genfs_vnops.c revision 1.100 1 /* $NetBSD: genfs_vnops.c,v 1.100 2005/07/17 09:13:35 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.100 2005/07/17 09:13:35 yamt Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67
68 static __inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72
73
74 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
76 int genfs_racount = 2; /* # of page chunks to readahead */
77 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
78
79 int
80 genfs_poll(void *v)
81 {
82 struct vop_poll_args /* {
83 struct vnode *a_vp;
84 int a_events;
85 struct proc *a_p;
86 } */ *ap = v;
87
88 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
89 }
90
91 int
92 genfs_fsync(void *v)
93 {
94 struct vop_fsync_args /* {
95 struct vnode *a_vp;
96 struct ucred *a_cred;
97 int a_flags;
98 off_t offlo;
99 off_t offhi;
100 struct proc *a_p;
101 } */ *ap = v;
102 struct vnode *vp = ap->a_vp, *dvp;
103 int wait;
104 int error;
105
106 wait = (ap->a_flags & FSYNC_WAIT) != 0;
107 vflushbuf(vp, wait);
108 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
109 error = 0;
110 else
111 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
112
113 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
114 int l = 0;
115 if (VOP_BMAP(vp, 0, &dvp, NULL, NULL))
116 error = ENXIO;
117 else
118 error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE,
119 ap->a_p->p_ucred, ap->a_p);
120 }
121
122 return (error);
123 }
124
125 int
126 genfs_seek(void *v)
127 {
128 struct vop_seek_args /* {
129 struct vnode *a_vp;
130 off_t a_oldoff;
131 off_t a_newoff;
132 struct ucred *a_ucred;
133 } */ *ap = v;
134
135 if (ap->a_newoff < 0)
136 return (EINVAL);
137
138 return (0);
139 }
140
141 int
142 genfs_abortop(void *v)
143 {
144 struct vop_abortop_args /* {
145 struct vnode *a_dvp;
146 struct componentname *a_cnp;
147 } */ *ap = v;
148
149 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
150 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
151 return (0);
152 }
153
154 int
155 genfs_fcntl(void *v)
156 {
157 struct vop_fcntl_args /* {
158 struct vnode *a_vp;
159 u_int a_command;
160 caddr_t a_data;
161 int a_fflag;
162 struct ucred *a_cred;
163 struct proc *a_p;
164 } */ *ap = v;
165
166 if (ap->a_command == F_SETFL)
167 return (0);
168 else
169 return (EOPNOTSUPP);
170 }
171
172 /*ARGSUSED*/
173 int
174 genfs_badop(void *v)
175 {
176
177 panic("genfs: bad op");
178 }
179
180 /*ARGSUSED*/
181 int
182 genfs_nullop(void *v)
183 {
184
185 return (0);
186 }
187
188 /*ARGSUSED*/
189 int
190 genfs_einval(void *v)
191 {
192
193 return (EINVAL);
194 }
195
196 /*
197 * Called when an fs doesn't support a particular vop.
198 * This takes care to vrele, vput, or vunlock passed in vnodes.
199 */
200 int
201 genfs_eopnotsupp(void *v)
202 {
203 struct vop_generic_args /*
204 struct vnodeop_desc *a_desc;
205 / * other random data follows, presumably * /
206 } */ *ap = v;
207 struct vnodeop_desc *desc = ap->a_desc;
208 struct vnode *vp, *vp_last = NULL;
209 int flags, i, j, offset;
210
211 flags = desc->vdesc_flags;
212 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
213 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
214 break; /* stop at end of list */
215 if ((j = flags & VDESC_VP0_WILLPUT)) {
216 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
217
218 /* Skip if NULL */
219 if (!vp)
220 continue;
221
222 switch (j) {
223 case VDESC_VP0_WILLPUT:
224 /* Check for dvp == vp cases */
225 if (vp == vp_last)
226 vrele(vp);
227 else {
228 vput(vp);
229 vp_last = vp;
230 }
231 break;
232 case VDESC_VP0_WILLUNLOCK:
233 VOP_UNLOCK(vp, 0);
234 break;
235 case VDESC_VP0_WILLRELE:
236 vrele(vp);
237 break;
238 }
239 }
240 }
241
242 return (EOPNOTSUPP);
243 }
244
245 /*ARGSUSED*/
246 int
247 genfs_ebadf(void *v)
248 {
249
250 return (EBADF);
251 }
252
253 /* ARGSUSED */
254 int
255 genfs_enoioctl(void *v)
256 {
257
258 return (EPASSTHROUGH);
259 }
260
261
262 /*
263 * Eliminate all activity associated with the requested vnode
264 * and with all vnodes aliased to the requested vnode.
265 */
266 int
267 genfs_revoke(void *v)
268 {
269 struct vop_revoke_args /* {
270 struct vnode *a_vp;
271 int a_flags;
272 } */ *ap = v;
273 struct vnode *vp, *vq;
274 struct proc *p = curproc; /* XXX */
275
276 #ifdef DIAGNOSTIC
277 if ((ap->a_flags & REVOKEALL) == 0)
278 panic("genfs_revoke: not revokeall");
279 #endif
280
281 vp = ap->a_vp;
282 simple_lock(&vp->v_interlock);
283
284 if (vp->v_flag & VALIASED) {
285 /*
286 * If a vgone (or vclean) is already in progress,
287 * wait until it is done and return.
288 */
289 if (vp->v_flag & VXLOCK) {
290 vp->v_flag |= VXWANT;
291 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
292 &vp->v_interlock);
293 return (0);
294 }
295 /*
296 * Ensure that vp will not be vgone'd while we
297 * are eliminating its aliases.
298 */
299 vp->v_flag |= VXLOCK;
300 simple_unlock(&vp->v_interlock);
301 while (vp->v_flag & VALIASED) {
302 simple_lock(&spechash_slock);
303 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
304 if (vq->v_rdev != vp->v_rdev ||
305 vq->v_type != vp->v_type || vp == vq)
306 continue;
307 simple_unlock(&spechash_slock);
308 vgone(vq);
309 break;
310 }
311 if (vq == NULLVP)
312 simple_unlock(&spechash_slock);
313 }
314 /*
315 * Remove the lock so that vgone below will
316 * really eliminate the vnode after which time
317 * vgone will awaken any sleepers.
