Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.100
      1 /*	$NetBSD: genfs_vnops.c,v 1.100 2005/07/17 09:13:35 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.100 2005/07/17 09:13:35 yamt Exp $");
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_nfsserver.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/kernel.h>
     44 #include <sys/mount.h>
     45 #include <sys/namei.h>
     46 #include <sys/vnode.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/malloc.h>
     49 #include <sys/poll.h>
     50 #include <sys/mman.h>
     51 #include <sys/file.h>
     52 
     53 #include <miscfs/genfs/genfs.h>
     54 #include <miscfs/genfs/genfs_node.h>
     55 #include <miscfs/specfs/specdev.h>
     56 
     57 #include <uvm/uvm.h>
     58 #include <uvm/uvm_pager.h>
     59 
     60 #ifdef NFSSERVER
     61 #include <nfs/rpcv2.h>
     62 #include <nfs/nfsproto.h>
     63 #include <nfs/nfs.h>
     64 #include <nfs/nqnfs.h>
     65 #include <nfs/nfs_var.h>
     66 #endif
     67 
     68 static __inline void genfs_rel_pages(struct vm_page **, int);
     69 static void filt_genfsdetach(struct knote *);
     70 static int filt_genfsread(struct knote *, long);
     71 static int filt_genfsvnode(struct knote *, long);
     72 
     73 
     74 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
     75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
     76 int genfs_racount = 2;		/* # of page chunks to readahead */
     77 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
     78 
     79 int
     80 genfs_poll(void *v)
     81 {
     82 	struct vop_poll_args /* {
     83 		struct vnode *a_vp;
     84 		int a_events;
     85 		struct proc *a_p;
     86 	} */ *ap = v;
     87 
     88 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     89 }
     90 
     91 int
     92 genfs_fsync(void *v)
     93 {
     94 	struct vop_fsync_args /* {
     95 		struct vnode *a_vp;
     96 		struct ucred *a_cred;
     97 		int a_flags;
     98 		off_t offlo;
     99 		off_t offhi;
    100 		struct proc *a_p;
    101 	} */ *ap = v;
    102 	struct vnode *vp = ap->a_vp, *dvp;
    103 	int wait;
    104 	int error;
    105 
    106 	wait = (ap->a_flags & FSYNC_WAIT) != 0;
    107 	vflushbuf(vp, wait);
    108 	if ((ap->a_flags & FSYNC_DATAONLY) != 0)
    109 		error = 0;
    110 	else
    111 		error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    112 
    113 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    114 		int l = 0;
    115 		if (VOP_BMAP(vp, 0, &dvp, NULL, NULL))
    116 			error = ENXIO;
    117 		else
    118 			error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE,
    119 					  ap->a_p->p_ucred, ap->a_p);
    120 	}
    121 
    122 	return (error);
    123 }
    124 
    125 int
    126 genfs_seek(void *v)
    127 {
    128 	struct vop_seek_args /* {
    129 		struct vnode *a_vp;
    130 		off_t a_oldoff;
    131 		off_t a_newoff;
    132 		struct ucred *a_ucred;
    133 	} */ *ap = v;
    134 
    135 	if (ap->a_newoff < 0)
    136 		return (EINVAL);
    137 
    138 	return (0);
    139 }
    140 
    141 int
    142 genfs_abortop(void *v)
    143 {
    144 	struct vop_abortop_args /* {
    145 		struct vnode *a_dvp;
    146 		struct componentname *a_cnp;
    147 	} */ *ap = v;
    148 
    149 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    150 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    151 	return (0);
    152 }
    153 
    154 int
    155 genfs_fcntl(void *v)
    156 {
    157 	struct vop_fcntl_args /* {
    158 		struct vnode *a_vp;
    159 		u_int a_command;
    160 		caddr_t a_data;
    161 		int a_fflag;
    162 		struct ucred *a_cred;
    163 		struct proc *a_p;
    164 	} */ *ap = v;
    165 
    166 	if (ap->a_command == F_SETFL)
    167 		return (0);
    168 	else
    169 		return (EOPNOTSUPP);
    170 }
    171 
    172 /*ARGSUSED*/
    173 int
    174 genfs_badop(void *v)
    175 {
    176 
    177 	panic("genfs: bad op");
    178 }
    179 
    180 /*ARGSUSED*/
    181 int
    182 genfs_nullop(void *v)
    183 {
    184 
    185 	return (0);
    186 }
    187 
    188 /*ARGSUSED*/
    189 int
    190 genfs_einval(void *v)
    191 {
    192 
    193 	return (EINVAL);
    194 }
    195 
    196 /*
    197  * Called when an fs doesn't support a particular vop.
