1576 1.42 chs /*
1577 1.42 chs * VOP_PUTPAGES() for vnodes which never have pages.
1578 1.42 chs */
1579 1.42 chs
1580 1.42 chs int
1581 1.42 chs genfs_null_putpages(void *v)
1582 1.42 chs {
1583 1.42 chs struct vop_putpages_args /* {
1584 1.42 chs struct vnode *a_vp;
1585 1.42 chs voff_t a_offlo;
1586 1.42 chs voff_t a_offhi;
1587 1.42 chs int a_flags;
1588 1.42 chs } */ *ap = v;
1589 1.42 chs struct vnode *vp = ap->a_vp;
1590 1.42 chs
1591 1.42 chs KASSERT(vp->v_uobj.uo_npages == 0);
1592 1.42 chs simple_unlock(&vp->v_interlock);
1593 1.42 chs return (0);
1594 1.21 chs }
1595 1.21 chs
1596 1.37 chs void
1597 1.98 yamt genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1598 1.37 chs {
1599 1.37 chs struct genfs_node *gp = VTOG(vp);
1600 1.37 chs
1601 1.37 chs lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1602 1.37 chs gp->g_op = ops;
1603 1.37 chs }
1604 1.37 chs
1605 1.37 chs void
1606 1.72 perseant genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1607 1.21 chs {
1608 1.21 chs int bsize;
1609 1.21 chs
1610 1.37 chs bsize = 1 << vp->v_mount->mnt_fs_bshift;
1611 1.37 chs *eobp = (size + bsize - 1) & ~(bsize - 1);
1612 1.43 chs }
1613 1.43 chs
1614 1.43 chs int
1615 1.43 chs genfs_compat_getpages(void *v)
1616 1.43 chs {
1617 1.43 chs struct vop_getpages_args /* {
1618 1.43 chs struct vnode *a_vp;
1619 1.43 chs voff_t a_offset;
1620 1.43 chs struct vm_page **a_m;
1621 1.43 chs int *a_count;
1622 1.43 chs int a_centeridx;
1623 1.43 chs vm_prot_t a_access_type;
1624 1.43 chs int a_advice;
1625 1.43 chs int a_flags;
1626 1.43 chs } */ *ap = v;
1627 1.43 chs
1628 1.43 chs off_t origoffset;
1629 1.43 chs struct vnode *vp = ap->a_vp;
1630 1.43 chs struct uvm_object *uobj = &vp->v_uobj;
1631 1.43 chs struct vm_page *pg, **pgs;
1632 1.43 chs vaddr_t kva;
1633 1.43 chs int i, error, orignpages, npages;
1634 1.43 chs struct iovec iov;
1635 1.43 chs struct uio uio;
1636 1.128 ad kauth_cred_t cred = curlwp->l_cred;
1637 1.43 chs boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1638 1.43 chs
1639 1.43 chs error = 0;
1640 1.43 chs origoffset = ap->a_offset;
1641 1.43 chs orignpages = *ap->a_count;
1642 1.43 chs pgs = ap->a_m;
1643 1.43 chs
1644 1.43 chs if (write && (vp->v_flag & VONWORKLST) == 0) {
1645 1.43 chs vn_syncer_add_to_worklist(vp, filedelay);
1646 1.43 chs }
1647 1.43 chs if (ap->a_flags & PGO_LOCKED) {
1648 1.43 chs uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1649 1.54 enami UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1650 1.43 chs
1651 1.53 enami return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1652 1.43 chs }
1653 1.43 chs if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1654 1.43 chs simple_unlock(&uobj->vmobjlock);
1655 1.53 enami return (EINVAL);
1656 1.43 chs }
1657 1.115 yamt if ((ap->a_flags & PGO_SYNCIO) == 0) {
1658 1.117 yamt simple_unlock(&uobj->vmobjlock);
1659 1.115 yamt return 0;
1660 1.115 yamt }
1661 1.43 chs npages = orignpages;
1662 1.43 chs uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1663 1.43 chs simple_unlock(&uobj->vmobjlock);
1664 1.53 enami kva = uvm_pagermapin(pgs, npages,
1665 1.53 enami UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1666 1.43 chs for (i = 0; i < npages; i++) {