318 */
319 simple_lock(&vp->v_interlock);
320 vp->v_flag &= ~VXLOCK;
321 }
322 vgonel(vp, p);
323 return (0);
324 }
325
326 /*
327 * Lock the node.
328 */
329 int
330 genfs_lock(void *v)
331 {
332 struct vop_lock_args /* {
333 struct vnode *a_vp;
334 int a_flags;
335 } */ *ap = v;
336 struct vnode *vp = ap->a_vp;
337
338 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
339 }
340
341 /*
342 * Unlock the node.
343 */
344 int
345 genfs_unlock(void *v)
346 {
347 struct vop_unlock_args /* {
348 struct vnode *a_vp;
349 int a_flags;
350 } */ *ap = v;
351 struct vnode *vp = ap->a_vp;
352
353 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
354 &vp->v_interlock));
355 }
356
357 /*
358 * Return whether or not the node is locked.
359 */
360 int
361 genfs_islocked(void *v)
362 {
363 struct vop_islocked_args /* {
364 struct vnode *a_vp;
365 } */ *ap = v;
366 struct vnode *vp = ap->a_vp;
367
368 return (lockstatus(vp->v_vnlock));
369 }
370
371 /*
372 * Stubs to use when there is no locking to be done on the underlying object.
373 */
374 int
375 genfs_nolock(void *v)
376 {
377 struct vop_lock_args /* {
378 struct vnode *a_vp;
379 int a_flags;
380 struct proc *a_p;
381 } */ *ap = v;
382
383 /*
384 * Since we are not using the lock manager, we must clear
385 * the interlock here.
386 */
387 if (ap->a_flags & LK_INTERLOCK)
388 simple_unlock(&ap->a_vp->v_interlock);
389 return (0);
390 }
391
392 int
393 genfs_nounlock(void *v)
394 {
395
396 return (0);
397 }
398
399 int
400 genfs_noislocked(void *v)
401 {
402
403 return (0);
404 }
405
406 /*
407 * Local lease check for NFS servers. Just set up args and let
408 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
409 * this is a null operation.
410 */
411 int
412 genfs_lease_check(void *v)
413 {
414 #ifdef NFSSERVER
415 struct vop_lease_args /* {
416 struct vnode *a_vp;
417 struct proc *a_p;
418 struct ucred *a_cred;
419 int a_flag;
420 } */ *ap = v;
421 u_int32_t duration = 0;
422 int cache;
423 u_quad_t frev;
424
425 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
426 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
427 return (0);
428 #else
429 return (0);
430 #endif /* NFSSERVER */
431 }
432
433 int
434 genfs_mmap(void *v)
435 {
436
437 return (0);
438 }
439
440 static __inline void
441 genfs_rel_pages(struct vm_page **pgs, int npages)
442 {
443 int i;
444
445 for (i = 0; i < npages; i++) {
446 struct vm_page *pg = pgs[i];
447
448 if (pg == NULL)
449 continue;
450 if (pg->flags & PG_FAKE) {
451 pg->flags |= PG_RELEASED;
452 }
453 }
454 uvm_lock_pageq();
455 uvm_page_unbusy(pgs, npages);
456 uvm_unlock_pageq();
457 }
458
459 /*
460 * generic VM getpages routine.
461 * Return PG_BUSY pages for the given range,
462 * reading from backing store if necessary.
463 */
464
465 int
466 genfs_getpages(void *v)
467 {
468 struct vop_getpages_args /* {
469 struct vnode *a_vp;
470 voff_t a_offset;
471 struct vm_page **a_m;
472 int *a_count;
473 int a_centeridx;
474 vm_prot_t a_access_type;
475 int a_advice;
476 int a_flags;
477 } */ *ap = v;
478
479 off_t newsize, diskeof, memeof;
480 off_t offset, origoffset, startoffset, endoffset, raoffset;
481 daddr_t lbn, blkno;
482 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
483 int fs_bshift, fs_bsize, dev_bshift;
484 int flags = ap->a_flags;
485 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
486 vaddr_t kva;
487 struct buf *bp, *mbp;
488 struct vnode *vp = ap->a_vp;
489 struct vnode *devvp;
490 struct genfs_node *gp = VTOG(vp);
491 struct uvm_object *uobj = &vp->v_uobj;
492 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
493 int pgs_size;
494 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
495 boolean_t async = (flags & PGO_SYNCIO) == 0;
496 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
497 boolean_t sawhole = FALSE;
498 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
499 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
500 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
501
502 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
503 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
504
505 /* XXXUBC temp limit */
506 if (*ap->a_count > MAX_READ_AHEAD) {
507 panic("genfs_getpages: too many pages");
508 }
509
510 error = 0;
511 origoffset = ap->a_offset;
512 orignpages = *ap->a_count;
513 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
514 if (flags & PGO_PASTEOF) {
515 newsize = MAX(vp->v_size,
516 origoffset + (orignpages << PAGE_SHIFT));
517 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
518 } else {
519 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
520 }
521 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
522 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
523 KASSERT(orignpages > 0);
524
525 /*
526 * Bounds-check the request.
527 */
528
529 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
530 if ((flags & PGO_LOCKED) == 0) {
531 simple_unlock(&uobj->vmobjlock);
532 }
533 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
534 origoffset, *ap->a_count, memeof,0);
535 return (EINVAL);
536 }
537
538 /* uobj is locked */
539
540 if (write && (vp->v_flag & VONWORKLST) == 0) {
541 vn_syncer_add_to_worklist(vp, filedelay);
542 }
543
544 /*
545 * For PGO_LOCKED requests, just return whatever's in memory.
546 */
547
548 if (flags & PGO_LOCKED) {
549 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
550 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
551
552 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
553 }
554
555 /*
556 * find the requested pages and make some simple checks.
557 * leave space in the page array for a whole block.
