genfs_vnops.c revision 1.93 1 1.93 drochner /* $NetBSD: genfs_vnops.c,v 1.93 2005/01/25 09:50:31 drochner Exp $ */
2 1.6 fvdl
3 1.6 fvdl /*
4 1.6 fvdl * Copyright (c) 1982, 1986, 1989, 1993
5 1.6 fvdl * The Regents of the University of California. All rights reserved.
6 1.6 fvdl *
7 1.6 fvdl * Redistribution and use in source and binary forms, with or without
8 1.6 fvdl * modification, are permitted provided that the following conditions
9 1.6 fvdl * are met:
10 1.6 fvdl * 1. Redistributions of source code must retain the above copyright
11 1.6 fvdl * notice, this list of conditions and the following disclaimer.
12 1.6 fvdl * 2. Redistributions in binary form must reproduce the above copyright
13 1.6 fvdl * notice, this list of conditions and the following disclaimer in the
14 1.6 fvdl * documentation and/or other materials provided with the distribution.
15 1.81 agc * 3. Neither the name of the University nor the names of its contributors
16 1.6 fvdl * may be used to endorse or promote products derived from this software
17 1.6 fvdl * without specific prior written permission.
18 1.6 fvdl *
19 1.6 fvdl * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.6 fvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.6 fvdl * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.6 fvdl * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.6 fvdl * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.6 fvdl * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.6 fvdl * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.6 fvdl * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.6 fvdl * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.6 fvdl * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.6 fvdl * SUCH DAMAGE.
30 1.6 fvdl *
31 1.6 fvdl */
32 1.40 lukem
33 1.40 lukem #include <sys/cdefs.h>
34 1.93 drochner __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.93 2005/01/25 09:50:31 drochner Exp $");
35 1.5 perry
36 1.92 dbj #if defined(_KERNEL_OPT)
37 1.8 thorpej #include "opt_nfsserver.h"
38 1.92 dbj #endif
39 1.8 thorpej
40 1.1 mycroft #include <sys/param.h>
41 1.1 mycroft #include <sys/systm.h>
42 1.6 fvdl #include <sys/proc.h>
43 1.1 mycroft #include <sys/kernel.h>
44 1.1 mycroft #include <sys/mount.h>
45 1.1 mycroft #include <sys/namei.h>
46 1.1 mycroft #include <sys/vnode.h>
47 1.13 wrstuden #include <sys/fcntl.h>
48 1.1 mycroft #include <sys/malloc.h>
49 1.3 mycroft #include <sys/poll.h>
50 1.37 chs #include <sys/mman.h>
51 1.66 jdolecek #include <sys/file.h>
52 1.1 mycroft
53 1.1 mycroft #include <miscfs/genfs/genfs.h>
54 1.37 chs #include <miscfs/genfs/genfs_node.h>
55 1.6 fvdl #include <miscfs/specfs/specdev.h>
56 1.1 mycroft
57 1.21 chs #include <uvm/uvm.h>
58 1.21 chs #include <uvm/uvm_pager.h>
59 1.21 chs
60 1.8 thorpej #ifdef NFSSERVER
61 1.8 thorpej #include <nfs/rpcv2.h>
62 1.8 thorpej #include <nfs/nfsproto.h>
63 1.8 thorpej #include <nfs/nfs.h>
64 1.8 thorpej #include <nfs/nqnfs.h>
65 1.8 thorpej #include <nfs/nfs_var.h>
66 1.8 thorpej #endif
67 1.8 thorpej
68 1.63 enami static __inline void genfs_rel_pages(struct vm_page **, int);
69 1.70 christos static void filt_genfsdetach(struct knote *);
70 1.70 christos static int filt_genfsread(struct knote *, long);
71 1.70 christos static int filt_genfsvnode(struct knote *, long);
72 1.70 christos
73 1.63 enami
74 1.41 christos #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
75 1.63 enami int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
76 1.63 enami int genfs_racount = 2; /* # of page chunks to readahead */
77 1.63 enami int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
78 1.41 christos
79 1.1 mycroft int
80 1.53 enami genfs_poll(void *v)
81 1.1 mycroft {
82 1.3 mycroft struct vop_poll_args /* {
83 1.1 mycroft struct vnode *a_vp;
84 1.3 mycroft int a_events;
85 1.80 fvdl struct proc *a_p;
86 1.1 mycroft } */ *ap = v;
87 1.1 mycroft
88 1.3 mycroft return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
89 1.1 mycroft }
90 1.1 mycroft
91 1.1 mycroft int
92 1.53 enami genfs_fsync(void *v)
93 1.1 mycroft {
94 1.1 mycroft struct vop_fsync_args /* {
95 1.1 mycroft struct vnode *a_vp;
96 1.1 mycroft struct ucred *a_cred;
97 1.7 kleink int a_flags;
98 1.20 fvdl off_t offlo;
99 1.20 fvdl off_t offhi;
100 1.80 fvdl struct proc *a_p;
101 1.1 mycroft } */ *ap = v;
102 1.16 augustss struct vnode *vp = ap->a_vp;
103 1.11 mycroft int wait;
104 1.1 mycroft
105 1.11 mycroft wait = (ap->a_flags & FSYNC_WAIT) != 0;
106 1.11 mycroft vflushbuf(vp, wait);
107 1.11 mycroft if ((ap->a_flags & FSYNC_DATAONLY) != 0)
108 1.7 kleink return (0);
109 1.11 mycroft else
110 1.18 mycroft return (VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0));
111 1.1 mycroft }
112 1.1 mycroft
113 1.1 mycroft int
114 1.53 enami genfs_seek(void *v)
115 1.4 kleink {
116 1.4 kleink struct vop_seek_args /* {
117 1.4 kleink struct vnode *a_vp;
118 1.4 kleink off_t a_oldoff;
119 1.4 kleink off_t a_newoff;
120 1.4 kleink struct ucred *a_ucred;
121 1.4 kleink } */ *ap = v;
122 1.4 kleink
123 1.4 kleink if (ap->a_newoff < 0)
124 1.4 kleink return (EINVAL);
125 1.4 kleink
126 1.4 kleink return (0);
127 1.4 kleink }
128 1.4 kleink
129 1.4 kleink int
130 1.53 enami genfs_abortop(void *v)
131 1.1 mycroft {
132 1.1 mycroft struct vop_abortop_args /* {
133 1.1 mycroft struct vnode *a_dvp;
134 1.1 mycroft struct componentname *a_cnp;
135 1.1 mycroft } */ *ap = v;
136 1.53 enami
137 1.1 mycroft if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
138 1.19 thorpej PNBUF_PUT(ap->a_cnp->cn_pnbuf);
139 1.1 mycroft return (0);
140 1.13 wrstuden }
141 1.13 wrstuden
142 1.13 wrstuden int
143 1.53 enami genfs_fcntl(void *v)
144 1.13 wrstuden {
145 1.13 wrstuden struct vop_fcntl_args /* {
146 1.13 wrstuden struct vnode *a_vp;
147 1.13 wrstuden u_int a_command;
148 1.13 wrstuden caddr_t a_data;
149 1.13 wrstuden int a_fflag;
150 1.13 wrstuden struct ucred *a_cred;
151 1.80 fvdl struct proc *a_p;
152 1.13 wrstuden } */ *ap = v;
153 1.13 wrstuden
154 1.13 wrstuden if (ap->a_command == F_SETFL)
155 1.13 wrstuden return (0);
156 1.13 wrstuden else
157 1.13 wrstuden return (EOPNOTSUPP);
158 1.1 mycroft }
159 1.1 mycroft
160 1.1 mycroft /*ARGSUSED*/
161 1.1 mycroft int
162 1.53 enami genfs_badop(void *v)
163 1.1 mycroft {
164 1.1 mycroft
165 1.1 mycroft panic("genfs: bad op");
166 1.1 mycroft }
167 1.1 mycroft
168 1.1 mycroft /*ARGSUSED*/
169 1.1 mycroft int
170 1.53 enami genfs_nullop(void *v)
171 1.1 mycroft {
172 1.1 mycroft
173 1.1 mycroft return (0);
174 1.10 kleink }
175 1.10 kleink
176 1.10 kleink /*ARGSUSED*/
177 1.10 kleink int
178 1.53 enami genfs_einval(void *v)
179 1.10 kleink {
180 1.10 kleink
181 1.10 kleink return (EINVAL);
182 1.1 mycroft }
183 1.1 mycroft
184 1.12 wrstuden /*
185 1.74 jdolecek * Called when an fs doesn't support a particular vop.
186 1.74 jdolecek * This takes care to vrele, vput, or vunlock passed in vnodes.
187 1.12 wrstuden */
188 1.12 wrstuden int
189 1.75 jdolecek genfs_eopnotsupp(void *v)
190 1.12 wrstuden {
191 1.12 wrstuden struct vop_generic_args /*
192 1.12 wrstuden struct vnodeop_desc *a_desc;
193 1.53 enami / * other random data follows, presumably * /
194 1.12 wrstuden } */ *ap = v;
195 1.12 wrstuden struct vnodeop_desc *desc = ap->a_desc;
196 1.74 jdolecek struct vnode *vp, *vp_last = NULL;
197 1.12 wrstuden int flags, i, j, offset;
198 1.12 wrstuden
199 1.12 wrstuden flags = desc->vdesc_flags;
200 1.12 wrstuden for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
201 1.12 wrstuden if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
202 1.12 wrstuden break; /* stop at end of list */
203 1.12 wrstuden if ((j = flags & VDESC_VP0_WILLPUT)) {
204 1.53 enami vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
205 1.74 jdolecek
206 1.74 jdolecek /* Skip if NULL */
207 1.74 jdolecek if (!vp)
208 1.74 jdolecek continue;
209 1.74 jdolecek
210 1.12 wrstuden switch (j) {
211 1.12 wrstuden case VDESC_VP0_WILLPUT:
212 1.74 jdolecek /* Check for dvp == vp cases */
213 1.74 jdolecek if (vp == vp_last)
214 1.74 jdolecek vrele(vp);
215 1.74 jdolecek else {
216 1.74 jdolecek vput(vp);
217 1.74 jdolecek vp_last = vp;
218 1.74 jdolecek }
219 1.12 wrstuden break;
220 1.12 wrstuden case VDESC_VP0_WILLUNLOCK:
221 1.12 wrstuden VOP_UNLOCK(vp, 0);
222 1.12 wrstuden break;
223 1.12 wrstuden case VDESC_VP0_WILLRELE:
224 1.12 wrstuden vrele(vp);
225 1.12 wrstuden break;
226 1.12 wrstuden }
227 1.12 wrstuden }
228 1.12 wrstuden }
229 1.12 wrstuden
230 1.12 wrstuden return (EOPNOTSUPP);
231 1.12 wrstuden }
232 1.12 wrstuden
233 1.1 mycroft /*ARGSUSED*/
234 1.1 mycroft int
235 1.53 enami genfs_ebadf(void *v)
236 1.1 mycroft {
237 1.1 mycroft
238 1.1 mycroft return (EBADF);
239 1.9 matthias }
240 1.9 matthias
241 1.9 matthias /* ARGSUSED */
242 1.9 matthias int
243 1.53 enami genfs_enoioctl(void *v)
244 1.9 matthias {
245 1.9 matthias
246 1.51 atatat return (EPASSTHROUGH);
247 1.6 fvdl }
248 1.6 fvdl
249 1.6 fvdl
250 1.6 fvdl /*
251 1.15 fvdl * Eliminate all activity associated with the requested vnode
252 1.6 fvdl * and with all vnodes aliased to the requested vnode.