1667 1.43 chs pg = pgs[i];
1668 1.43 chs if ((pg->flags & PG_FAKE) == 0) {
1669 1.43 chs continue;
1670 1.43 chs }
1671 1.43 chs iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1672 1.43 chs iov.iov_len = PAGE_SIZE;
1673 1.43 chs uio.uio_iov = &iov;
1674 1.43 chs uio.uio_iovcnt = 1;
1675 1.43 chs uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1676 1.43 chs uio.uio_rw = UIO_READ;
1677 1.43 chs uio.uio_resid = PAGE_SIZE;
1678 1.122 yamt UIO_SETUP_SYSSPACE(&uio);
1679 1.87 yamt /* XXX vn_lock */
1680 1.43 chs error = VOP_READ(vp, &uio, 0, cred);
1681 1.43 chs if (error) {
1682 1.43 chs break;
1683 1.52 chs }
1684 1.52 chs if (uio.uio_resid) {
1685 1.52 chs memset(iov.iov_base, 0, uio.uio_resid);
1686 1.43 chs }
1687 1.43 chs }
1688 1.43 chs uvm_pagermapout(kva, npages);
1689 1.43 chs simple_lock(&uobj->vmobjlock);
1690 1.43 chs uvm_lock_pageq();
1691 1.43 chs for (i = 0; i < npages; i++) {
1692 1.43 chs pg = pgs[i];
1693 1.43 chs if (error && (pg->flags & PG_FAKE) != 0) {
1694 1.43 chs pg->flags |= PG_RELEASED;
1695 1.43 chs } else {
1696 1.43 chs pmap_clear_modify(pg);
1697 1.43 chs uvm_pageactivate(pg);
1698 1.43 chs }
1699 1.43 chs }
1700 1.43 chs if (error) {
1701 1.43 chs uvm_page_unbusy(pgs, npages);
1702 1.43 chs }
1703 1.43 chs uvm_unlock_pageq();
1704 1.43 chs simple_unlock(&uobj->vmobjlock);
1705 1.53 enami return (error);
1706 1.43 chs }
1707 1.43 chs
1708 1.43 chs int
1709 1.43 chs genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1710 1.43 chs int flags)
1711 1.43 chs {
1712 1.43 chs off_t offset;
1713 1.43 chs struct iovec iov;
1714 1.43 chs struct uio uio;
1715 1.128 ad kauth_cred_t cred = curlwp->l_cred;
1716 1.43 chs struct buf *bp;
1717 1.43 chs vaddr_t kva;
1718 1.43 chs int s, error;
1719 1.43 chs
1720 1.43 chs offset = pgs[0]->offset;
1721 1.53 enami kva = uvm_pagermapin(pgs, npages,
1722 1.53 enami UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1723 1.43 chs
1724 1.43 chs iov.iov_base = (void *)kva;
1725 1.43 chs iov.iov_len = npages << PAGE_SHIFT;
1726 1.43 chs uio.uio_iov = &iov;
1727 1.68 yamt uio.uio_iovcnt = 1;
1728 1.43 chs uio.uio_offset = offset;
1729 1.43 chs uio.uio_rw = UIO_WRITE;
1730 1.43 chs uio.uio_resid = npages << PAGE_SHIFT;
1731 1.122 yamt UIO_SETUP_SYSSPACE(&uio);
1732 1.87 yamt /* XXX vn_lock */
1733 1.43 chs error = VOP_WRITE(vp, &uio, 0, cred);
1734 1.43 chs
1735 1.43 chs s = splbio();
1736 1.71 pk V_INCR_NUMOUTPUT(vp);
1737 1.43 chs splx(s);
1738 1.43 chs
1739 1.119 yamt bp = getiobuf();
1740 1.43 chs bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1741 1.43 chs bp->b_vp = vp;
1742 1.43 chs bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1743 1.43 chs bp->b_data = (char *)kva;
1744 1.43 chs bp->b_bcount = npages << PAGE_SHIFT;
1745 1.43 chs bp->b_bufsize = npages << PAGE_SHIFT;
1746 1.43 chs bp->b_resid = 0;
1747 1.43 chs if (error) {
1748 1.43 chs bp->b_flags |= B_ERROR;
1749 1.43 chs bp->b_error = error;
1750 1.43 chs }
1751 1.43 chs uvm_aio_aiodone(bp);
1752 1.53 enami return (error);
1753 1.66 jdolecek }
1754 1.66 jdolecek
1755 1.128.4.1 ad /*
1756 1.128.4.1 ad * Process a uio using direct I/O. If we reach a part of the request
1757 1.128.4.1 ad * which cannot be processed in this fashion for some reason, just return.