558 */
559
560 if (vp->v_type == VREG) {
561 fs_bshift = vp->v_mount->mnt_fs_bshift;
562 dev_bshift = vp->v_mount->mnt_dev_bshift;
563 } else {
564 fs_bshift = DEV_BSHIFT;
565 dev_bshift = DEV_BSHIFT;
566 }
567 fs_bsize = 1 << fs_bshift;
568
569 orignpages = MIN(orignpages,
570 round_page(memeof - origoffset) >> PAGE_SHIFT);
571 npages = orignpages;
572 startoffset = origoffset & ~(fs_bsize - 1);
573 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
574 fs_bsize - 1) & ~(fs_bsize - 1));
575 endoffset = MIN(endoffset, round_page(memeof));
576 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
577
578 pgs_size = sizeof(struct vm_page *) *
579 ((endoffset - startoffset) >> PAGE_SHIFT);
580 if (pgs_size > sizeof(pgs_onstack)) {
581 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
582 if (pgs == NULL) {
583 simple_unlock(&uobj->vmobjlock);
584 return (ENOMEM);
585 }
586 } else {
587 pgs = pgs_onstack;
588 memset(pgs, 0, pgs_size);
589 }
590 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
591 ridx, npages, startoffset, endoffset);
592 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
593 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
594 KASSERT(async != 0);
595 genfs_rel_pages(&pgs[ridx], orignpages);
596 simple_unlock(&uobj->vmobjlock);
597 if (pgs != pgs_onstack)
598 free(pgs, M_DEVBUF);
599 return (EBUSY);
600 }
601
602 /*
603 * if the pages are already resident, just return them.
604 */
605
606 for (i = 0; i < npages; i++) {
607 struct vm_page *pg1 = pgs[ridx + i];
608
609 if ((pg1->flags & PG_FAKE) ||
610 (blockalloc && (pg1->flags & PG_RDONLY))) {
611 break;
612 }
613 }
614 if (i == npages) {
615 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
616 raoffset = origoffset + (orignpages << PAGE_SHIFT);
617 npages += ridx;
618 goto raout;
619 }
620
621 /*
622 * if PGO_OVERWRITE is set, don't bother reading the pages.
623 */
624
625 if (flags & PGO_OVERWRITE) {
626 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
627
628 for (i = 0; i < npages; i++) {
629 struct vm_page *pg1 = pgs[ridx + i];
630
631 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
632 }
633 npages += ridx;
634 goto out;
635 }
636
637 /*
638 * the page wasn't resident and we're not overwriting,
639 * so we're going to have to do some i/o.
640 * find any additional pages needed to cover the expanded range.
641 */
642
643 npages = (endoffset - startoffset) >> PAGE_SHIFT;
644 if (startoffset != origoffset || npages != orignpages) {
645
646 /*
647 * we need to avoid deadlocks caused by locking
648 * additional pages at lower offsets than pages we
649 * already have locked. unlock them all and start over.
650 */
651
652 genfs_rel_pages(&pgs[ridx], orignpages);
653 memset(pgs, 0, pgs_size);
654
655 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
656 startoffset, endoffset, 0,0);
657 npgs = npages;
658 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
659 async ? UFP_NOWAIT : UFP_ALL) != npages) {
660 KASSERT(async != 0);
661 genfs_rel_pages(pgs, npages);
662 simple_unlock(&uobj->vmobjlock);
663 if (pgs != pgs_onstack)
664 free(pgs, M_DEVBUF);
665 return (EBUSY);
666 }
667 }
668 simple_unlock(&uobj->vmobjlock);
669
670 /*
671 * read the desired page(s).
672 */
673
674 totalbytes = npages << PAGE_SHIFT;
675 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
676 tailbytes = totalbytes - bytes;
677 skipbytes = 0;
678
679 kva = uvm_pagermapin(pgs, npages,
680 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
681
682 s = splbio();
683 mbp = pool_get(&bufpool, PR_WAITOK);
684 splx(s);
685 BUF_INIT(mbp);
686 mbp->b_bufsize = totalbytes;
687 mbp->b_data = (void *)kva;
688 mbp->b_resid = mbp->b_bcount = bytes;
689 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
690 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
691 mbp->b_vp = vp;
692
693 /*
694 * if EOF is in the middle of the range, zero the part past EOF.
695 * if the page including EOF is not PG_FAKE, skip over it since
696 * in that case it has valid data that we need to preserve.
697 */
698
699 if (tailbytes > 0) {
700 size_t tailstart = bytes;
701
702 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
703 tailstart = round_page(tailstart);
704 tailbytes -= tailstart - bytes;
705 }
706 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
707 kva, tailstart, tailbytes,0);
708 memset((void *)(kva + tailstart), 0, tailbytes);
709 }
710
711 /*
712 * now loop over the pages, reading as needed.
713 */
714
715 if (blockalloc) {
716 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
717 } else {
718 lockmgr(&gp->g_glock, LK_SHARED, NULL);
719 }
720
721 bp = NULL;
722 for (offset = startoffset;
723 bytes > 0;
724 offset += iobytes, bytes -= iobytes) {
725
726 /*
727 * skip pages which don't need to be read.
728 */
729
730 pidx = (offset - startoffset) >> PAGE_SHIFT;
731 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
732 size_t b;
733
734 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
735 if ((pgs[pidx]->flags & PG_RDONLY)) {
736 sawhole = TRUE;
737 }
738 b = MIN(PAGE_SIZE, bytes);
739 offset += b;
740 bytes -= b;
741 skipbytes += b;
742 pidx++;
743 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
744 offset, 0,0,0);
745 if (bytes == 0) {
746 goto loopdone;
747 }
748 }
749
750 /*
751 * bmap the file to find out the blkno to read from and
752 * how much we can read in one i/o. if bmap returns an error,
753 * skip the rest of the top-level i/o.
754 */
755
756 lbn = offset >> fs_bshift;
757 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
758 if (error) {
759 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
760 lbn, error,0,0);
761 skipbytes += bytes;
762 goto loopdone;
763 }
764
765 /*
766 * see how many pages can be read with this i/o.
767 * reduce the i/o size if necessary to avoid
768 * overwriting pages with valid data.
769 */
770
771 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
772 bytes);
773 if (offset + iobytes > round_page(offset)) {
774 pcount = 1;
775 while (pidx + pcount < npages &&
776 pgs[pidx + pcount]->flags & PG_FAKE) {
777 pcount++;
778 }
779 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
780 (offset - trunc_page(offset)));
781 }
782
783 /*
784 * if this block isn't allocated, zero it instead of
785 * reading it. unless we are going to allocate blocks,
786 * mark the pages we zeroed PG_RDONLY.