253 1.6 fvdl */
254 1.6 fvdl int
255 1.53 enami genfs_revoke(void *v)
256 1.6 fvdl {
257 1.6 fvdl struct vop_revoke_args /* {
258 1.6 fvdl struct vnode *a_vp;
259 1.6 fvdl int a_flags;
260 1.6 fvdl } */ *ap = v;
261 1.6 fvdl struct vnode *vp, *vq;
262 1.80 fvdl struct proc *p = curproc; /* XXX */
263 1.6 fvdl
264 1.6 fvdl #ifdef DIAGNOSTIC
265 1.6 fvdl if ((ap->a_flags & REVOKEALL) == 0)
266 1.6 fvdl panic("genfs_revoke: not revokeall");
267 1.6 fvdl #endif
268 1.6 fvdl
269 1.6 fvdl vp = ap->a_vp;
270 1.6 fvdl simple_lock(&vp->v_interlock);
271 1.6 fvdl
272 1.6 fvdl if (vp->v_flag & VALIASED) {
273 1.6 fvdl /*
274 1.6 fvdl * If a vgone (or vclean) is already in progress,
275 1.6 fvdl * wait until it is done and return.
276 1.6 fvdl */
277 1.6 fvdl if (vp->v_flag & VXLOCK) {
278 1.6 fvdl vp->v_flag |= VXWANT;
279 1.83 pk ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
280 1.83 pk &vp->v_interlock);
281 1.6 fvdl return (0);
282 1.6 fvdl }
283 1.6 fvdl /*
284 1.6 fvdl * Ensure that vp will not be vgone'd while we
285 1.6 fvdl * are eliminating its aliases.
286 1.6 fvdl */
287 1.6 fvdl vp->v_flag |= VXLOCK;
288 1.6 fvdl simple_unlock(&vp->v_interlock);
289 1.6 fvdl while (vp->v_flag & VALIASED) {
290 1.6 fvdl simple_lock(&spechash_slock);
291 1.6 fvdl for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
292 1.6 fvdl if (vq->v_rdev != vp->v_rdev ||
293 1.6 fvdl vq->v_type != vp->v_type || vp == vq)
294 1.6 fvdl continue;
295 1.6 fvdl simple_unlock(&spechash_slock);
296 1.6 fvdl vgone(vq);
297 1.6 fvdl break;
298 1.6 fvdl }
299 1.6 fvdl if (vq == NULLVP)
300 1.6 fvdl simple_unlock(&spechash_slock);
301 1.6 fvdl }
302 1.6 fvdl /*
303 1.6 fvdl * Remove the lock so that vgone below will
304 1.6 fvdl * really eliminate the vnode after which time
305 1.6 fvdl * vgone will awaken any sleepers.
306 1.6 fvdl */
307 1.6 fvdl simple_lock(&vp->v_interlock);
308 1.6 fvdl vp->v_flag &= ~VXLOCK;
309 1.6 fvdl }
310 1.80 fvdl vgonel(vp, p);
311 1.6 fvdl return (0);
312 1.6 fvdl }
313 1.6 fvdl
314 1.6 fvdl /*
315 1.12 wrstuden * Lock the node.
316 1.6 fvdl */
317 1.6 fvdl int
318 1.53 enami genfs_lock(void *v)
319 1.6 fvdl {
320 1.6 fvdl struct vop_lock_args /* {
321 1.6 fvdl struct vnode *a_vp;
322 1.6 fvdl int a_flags;
323 1.6 fvdl } */ *ap = v;
324 1.6 fvdl struct vnode *vp = ap->a_vp;
325 1.6 fvdl
326 1.86 hannken return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
327 1.6 fvdl }
328 1.6 fvdl
329 1.6 fvdl /*
330 1.12 wrstuden * Unlock the node.
331 1.6 fvdl */
332 1.6 fvdl int
333 1.53 enami genfs_unlock(void *v)
334 1.6 fvdl {
335 1.6 fvdl struct vop_unlock_args /* {
336 1.6 fvdl struct vnode *a_vp;
337 1.6 fvdl int a_flags;
338 1.6 fvdl } */ *ap = v;
339 1.6 fvdl struct vnode *vp = ap->a_vp;
340 1.6 fvdl
341 1.86 hannken return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
342 1.53 enami &vp->v_interlock));
343 1.6 fvdl }
344 1.6 fvdl
345 1.6 fvdl /*
346 1.12 wrstuden * Return whether or not the node is locked.
347 1.6 fvdl */
348 1.6 fvdl int
349 1.53 enami genfs_islocked(void *v)
350 1.6 fvdl {
351 1.6 fvdl struct vop_islocked_args /* {
352 1.6 fvdl struct vnode *a_vp;
353 1.6 fvdl } */ *ap = v;
354 1.6 fvdl struct vnode *vp = ap->a_vp;
355 1.6 fvdl
356 1.86 hannken return (lockstatus(vp->v_vnlock));
357 1.12 wrstuden }
358 1.12 wrstuden
359 1.12 wrstuden /*
360 1.12 wrstuden * Stubs to use when there is no locking to be done on the underlying object.
361 1.12 wrstuden */
362 1.12 wrstuden int
363 1.53 enami genfs_nolock(void *v)
364 1.12 wrstuden {
365 1.12 wrstuden struct vop_lock_args /* {
366 1.12 wrstuden struct vnode *a_vp;
367 1.12 wrstuden int a_flags;
368 1.80 fvdl struct proc *a_p;
369 1.12 wrstuden } */ *ap = v;
370 1.12 wrstuden
371 1.12 wrstuden /*
372 1.12 wrstuden * Since we are not using the lock manager, we must clear
373 1.12 wrstuden * the interlock here.
374 1.12 wrstuden */
375 1.12 wrstuden if (ap->a_flags & LK_INTERLOCK)
376 1.12 wrstuden simple_unlock(&ap->a_vp->v_interlock);
377 1.12 wrstuden return (0);
378 1.12 wrstuden }
379 1.12 wrstuden
380 1.12 wrstuden int
381 1.53 enami genfs_nounlock(void *v)
382 1.12 wrstuden {
383 1.53 enami
384 1.12 wrstuden return (0);
385 1.12 wrstuden }
386 1.12 wrstuden
387 1.12 wrstuden int
388 1.53 enami genfs_noislocked(void *v)
389 1.12 wrstuden {
390 1.53 enami
391 1.12 wrstuden return (0);
392 1.8 thorpej }
393 1.8 thorpej
394 1.8 thorpej /*
395 1.8 thorpej * Local lease check for NFS servers. Just set up args and let
396 1.8 thorpej * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
397 1.8 thorpej * this is a null operation.
398 1.8 thorpej */
399 1.8 thorpej int
400 1.53 enami genfs_lease_check(void *v)
401 1.8 thorpej {
402 1.8 thorpej #ifdef NFSSERVER
403 1.8 thorpej struct vop_lease_args /* {
404 1.8 thorpej struct vnode *a_vp;
405 1.80 fvdl struct proc *a_p;
406 1.8 thorpej struct ucred *a_cred;
407 1.8 thorpej int a_flag;
408 1.8 thorpej } */ *ap = v;
409 1.8 thorpej u_int32_t duration = 0;
410 1.8 thorpej int cache;
411 1.8 thorpej u_quad_t frev;
412 1.8 thorpej
413 1.8 thorpej (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
414 1.80 fvdl NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
415 1.8 thorpej return (0);
416 1.8 thorpej #else
417 1.8 thorpej return (0);
418 1.8 thorpej #endif /* NFSSERVER */
419 1.34 chs }
420 1.34 chs
421 1.34 chs int
422 1.53 enami genfs_mmap(void *v)
423 1.34 chs {
424 1.53 enami
425 1.53 enami return (0);
426 1.21 chs }
427 1.21 chs
428 1.63 enami static __inline void
429 1.63 enami genfs_rel_pages(struct vm_page **pgs, int npages)
430 1.63 enami {
431 1.63 enami int i;
432 1.63 enami
433 1.63 enami for (i = 0; i < npages; i++) {
434 1.63 enami struct vm_page *pg = pgs[i];
435 1.63 enami
436 1.63 enami if (pg == NULL)
437 1.63 enami continue;
438 1.63 enami if (pg->flags & PG_FAKE) {
439 1.63 enami pg->flags |= PG_RELEASED;
440 1.63 enami }
441 1.63 enami }
442 1.64 enami uvm_lock_pageq();
443 1.63 enami uvm_page_unbusy(pgs, npages);
444 1.64 enami uvm_unlock_pageq();
445 1.63 enami }
446 1.63 enami
447 1.21 chs /*
448 1.21 chs * generic VM getpages routine.
449 1.21 chs * Return PG_BUSY pages for the given range,
450 1.21 chs * reading from backing store if necessary.