1758 1.128.4.1 ad * The caller must handle some additional part of the request using
1759 1.128.4.1 ad * buffered I/O before trying direct I/O again.
1760 1.128.4.1 ad */
1761 1.128.4.1 ad
1762 1.128.4.1 ad void
1763 1.128.4.1 ad genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1764 1.128.4.1 ad {
1765 1.128.4.1 ad struct vmspace *vs;
1766 1.128.4.1 ad struct iovec *iov;
1767 1.128.4.1 ad vaddr_t va;
1768 1.128.4.1 ad size_t len;
1769 1.128.4.1 ad const int mask = DEV_BSIZE - 1;
1770 1.128.4.1 ad int error;
1771 1.128.4.1 ad
1772 1.128.4.1 ad /*
1773 1.128.4.1 ad * We only support direct I/O to user space for now.
1774 1.128.4.1 ad */
1775 1.128.4.1 ad
1776 1.128.4.1 ad if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1777 1.128.4.1 ad return;
1778 1.128.4.1 ad }
1779 1.128.4.1 ad
1780 1.128.4.1 ad /*
1781 1.128.4.1 ad * If the vnode is mapped, we would need to get the getpages lock
1782 1.128.4.1 ad * to stabilize the bmap, but then we would get into trouble whil e
1783 1.128.4.1 ad * locking the pages if the pages belong to this same vnode (or a
1784 1.128.4.1 ad * multi-vnode cascade to the same effect). Just fall back to
1785 1.128.4.1 ad * buffered I/O if the vnode is mapped to avoid this mess.
1786 1.128.4.1 ad */
1787 1.128.4.1 ad
1788 1.128.4.1 ad if (vp->v_flag & VMAPPED) {
1789 1.128.4.1 ad return;
1790 1.128.4.1 ad }
1791 1.128.4.1 ad
1792 1.128.4.1 ad /*
1793 1.128.4.1 ad * Do as much of the uio as possible with direct I/O.
1794 1.128.4.1 ad */
1795 1.128.4.1 ad
1796 1.128.4.1 ad vs = uio->uio_vmspace;
1797 1.128.4.1 ad while (uio->uio_resid) {
1798 1.128.4.1 ad iov = uio->uio_iov;
1799 1.128.4.1 ad if (iov->iov_len == 0) {
1800 1.128.4.1 ad uio->uio_iov++;
1801 1.128.4.1 ad uio->uio_iovcnt--;
1802 1.128.4.1 ad continue;
1803 1.128.4.1 ad }
1804 1.128.4.1 ad va = (vaddr_t)iov->iov_base;
1805 1.128.4.1 ad len = MIN(iov->iov_len, genfs_maxdio);
1806 1.128.4.1 ad len &= ~mask;
1807 1.128.4.1 ad
1808 1.128.4.1 ad /*
1809 1.128.4.1 ad * If the next chunk is smaller than DEV_BSIZE or extends past
1810 1.128.4.1 ad * the current EOF, then fall back to buffered I/O.
1811 1.128.4.1 ad */
1812 1.128.4.1 ad
1813 1.128.4.1 ad if (len == 0 || uio->uio_offset + len > vp->v_size) {
1814 1.128.4.1 ad return;
1815 1.128.4.1 ad }
1816 1.128.4.1 ad
1817 1.128.4.1 ad /*
1818 1.128.4.1 ad * Check alignment. The file offset must be at least
1819 1.128.4.1 ad * sector-aligned. The exact constraint on memory alignment
1820 1.128.4.1 ad * is very hardware-dependent, but requiring sector-aligned
1821 1.128.4.1 ad * addresses there too is safe.