787 */
788
789 if (blkno < 0) {
790 int holepages = (round_page(offset + iobytes) -
791 trunc_page(offset)) >> PAGE_SHIFT;
792 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
793
794 sawhole = TRUE;
795 memset((char *)kva + (offset - startoffset), 0,
796 iobytes);
797 skipbytes += iobytes;
798
799 for (i = 0; i < holepages; i++) {
800 if (write) {
801 pgs[pidx + i]->flags &= ~PG_CLEAN;
802 }
803 if (!blockalloc) {
804 pgs[pidx + i]->flags |= PG_RDONLY;
805 }
806 }
807 continue;
808 }
809
810 /*
811 * allocate a sub-buf for this piece of the i/o
812 * (or just use mbp if there's only 1 piece),
813 * and start it going.
814 */
815
816 if (offset == startoffset && iobytes == bytes) {
817 bp = mbp;
818 } else {
819 s = splbio();
820 bp = pool_get(&bufpool, PR_WAITOK);
821 splx(s);
822 BUF_INIT(bp);
823 bp->b_data = (char *)kva + offset - startoffset;
824 bp->b_resid = bp->b_bcount = iobytes;
825 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
826 bp->b_iodone = uvm_aio_biodone1;
827 bp->b_vp = vp;
828 bp->b_proc = NULL;
829 }
830 bp->b_lblkno = 0;
831 bp->b_private = mbp;
832 if (devvp->v_type == VBLK) {
833 bp->b_dev = devvp->v_rdev;
834 }
835
836 /* adjust physical blkno for partial blocks */
837 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
838 dev_bshift);
839
840 UVMHIST_LOG(ubchist,
841 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
842 bp, offset, iobytes, bp->b_blkno);
843
844 if (async)
845 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
846 else
847 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
848 VOP_STRATEGY(bp->b_vp, bp);
849 }
850
851 loopdone:
852 if (skipbytes) {
853 s = splbio();
854 if (error) {
855 mbp->b_flags |= B_ERROR;
856 mbp->b_error = error;
857 }
858 mbp->b_resid -= skipbytes;
859 if (mbp->b_resid == 0) {
860 biodone(mbp);
861 }
862 splx(s);
863 }
864
865 if (async) {
866 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
867 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
868 if (pgs != pgs_onstack)
869 free(pgs, M_DEVBUF);
870 return (0);
871 }
872 if (bp != NULL) {
873 error = biowait(mbp);
874 }
875 s = splbio();
876 pool_put(&bufpool, mbp);
877 splx(s);
878 uvm_pagermapout(kva, npages);
879 raoffset = startoffset + totalbytes;
880
881 /*
882 * if this we encountered a hole then we have to do a little more work.
883 * for read faults, we marked the page PG_RDONLY so that future
884 * write accesses to the page will fault again.
885 * for write faults, we must make sure that the backing store for
886 * the page is completely allocated while the pages are locked.
887 */
888
889 if (!error && sawhole && blockalloc) {
890 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
891 cred);
892 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
893 startoffset, npages << PAGE_SHIFT, error,0);
894 if (!error) {
895 for (i = 0; i < npages; i++) {
896 if (pgs[i] == NULL) {
897 continue;
898 }
899 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
900 UVMHIST_LOG(ubchist, "mark dirty pg %p",
901 pgs[i],0,0,0);
902 }
903 }
904 }
905 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
906 simple_lock(&uobj->vmobjlock);
907
908 /*
909 * see if we want to start any readahead.
910 * XXXUBC for now, just read the next 128k on 64k boundaries.
911 * this is pretty nonsensical, but it is 50% faster than reading
912 * just the next 64k.
913 */
914
915 raout:
916 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
917 PAGE_SHIFT <= 16) {
918 off_t rasize;
919 int rapages, err, j, skipped;
920
921 /* XXXUBC temp limit, from above */
922 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
923 genfs_rapages);
924 rasize = rapages << PAGE_SHIFT;
925 for (j = skipped = 0; j < genfs_racount; j++) {
926
927 if (raoffset >= memeof)
928 break;
929
930 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
931 VM_PROT_READ, 0, 0);
932 simple_lock(&uobj->vmobjlock);
933 if (err) {
934 if (err != EBUSY ||
935 skipped++ == genfs_raskip)
936 break;
937 }
938 raoffset += rasize;
939 rapages = rasize >> PAGE_SHIFT;
940 }
941 }
942
943 /*
944 * we're almost done! release the pages...
945 * for errors, we free the pages.
946 * otherwise we activate them and mark them as valid and clean.
947 * also, unbusy pages that were not actually requested.
948 */
949
950 if (error) {
951 for (i = 0; i < npages; i++) {
952 if (pgs[i] == NULL) {
953 continue;
954 }
955 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
956 pgs[i], pgs[i]->flags, 0,0);
957 if (pgs[i]->flags & PG_FAKE) {
958 pgs[i]->flags |= PG_RELEASED;
959 }
960 }
961 uvm_lock_pageq();
962 uvm_page_unbusy(pgs, npages);
963 uvm_unlock_pageq();
964 simple_unlock(&uobj->vmobjlock);
965 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
966 if (pgs != pgs_onstack)
967 free(pgs, M_DEVBUF);
968 return (error);
969 }
970
971 out:
972 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
973 uvm_lock_pageq();
974 for (i = 0; i < npages; i++) {
975 pg = pgs[i];
976 if (pg == NULL) {
977 continue;
978 }
979 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
980 pg, pg->flags, 0,0);
981 if (pg->flags & PG_FAKE && !overwrite) {
982 pg->flags &= ~(PG_FAKE);
983 pmap_clear_modify(pgs[i]);
984 }
985 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
986 if (i < ridx || i >= ridx + orignpages || async) {
987 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
988 pg, pg->offset,0,0);
989 if (pg->flags & PG_WANTED) {
990 wakeup(pg);
991 }
992 if (pg->flags & PG_FAKE) {
993 KASSERT(overwrite);
994 uvm_pagezero(pg);
995 }
996 if (pg->flags & PG_RELEASED) {
997 uvm_pagefree(pg);
998 continue;
999 }
1000 uvm_pageactivate(pg);
1001 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
1002 UVM_PAGE_OWN(pg, NULL);
1003 }
1004 }
1005 uvm_unlock_pageq();
1006 simple_unlock(&uobj->vmobjlock);
1007 if (ap->a_m != NULL) {
1008 memcpy(ap->a_m, &pgs[ridx],
1009 orignpages * sizeof(struct vm_page *));
1010 }
1011 if (pgs != pgs_onstack)
1012 free(pgs, M_DEVBUF);
1013 return (0);
1014 }
1015
1016 /*
1017 * generic VM putpages routine.