451 1.21 chs */
452 1.21 chs
453 1.21 chs int
454 1.53 enami genfs_getpages(void *v)
455 1.21 chs {
456 1.21 chs struct vop_getpages_args /* {
457 1.21 chs struct vnode *a_vp;
458 1.21 chs voff_t a_offset;
459 1.33 chs struct vm_page **a_m;
460 1.21 chs int *a_count;
461 1.21 chs int a_centeridx;
462 1.21 chs vm_prot_t a_access_type;
463 1.21 chs int a_advice;
464 1.21 chs int a_flags;
465 1.21 chs } */ *ap = v;
466 1.21 chs
467 1.30 chs off_t newsize, diskeof, memeof;
468 1.26 chs off_t offset, origoffset, startoffset, endoffset, raoffset;
469 1.21 chs daddr_t lbn, blkno;
470 1.21 chs int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
471 1.37 chs int fs_bshift, fs_bsize, dev_bshift;
472 1.21 chs int flags = ap->a_flags;
473 1.21 chs size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
474 1.21 chs vaddr_t kva;
475 1.21 chs struct buf *bp, *mbp;
476 1.21 chs struct vnode *vp = ap->a_vp;
477 1.36 chs struct vnode *devvp;
478 1.37 chs struct genfs_node *gp = VTOG(vp);
479 1.37 chs struct uvm_object *uobj = &vp->v_uobj;
480 1.77 yamt struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
481 1.77 yamt int pgs_size;
482 1.69 thorpej struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
483 1.21 chs boolean_t async = (flags & PGO_SYNCIO) == 0;
484 1.21 chs boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
485 1.21 chs boolean_t sawhole = FALSE;
486 1.37 chs boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
487 1.21 chs UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
488 1.21 chs
489 1.30 chs UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
490 1.53 enami vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
491 1.30 chs
492 1.21 chs /* XXXUBC temp limit */
493 1.41 christos if (*ap->a_count > MAX_READ_AHEAD) {
494 1.37 chs panic("genfs_getpages: too many pages");
495 1.21 chs }
496 1.21 chs
497 1.26 chs error = 0;
498 1.26 chs origoffset = ap->a_offset;
499 1.26 chs orignpages = *ap->a_count;
500 1.72 perseant GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
501 1.26 chs if (flags & PGO_PASTEOF) {
502 1.37 chs newsize = MAX(vp->v_size,
503 1.53 enami origoffset + (orignpages << PAGE_SHIFT));
504 1.82 yamt GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
505 1.26 chs } else {
506 1.82 yamt GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
507 1.21 chs }
508 1.30 chs KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
509 1.30 chs KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
510 1.30 chs KASSERT(orignpages > 0);
511 1.93 drochner KASSERT(origoffset + (ap->a_centeridx << PAGE_SHIFT) < memeof);
512 1.21 chs
513 1.21 chs /*
514 1.21 chs * For PGO_LOCKED requests, just return whatever's in memory.
515 1.21 chs */
516 1.21 chs
517 1.21 chs if (flags & PGO_LOCKED) {
518 1.21 chs uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
519 1.54 enami UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
520 1.21 chs
521 1.53 enami return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
522 1.21 chs }
523 1.21 chs
524 1.87 yamt /* uobj is locked */
525 1.21 chs
526 1.21 chs if (write && (vp->v_flag & VONWORKLST) == 0) {
527 1.21 chs vn_syncer_add_to_worklist(vp, filedelay);
528 1.21 chs }
529 1.21 chs
530 1.21 chs /*
531 1.21 chs * find the requested pages and make some simple checks.
532 1.21 chs * leave space in the page array for a whole block.
533 1.21 chs */
534 1.21 chs
535 1.36 chs if (vp->v_type == VREG) {
536 1.36 chs fs_bshift = vp->v_mount->mnt_fs_bshift;
537 1.36 chs dev_bshift = vp->v_mount->mnt_dev_bshift;
538 1.36 chs } else {
539 1.36 chs fs_bshift = DEV_BSHIFT;
540 1.36 chs dev_bshift = DEV_BSHIFT;
541 1.36 chs }
542 1.21 chs fs_bsize = 1 << fs_bshift;
543 1.21 chs
544 1.30 chs orignpages = MIN(orignpages,
545 1.30 chs round_page(memeof - origoffset) >> PAGE_SHIFT);
546 1.21 chs npages = orignpages;
547 1.21 chs startoffset = origoffset & ~(fs_bsize - 1);
548 1.53 enami endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
549 1.53 enami fs_bsize - 1) & ~(fs_bsize - 1));
550 1.30 chs endoffset = MIN(endoffset, round_page(memeof));
551 1.21 chs ridx = (origoffset - startoffset) >> PAGE_SHIFT;
552 1.21 chs
553 1.77 yamt pgs_size = sizeof(struct vm_page *) *
554 1.77 yamt ((endoffset - startoffset) >> PAGE_SHIFT);
555 1.77 yamt if (pgs_size > sizeof(pgs_onstack)) {
556 1.77 yamt pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
557 1.78 simonb if (pgs == NULL) {
558 1.78 simonb simple_unlock(&uobj->vmobjlock);
559 1.78 simonb return (ENOMEM);
560 1.78 simonb }
561 1.77 yamt } else {
562 1.77 yamt pgs = pgs_onstack;
563 1.77 yamt memset(pgs, 0, pgs_size);
564 1.77 yamt }
565 1.63 enami UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
566 1.63 enami ridx, npages, startoffset, endoffset);
567 1.63 enami if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
568 1.63 enami async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
569 1.63 enami KASSERT(async != 0);
570 1.63 enami genfs_rel_pages(&pgs[ridx], orignpages);
571 1.63 enami simple_unlock(&uobj->vmobjlock);
572 1.77 yamt if (pgs != pgs_onstack)
573 1.77 yamt free(pgs, M_DEVBUF);
574 1.63 enami return (EBUSY);
575 1.63 enami }
576 1.21 chs
577 1.21 chs /*
578 1.21 chs * if the pages are already resident, just return them.
579 1.21 chs */
580 1.21 chs
581 1.21 chs for (i = 0; i < npages; i++) {
582 1.21 chs struct vm_page *pg = pgs[ridx + i];
583 1.21 chs
584 1.21 chs if ((pg->flags & PG_FAKE) ||
585 1.21 chs (write && (pg->flags & PG_RDONLY))) {
586 1.21 chs break;
587 1.21 chs }
588 1.21 chs }
589 1.21 chs if (i == npages) {
590 1.21 chs UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
591 1.21 chs raoffset = origoffset + (orignpages << PAGE_SHIFT);
592 1.26 chs npages += ridx;
593 1.21 chs goto raout;
594 1.21 chs }
595 1.21 chs
596 1.21 chs /*
597 1.37 chs * if PGO_OVERWRITE is set, don't bother reading the pages.
598 1.37 chs */
599 1.37 chs
600 1.37 chs if (flags & PGO_OVERWRITE) {
601 1.37 chs UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
602 1.37 chs
603 1.37 chs for (i = 0; i < npages; i++) {
604 1.37 chs struct vm_page *pg = pgs[ridx + i];
605 1.37 chs
606 1.37 chs pg->flags &= ~(PG_RDONLY|PG_CLEAN);
607 1.37 chs }
608 1.37 chs npages += ridx;
609 1.37 chs goto out;
610 1.37 chs }
611 1.37 chs
612 1.37 chs /*
613 1.21 chs * the page wasn't resident and we're not overwriting,
614 1.21 chs * so we're going to have to do some i/o.
615 1.21 chs * find any additional pages needed to cover the expanded range.
616 1.21 chs */
617 1.21 chs
618 1.35 chs npages = (endoffset - startoffset) >> PAGE_SHIFT;
619 1.35 chs if (startoffset != origoffset || npages != orignpages) {
620 1.21 chs
621 1.21 chs /*
622 1.37 chs * we need to avoid deadlocks caused by locking
623 1.21 chs * additional pages at lower offsets than pages we
624 1.37 chs * already have locked. unlock them all and start over.
625 1.21 chs */
626 1.21 chs
627 1.63 enami genfs_rel_pages(&pgs[ridx], orignpages);
628 1.77 yamt memset(pgs, 0, pgs_size);
629 1.21 chs
630 1.21 chs UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
631 1.53 enami startoffset, endoffset, 0,0);
632 1.21 chs npgs = npages;
633 1.63 enami if (uvn_findpages(uobj, startoffset, &npgs, pgs,
634 1.63 enami async ? UFP_NOWAIT : UFP_ALL) != npages) {
635 1.63 enami KASSERT(async != 0);
636 1.63 enami genfs_rel_pages(pgs, npages);
637 1.63 enami simple_unlock(&uobj->vmobjlock);
638 1.77 yamt if (pgs != pgs_onstack)
639 1.77 yamt free(pgs, M_DEVBUF);
640 1.63 enami return (EBUSY);
641 1.63 enami }
642 1.21 chs }
643 1.21 chs simple_unlock(&uobj->vmobjlock);
644 1.21 chs
645 1.21 chs /*
646 1.21 chs * read the desired page(s).
647 1.21 chs */
648 1.21 chs
649 1.21 chs totalbytes = npages << PAGE_SHIFT;
650 1.30 chs bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
651 1.21 chs tailbytes = totalbytes - bytes;
652 1.21 chs skipbytes = 0;
653 1.21 chs
654 1.53 enami kva = uvm_pagermapin(pgs, npages,
655 1.53 enami UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
656 1.21 chs
657 1.21 chs s = splbio();
658 1.21 chs mbp = pool_get(&bufpool, PR_WAITOK);
659 1.21 chs splx(s);
660 1.73 thorpej BUF_INIT(mbp);
661 1.21 chs mbp->b_bufsize = totalbytes;
662 1.21 chs mbp->b_data = (void *)kva;
663 1.21 chs mbp->b_resid = mbp->b_bcount = bytes;
664 1.65 fvdl mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
665 1.37 chs mbp->b_iodone = (async ? uvm_aio_biodone : 0);
666 1.21 chs mbp->b_vp = vp;
667 1.21 chs
668 1.21 chs /*
669 1.31 chs * if EOF is in the middle of the range, zero the part past EOF.
670 1.38 chs * if the page including EOF is not PG_FAKE, skip over it since
671 1.38 chs * in that case it has valid data that we need to preserve.
672 1.21 chs */
673 1.21 chs
674 1.31 chs if (tailbytes > 0) {
675 1.38 chs size_t tailstart = bytes;
676 1.38 chs
677 1.38 chs if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
678 1.38 chs tailstart = round_page(tailstart);
679 1.38 chs tailbytes -= tailstart - bytes;
680 1.38 chs }
681 1.37 chs UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
682 1.53 enami kva, tailstart, tailbytes,0);
683 1.38 chs memset((void *)(kva + tailstart), 0, tailbytes);
684 1.21 chs }
685 1.21 chs
686 1.21 chs /*
687 1.21 chs * now loop over the pages, reading as needed.