    198  * This takes care to vrele, vput, or vunlock passed in vnodes.
    199  */
    200 int
    201 genfs_eopnotsupp(void *v)
    202 {
    203 	struct vop_generic_args /*
    204 		struct vnodeop_desc *a_desc;
    205 		/ * other random data follows, presumably * /
    206 	} */ *ap = v;
    207 	struct vnodeop_desc *desc = ap->a_desc;
    208 	struct vnode *vp, *vp_last = NULL;
    209 	int flags, i, j, offset;
    210 
    211 	flags = desc->vdesc_flags;
    212 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    213 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    214 			break;	/* stop at end of list */
    215 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    216 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
    217 
    218 			/* Skip if NULL */
    219 			if (!vp)
    220 				continue;
    221 
    222 			switch (j) {
    223 			case VDESC_VP0_WILLPUT:
    224 				/* Check for dvp == vp cases */
    225 				if (vp == vp_last)
    226 					vrele(vp);
    227 				else {
    228 					vput(vp);
    229 					vp_last = vp;
    230 				}
    231 				break;
    232 			case VDESC_VP0_WILLUNLOCK:
    233 				VOP_UNLOCK(vp, 0);
    234 				break;
    235 			case VDESC_VP0_WILLRELE:
    236 				vrele(vp);
    237 				break;
    238 			}
    239 		}
    240 	}
    241 
    242 	return (EOPNOTSUPP);
    243 }
    244 
    245 /*ARGSUSED*/
    246 int
    247 genfs_ebadf(void *v)
    248 {
    249 
    250 	return (EBADF);
    251 }
    252 
    253 /* ARGSUSED */
    254 int
    255 genfs_enoioctl(void *v)
    256 {
    257 
    258 	return (EPASSTHROUGH);
    259 }
    260 
    261 
    262 /*
    263  * Eliminate all activity associated with the requested vnode
    264  * and with all vnodes aliased to the requested vnode.
    265  */
    266 int
    267 genfs_revoke(void *v)
    268 {
    269 	struct vop_revoke_args /* {
    270 		struct vnode *a_vp;
    271 		int a_flags;
    272 	} */ *ap = v;
    273 	struct vnode *vp, *vq;
    274 	struct proc *p = curproc;	/* XXX */
    275 
    276 #ifdef DIAGNOSTIC
    277 	if ((ap->a_flags & REVOKEALL) == 0)
    278 		panic("genfs_revoke: not revokeall");
    279 #endif
    280 
    281 	vp = ap->a_vp;
    282 	simple_lock(&vp->v_interlock);
    283 
    284 	if (vp->v_flag & VALIASED) {
    285 		/*
    286 		 * If a vgone (or vclean) is already in progress,
    287 		 * wait until it is done and return.
    288 		 */
    289 		if (vp->v_flag & VXLOCK) {
    290 			vp->v_flag |= VXWANT;
    291 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
    292 				&vp->v_interlock);
    293 			return (0);
    294 		}
    295 		/*
    296 		 * Ensure that vp will not be vgone'd while we
    297 		 * are eliminating its aliases.
    298 		 */
    299 		vp->v_flag |= VXLOCK;
    300 		simple_unlock(&vp->v_interlock);
    301 		while (vp->v_flag & VALIASED) {
    302 			simple_lock(&spechash_slock);
    303 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    304 				if (vq->v_rdev != vp->v_rdev ||
    305 				    vq->v_type != vp->v_type || vp == vq)
    306 					continue;
    307 				simple_unlock(&spechash_slock);
    308 				vgone(vq);
    309 				break;
    310 			}
    311 			if (vq == NULLVP)
    312 				simple_unlock(&spechash_slock);
    313 		}
    314 		/*
    315 		 * Remove the lock so that vgone below will
    316 		 * really eliminate the vnode after which time
    317 		 * vgone will awaken any sleepers.