1018 * Write the given range of pages to backing store.
1019 *
1020 * => "offhi == 0" means flush all pages at or after "offlo".
1021 * => object should be locked by caller. we may _unlock_ the object
1022 * if (and only if) we need to clean a page (PGO_CLEANIT), or
1023 * if PGO_SYNCIO is set and there are pages busy.
1024 * we return with the object locked.
1025 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1026 * thus, a caller might want to unlock higher level resources
1027 * (e.g. vm_map) before calling flush.
1028 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1029 * unlock the object nor block.
1030 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1031 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1032 * that new pages are inserted on the tail end of the list. thus,
1033 * we can make a complete pass through the object in one go by starting
1034 * at the head and working towards the tail (new pages are put in
1035 * front of us).
1036 * => NOTE: we are allowed to lock the page queues, so the caller
1037 * must not be holding the page queue lock.
1038 *
1039 * note on "cleaning" object and PG_BUSY pages:
1040 * this routine is holding the lock on the object. the only time
1041 * that it can run into a PG_BUSY page that it does not own is if
1042 * some other process has started I/O on the page (e.g. either
1043 * a pagein, or a pageout). if the PG_BUSY page is being paged
1044 * in, then it can not be dirty (!PG_CLEAN) because no one has
1045 * had a chance to modify it yet. if the PG_BUSY page is being
1046 * paged out then it means that someone else has already started
1047 * cleaning the page for us (how nice!). in this case, if we
1048 * have syncio specified, then after we make our pass through the
1049 * object we need to wait for the other PG_BUSY pages to clear
1050 * off (i.e. we need to do an iosync). also note that once a
1051 * page is PG_BUSY it must stay in its object until it is un-busyed.
1052 *
1053 * note on page traversal:
1054 * we can traverse the pages in an object either by going down the
1055 * linked list in "uobj->memq", or we can go over the address range
1056 * by page doing hash table lookups for each address. depending
1057 * on how many pages are in the object it may be cheaper to do one
1058 * or the other. we set "by_list" to true if we are using memq.
1059 * if the cost of a hash lookup was equal to the cost of the list
1060 * traversal we could compare the number of pages in the start->stop
1061 * range to the total number of pages in the object. however, it
1062 * seems that a hash table lookup is more expensive than the linked
1063 * list traversal, so we multiply the number of pages in the
1064 * range by an estimate of the relatively higher cost of the hash lookup.
1065 */
1066
1067 int
1068 genfs_putpages(void *v)
1069 {
1070 struct vop_putpages_args /* {
1071 struct vnode *a_vp;
1072 voff_t a_offlo;
1073 voff_t a_offhi;
1074 int a_flags;
1075 } */ *ap = v;
1076 struct vnode *vp = ap->a_vp;
1077 struct uvm_object *uobj = &vp->v_uobj;
1078 struct simplelock *slock = &uobj->vmobjlock;
1079 off_t startoff = ap->a_offlo;
1080 off_t endoff = ap->a_offhi;
1081 off_t off;
1082 int flags = ap->a_flags;
1083 /* Even for strange MAXPHYS, the shift rounds down to a page */
1084 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1085 int i, s, error, npages, nback;
1086 int freeflag;
1087 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1088 boolean_t wasclean, by_list, needs_clean, yld;
1089 boolean_t async = (flags & PGO_SYNCIO) == 0;
1090 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1091 struct lwp *l = curlwp ? curlwp : &lwp0;
1092
1093 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1094
1095 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1096 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1097 KASSERT(startoff < endoff || endoff == 0);
1098
1099 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1100 vp, uobj->uo_npages, startoff, endoff - startoff);
1101 if (uobj->uo_npages == 0) {
1102 s = splbio();
1103 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1104 (vp->v_flag & VONWORKLST)) {
1105 vp->v_flag &= ~VONWORKLST;
1106 LIST_REMOVE(vp, v_synclist);
1107 }
1108 splx(s);
1109 simple_unlock(slock);
1110 return (0);
1111 }
1112
1113 /*
1114 * the vnode has pages, set up to process the request.
1115 */
1116
1117 error = 0;
1118 s = splbio();
1119 simple_lock(&global_v_numoutput_slock);
1120 wasclean = (vp->v_numoutput == 0);
1121 simple_unlock(&global_v_numoutput_slock);
1122 splx(s);
1123 off = startoff;
1124 if (endoff == 0 || flags & PGO_ALLPAGES) {
1125 endoff = trunc_page(LLONG_MAX);
1126 }
1127 by_list = (uobj->uo_npages <=
1128 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1129
1130 /*
1131 * start the loop. when scanning by list, hold the last page
1132 * in the list before we start. pages allocated after we start
1133 * will be added to the end of the list, so we can stop at the
1134 * current last page.
1135 */
1136
1137 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1138 curmp.uobject = uobj;
1139 curmp.offset = (voff_t)-1;
1140 curmp.flags = PG_BUSY;
1141 endmp.uobject = uobj;
1142 endmp.offset = (voff_t)-1;
1143 endmp.flags = PG_BUSY;
1144 if (by_list) {
1145 pg = TAILQ_FIRST(&uobj->memq);
1146 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1147 PHOLD(l);
1148 } else {
1149 pg = uvm_pagelookup(uobj, off);
1150 }
1151 nextpg = NULL;
1152 while (by_list || off < endoff) {
1153
1154 /*
1155 * if the current page is not interesting, move on to the next.
1156 */
1157
1158 KASSERT(pg == NULL || pg->uobject == uobj);
1159 KASSERT(pg == NULL ||
1160 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1161 (pg->flags & PG_BUSY) != 0);
1162 if (by_list) {
1163 if (pg == &endmp) {
1164 break;
1165 }
1166 if (pg->offset < startoff || pg->offset >= endoff ||
1167 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1168 pg = TAILQ_NEXT(pg, listq);
1169 continue;
1170 }
1171 off = pg->offset;
1172 } else if (pg == NULL ||
1173 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1174 off += PAGE_SIZE;
1175 if (off < endoff) {
1176 pg = uvm_pagelookup(uobj, off);
1177 }
1178 continue;
1179 }
1180
1181 /*
1182 * if the current page needs to be cleaned and it's busy,
1183 * wait for it to become unbusy.