688 1.21 chs */
689 1.21 chs
690 1.21 chs if (write) {
691 1.37 chs lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
692 1.21 chs } else {
693 1.37 chs lockmgr(&gp->g_glock, LK_SHARED, NULL);
694 1.21 chs }
695 1.21 chs
696 1.21 chs bp = NULL;
697 1.21 chs for (offset = startoffset;
698 1.53 enami bytes > 0;
699 1.53 enami offset += iobytes, bytes -= iobytes) {
700 1.21 chs
701 1.21 chs /*
702 1.21 chs * skip pages which don't need to be read.
703 1.21 chs */
704 1.21 chs
705 1.21 chs pidx = (offset - startoffset) >> PAGE_SHIFT;
706 1.35 chs while ((pgs[pidx]->flags & (PG_FAKE|PG_RDONLY)) == 0) {
707 1.21 chs size_t b;
708 1.21 chs
709 1.24 chs KASSERT((offset & (PAGE_SIZE - 1)) == 0);
710 1.26 chs b = MIN(PAGE_SIZE, bytes);
711 1.21 chs offset += b;
712 1.21 chs bytes -= b;
713 1.21 chs skipbytes += b;
714 1.21 chs pidx++;
715 1.21 chs UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
716 1.53 enami offset, 0,0,0);
717 1.21 chs if (bytes == 0) {
718 1.21 chs goto loopdone;
719 1.21 chs }
720 1.21 chs }
721 1.21 chs
722 1.21 chs /*
723 1.21 chs * bmap the file to find out the blkno to read from and
724 1.21 chs * how much we can read in one i/o. if bmap returns an error,
725 1.21 chs * skip the rest of the top-level i/o.
726 1.21 chs */
727 1.21 chs
728 1.21 chs lbn = offset >> fs_bshift;
729 1.36 chs error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
730 1.21 chs if (error) {
731 1.21 chs UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
732 1.53 enami lbn, error,0,0);
733 1.21 chs skipbytes += bytes;
734 1.21 chs goto loopdone;
735 1.21 chs }
736 1.21 chs
737 1.21 chs /*
738 1.21 chs * see how many pages can be read with this i/o.
739 1.21 chs * reduce the i/o size if necessary to avoid
740 1.21 chs * overwriting pages with valid data.
741 1.21 chs */
742 1.21 chs
743 1.26 chs iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
744 1.26 chs bytes);
745 1.21 chs if (offset + iobytes > round_page(offset)) {
746 1.21 chs pcount = 1;
747 1.21 chs while (pidx + pcount < npages &&
748 1.53 enami pgs[pidx + pcount]->flags & PG_FAKE) {
749 1.21 chs pcount++;
750 1.21 chs }
751 1.26 chs iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
752 1.53 enami (offset - trunc_page(offset)));
753 1.21 chs }
754 1.21 chs
755 1.21 chs /*
756 1.53 enami * if this block isn't allocated, zero it instead of
757 1.53 enami * reading it. if this is a read access, mark the
758 1.53 enami * pages we zeroed PG_RDONLY.
759 1.21 chs */
760 1.21 chs
761 1.21 chs if (blkno < 0) {
762 1.53 enami int holepages = (round_page(offset + iobytes) -
763 1.53 enami trunc_page(offset)) >> PAGE_SHIFT;
764 1.21 chs UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
765 1.21 chs
766 1.21 chs sawhole = TRUE;
767 1.21 chs memset((char *)kva + (offset - startoffset), 0,
768 1.53 enami iobytes);
769 1.21 chs skipbytes += iobytes;
770 1.21 chs
771 1.35 chs for (i = 0; i < holepages; i++) {
772 1.35 chs if (write) {
773 1.35 chs pgs[pidx + i]->flags &= ~PG_CLEAN;
774 1.35 chs } else {
775 1.21 chs pgs[pidx + i]->flags |= PG_RDONLY;
776 1.21 chs }
777 1.21 chs }
778 1.21 chs continue;
779 1.21 chs }
780 1.21 chs
781 1.21 chs /*
782 1.21 chs * allocate a sub-buf for this piece of the i/o
783 1.21 chs * (or just use mbp if there's only 1 piece),
784 1.21 chs * and start it going.
785 1.21 chs */
786 1.21 chs
787 1.21 chs if (offset == startoffset && iobytes == bytes) {
788 1.21 chs bp = mbp;
789 1.21 chs } else {
790 1.21 chs s = splbio();
791 1.21 chs bp = pool_get(&bufpool, PR_WAITOK);
792 1.21 chs splx(s);
793 1.73 thorpej BUF_INIT(bp);
794 1.21 chs bp->b_data = (char *)kva + offset - startoffset;
795 1.21 chs bp->b_resid = bp->b_bcount = iobytes;
796 1.67 yamt bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
797 1.21 chs bp->b_iodone = uvm_aio_biodone1;
798 1.21 chs bp->b_vp = vp;
799 1.37 chs bp->b_proc = NULL;
800 1.21 chs }
801 1.21 chs bp->b_lblkno = 0;
802 1.21 chs bp->b_private = mbp;
803 1.37 chs if (devvp->v_type == VBLK) {
804 1.37 chs bp->b_dev = devvp->v_rdev;
805 1.37 chs }
806 1.21 chs
807 1.21 chs /* adjust physical blkno for partial blocks */
808 1.25 fvdl bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
809 1.53 enami dev_bshift);
810 1.21 chs
811 1.53 enami UVMHIST_LOG(ubchist,
812 1.53 enami "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
813 1.53 enami bp, offset, iobytes, bp->b_blkno);
814 1.21 chs
815 1.84 yamt if (async)
816 1.84 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
817 1.84 yamt else
818 1.84 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
819 1.85 hannken VOP_STRATEGY(bp->b_vp, bp);
820 1.21 chs }
821 1.21 chs
822 1.21 chs loopdone:
823 1.21 chs if (skipbytes) {
824 1.21 chs s = splbio();
825 1.21 chs if (error) {
826 1.21 chs mbp->b_flags |= B_ERROR;
827 1.21 chs mbp->b_error = error;
828 1.21 chs }
829 1.21 chs mbp->b_resid -= skipbytes;
830 1.21 chs if (mbp->b_resid == 0) {
831 1.21 chs biodone(mbp);
832 1.21 chs }
833 1.21 chs splx(s);
834 1.21 chs }
835 1.21 chs
836 1.21 chs if (async) {
837 1.32 chs UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
838 1.37 chs lockmgr(&gp->g_glock, LK_RELEASE, NULL);
839 1.77 yamt if (pgs != pgs_onstack)
840 1.77 yamt free(pgs, M_DEVBUF);
841 1.53 enami return (0);
842 1.21 chs }
843 1.21 chs if (bp != NULL) {
844 1.21 chs error = biowait(mbp);
845 1.21 chs }
846 1.21 chs s = splbio();
847 1.21 chs pool_put(&bufpool, mbp);
848 1.21 chs splx(s);
849 1.21 chs uvm_pagermapout(kva, npages);
850 1.24 chs raoffset = startoffset + totalbytes;
851 1.21 chs
852 1.21 chs /*
853 1.21 chs * if this we encountered a hole then we have to do a little more work.
854 1.21 chs * for read faults, we marked the page PG_RDONLY so that future
855 1.21 chs * write accesses to the page will fault again.
856 1.21 chs * for write faults, we must make sure that the backing store for
857 1.21 chs * the page is completely allocated while the pages are locked.
858 1.21 chs */
859 1.21 chs
860 1.37 chs if (!error && sawhole && write) {
861 1.37 chs for (i = 0; i < npages; i++) {
862 1.37 chs if (pgs[i] == NULL) {
863 1.37 chs continue;
864 1.37 chs }
865 1.37 chs pgs[i]->flags &= ~PG_CLEAN;
866 1.37 chs UVMHIST_LOG(ubchist, "mark dirty pg %p", pgs[i],0,0,0);
867 1.21 chs }
868 1.37 chs error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
869 1.53 enami cred);
870 1.37 chs UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
871 1.37 chs startoffset, npages << PAGE_SHIFT, error,0);
872 1.21 chs }
873 1.37 chs lockmgr(&gp->g_glock, LK_RELEASE, NULL);
874 1.21 chs simple_lock(&uobj->vmobjlock);
875 1.21 chs
876 1.21 chs /*
877 1.21 chs * see if we want to start any readahead.
878 1.21 chs * XXXUBC for now, just read the next 128k on 64k boundaries.
879 1.21 chs * this is pretty nonsensical, but it is 50% faster than reading
880 1.21 chs * just the next 64k.
881 1.21 chs */
882 1.21 chs
883 1.21 chs raout:
884 1.24 chs if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
885 1.21 chs PAGE_SHIFT <= 16) {
886 1.41 christos off_t rasize;
887 1.63 enami int rapages, err, i, skipped;
888 1.21 chs
889 1.41 christos /* XXXUBC temp limit, from above */
890 1.63 enami rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
891 1.63 enami genfs_rapages);
892 1.63 enami rasize = rapages << PAGE_SHIFT;
893 1.63 enami for (i = skipped = 0; i < genfs_racount; i++) {
894 1.93 drochner
895 1.93 drochner if (raoffset >= memeof)
896 1.93 drochner break;
897 1.93 drochner
898 1.63 enami err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
899 1.63 enami VM_PROT_READ, 0, 0);
900 1.63 enami simple_lock(&uobj->vmobjlock);
901 1.63 enami if (err) {
902 1.63 enami if (err != EBUSY ||
903 1.63 enami skipped++ == genfs_raskip)
904 1.63 enami break;
905 1.63 enami }
906 1.63 enami raoffset += rasize;
907 1.63 enami rapages = rasize >> PAGE_SHIFT;
908 1.63 enami }
909 1.21 chs }
910 1.21 chs
911 1.21 chs /*
912 1.21 chs * we're almost done! release the pages...
913 1.21 chs * for errors, we free the pages.
914 1.21 chs * otherwise we activate them and mark them as valid and clean.
915 1.21 chs * also, unbusy pages that were not actually requested.