    318 		 */
    319 		simple_lock(&vp->v_interlock);
    320 		vp->v_flag &= ~VXLOCK;
    321 	}
    322 	vgonel(vp, p);
    323 	return (0);
    324 }
    325 
    326 /*
    327  * Lock the node.
    328  */
    329 int
    330 genfs_lock(void *v)
    331 {
    332 	struct vop_lock_args /* {
    333 		struct vnode *a_vp;
    334 		int a_flags;
    335 	} */ *ap = v;
    336 	struct vnode *vp = ap->a_vp;
    337 
    338 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
    339 }
    340 
    341 /*
    342  * Unlock the node.
    343  */
    344 int
    345 genfs_unlock(void *v)
    346 {
    347 	struct vop_unlock_args /* {
    348 		struct vnode *a_vp;
    349 		int a_flags;
    350 	} */ *ap = v;
    351 	struct vnode *vp = ap->a_vp;
    352 
    353 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    354 	    &vp->v_interlock));
    355 }
    356 
    357 /*
    358  * Return whether or not the node is locked.
    359  */
    360 int
    361 genfs_islocked(void *v)
    362 {
    363 	struct vop_islocked_args /* {
    364 		struct vnode *a_vp;
    365 	} */ *ap = v;
    366 	struct vnode *vp = ap->a_vp;
    367 
    368 	return (lockstatus(vp->v_vnlock));
    369 }
    370 
    371 /*
    372  * Stubs to use when there is no locking to be done on the underlying object.
    373  */
    374 int
    375 genfs_nolock(void *v)
    376 {
    377 	struct vop_lock_args /* {
    378 		struct vnode *a_vp;
    379 		int a_flags;
    380 		struct proc *a_p;
    381 	} */ *ap = v;
    382 
    383 	/*
    384 	 * Since we are not using the lock manager, we must clear
    385 	 * the interlock here.
    386 	 */
    387 	if (ap->a_flags & LK_INTERLOCK)
    388 		simple_unlock(&ap->a_vp->v_interlock);
    389 	return (0);
    390 }
    391 
    392 int
    393 genfs_nounlock(void *v)
    394 {
    395 
    396 	return (0);
    397 }
    398 
    399 int
    400 genfs_noislocked(void *v)
    401 {
    402 
    403 	return (0);
    404 }
    405 
    406 /*
    407  * Local lease check for NFS servers.  Just set up args and let
    408  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
    409  * this is a null operation.
    410  */
    411 int
    412 genfs_lease_check(void *v)
    413 {
    414 #ifdef NFSSERVER
    415 	struct vop_lease_args /* {
    416 		struct vnode *a_vp;
    417 		struct proc *a_p;
    418 		struct ucred *a_cred;
    419 		int a_flag;
    420 	} */ *ap = v;
    421 	u_int32_t duration = 0;
    422 	int cache;
    423 	u_quad_t frev;
    424 
    425 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
    426 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
    427 	return (0);
    428 #else
    429 	return (0);
    430 #endif /* NFSSERVER */
    431 }
    432 
    433 int
    434 genfs_mmap(void *v)
    435 {
    436 
    437 	return (0);
    438 }
    439 
    440 static __inline void
    441 genfs_rel_pages(struct vm_page **pgs, int npages)
    442 {
    443 	int i;
    444 
    445 	for (i = 0; i < npages; i++) {
    446 		struct vm_page *pg = pgs[i];
    447 
    448 		if (pg == NULL)
    449 			continue;
    450 		if (pg->flags & PG_FAKE) {
    451 			pg->flags |= PG_RELEASED;
    452 		}
    453 	}
    454 	uvm_lock_pageq();
    455 	uvm_page_unbusy(pgs, npages);
    456 	uvm_unlock_pageq();
    457 }
    458 
    459 /*
    460  * generic VM getpages routine.