1184 */
1185
1186 yld = (l->l_cpu->ci_schedstate.spc_flags &
1187 SPCF_SHOULDYIELD) && !pagedaemon;
1188 if (pg->flags & PG_BUSY || yld) {
1189 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1190 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1191 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1192 error = EDEADLK;
1193 break;
1194 }
1195 KASSERT(!pagedaemon);
1196 if (by_list) {
1197 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1198 UVMHIST_LOG(ubchist, "curmp next %p",
1199 TAILQ_NEXT(&curmp, listq), 0,0,0);
1200 }
1201 if (yld) {
1202 simple_unlock(slock);
1203 preempt(1);
1204 simple_lock(slock);
1205 } else {
1206 pg->flags |= PG_WANTED;
1207 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1208 simple_lock(slock);
1209 }
1210 if (by_list) {
1211 UVMHIST_LOG(ubchist, "after next %p",
1212 TAILQ_NEXT(&curmp, listq), 0,0,0);
1213 pg = TAILQ_NEXT(&curmp, listq);
1214 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1215 } else {
1216 pg = uvm_pagelookup(uobj, off);
1217 }
1218 continue;
1219 }
1220
1221 /*
1222 * if we're freeing, remove all mappings of the page now.
1223 * if we're cleaning, check if the page is needs to be cleaned.
1224 */
1225
1226 if (flags & PGO_FREE) {
1227 pmap_page_protect(pg, VM_PROT_NONE);
1228 }
1229 if (flags & PGO_CLEANIT) {
1230 needs_clean = pmap_clear_modify(pg) ||
1231 (pg->flags & PG_CLEAN) == 0;
1232 pg->flags |= PG_CLEAN;
1233 } else {
1234 needs_clean = FALSE;
1235 }
1236
1237 /*
1238 * if we're cleaning, build a cluster.
1239 * the cluster will consist of pages which are currently dirty,
1240 * but they will be returned to us marked clean.
1241 * if not cleaning, just operate on the one page.
1242 */
1243
1244 if (needs_clean) {
1245 wasclean = FALSE;
1246 memset(pgs, 0, sizeof(pgs));
1247 pg->flags |= PG_BUSY;
1248 UVM_PAGE_OWN(pg, "genfs_putpages");
1249
1250 /*
1251 * first look backward.
1252 */
1253
1254 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1255 nback = npages;
1256 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1257 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1258 if (nback) {
1259 memmove(&pgs[0], &pgs[npages - nback],
1260 nback * sizeof(pgs[0]));
1261 if (npages - nback < nback)
1262 memset(&pgs[nback], 0,
1263 (npages - nback) * sizeof(pgs[0]));
1264 else
1265 memset(&pgs[npages - nback], 0,
1266 nback * sizeof(pgs[0]));
1267 }
1268
1269 /*
1270 * then plug in our page of interest.
1271 */
1272
1273 pgs[nback] = pg;
1274
1275 /*
1276 * then look forward to fill in the remaining space in
1277 * the array of pages.
1278 */
1279
1280 npages = maxpages - nback - 1;
1281 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1282 &pgs[nback + 1],
1283 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1284 npages += nback + 1;
1285 } else {
1286 pgs[0] = pg;
1287 npages = 1;
1288 nback = 0;
1289 }
1290
1291 /*
1292 * apply FREE or DEACTIVATE options if requested.
1293 */
1294
1295 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1296 uvm_lock_pageq();
1297 }
1298 for (i = 0; i < npages; i++) {
1299 tpg = pgs[i];
1300 KASSERT(tpg->uobject == uobj);
1301 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1302 pg = tpg;
1303 if (tpg->offset < startoff || tpg->offset >= endoff)
1304 continue;
1305 if (flags & PGO_DEACTIVATE &&
1306 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1307 tpg->wire_count == 0) {
1308 (void) pmap_clear_reference(tpg);
1309 uvm_pagedeactivate(tpg);
1310 } else if (flags & PGO_FREE) {
1311 pmap_page_protect(tpg, VM_PROT_NONE);
1312 if (tpg->flags & PG_BUSY) {
1313 tpg->flags |= freeflag;
1314 if (pagedaemon) {
1315 uvmexp.paging++;
1316 uvm_pagedequeue(tpg);
1317 }
1318 } else {
1319
1320 /*
1321 * ``page is not busy''
1322 * implies that npages is 1
1323 * and needs_clean is false.
1324 */
1325
1326 nextpg = TAILQ_NEXT(tpg, listq);
1327 uvm_pagefree(tpg);
1328 if (pagedaemon)
1329 uvmexp.pdfreed++;
1330 }
1331 }
1332 }
1333 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1334 uvm_unlock_pageq();
1335 }
1336 if (needs_clean) {
1337
1338 /*
1339 * start the i/o. if we're traversing by list,
1340 * keep our place in the list with a marker page.
1341 */
1342
1343 if (by_list) {
1344 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1345 listq);
1346 }
1347 simple_unlock(slock);
1348 error = GOP_WRITE(vp, pgs, npages, flags);
1349 simple_lock(slock);
1350 if (by_list) {
1351 pg = TAILQ_NEXT(&curmp, listq);
1352 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1353 }
1354 if (error) {
1355 break;
1356 }
1357 if (by_list) {
1358 continue;
1359 }
1360 }
1361
1362 /*
1363 * find the next page and continue if there was no error.
1364 */
1365
1366 if (by_list) {
1367 if (nextpg) {
1368 pg = nextpg;
1369 nextpg = NULL;
1370 } else {
1371 pg = TAILQ_NEXT(pg, listq);
1372 }
1373 } else {
1374 off += (npages - nback) << PAGE_SHIFT;
1375 if (off < endoff) {
1376 pg = uvm_pagelookup(uobj, off);
1377 }
1378 }
1379 }
1380 if (by_list) {
1381 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1382 PRELE(l);
1383 }
1384
1385 /*
1386 * if we're cleaning and there was nothing to clean,
1387 * take us off the syncer list. if we started any i/o
1388 * and we're doing sync i/o, wait for all writes to finish.
1389 */
1390
1391 s = splbio();
1392 if ((flags & PGO_CLEANIT) && wasclean &&
1393 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1394 LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1395 (vp->v_flag & VONWORKLST)) {
1396 vp->v_flag &= ~VONWORKLST;
1397 LIST_REMOVE(vp, v_synclist);
1398 }
1399 splx(s);
1400 if (!wasclean && !async) {
1401 s = splbio();
1402 /*
1403 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1404 * but the slot in ltsleep() is taken!