916 1.21 chs */
917 1.21 chs
918 1.21 chs if (error) {
919 1.21 chs for (i = 0; i < npages; i++) {
920 1.21 chs if (pgs[i] == NULL) {
921 1.21 chs continue;
922 1.21 chs }
923 1.21 chs UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
924 1.53 enami pgs[i], pgs[i]->flags, 0,0);
925 1.26 chs if (pgs[i]->flags & PG_FAKE) {
926 1.37 chs pgs[i]->flags |= PG_RELEASED;
927 1.21 chs }
928 1.21 chs }
929 1.37 chs uvm_lock_pageq();
930 1.37 chs uvm_page_unbusy(pgs, npages);
931 1.21 chs uvm_unlock_pageq();
932 1.21 chs simple_unlock(&uobj->vmobjlock);
933 1.21 chs UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
934 1.77 yamt if (pgs != pgs_onstack)
935 1.77 yamt free(pgs, M_DEVBUF);
936 1.53 enami return (error);
937 1.21 chs }
938 1.21 chs
939 1.37 chs out:
940 1.21 chs UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
941 1.26 chs uvm_lock_pageq();
942 1.21 chs for (i = 0; i < npages; i++) {
943 1.37 chs pg = pgs[i];
944 1.37 chs if (pg == NULL) {
945 1.21 chs continue;
946 1.21 chs }
947 1.21 chs UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
948 1.53 enami pg, pg->flags, 0,0);
949 1.37 chs if (pg->flags & PG_FAKE && !overwrite) {
950 1.37 chs pg->flags &= ~(PG_FAKE);
951 1.21 chs pmap_clear_modify(pgs[i]);
952 1.21 chs }
953 1.21 chs if (write) {
954 1.37 chs pg->flags &= ~(PG_RDONLY);
955 1.21 chs }
956 1.21 chs if (i < ridx || i >= ridx + orignpages || async) {
957 1.21 chs UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
958 1.53 enami pg, pg->offset,0,0);
959 1.37 chs if (pg->flags & PG_WANTED) {
960 1.37 chs wakeup(pg);
961 1.37 chs }
962 1.37 chs if (pg->flags & PG_FAKE) {
963 1.37 chs KASSERT(overwrite);
964 1.37 chs uvm_pagezero(pg);
965 1.37 chs }
966 1.37 chs if (pg->flags & PG_RELEASED) {
967 1.37 chs uvm_pagefree(pg);
968 1.26 chs continue;
969 1.21 chs }
970 1.37 chs uvm_pageactivate(pg);
971 1.37 chs pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
972 1.37 chs UVM_PAGE_OWN(pg, NULL);
973 1.21 chs }
974 1.21 chs }
975 1.26 chs uvm_unlock_pageq();
976 1.21 chs simple_unlock(&uobj->vmobjlock);
977 1.21 chs if (ap->a_m != NULL) {
978 1.21 chs memcpy(ap->a_m, &pgs[ridx],
979 1.53 enami orignpages * sizeof(struct vm_page *));
980 1.21 chs }
981 1.77 yamt if (pgs != pgs_onstack)
982 1.77 yamt free(pgs, M_DEVBUF);
983 1.53 enami return (0);
984 1.21 chs }
985 1.21 chs
986 1.21 chs /*
987 1.21 chs * generic VM putpages routine.
988 1.21 chs * Write the given range of pages to backing store.
989 1.37 chs *
990 1.37 chs * => "offhi == 0" means flush all pages at or after "offlo".
991 1.37 chs * => object should be locked by caller. we may _unlock_ the object
992 1.37 chs * if (and only if) we need to clean a page (PGO_CLEANIT), or
993 1.37 chs * if PGO_SYNCIO is set and there are pages busy.
994 1.37 chs * we return with the object locked.
995 1.37 chs * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
996 1.37 chs * thus, a caller might want to unlock higher level resources
997 1.37 chs * (e.g. vm_map) before calling flush.
998 1.37 chs * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
999 1.37 chs * unlock the object nor block.
1000 1.37 chs * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1001 1.37 chs * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1002 1.37 chs * that new pages are inserted on the tail end of the list. thus,
1003 1.37 chs * we can make a complete pass through the object in one go by starting
1004 1.37 chs * at the head and working towards the tail (new pages are put in
1005 1.37 chs * front of us).
1006 1.37 chs * => NOTE: we are allowed to lock the page queues, so the caller
1007 1.37 chs * must not be holding the page queue lock.
1008 1.37 chs *
1009 1.37 chs * note on "cleaning" object and PG_BUSY pages:
1010 1.37 chs * this routine is holding the lock on the object. the only time
1011 1.37 chs * that it can run into a PG_BUSY page that it does not own is if
1012 1.37 chs * some other process has started I/O on the page (e.g. either
1013 1.37 chs * a pagein, or a pageout). if the PG_BUSY page is being paged
1014 1.37 chs * in, then it can not be dirty (!PG_CLEAN) because no one has
1015 1.37 chs * had a chance to modify it yet. if the PG_BUSY page is being
1016 1.37 chs * paged out then it means that someone else has already started
1017 1.53 enami * cleaning the page for us (how nice!). in this case, if we
1018 1.37 chs * have syncio specified, then after we make our pass through the
1019 1.53 enami * object we need to wait for the other PG_BUSY pages to clear
1020 1.37 chs * off (i.e. we need to do an iosync). also note that once a
1021 1.37 chs * page is PG_BUSY it must stay in its object until it is un-busyed.
1022 1.37 chs *
1023 1.37 chs * note on page traversal:
1024 1.37 chs * we can traverse the pages in an object either by going down the
1025 1.37 chs * linked list in "uobj->memq", or we can go over the address range
1026 1.37 chs * by page doing hash table lookups for each address. depending
1027 1.53 enami * on how many pages are in the object it may be cheaper to do one
1028 1.37 chs * or the other. we set "by_list" to true if we are using memq.
1029 1.37 chs * if the cost of a hash lookup was equal to the cost of the list
1030 1.37 chs * traversal we could compare the number of pages in the start->stop
1031 1.37 chs * range to the total number of pages in the object. however, it
1032 1.37 chs * seems that a hash table lookup is more expensive than the linked
1033 1.53 enami * list traversal, so we multiply the number of pages in the
1034 1.37 chs * range by an estimate of the relatively higher cost of the hash lookup.
1035 1.21 chs */
1036 1.21 chs
1037 1.21 chs int
1038 1.53 enami genfs_putpages(void *v)
1039 1.21 chs {
1040 1.21 chs struct vop_putpages_args /* {
1041 1.21 chs struct vnode *a_vp;
1042 1.37 chs voff_t a_offlo;
1043 1.37 chs voff_t a_offhi;
1044 1.21 chs int a_flags;
1045 1.21 chs } */ *ap = v;
1046 1.37 chs struct vnode *vp = ap->a_vp;
1047 1.37 chs struct uvm_object *uobj = &vp->v_uobj;
1048 1.46 chs struct simplelock *slock = &uobj->vmobjlock;
1049 1.37 chs off_t startoff = ap->a_offlo;
1050 1.37 chs off_t endoff = ap->a_offhi;
1051 1.37 chs off_t off;
1052 1.37 chs int flags = ap->a_flags;
1053 1.76 tls /* Even for strange MAXPHYS, the shift rounds down to a page */
1054 1.76 tls const int maxpages = MAXPHYS >> PAGE_SHIFT;
1055 1.37 chs int i, s, error, npages, nback;
1056 1.37 chs int freeflag;
1057 1.60 enami struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1058 1.49 chs boolean_t wasclean, by_list, needs_clean, yield;
1059 1.37 chs boolean_t async = (flags & PGO_SYNCIO) == 0;
1060 1.56 enami boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1061 1.70 christos struct lwp *l = curlwp ? curlwp : &lwp0;
1062 1.70 christos
1063 1.37 chs UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1064 1.37 chs
1065 1.37 chs KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1066 1.37 chs KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1067 1.37 chs KASSERT(startoff < endoff || endoff == 0);
1068 1.37 chs
1069 1.37 chs UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1070 1.37 chs vp, uobj->uo_npages, startoff, endoff - startoff);
1071 1.37 chs if (uobj->uo_npages == 0) {
1072 1.62 perseant s = splbio();
1073 1.37 chs if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1074 1.37 chs (vp->v_flag & VONWORKLST)) {
1075 1.37 chs vp->v_flag &= ~VONWORKLST;
1076 1.37 chs LIST_REMOVE(vp, v_synclist);
1077 1.37 chs }
1078 1.62 perseant splx(s);
1079 1.46 chs simple_unlock(slock);
1080 1.53 enami return (0);
1081 1.37 chs }
1082 1.37 chs
1083 1.37 chs /*
1084 1.37 chs * the vnode has pages, set up to process the request.
1085 1.37 chs */
1086 1.37 chs
1087 1.37 chs error = 0;
1088 1.44 chs s = splbio();
1089 1.71 pk simple_lock(&global_v_numoutput_slock);
1090 1.44 chs wasclean = (vp->v_numoutput == 0);
1091 1.71 pk simple_unlock(&global_v_numoutput_slock);
1092 1.44 chs splx(s);
1093 1.37 chs off = startoff;
1094 1.37 chs if (endoff == 0 || flags & PGO_ALLPAGES) {
1095 1.37 chs endoff = trunc_page(LLONG_MAX);
1096 1.37 chs }
1097 1.37 chs by_list = (uobj->uo_npages <=
1098 1.37 chs ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1099 1.37 chs
1100 1.37 chs /*
1101 1.37 chs * start the loop. when scanning by list, hold the last page
1102 1.37 chs * in the list before we start. pages allocated after we start
1103 1.37 chs * will be added to the end of the list, so we can stop at the
1104 1.37 chs * current last page.
1105 1.37 chs */
1106 1.37 chs
1107 1.56 enami freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1108 1.37 chs curmp.uobject = uobj;
1109 1.37 chs curmp.offset = (voff_t)-1;
1110 1.37 chs curmp.flags = PG_BUSY;
1111 1.37 chs endmp.uobject = uobj;
1112 1.37 chs endmp.offset = (voff_t)-1;
1113 1.37 chs endmp.flags = PG_BUSY;
1114 1.37 chs if (by_list) {
1115 1.37 chs pg = TAILQ_FIRST(&uobj->memq);
1116 1.37 chs TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1117 1.70 christos PHOLD(l);
1118 1.37 chs } else {
1119 1.37 chs pg = uvm_pagelookup(uobj, off);
1120 1.37 chs }
1121 1.37 chs nextpg = NULL;
1122 1.37 chs while (by_list || off < endoff) {
1123 1.37 chs
1124 1.37 chs /*
1125 1.37 chs * if the current page is not interesting, move on to the next.