    461  * Return PG_BUSY pages for the given range,
    462  * reading from backing store if necessary.
    463  */
    464 
    465 int
    466 genfs_getpages(void *v)
    467 {
    468 	struct vop_getpages_args /* {
    469 		struct vnode *a_vp;
    470 		voff_t a_offset;
    471 		struct vm_page **a_m;
    472 		int *a_count;
    473 		int a_centeridx;
    474 		vm_prot_t a_access_type;
    475 		int a_advice;
    476 		int a_flags;
    477 	} */ *ap = v;
    478 
    479 	off_t newsize, diskeof, memeof;
    480 	off_t offset, origoffset, startoffset, endoffset, raoffset;
    481 	daddr_t lbn, blkno;
    482 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    483 	int fs_bshift, fs_bsize, dev_bshift;
    484 	int flags = ap->a_flags;
    485 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
    486 	vaddr_t kva;
    487 	struct buf *bp, *mbp;
    488 	struct vnode *vp = ap->a_vp;
    489 	struct vnode *devvp;
    490 	struct genfs_node *gp = VTOG(vp);
    491 	struct uvm_object *uobj = &vp->v_uobj;
    492 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
    493 	int pgs_size;
    494 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
    495 	boolean_t async = (flags & PGO_SYNCIO) == 0;
    496 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    497 	boolean_t sawhole = FALSE;
    498 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
    499 	boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    500 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    501 
    502 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    503 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    504 
    505 	/* XXXUBC temp limit */
    506 	if (*ap->a_count > MAX_READ_AHEAD) {
    507 		panic("genfs_getpages: too many pages");
    508 	}
    509 
    510 	error = 0;
    511 	origoffset = ap->a_offset;
    512 	orignpages = *ap->a_count;
    513 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
    514 	if (flags & PGO_PASTEOF) {
    515 		newsize = MAX(vp->v_size,
    516 		    origoffset + (orignpages << PAGE_SHIFT));
    517 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    518 	} else {
    519 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    520 	}
    521 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    522 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    523 	KASSERT(orignpages > 0);
    524 
    525 	/*
    526 	 * Bounds-check the request.
    527 	 */
    528 
    529 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    530 		if ((flags & PGO_LOCKED) == 0) {
    531 			simple_unlock(&uobj->vmobjlock);
    532 		}
    533 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    534 		    origoffset, *ap->a_count, memeof,0);
    535 		return (EINVAL);
    536 	}
    537 
    538 	/* uobj is locked */
    539 
    540 	if (write && (vp->v_flag & VONWORKLST) == 0) {
    541 		vn_syncer_add_to_worklist(vp, filedelay);
    542 	}
    543 
    544 	/*
    545 	 * For PGO_LOCKED requests, just return whatever's in memory.
    546 	 */
    547 
    548 	if (flags & PGO_LOCKED) {
    549 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
    550 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
    551 
    552 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    553 	}
    554 
    555 	/*
    556 	 * find the requested pages and make some simple checks.
    557 	 * leave space in the page array for a whole block.
    558 	 */
    559 
    560 	if (vp->v_type == VREG) {
    561 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    562 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    563 	} else {
    564 		fs_bshift = DEV_BSHIFT;
    565 		dev_bshift = DEV_BSHIFT;
    566 	}
    567 	fs_bsize = 1 << fs_bshift;
    568 
    569 	orignpages = MIN(orignpages,
    570 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    571 	npages = orignpages;
    572 	startoffset = origoffset & ~(fs_bsize - 1);
    573 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    574 	    fs_bsize - 1) & ~(fs_bsize - 1));
    575 	endoffset = MIN(endoffset, round_page(memeof));
    576 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    577 
    578 	pgs_size = sizeof(struct vm_page *) *
    579 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    580 	if (pgs_size > sizeof(pgs_onstack)) {
    581 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
    582 		if (pgs == NULL) {
    583 			simple_unlock(&uobj->vmobjlock);
    584 			return (ENOMEM);
    585 		}
    586 	} else {
    587 		pgs = pgs_onstack;
    588 		memset(pgs, 0, pgs_size);
    589 	}
    590 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    591 	    ridx, npages, startoffset, endoffset);
    592 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    593 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    594 		KASSERT(async != 0);
    595 		genfs_rel_pages(&pgs[ridx], orignpages);
    596 		simple_unlock(&uobj->vmobjlock);
    597 		if (pgs != pgs_onstack)
    598 			free(pgs, M_DEVBUF);
    599 		return (EBUSY);
    600 	}
    601 
    602 	/*
    603 	 * if the pages are already resident, just return them.