1405 * XXX - try to recover from missed wakeups with a timeout..
1406 * must think of something better.
1407 */
1408 while (vp->v_numoutput != 0) {
1409 vp->v_flag |= VBWAIT;
1410 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1411 "genput2", hz);
1412 simple_lock(slock);
1413 }
1414 splx(s);
1415 }
1416 simple_unlock(&uobj->vmobjlock);
1417 return (error);
1418 }
1419
1420 int
1421 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1422 {
1423 int s, error, run;
1424 int fs_bshift, dev_bshift;
1425 vaddr_t kva;
1426 off_t eof, offset, startoffset;
1427 size_t bytes, iobytes, skipbytes;
1428 daddr_t lbn, blkno;
1429 struct vm_page *pg;
1430 struct buf *mbp, *bp;
1431 struct vnode *devvp;
1432 boolean_t async = (flags & PGO_SYNCIO) == 0;
1433 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1434
1435 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1436 vp, pgs, npages, flags);
1437
1438 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1439 if (vp->v_type == VREG) {
1440 fs_bshift = vp->v_mount->mnt_fs_bshift;
1441 dev_bshift = vp->v_mount->mnt_dev_bshift;
1442 } else {
1443 fs_bshift = DEV_BSHIFT;
1444 dev_bshift = DEV_BSHIFT;
1445 }
1446 error = 0;
1447 pg = pgs[0];
1448 startoffset = pg->offset;
1449 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1450 skipbytes = 0;
1451 KASSERT(bytes != 0);
1452
1453 kva = uvm_pagermapin(pgs, npages,
1454 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1455
1456 s = splbio();
1457 simple_lock(&global_v_numoutput_slock);
1458 vp->v_numoutput += 2;
1459 simple_unlock(&global_v_numoutput_slock);
1460 mbp = pool_get(&bufpool, PR_WAITOK);
1461 BUF_INIT(mbp);
1462 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1463 vp, mbp, vp->v_numoutput, bytes);
1464 splx(s);
1465 mbp->b_bufsize = npages << PAGE_SHIFT;
1466 mbp->b_data = (void *)kva;
1467 mbp->b_resid = mbp->b_bcount = bytes;
1468 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1469 mbp->b_iodone = uvm_aio_biodone;
1470 mbp->b_vp = vp;
1471
1472 bp = NULL;
1473 for (offset = startoffset;
1474 bytes > 0;
1475 offset += iobytes, bytes -= iobytes) {
1476 lbn = offset >> fs_bshift;
1477 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1478 if (error) {
1479 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1480 skipbytes += bytes;
1481 bytes = 0;
1482 break;
1483 }
1484
1485 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1486 bytes);
1487 if (blkno == (daddr_t)-1) {
1488 skipbytes += iobytes;
1489 continue;
1490 }
1491
1492 /* if it's really one i/o, don't make a second buf */
1493 if (offset == startoffset && iobytes == bytes) {
1494 bp = mbp;
1495 } else {
1496 s = splbio();
1497 V_INCR_NUMOUTPUT(vp);
1498 bp = pool_get(&bufpool, PR_WAITOK);
1499 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1500 vp, bp, vp->v_numoutput, 0);
1501 splx(s);
1502 BUF_INIT(bp);
1503 bp->b_data = (char *)kva +
1504 (vaddr_t)(offset - pg->offset);
1505 bp->b_resid = bp->b_bcount = iobytes;
1506 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1507 bp->b_iodone = uvm_aio_biodone1;
1508 bp->b_vp = vp;
1509 }
1510 bp->b_lblkno = 0;
1511 bp->b_private = mbp;
1512 if (devvp->v_type == VBLK) {
1513 bp->b_dev = devvp->v_rdev;
1514 }
1515
1516 /* adjust physical blkno for partial blocks */
1517 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1518 dev_bshift);
1519 UVMHIST_LOG(ubchist,
1520 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1521 vp, offset, bp->b_bcount, bp->b_blkno);
1522 if (curproc == uvm.pagedaemon_proc)
1523 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1524 else if (async)
1525 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1526 else
1527 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1528 VOP_STRATEGY(bp->b_vp, bp);
1529 }
1530 if (skipbytes) {
1531 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1532 s = splbio();
1533 if (error) {
1534 mbp->b_flags |= B_ERROR;
1535 mbp->b_error = error;
1536 }
1537 mbp->b_resid -= skipbytes;
1538 if (mbp->b_resid == 0) {
1539 biodone(mbp);
1540 }
1541 splx(s);
1542 }
1543 if (async) {
1544 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1545 return (0);
1546 }
1547 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1548 error = biowait(mbp);
1549 uvm_aio_aiodone(mbp);
1550 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1551 return (error);
1552 }
1553
1554 /*
1555 * VOP_PUTPAGES() for vnodes which never have pages.