1822 1.128.4.1 ad */
1823 1.128.4.1 ad
1824 1.128.4.1 ad if (uio->uio_offset & mask || va & mask) {
1825 1.128.4.1 ad return;
1826 1.128.4.1 ad }
1827 1.128.4.1 ad error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1828 1.128.4.1 ad uio->uio_rw);
1829 1.128.4.1 ad if (error) {
1830 1.128.4.1 ad break;
1831 1.128.4.1 ad }
1832 1.128.4.1 ad iov->iov_base = (caddr_t)iov->iov_base + len;
1833 1.128.4.1 ad iov->iov_len -= len;
1834 1.128.4.1 ad uio->uio_offset += len;
1835 1.128.4.1 ad uio->uio_resid -= len;
1836 1.128.4.1 ad }
1837 1.128.4.1 ad }
1838 1.128.4.1 ad
1839 1.128.4.1 ad /*
1840 1.128.4.1 ad * Iodone routine for direct I/O. We don't do much here since the request is
1841 1.128.4.1 ad * always synchronous, so the caller will do most of the work after biowait().
1842 1.128.4.1 ad */
1843 1.128.4.1 ad
1844 1.128.4.1 ad static void
1845 1.128.4.1 ad genfs_dio_iodone(struct buf *bp)
1846 1.128.4.1 ad {
1847 1.128.4.1 ad int s;
1848 1.128.4.1 ad
1849 1.128.4.1 ad KASSERT((bp->b_flags & B_ASYNC) == 0);
1850 1.128.4.1 ad s = splbio();
1851 1.128.4.1 ad if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1852 1.128.4.1 ad vwakeup(bp);
1853 1.128.4.1 ad }
1854 1.128.4.1 ad putiobuf(bp);
1855 1.128.4.1 ad splx(s);
1856 1.128.4.1 ad }
1857 1.128.4.1 ad
1858 1.128.4.1 ad /*
1859 1.128.4.1 ad * Process one chunk of a direct I/O request.
1860 1.128.4.1 ad */
1861 1.128.4.1 ad
1862 1.128.4.1 ad static int
1863 1.128.4.1 ad genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1864 1.128.4.1 ad off_t off, enum uio_rw rw)
1865 1.128.4.1 ad {
1866 1.128.4.1 ad struct vm_map *map;
1867 1.128.4.1 ad struct pmap *upm, *kpm;
1868 1.128.4.1 ad size_t klen = round_page(uva + len) - trunc_page(uva);
1869 1.128.4.1 ad off_t spoff, epoff;
1870 1.128.4.1 ad vaddr_t kva, puva;
1871 1.128.4.1 ad paddr_t pa;
1872 1.128.4.1 ad vm_prot_t prot;
1873 1.128.4.1 ad int error, rv, poff, koff;
1874 1.128.4.1 ad const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1875 1.128.4.1 ad (rw == UIO_WRITE ? PGO_FREE : 0);
1876 1.128.4.1 ad
1877 1.128.4.1 ad /*
1878 1.128.4.1 ad * For writes, verify that this range of the file already has fully
1879 1.128.4.1 ad * allocated backing store. If there are any holes, just punt and
1880 1.128.4.1 ad * make the caller take the buffered write path.
1881 1.128.4.1 ad */
1882 1.128.4.1 ad
1883 1.128.4.1 ad if (rw == UIO_WRITE) {
1884 1.128.4.1 ad daddr_t lbn, elbn, blkno;
1885 1.128.4.1 ad int bsize, bshift, run;
1886 1.128.4.1 ad
1887 1.128.4.1 ad bshift = vp->v_mount->mnt_fs_bshift;
1888 1.128.4.1 ad bsize = 1 << bshift;
1889 1.128.4.1 ad lbn = off >> bshift;
1890 1.128.4.1 ad elbn = (off + len + bsize - 1) >> bshift;
1891 1.128.4.1 ad while (lbn < elbn) {
1892 1.128.4.1 ad error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1893 1.128.4.1 ad if (error) {
1894 1.128.4.1 ad return error;
1895 1.128.4.1 ad }
1896 1.128.4.1 ad if (blkno == (daddr_t)-1) {
1897 1.128.4.1 ad return ENOSPC;
1898 1.128.4.1 ad }
1899 1.128.4.1 ad lbn += 1 + run;
1900 1.128.4.1 ad }
1901 1.128.4.1 ad }
1902 1.128.4.1 ad
1903 1.128.4.1 ad /*
1904 1.128.4.1 ad * Flush any cached pages for parts of the file that we're about to
1905 1.128.4.1 ad * access. If we're writing, invalidate pages as well.