1126 1.37 chs */
1127 1.37 chs
1128 1.37 chs KASSERT(pg == NULL || pg->uobject == uobj);
1129 1.37 chs KASSERT(pg == NULL ||
1130 1.53 enami (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1131 1.53 enami (pg->flags & PG_BUSY) != 0);
1132 1.37 chs if (by_list) {
1133 1.37 chs if (pg == &endmp) {
1134 1.37 chs break;
1135 1.37 chs }
1136 1.37 chs if (pg->offset < startoff || pg->offset >= endoff ||
1137 1.37 chs pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1138 1.37 chs pg = TAILQ_NEXT(pg, listq);
1139 1.37 chs continue;
1140 1.37 chs }
1141 1.37 chs off = pg->offset;
1142 1.53 enami } else if (pg == NULL ||
1143 1.53 enami pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1144 1.37 chs off += PAGE_SIZE;
1145 1.37 chs if (off < endoff) {
1146 1.37 chs pg = uvm_pagelookup(uobj, off);
1147 1.37 chs }
1148 1.37 chs continue;
1149 1.37 chs }
1150 1.21 chs
1151 1.37 chs /*
1152 1.37 chs * if the current page needs to be cleaned and it's busy,
1153 1.37 chs * wait for it to become unbusy.
1154 1.37 chs */
1155 1.37 chs
1156 1.70 christos yield = (l->l_cpu->ci_schedstate.spc_flags &
1157 1.56 enami SPCF_SHOULDYIELD) && !pagedaemon;
1158 1.49 chs if (pg->flags & PG_BUSY || yield) {
1159 1.72 perseant UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1160 1.72 perseant if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1161 1.72 perseant UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1162 1.72 perseant error = EDEADLK;
1163 1.72 perseant break;
1164 1.72 perseant }
1165 1.56 enami KASSERT(!pagedaemon);
1166 1.37 chs if (by_list) {
1167 1.37 chs TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1168 1.37 chs UVMHIST_LOG(ubchist, "curmp next %p",
1169 1.53 enami TAILQ_NEXT(&curmp, listq), 0,0,0);
1170 1.37 chs }
1171 1.49 chs if (yield) {
1172 1.49 chs simple_unlock(slock);
1173 1.69 thorpej preempt(1);
1174 1.49 chs simple_lock(slock);
1175 1.49 chs } else {
1176 1.49 chs pg->flags |= PG_WANTED;
1177 1.49 chs UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1178 1.49 chs simple_lock(slock);
1179 1.49 chs }
1180 1.37 chs if (by_list) {
1181 1.37 chs UVMHIST_LOG(ubchist, "after next %p",
1182 1.53 enami TAILQ_NEXT(&curmp, listq), 0,0,0);
1183 1.37 chs pg = TAILQ_NEXT(&curmp, listq);
1184 1.37 chs TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1185 1.37 chs } else {
1186 1.37 chs pg = uvm_pagelookup(uobj, off);
1187 1.37 chs }
1188 1.37 chs continue;
1189 1.49 chs }
1190 1.49 chs
1191 1.49 chs /*
1192 1.49 chs * if we're freeing, remove all mappings of the page now.
1193 1.49 chs * if we're cleaning, check if the page is needs to be cleaned.
1194 1.49 chs */
1195 1.49 chs
1196 1.49 chs if (flags & PGO_FREE) {
1197 1.49 chs pmap_page_protect(pg, VM_PROT_NONE);
1198 1.49 chs }
1199 1.49 chs if (flags & PGO_CLEANIT) {
1200 1.49 chs needs_clean = pmap_clear_modify(pg) ||
1201 1.53 enami (pg->flags & PG_CLEAN) == 0;
1202 1.49 chs pg->flags |= PG_CLEAN;
1203 1.49 chs } else {
1204 1.49 chs needs_clean = FALSE;
1205 1.37 chs }
1206 1.37 chs
1207 1.37 chs /*
1208 1.37 chs * if we're cleaning, build a cluster.
1209 1.37 chs * the cluster will consist of pages which are currently dirty,
1210 1.37 chs * but they will be returned to us marked clean.
1211 1.37 chs * if not cleaning, just operate on the one page.
1212 1.37 chs */
1213 1.37 chs
1214 1.37 chs if (needs_clean) {
1215 1.37 chs wasclean = FALSE;
1216 1.37 chs memset(pgs, 0, sizeof(pgs));
1217 1.37 chs pg->flags |= PG_BUSY;
1218 1.37 chs UVM_PAGE_OWN(pg, "genfs_putpages");
1219 1.37 chs
1220 1.37 chs /*
1221 1.37 chs * first look backward.
1222 1.37 chs */
1223 1.37 chs
1224 1.60 enami npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1225 1.37 chs nback = npages;
1226 1.37 chs uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1227 1.37 chs UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1228 1.37 chs if (nback) {
1229 1.37 chs memmove(&pgs[0], &pgs[npages - nback],
1230 1.37 chs nback * sizeof(pgs[0]));
1231 1.47 enami if (npages - nback < nback)
1232 1.47 enami memset(&pgs[nback], 0,
1233 1.47 enami (npages - nback) * sizeof(pgs[0]));
1234 1.47 enami else
1235 1.47 enami memset(&pgs[npages - nback], 0,
1236 1.47 enami nback * sizeof(pgs[0]));
1237 1.37 chs }
1238 1.37 chs
1239 1.37 chs /*
1240 1.37 chs * then plug in our page of interest.
1241 1.37 chs */
1242 1.37 chs
1243 1.37 chs pgs[nback] = pg;
1244 1.37 chs
1245 1.37 chs /*
1246 1.37 chs * then look forward to fill in the remaining space in
1247 1.37 chs * the array of pages.
1248 1.37 chs */
1249 1.37 chs
1250 1.60 enami npages = maxpages - nback - 1;
1251 1.37 chs uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1252 1.37 chs &pgs[nback + 1],
1253 1.37 chs UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1254 1.37 chs npages += nback + 1;
1255 1.37 chs } else {
1256 1.37 chs pgs[0] = pg;
1257 1.37 chs npages = 1;
1258 1.61 enami nback = 0;
1259 1.37 chs }
1260 1.37 chs
1261 1.37 chs /*
1262 1.37 chs * apply FREE or DEACTIVATE options if requested.
1263 1.37 chs */
1264 1.37 chs
1265 1.37 chs if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1266 1.37 chs uvm_lock_pageq();
1267 1.37 chs }
1268 1.37 chs for (i = 0; i < npages; i++) {
1269 1.37 chs tpg = pgs[i];
1270 1.37 chs KASSERT(tpg->uobject == uobj);
1271 1.59 enami if (by_list && tpg == TAILQ_NEXT(pg, listq))
1272 1.59 enami pg = tpg;
1273 1.91 enami if (tpg->offset < startoff || tpg->offset >= endoff)
1274 1.91 enami continue;
1275 1.37 chs if (flags & PGO_DEACTIVATE &&
1276 1.37 chs (tpg->pqflags & PQ_INACTIVE) == 0 &&
1277 1.37 chs tpg->wire_count == 0) {
1278 1.37 chs (void) pmap_clear_reference(tpg);
1279 1.37 chs uvm_pagedeactivate(tpg);
1280 1.37 chs } else if (flags & PGO_FREE) {
1281 1.37 chs pmap_page_protect(tpg, VM_PROT_NONE);
1282 1.37 chs if (tpg->flags & PG_BUSY) {
1283 1.37 chs tpg->flags |= freeflag;
1284 1.56 enami if (pagedaemon) {
1285 1.37 chs uvmexp.paging++;
1286 1.37 chs uvm_pagedequeue(tpg);
1287 1.37 chs }
1288 1.37 chs } else {
1289 1.59 enami
1290 1.59 enami /*
1291 1.59 enami * ``page is not busy''
1292 1.59 enami * implies that npages is 1
1293 1.59 enami * and needs_clean is false.
1294 1.59 enami */
1295 1.59 enami
1296 1.37 chs nextpg = TAILQ_NEXT(tpg, listq);
1297 1.37 chs uvm_pagefree(tpg);
1298 1.89 enami if (pagedaemon)
1299 1.89 enami uvmexp.pdfreed++;
1300 1.37 chs }
1301 1.37 chs }
1302 1.37 chs }
1303 1.37 chs if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1304 1.37 chs uvm_unlock_pageq();
1305 1.37 chs }
1306 1.37 chs if (needs_clean) {
1307 1.37 chs
1308 1.37 chs /*
1309 1.37 chs * start the i/o. if we're traversing by list,
1310 1.37 chs * keep our place in the list with a marker page.
1311 1.37 chs */
1312 1.37 chs
1313 1.37 chs if (by_list) {
1314 1.37 chs TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1315 1.37 chs listq);
1316 1.37 chs }
1317 1.46 chs simple_unlock(slock);
1318 1.37 chs error = GOP_WRITE(vp, pgs, npages, flags);
1319 1.46 chs simple_lock(slock);
1320 1.37 chs if (by_list) {
1321 1.37 chs pg = TAILQ_NEXT(&curmp, listq);
1322 1.37 chs TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1323 1.37 chs }
1324 1.37 chs if (error) {
1325 1.37 chs break;
1326 1.37 chs }
1327 1.37 chs if (by_list) {
1328 1.37 chs continue;
1329 1.37 chs }
1330 1.37 chs }
1331 1.37 chs
1332 1.37 chs /*
1333 1.37 chs * find the next page and continue if there was no error.
1334 1.37 chs */
1335 1.37 chs
1336 1.37 chs if (by_list) {
1337 1.37 chs if (nextpg) {
1338 1.37 chs pg = nextpg;
1339 1.37 chs nextpg = NULL;
1340 1.37 chs } else {
1341 1.37 chs pg = TAILQ_NEXT(pg, listq);
1342 1.37 chs }
1343 1.37 chs } else {
1344 1.61 enami off += (npages - nback) << PAGE_SHIFT;
1345 1.37 chs if (off < endoff) {
1346 1.37 chs pg = uvm_pagelookup(uobj, off);
1347 1.37 chs }
1348 1.37 chs }
1349 1.37 chs }
1350 1.37 chs if (by_list) {
1351 1.37 chs TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1352 1.70 christos PRELE(l);
1353 1.37 chs }
1354 1.37 chs
1355 1.37 chs /*
1356 1.37 chs * if we're cleaning and there was nothing to clean,
1357 1.37 chs * take us off the syncer list. if we started any i/o
1358 1.37 chs * and we're doing sync i/o, wait for all writes to finish.