    604 	 */
    605 
    606 	for (i = 0; i < npages; i++) {
    607 		struct vm_page *pg1 = pgs[ridx + i];
    608 
    609 		if ((pg1->flags & PG_FAKE) ||
    610 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    611 			break;
    612 		}
    613 	}
    614 	if (i == npages) {
    615 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    616 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
    617 		npages += ridx;
    618 		goto raout;
    619 	}
    620 
    621 	/*
    622 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    623 	 */
    624 
    625 	if (flags & PGO_OVERWRITE) {
    626 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    627 
    628 		for (i = 0; i < npages; i++) {
    629 			struct vm_page *pg1 = pgs[ridx + i];
    630 
    631 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    632 		}
    633 		npages += ridx;
    634 		goto out;
    635 	}
    636 
    637 	/*
    638 	 * the page wasn't resident and we're not overwriting,
    639 	 * so we're going to have to do some i/o.
    640 	 * find any additional pages needed to cover the expanded range.
    641 	 */
    642 
    643 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    644 	if (startoffset != origoffset || npages != orignpages) {
    645 
    646 		/*
    647 		 * we need to avoid deadlocks caused by locking
    648 		 * additional pages at lower offsets than pages we
    649 		 * already have locked.  unlock them all and start over.
    650 		 */
    651 
    652 		genfs_rel_pages(&pgs[ridx], orignpages);
    653 		memset(pgs, 0, pgs_size);
    654 
    655 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    656 		    startoffset, endoffset, 0,0);
    657 		npgs = npages;
    658 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    659 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    660 			KASSERT(async != 0);
    661 			genfs_rel_pages(pgs, npages);
    662 			simple_unlock(&uobj->vmobjlock);
    663 			if (pgs != pgs_onstack)
    664 				free(pgs, M_DEVBUF);
    665 			return (EBUSY);
    666 		}
    667 	}
    668 	simple_unlock(&uobj->vmobjlock);
    669 
    670 	/*
    671 	 * read the desired page(s).
    672 	 */
    673 
    674 	totalbytes = npages << PAGE_SHIFT;
    675 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    676 	tailbytes = totalbytes - bytes;
    677 	skipbytes = 0;
    678 
    679 	kva = uvm_pagermapin(pgs, npages,
    680 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    681 
    682 	s = splbio();
    683 	mbp = pool_get(&bufpool, PR_WAITOK);
    684 	splx(s);
    685 	BUF_INIT(mbp);
    686 	mbp->b_bufsize = totalbytes;
    687 	mbp->b_data = (void *)kva;
    688 	mbp->b_resid = mbp->b_bcount = bytes;
    689 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    690 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    691 	mbp->b_vp = vp;
    692 
    693 	/*
    694 	 * if EOF is in the middle of the range, zero the part past EOF.
    695 	 * if the page including EOF is not PG_FAKE, skip over it since
    696 	 * in that case it has valid data that we need to preserve.
    697 	 */
    698 
    699 	if (tailbytes > 0) {
    700 		size_t tailstart = bytes;
    701 
    702 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
    703 			tailstart = round_page(tailstart);
    704 			tailbytes -= tailstart - bytes;
    705 		}
    706 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    707 		    kva, tailstart, tailbytes,0);
    708 		memset((void *)(kva + tailstart), 0, tailbytes);
    709 	}
    710 
    711 	/*
    712 	 * now loop over the pages, reading as needed.