1556 */
1557
1558 int
1559 genfs_null_putpages(void *v)
1560 {
1561 struct vop_putpages_args /* {
1562 struct vnode *a_vp;
1563 voff_t a_offlo;
1564 voff_t a_offhi;
1565 int a_flags;
1566 } */ *ap = v;
1567 struct vnode *vp = ap->a_vp;
1568
1569 KASSERT(vp->v_uobj.uo_npages == 0);
1570 simple_unlock(&vp->v_interlock);
1571 return (0);
1572 }
1573
1574 void
1575 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1576 {
1577 struct genfs_node *gp = VTOG(vp);
1578
1579 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1580 gp->g_op = ops;
1581 }
1582
1583 void
1584 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1585 {
1586 int bsize;
1587
1588 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1589 *eobp = (size + bsize - 1) & ~(bsize - 1);
1590 }
1591
1592 int
1593 genfs_compat_getpages(void *v)
1594 {
1595 struct vop_getpages_args /* {
1596 struct vnode *a_vp;
1597 voff_t a_offset;
1598 struct vm_page **a_m;
1599 int *a_count;
1600 int a_centeridx;
1601 vm_prot_t a_access_type;
1602 int a_advice;
1603 int a_flags;
1604 } */ *ap = v;
1605
1606 off_t origoffset;
1607 struct vnode *vp = ap->a_vp;
1608 struct uvm_object *uobj = &vp->v_uobj;
1609 struct vm_page *pg, **pgs;
1610 vaddr_t kva;
1611 int i, error, orignpages, npages;
1612 struct iovec iov;
1613 struct uio uio;
1614 struct ucred *cred = curproc->p_ucred;
1615 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1616
1617 error = 0;
1618 origoffset = ap->a_offset;
1619 orignpages = *ap->a_count;
1620 pgs = ap->a_m;
1621
1622 if (write && (vp->v_flag & VONWORKLST) == 0) {
1623 vn_syncer_add_to_worklist(vp, filedelay);
1624 }
1625 if (ap->a_flags & PGO_LOCKED) {
1626 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1627 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1628
1629 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1630 }
1631 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1632 simple_unlock(&uobj->vmobjlock);
1633 return (EINVAL);
1634 }
1635 npages = orignpages;
1636 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1637 simple_unlock(&uobj->vmobjlock);
1638 kva = uvm_pagermapin(pgs, npages,
1639 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1640 for (i = 0; i < npages; i++) {
1641 pg = pgs[i];
1642 if ((pg->flags & PG_FAKE) == 0) {
1643 continue;
1644 }
1645 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1646 iov.iov_len = PAGE_SIZE;
1647 uio.uio_iov = &iov;
1648 uio.uio_iovcnt = 1;
1649 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1650 uio.uio_segflg = UIO_SYSSPACE;
1651 uio.uio_rw = UIO_READ;
1652 uio.uio_resid = PAGE_SIZE;
1653 uio.uio_procp = NULL;
1654 /* XXX vn_lock */
1655 error = VOP_READ(vp, &uio, 0, cred);
1656 if (error) {
1657 break;
1658 }
1659 if (uio.uio_resid) {
1660 memset(iov.iov_base, 0, uio.uio_resid);
1661 }
1662 }
1663 uvm_pagermapout(kva, npages);
1664 simple_lock(&uobj->vmobjlock);
1665 uvm_lock_pageq();
1666 for (i = 0; i < npages; i++) {
1667 pg = pgs[i];
1668 if (error && (pg->flags & PG_FAKE) != 0) {
1669 pg->flags |= PG_RELEASED;
1670 } else {
1671 pmap_clear_modify(pg);
1672 uvm_pageactivate(pg);
1673 }
1674 }
1675 if (error) {
1676 uvm_page_unbusy(pgs, npages);
1677 }
1678 uvm_unlock_pageq();
1679 simple_unlock(&uobj->vmobjlock);
1680 return (error);
1681 }
1682
1683 int
1684 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1685 int flags)
1686 {
1687 off_t offset;
1688 struct iovec iov;
1689 struct uio uio;
1690 struct ucred *cred = curproc->p_ucred;
1691 struct buf *bp;
1692 vaddr_t kva;
1693 int s, error;
1694
1695 offset = pgs[0]->offset;
1696 kva = uvm_pagermapin(pgs, npages,
1697 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1698
1699 iov.iov_base = (void *)kva;
1700 iov.iov_len = npages << PAGE_SHIFT;
1701 uio.uio_iov = &iov;
1702 uio.uio_iovcnt = 1;
1703 uio.uio_offset = offset;
1704 uio.uio_segflg = UIO_SYSSPACE;
1705 uio.uio_rw = UIO_WRITE;
1706 uio.uio_resid = npages << PAGE_SHIFT;
1707 uio.uio_procp = NULL;
1708 /* XXX vn_lock */
1709 error = VOP_WRITE(vp, &uio, 0, cred);
1710
1711 s = splbio();
1712 V_INCR_NUMOUTPUT(vp);
1713 bp = pool_get(&bufpool, PR_WAITOK);
1714 splx(s);
1715
1716 BUF_INIT(bp);
1717 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1718 bp->b_vp = vp;
1719 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1720 bp->b_data = (char *)kva;
1721 bp->b_bcount = npages << PAGE_SHIFT;
1722 bp->b_bufsize = npages << PAGE_SHIFT;
1723 bp->b_resid = 0;
1724 if (error) {
1725 bp->b_flags |= B_ERROR;
1726 bp->b_error = error;
1727 }
1728 uvm_aio_aiodone(bp);
1729 return (error);
1730 }
1731
1732 static void
1733 filt_genfsdetach(struct knote *kn)
1734 {
1735 struct vnode *vp = (struct vnode *)kn->kn_hook;
1736
1737 /* XXXLUKEM lock the struct? */
1738 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1739 }
1740
1741 static int
1742 filt_genfsread(struct knote *kn, long hint)
1743 {
1744 struct vnode *vp = (struct vnode *)kn->kn_hook;
1745
1746 /*
1747 * filesystem is gone, so set the EOF flag and schedule
1748 * the knote for deletion.
1749 */
1750 if (hint == NOTE_REVOKE) {
1751 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1752 return (1);
1753 }
1754
1755 /* XXXLUKEM lock the struct? */
1756 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1757 return (kn->kn_data != 0);
1758 }
1759
1760 static int
1761 filt_genfsvnode(struct knote *kn, long hint)
1762 {
1763
1764 if (kn->kn_sfflags & hint)
1765 kn->kn_fflags |= hint;
1766 if (hint == NOTE_REVOKE) {
1767 kn->kn_flags |= EV_EOF;
1768 return (1);
1769 }
1770 return (kn->kn_fflags != 0);
1771 }
1772
1773 static const struct filterops genfsread_filtops =
1774 { 1, NULL, filt_genfsdetach, filt_genfsread };
1775 static const struct filterops genfsvnode_filtops =
1776 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1777
1778 int
1779 genfs_kqfilter(void *v)
1780 {
1781 struct vop_kqfilter_args /* {
1782 struct vnode *a_vp;
1783 struct knote *a_kn;
1784 } */ *ap = v;
1785 struct vnode *vp;
1786 struct knote *kn;
1787
1788 vp = ap->a_vp;
1789 kn = ap->a_kn;
1790 switch (kn->kn_filter) {
1791 case EVFILT_READ:
1792 kn->kn_fop = &genfsread_filtops;
1793 break;
1794 case EVFILT_VNODE:
1795 kn->kn_fop = &genfsvnode_filtops;
1796 break;
1797 default:
1798 return (1);
1799 }
1800
1801 kn->kn_hook = vp;
1802
1803 /* XXXLUKEM lock the struct? */
1804 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1805
1806 return (0);
1807 }
1808