1359 1.37 chs */
1360 1.37 chs
1361 1.62 perseant s = splbio();
1362 1.37 chs if ((flags & PGO_CLEANIT) && wasclean &&
1363 1.37 chs startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1364 1.37 chs LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1365 1.37 chs (vp->v_flag & VONWORKLST)) {
1366 1.37 chs vp->v_flag &= ~VONWORKLST;
1367 1.37 chs LIST_REMOVE(vp, v_synclist);
1368 1.37 chs }
1369 1.62 perseant splx(s);
1370 1.37 chs if (!wasclean && !async) {
1371 1.37 chs s = splbio();
1372 1.71 pk /*
1373 1.71 pk * XXX - we want simple_unlock(&global_v_numoutput_slock);
1374 1.71 pk * but the slot in ltsleep() is taken!
1375 1.71 pk * XXX - try to recover from missed wakeups with a timeout..
1376 1.71 pk * must think of something better.
1377 1.71 pk */
1378 1.37 chs while (vp->v_numoutput != 0) {
1379 1.37 chs vp->v_flag |= VBWAIT;
1380 1.46 chs UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1381 1.71 pk "genput2", hz);
1382 1.46 chs simple_lock(slock);
1383 1.37 chs }
1384 1.37 chs splx(s);
1385 1.37 chs }
1386 1.37 chs simple_unlock(&uobj->vmobjlock);
1387 1.53 enami return (error);
1388 1.37 chs }
1389 1.37 chs
1390 1.37 chs int
1391 1.37 chs genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1392 1.37 chs {
1393 1.37 chs int s, error, run;
1394 1.37 chs int fs_bshift, dev_bshift;
1395 1.21 chs vaddr_t kva;
1396 1.21 chs off_t eof, offset, startoffset;
1397 1.21 chs size_t bytes, iobytes, skipbytes;
1398 1.21 chs daddr_t lbn, blkno;
1399 1.21 chs struct vm_page *pg;
1400 1.21 chs struct buf *mbp, *bp;
1401 1.36 chs struct vnode *devvp;
1402 1.37 chs boolean_t async = (flags & PGO_SYNCIO) == 0;
1403 1.39 enami UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1404 1.21 chs
1405 1.37 chs UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1406 1.37 chs vp, pgs, npages, flags);
1407 1.21 chs
1408 1.72 perseant GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1409 1.36 chs if (vp->v_type == VREG) {
1410 1.36 chs fs_bshift = vp->v_mount->mnt_fs_bshift;
1411 1.36 chs dev_bshift = vp->v_mount->mnt_dev_bshift;
1412 1.36 chs } else {
1413 1.36 chs fs_bshift = DEV_BSHIFT;
1414 1.36 chs dev_bshift = DEV_BSHIFT;
1415 1.36 chs }
1416 1.37 chs error = 0;
1417 1.37 chs pg = pgs[0];
1418 1.21 chs startoffset = pg->offset;
1419 1.26 chs bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1420 1.21 chs skipbytes = 0;
1421 1.21 chs KASSERT(bytes != 0);
1422 1.21 chs
1423 1.53 enami kva = uvm_pagermapin(pgs, npages,
1424 1.53 enami UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1425 1.21 chs
1426 1.21 chs s = splbio();
1427 1.71 pk simple_lock(&global_v_numoutput_slock);
1428 1.21 chs vp->v_numoutput += 2;
1429 1.71 pk simple_unlock(&global_v_numoutput_slock);
1430 1.21 chs mbp = pool_get(&bufpool, PR_WAITOK);
1431 1.73 thorpej BUF_INIT(mbp);
1432 1.21 chs UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1433 1.53 enami vp, mbp, vp->v_numoutput, bytes);
1434 1.21 chs splx(s);
1435 1.21 chs mbp->b_bufsize = npages << PAGE_SHIFT;
1436 1.21 chs mbp->b_data = (void *)kva;
1437 1.21 chs mbp->b_resid = mbp->b_bcount = bytes;
1438 1.45 chs mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1439 1.21 chs mbp->b_iodone = uvm_aio_biodone;
1440 1.21 chs mbp->b_vp = vp;
1441 1.21 chs
1442 1.21 chs bp = NULL;
1443 1.21 chs for (offset = startoffset;
1444 1.53 enami bytes > 0;
1445 1.53 enami offset += iobytes, bytes -= iobytes) {
1446 1.21 chs lbn = offset >> fs_bshift;
1447 1.36 chs error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1448 1.21 chs if (error) {
1449 1.21 chs UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1450 1.21 chs skipbytes += bytes;
1451 1.21 chs bytes = 0;
1452 1.21 chs break;
1453 1.21 chs }
1454 1.21 chs
1455 1.26 chs iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1456 1.26 chs bytes);
1457 1.21 chs if (blkno == (daddr_t)-1) {
1458 1.21 chs skipbytes += iobytes;
1459 1.21 chs continue;
1460 1.21 chs }
1461 1.21 chs
1462 1.21 chs /* if it's really one i/o, don't make a second buf */
1463 1.21 chs if (offset == startoffset && iobytes == bytes) {
1464 1.21 chs bp = mbp;
1465 1.21 chs } else {
1466 1.21 chs s = splbio();
1467 1.71 pk V_INCR_NUMOUTPUT(vp);
1468 1.21 chs bp = pool_get(&bufpool, PR_WAITOK);
1469 1.21 chs UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1470 1.53 enami vp, bp, vp->v_numoutput, 0);
1471 1.21 chs splx(s);
1472 1.73 thorpej BUF_INIT(bp);
1473 1.21 chs bp->b_data = (char *)kva +
1474 1.53 enami (vaddr_t)(offset - pg->offset);
1475 1.21 chs bp->b_resid = bp->b_bcount = iobytes;
1476 1.45 chs bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1477 1.21 chs bp->b_iodone = uvm_aio_biodone1;
1478 1.21 chs bp->b_vp = vp;
1479 1.21 chs }
1480 1.21 chs bp->b_lblkno = 0;
1481 1.21 chs bp->b_private = mbp;
1482 1.37 chs if (devvp->v_type == VBLK) {
1483 1.37 chs bp->b_dev = devvp->v_rdev;
1484 1.37 chs }
1485 1.21 chs
1486 1.21 chs /* adjust physical blkno for partial blocks */
1487 1.25 fvdl bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1488 1.53 enami dev_bshift);
1489 1.53 enami UVMHIST_LOG(ubchist,
1490 1.53 enami "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1491 1.53 enami vp, offset, bp->b_bcount, bp->b_blkno);
1492 1.84 yamt if (curproc == uvm.pagedaemon_proc)
1493 1.84 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1494 1.84 yamt else if (async)
1495 1.84 yamt BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1496 1.84 yamt else
1497 1.84 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1498 1.85 hannken VOP_STRATEGY(bp->b_vp, bp);
1499 1.21 chs }
1500 1.21 chs if (skipbytes) {
1501 1.29 chs UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1502 1.21 chs s = splbio();
1503 1.29 chs if (error) {
1504 1.29 chs mbp->b_flags |= B_ERROR;
1505 1.29 chs mbp->b_error = error;
1506 1.29 chs }
1507 1.37 chs mbp->b_resid -= skipbytes;
1508 1.21 chs if (mbp->b_resid == 0) {
1509 1.21 chs biodone(mbp);
1510 1.21 chs }
1511 1.21 chs splx(s);
1512 1.21 chs }
1513 1.21 chs if (async) {
1514 1.32 chs UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1515 1.53 enami return (0);
1516 1.21 chs }
1517 1.37 chs UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1518 1.37 chs error = biowait(mbp);
1519 1.37 chs uvm_aio_aiodone(mbp);
1520 1.21 chs UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1521 1.53 enami return (error);
1522 1.42 chs }
1523 1.42 chs
1524 1.42 chs /*
1525 1.42 chs * VOP_PUTPAGES() for vnodes which never have pages.