    713 	 */
    714 
    715 	if (blockalloc) {
    716 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
    717 	} else {
    718 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
    719 	}
    720 
    721 	bp = NULL;
    722 	for (offset = startoffset;
    723 	    bytes > 0;
    724 	    offset += iobytes, bytes -= iobytes) {
    725 
    726 		/*
    727 		 * skip pages which don't need to be read.
    728 		 */
    729 
    730 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    731 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    732 			size_t b;
    733 
    734 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    735 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    736 				sawhole = TRUE;
    737 			}
    738 			b = MIN(PAGE_SIZE, bytes);
    739 			offset += b;
    740 			bytes -= b;
    741 			skipbytes += b;
    742 			pidx++;
    743 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    744 			    offset, 0,0,0);
    745 			if (bytes == 0) {
    746 				goto loopdone;
    747 			}
    748 		}
    749 
    750 		/*
    751 		 * bmap the file to find out the blkno to read from and
    752 		 * how much we can read in one i/o.  if bmap returns an error,
    753 		 * skip the rest of the top-level i/o.
    754 		 */
    755 
    756 		lbn = offset >> fs_bshift;
    757 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    758 		if (error) {
    759 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    760 			    lbn, error,0,0);
    761 			skipbytes += bytes;
    762 			goto loopdone;
    763 		}
    764 
    765 		/*
    766 		 * see how many pages can be read with this i/o.
    767 		 * reduce the i/o size if necessary to avoid
    768 		 * overwriting pages with valid data.
    769 		 */
    770 
    771 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    772 		    bytes);
    773 		if (offset + iobytes > round_page(offset)) {
    774 			pcount = 1;
    775 			while (pidx + pcount < npages &&
    776 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    777 				pcount++;
    778 			}
    779 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    780 			    (offset - trunc_page(offset)));
    781 		}
    782 
    783 		/*
    784 		 * if this block isn't allocated, zero it instead of
    785 		 * reading it.  unless we are going to allocate blocks,
    786 		 * mark the pages we zeroed PG_RDONLY.
    787 		 */
    788 
    789 		if (blkno < 0) {
    790 			int holepages = (round_page(offset + iobytes) -
    791 			    trunc_page(offset)) >> PAGE_SHIFT;
    792 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    793 
    794 			sawhole = TRUE;
    795 			memset((char *)kva + (offset - startoffset), 0,
    796 			    iobytes);
    797 			skipbytes += iobytes;
    798 
    799 			for (i = 0; i < holepages; i++) {
    800 				if (write) {
    801 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    802 				}
    803 				if (!blockalloc) {
    804 					pgs[pidx + i]->flags |= PG_RDONLY;
    805 				}
    806 			}
    807 			continue;
    808 		}
    809 
    810 		/*
    811 		 * allocate a sub-buf for this piece of the i/o
    812 		 * (or just use mbp if there's only 1 piece),
    813 		 * and start it going.
    814 		 */
    815 
    816 		if (offset == startoffset && iobytes == bytes) {
    817 			bp = mbp;
    818 		} else {
    819 			s = splbio();
    820 			bp = pool_get(&bufpool, PR_WAITOK);
    821 			splx(s);
    822 			BUF_INIT(bp);
    823 			bp->b_data = (char *)kva + offset - startoffset;
    824 			bp->b_resid = bp->b_bcount = iobytes;
    825 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
    826 			bp->b_iodone = uvm_aio_biodone1;
    827 			bp->b_vp = vp;
    828 			bp->b_proc = NULL;
    829 		}
    830 		bp->b_lblkno = 0;
    831 		bp->b_private = mbp;
    832 		if (devvp->v_type == VBLK) {
    833 			bp->b_dev = devvp->v_rdev;
    834 		}
    835 
    836 		/* adjust physical blkno for partial blocks */
    837 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    838 		    dev_bshift);
    839 
    840 		UVMHIST_LOG(ubchist,
    841 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    842 		    bp, offset, iobytes, bp->b_blkno);
    843 
    844 		if (async)
    845 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    846 		else
    847 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    848 		VOP_STRATEGY(bp->b_vp, bp);
    849 	}
    850 
    851 loopdone:
    852 	if (skipbytes) {
    853 		s = splbio();
    854 		if (error) {
    855 			mbp->b_flags |= B_ERROR;
    856 			mbp->b_error = error;
    857 		}
    858 		mbp->b_resid -= skipbytes;
    859 		if (mbp->b_resid == 0) {
    860 			biodone(mbp);
    861 		}
    862 		splx(s);
    863 	}
    864 
    865 	if (async) {
    866 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    867 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    868 		if (pgs != pgs_onstack)
    869 			free(pgs, M_DEVBUF);
    870 		return (0);
    871 	}
    872 	if (bp != NULL) {
    873 		error = biowait(mbp);
    874 	}
    875 	s = splbio();
    876 	pool_put(&bufpool, mbp);
    877 	splx(s);
    878 	uvm_pagermapout(kva, npages);
    879 	raoffset = startoffset + totalbytes;
    880 
    881 	/*
    882 	 * if this we encountered a hole then we have to do a little more work.