1906 1.128.4.1 ad */
1907 1.128.4.1 ad
1908 1.128.4.1 ad spoff = trunc_page(off);
1909 1.128.4.1 ad epoff = round_page(off + len);
1910 1.128.4.1 ad simple_lock(&vp->v_interlock);
1911 1.128.4.1 ad error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1912 1.128.4.1 ad if (error) {
1913 1.128.4.1 ad return error;
1914 1.128.4.1 ad }
1915 1.128.4.1 ad
1916 1.128.4.1 ad /*
1917 1.128.4.1 ad * Wire the user pages and remap them into kernel memory.
1918 1.128.4.1 ad */
1919 1.128.4.1 ad
1920 1.128.4.1 ad prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1921 1.128.4.1 ad error = uvm_vslock(vs, (void *)uva, len, prot);
1922 1.128.4.1 ad if (error) {
1923 1.128.4.1 ad return error;
1924 1.128.4.1 ad }
1925 1.128.4.1 ad
1926 1.128.4.1 ad map = &vs->vm_map;
1927 1.128.4.1 ad upm = vm_map_pmap(map);
1928 1.128.4.1 ad kpm = vm_map_pmap(kernel_map);
1929 1.128.4.1 ad kva = uvm_km_alloc(kernel_map, klen, 0,
1930 1.128.4.1 ad UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1931 1.128.4.1 ad puva = trunc_page(uva);
1932 1.128.4.1 ad for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1933 1.128.4.1 ad rv = pmap_extract(upm, puva + poff, &pa);
1934 1.128.4.1 ad KASSERT(rv);
1935 1.128.4.1 ad pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1936 1.128.4.1 ad }
1937 1.128.4.1 ad pmap_update(kpm);
1938 1.128.4.1 ad
1939 1.128.4.1 ad /*
1940 1.128.4.1 ad * Do the I/O.
1941 1.128.4.1 ad */
1942 1.128.4.1 ad
1943 1.128.4.1 ad koff = uva - trunc_page(uva);
1944 1.128.4.1 ad error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1945 1.128.4.1 ad genfs_dio_iodone);
1946 1.128.4.1 ad
1947 1.128.4.1 ad /*
1948 1.128.4.1 ad * Tear down the kernel mapping.
1949 1.128.4.1 ad */
1950 1.128.4.1 ad
1951 1.128.4.1 ad pmap_remove(kpm, kva, kva + klen);
1952 1.128.4.1 ad pmap_update(kpm);
1953 1.128.4.1 ad uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1954 1.128.4.1 ad
1955 1.128.4.1 ad /*
1956 1.128.4.1 ad * Unwire the user pages.
1957 1.128.4.1 ad */
1958 1.128.4.1 ad
1959 1.128.4.1 ad uvm_vsunlock(vs, (void *)uva, len);
1960 1.128.4.1 ad return error;
1961 1.128.4.1 ad }
1962 1.128.4.1 ad
1963 1.128.4.1 ad
1964 1.66 jdolecek static void
1965 1.66 jdolecek filt_genfsdetach(struct knote *kn)
1966 1.66 jdolecek {
1967 1.66 jdolecek struct vnode *vp = (struct vnode *)kn->kn_hook;
1968 1.66 jdolecek
1969 1.66 jdolecek /* XXXLUKEM lock the struct? */
1970 1.66 jdolecek SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1971 1.66 jdolecek }
1972 1.66 jdolecek
1973 1.66 jdolecek static int
1974 1.66 jdolecek filt_genfsread(struct knote *kn, long hint)
1975 1.66 jdolecek {
1976 1.66 jdolecek struct vnode *vp = (struct vnode *)kn->kn_hook;
1977 1.66 jdolecek
1978 1.66 jdolecek /*
1979 1.66 jdolecek * filesystem is gone, so set the EOF flag and schedule
1980 1.66 jdolecek * the knote for deletion.