1526 1.42 chs */
1527 1.42 chs
1528 1.42 chs int
1529 1.42 chs genfs_null_putpages(void *v)
1530 1.42 chs {
1531 1.42 chs struct vop_putpages_args /* {
1532 1.42 chs struct vnode *a_vp;
1533 1.42 chs voff_t a_offlo;
1534 1.42 chs voff_t a_offhi;
1535 1.42 chs int a_flags;
1536 1.42 chs } */ *ap = v;
1537 1.42 chs struct vnode *vp = ap->a_vp;
1538 1.42 chs
1539 1.42 chs KASSERT(vp->v_uobj.uo_npages == 0);
1540 1.42 chs simple_unlock(&vp->v_interlock);
1541 1.42 chs return (0);
1542 1.21 chs }
1543 1.21 chs
1544 1.37 chs void
1545 1.37 chs genfs_node_init(struct vnode *vp, struct genfs_ops *ops)
1546 1.37 chs {
1547 1.37 chs struct genfs_node *gp = VTOG(vp);
1548 1.37 chs
1549 1.37 chs lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1550 1.37 chs gp->g_op = ops;
1551 1.37 chs }
1552 1.37 chs
1553 1.37 chs void
1554 1.72 perseant genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1555 1.21 chs {
1556 1.21 chs int bsize;
1557 1.21 chs
1558 1.37 chs bsize = 1 << vp->v_mount->mnt_fs_bshift;
1559 1.37 chs *eobp = (size + bsize - 1) & ~(bsize - 1);
1560 1.43 chs }
1561 1.43 chs
1562 1.43 chs int
1563 1.43 chs genfs_compat_getpages(void *v)
1564 1.43 chs {
1565 1.43 chs struct vop_getpages_args /* {
1566 1.43 chs struct vnode *a_vp;
1567 1.43 chs voff_t a_offset;
1568 1.43 chs struct vm_page **a_m;
1569 1.43 chs int *a_count;
1570 1.43 chs int a_centeridx;
1571 1.43 chs vm_prot_t a_access_type;
1572 1.43 chs int a_advice;
1573 1.43 chs int a_flags;
1574 1.43 chs } */ *ap = v;
1575 1.43 chs
1576 1.43 chs off_t origoffset;
1577 1.43 chs struct vnode *vp = ap->a_vp;
1578 1.43 chs struct uvm_object *uobj = &vp->v_uobj;
1579 1.43 chs struct vm_page *pg, **pgs;
1580 1.43 chs vaddr_t kva;
1581 1.43 chs int i, error, orignpages, npages;
1582 1.43 chs struct iovec iov;
1583 1.43 chs struct uio uio;
1584 1.43 chs struct ucred *cred = curproc->p_ucred;
1585 1.43 chs boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1586 1.43 chs
1587 1.43 chs error = 0;
1588 1.43 chs origoffset = ap->a_offset;
1589 1.43 chs orignpages = *ap->a_count;
1590 1.43 chs pgs = ap->a_m;
1591 1.43 chs
1592 1.43 chs if (write && (vp->v_flag & VONWORKLST) == 0) {
1593 1.43 chs vn_syncer_add_to_worklist(vp, filedelay);
1594 1.43 chs }
1595 1.43 chs if (ap->a_flags & PGO_LOCKED) {
1596 1.43 chs uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1597 1.54 enami UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1598 1.43 chs
1599 1.53 enami return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1600 1.43 chs }
1601 1.43 chs if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1602 1.43 chs simple_unlock(&uobj->vmobjlock);
1603 1.53 enami return (EINVAL);
1604 1.43 chs }
1605 1.43 chs npages = orignpages;
1606 1.43 chs uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1607 1.43 chs simple_unlock(&uobj->vmobjlock);
1608 1.53 enami kva = uvm_pagermapin(pgs, npages,
1609 1.53 enami UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1610 1.43 chs for (i = 0; i < npages; i++) {
1611 1.43 chs pg = pgs[i];
1612 1.43 chs if ((pg->flags & PG_FAKE) == 0) {
1613 1.43 chs continue;
1614 1.43 chs }
1615 1.43 chs iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1616 1.43 chs iov.iov_len = PAGE_SIZE;
1617 1.43 chs uio.uio_iov = &iov;
1618 1.43 chs uio.uio_iovcnt = 1;
1619 1.43 chs uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1620 1.43 chs uio.uio_segflg = UIO_SYSSPACE;
1621 1.43 chs uio.uio_rw = UIO_READ;
1622 1.43 chs uio.uio_resid = PAGE_SIZE;
1623 1.88 skrll uio.uio_procp = NULL;
1624 1.87 yamt /* XXX vn_lock */
1625 1.43 chs error = VOP_READ(vp, &uio, 0, cred);
1626 1.43 chs if (error) {
1627 1.43 chs break;
1628 1.52 chs }
1629 1.52 chs if (uio.uio_resid) {
1630 1.52 chs memset(iov.iov_base, 0, uio.uio_resid);
1631 1.43 chs }
1632 1.43 chs }
1633 1.43 chs uvm_pagermapout(kva, npages);
1634 1.43 chs simple_lock(&uobj->vmobjlock);
1635 1.43 chs uvm_lock_pageq();
1636 1.43 chs for (i = 0; i < npages; i++) {
1637 1.43 chs pg = pgs[i];
1638 1.43 chs if (error && (pg->flags & PG_FAKE) != 0) {
1639 1.43 chs pg->flags |= PG_RELEASED;
1640 1.43 chs } else {
1641 1.43 chs pmap_clear_modify(pg);
1642 1.43 chs uvm_pageactivate(pg);
1643 1.43 chs }
1644 1.43 chs }
1645 1.43 chs if (error) {
1646 1.43 chs uvm_page_unbusy(pgs, npages);
1647 1.43 chs }
1648 1.43 chs uvm_unlock_pageq();
1649 1.43 chs simple_unlock(&uobj->vmobjlock);
1650 1.53 enami return (error);
1651 1.43 chs }
1652 1.43 chs
1653 1.43 chs int
1654 1.43 chs genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1655 1.43 chs int flags)
1656 1.43 chs {
1657 1.43 chs off_t offset;
1658 1.43 chs struct iovec iov;
1659 1.43 chs struct uio uio;
1660 1.43 chs struct ucred *cred = curproc->p_ucred;
1661 1.43 chs struct buf *bp;
1662 1.43 chs vaddr_t kva;
1663 1.43 chs int s, error;
1664 1.43 chs
1665 1.43 chs offset = pgs[0]->offset;
1666 1.53 enami kva = uvm_pagermapin(pgs, npages,
1667 1.53 enami UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1668 1.43 chs
1669 1.43 chs iov.iov_base = (void *)kva;
1670 1.43 chs iov.iov_len = npages << PAGE_SHIFT;
1671 1.43 chs uio.uio_iov = &iov;
1672 1.68 yamt uio.uio_iovcnt = 1;
1673 1.43 chs uio.uio_offset = offset;
1674 1.43 chs uio.uio_segflg = UIO_SYSSPACE;
1675 1.43 chs uio.uio_rw = UIO_WRITE;
1676 1.43 chs uio.uio_resid = npages << PAGE_SHIFT;
1677 1.88 skrll uio.uio_procp = NULL;
1678 1.87 yamt /* XXX vn_lock */
1679 1.43 chs error = VOP_WRITE(vp, &uio, 0, cred);
1680 1.43 chs
1681 1.43 chs s = splbio();
1682 1.71 pk V_INCR_NUMOUTPUT(vp);
1683 1.43 chs bp = pool_get(&bufpool, PR_WAITOK);
1684 1.43 chs splx(s);
1685 1.43 chs
1686 1.73 thorpej BUF_INIT(bp);
1687 1.43 chs bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1688 1.43 chs bp->b_vp = vp;
1689 1.43 chs bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1690 1.43 chs bp->b_data = (char *)kva;
1691 1.43 chs bp->b_bcount = npages << PAGE_SHIFT;
1692 1.43 chs bp->b_bufsize = npages << PAGE_SHIFT;
1693 1.43 chs bp->b_resid = 0;
1694 1.43 chs if (error) {
1695 1.43 chs bp->b_flags |= B_ERROR;
1696 1.43 chs bp->b_error = error;
1697 1.43 chs }
1698 1.43 chs uvm_aio_aiodone(bp);
1699 1.53 enami return (error);
1700 1.66 jdolecek }
1701 1.66 jdolecek
1702 1.66 jdolecek static void
1703 1.66 jdolecek filt_genfsdetach(struct knote *kn)
1704 1.66 jdolecek {
1705 1.66 jdolecek struct vnode *vp = (struct vnode *)kn->kn_hook;
1706 1.66 jdolecek
1707 1.66 jdolecek /* XXXLUKEM lock the struct? */
1708 1.66 jdolecek SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1709 1.66 jdolecek }
1710 1.66 jdolecek
1711 1.66 jdolecek static int
1712 1.66 jdolecek filt_genfsread(struct knote *kn, long hint)
1713 1.66 jdolecek {
1714 1.66 jdolecek struct vnode *vp = (struct vnode *)kn->kn_hook;
1715 1.66 jdolecek
1716 1.66 jdolecek /*
1717 1.66 jdolecek * filesystem is gone, so set the EOF flag and schedule
1718 1.66 jdolecek * the knote for deletion.
1719 1.66 jdolecek */
1720 1.66 jdolecek if (hint == NOTE_REVOKE) {
1721 1.66 jdolecek kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1722 1.66 jdolecek return (1);
1723 1.66 jdolecek }
1724 1.66 jdolecek
1725 1.66 jdolecek /* XXXLUKEM lock the struct? */
1726 1.66 jdolecek kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1727 1.66 jdolecek return (kn->kn_data != 0);
1728 1.66 jdolecek }
1729 1.66 jdolecek
1730 1.66 jdolecek static int
1731 1.66 jdolecek filt_genfsvnode(struct knote *kn, long hint)
1732 1.66 jdolecek {
1733 1.66 jdolecek
1734 1.66 jdolecek if (kn->kn_sfflags & hint)
1735 1.66 jdolecek kn->kn_fflags |= hint;
1736 1.66 jdolecek if (hint == NOTE_REVOKE) {
1737 1.66 jdolecek kn->kn_flags |= EV_EOF;
1738 1.66 jdolecek return (1);
1739 1.66 jdolecek }
1740 1.66 jdolecek return (kn->kn_fflags != 0);
1741 1.66 jdolecek }
1742 1.66 jdolecek
1743 1.66 jdolecek static const struct filterops genfsread_filtops =
1744 1.66 jdolecek { 1, NULL, filt_genfsdetach, filt_genfsread };
1745 1.66 jdolecek static const struct filterops genfsvnode_filtops =
1746 1.66 jdolecek { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1747 1.66 jdolecek
1748 1.66 jdolecek int
1749 1.66 jdolecek genfs_kqfilter(void *v)
1750 1.66 jdolecek {
1751 1.66 jdolecek struct vop_kqfilter_args /* {
1752 1.66 jdolecek struct vnode *a_vp;
1753 1.66 jdolecek struct knote *a_kn;
1754 1.66 jdolecek } */ *ap = v;
1755 1.66 jdolecek struct vnode *vp;
1756 1.66 jdolecek struct knote *kn;
1757 1.66 jdolecek
1758 1.66 jdolecek vp = ap->a_vp;
1759 1.66 jdolecek kn = ap->a_kn;
1760 1.66 jdolecek switch (kn->kn_filter) {
1761 1.66 jdolecek case EVFILT_READ:
1762 1.66 jdolecek kn->kn_fop = &genfsread_filtops;
1763 1.66 jdolecek break;
1764 1.66 jdolecek case EVFILT_VNODE:
1765 1.66 jdolecek kn->kn_fop = &genfsvnode_filtops;
1766 1.66 jdolecek break;
1767 1.66 jdolecek default:
1768 1.66 jdolecek return (1);
1769 1.66 jdolecek }
1770 1.66 jdolecek
1771 1.66 jdolecek kn->kn_hook = vp;
1772 1.66 jdolecek
1773 1.66 jdolecek /* XXXLUKEM lock the struct? */
1774 1.66 jdolecek SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1775 1.66 jdolecek
1776 1.66 jdolecek return (0);
1777 1.1 mycroft }
1778