1981 1.66 jdolecek */
1982 1.66 jdolecek if (hint == NOTE_REVOKE) {
1983 1.66 jdolecek kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1984 1.66 jdolecek return (1);
1985 1.66 jdolecek }
1986 1.66 jdolecek
1987 1.66 jdolecek /* XXXLUKEM lock the struct? */
1988 1.66 jdolecek kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1989 1.66 jdolecek return (kn->kn_data != 0);
1990 1.66 jdolecek }
1991 1.66 jdolecek
1992 1.66 jdolecek static int
1993 1.66 jdolecek filt_genfsvnode(struct knote *kn, long hint)
1994 1.66 jdolecek {
1995 1.66 jdolecek
1996 1.66 jdolecek if (kn->kn_sfflags & hint)
1997 1.66 jdolecek kn->kn_fflags |= hint;
1998 1.66 jdolecek if (hint == NOTE_REVOKE) {
1999 1.66 jdolecek kn->kn_flags |= EV_EOF;
2000 1.66 jdolecek return (1);
2001 1.66 jdolecek }
2002 1.66 jdolecek return (kn->kn_fflags != 0);
2003 1.66 jdolecek }
2004 1.66 jdolecek
2005 1.96 perry static const struct filterops genfsread_filtops =
2006 1.66 jdolecek { 1, NULL, filt_genfsdetach, filt_genfsread };
2007 1.96 perry static const struct filterops genfsvnode_filtops =
2008 1.66 jdolecek { 1, NULL, filt_genfsdetach, filt_genfsvnode };
2009 1.66 jdolecek
2010 1.66 jdolecek int
2011 1.66 jdolecek genfs_kqfilter(void *v)
2012 1.66 jdolecek {
2013 1.66 jdolecek struct vop_kqfilter_args /* {
2014 1.66 jdolecek struct vnode *a_vp;
2015 1.66 jdolecek struct knote *a_kn;
2016 1.66 jdolecek } */ *ap = v;
2017 1.66 jdolecek struct vnode *vp;
2018 1.66 jdolecek struct knote *kn;
2019 1.66 jdolecek
2020 1.66 jdolecek vp = ap->a_vp;
2021 1.66 jdolecek kn = ap->a_kn;
2022 1.66 jdolecek switch (kn->kn_filter) {
2023 1.66 jdolecek case EVFILT_READ:
2024 1.66 jdolecek kn->kn_fop = &genfsread_filtops;
2025 1.66 jdolecek break;
2026 1.66 jdolecek case EVFILT_VNODE:
2027 1.66 jdolecek kn->kn_fop = &genfsvnode_filtops;
2028 1.66 jdolecek break;
2029 1.66 jdolecek default:
2030 1.66 jdolecek return (1);
2031 1.66 jdolecek }
2032 1.66 jdolecek
2033 1.66 jdolecek kn->kn_hook = vp;
2034 1.66 jdolecek
2035 1.66 jdolecek /* XXXLUKEM lock the struct? */
2036 1.66 jdolecek SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2037 1.66 jdolecek
2038 1.66 jdolecek return (0);
2039 1.1 mycroft }
2040 1.128.4.1 ad
2041 1.128.4.1 ad void
2042 1.128.4.1 ad genfs_node_wrlock(struct vnode *vp)
2043 1.128.4.1 ad {
2044 1.128.4.1 ad struct genfs_node *gp = VTOG(vp);
2045 1.128.4.1 ad
2046 1.128.4.1 ad lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
2047 1.128.4.1 ad }
2048 1.128.4.1 ad
2049 1.128.4.1 ad void
2050 1.128.4.1 ad genfs_node_rdlock(struct vnode *vp)
2051 1.128.4.1 ad {
2052 1.128.4.1 ad struct genfs_node *gp = VTOG(vp);
2053 1.128.4.1 ad
2054 1.128.4.1 ad lockmgr(&gp->g_glock, LK_SHARED, NULL);
2055 1.128.4.1 ad }
2056 1.128.4.1 ad
2057 1.128.4.1 ad void
2058 1.128.4.1 ad genfs_node_unlock(struct vnode *vp)
2059 1.128.4.1 ad {
2060 1.128.4.1 ad struct genfs_node *gp = VTOG(vp);
2061 1.128.4.1 ad
2062 1.128.4.1 ad lockmgr(&gp->g_glock, LK_RELEASE, NULL);
2063 1.128.4.1 ad }
2064