    883 	 * for read faults, we marked the page PG_RDONLY so that future
    884 	 * write accesses to the page will fault again.
    885 	 * for write faults, we must make sure that the backing store for
    886 	 * the page is completely allocated while the pages are locked.
    887 	 */
    888 
    889 	if (!error && sawhole && blockalloc) {
    890 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    891 		    cred);
    892 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    893 		    startoffset, npages << PAGE_SHIFT, error,0);
    894 		if (!error) {
    895 			for (i = 0; i < npages; i++) {
    896 				if (pgs[i] == NULL) {
    897 					continue;
    898 				}
    899 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    900 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    901 				    pgs[i],0,0,0);
    902 			}
    903 		}
    904 	}
    905 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    906 	simple_lock(&uobj->vmobjlock);
    907 
    908 	/*
    909 	 * see if we want to start any readahead.
    910 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
    911 	 * this is pretty nonsensical, but it is 50% faster than reading
    912 	 * just the next 64k.
    913 	 */
    914 
    915 raout:
    916 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
    917 	    PAGE_SHIFT <= 16) {
    918 		off_t rasize;
    919 		int rapages, err, j, skipped;
    920 
    921 		/* XXXUBC temp limit, from above */
    922 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
    923 		    genfs_rapages);
    924 		rasize = rapages << PAGE_SHIFT;
    925 		for (j = skipped = 0; j < genfs_racount; j++) {
    926 
    927 			if (raoffset >= memeof)
    928 				break;
    929 
    930 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
    931 			    VM_PROT_READ, 0, 0);
    932 			simple_lock(&uobj->vmobjlock);
    933 			if (err) {
    934 				if (err != EBUSY ||
    935 				    skipped++ == genfs_raskip)
    936 					break;
    937 			}
    938 			raoffset += rasize;
    939 			rapages = rasize >> PAGE_SHIFT;
    940 		}
    941 	}
    942 
    943 	/*
    944 	 * we're almost done!  release the pages...
    945 	 * for errors, we free the pages.
    946 	 * otherwise we activate them and mark them as valid and clean.
    947 	 * also, unbusy pages that were not actually requested.
    948 	 */
    949 
    950 	if (error) {
    951 		for (i = 0; i < npages; i++) {
    952 			if (pgs[i] == NULL) {
    953 				continue;
    954 			}
    955 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    956 			    pgs[i], pgs[i]->flags, 0,0);
    957 			if (pgs[i]->flags & PG_FAKE) {
    958 				pgs[i]->flags |= PG_RELEASED;
    959 			}
    960 		}
    961 		uvm_lock_pageq();
    962 		uvm_page_unbusy(pgs, npages);
    963 		uvm_unlock_pageq();
    964 		simple_unlock(&uobj->vmobjlock);
    965 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    966 		if (pgs != pgs_onstack)
    967 			free(pgs, M_DEVBUF);
    968 		return (error);
    969 	}
    970 
    971 out:
    972 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    973 	uvm_lock_pageq();
    974 	for (i = 0; i < npages; i++) {
    975 		pg = pgs[i];
    976 		if (pg == NULL) {
    977 			continue;
    978 		}
    979 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    980 		    pg, pg->flags, 0,0);
    981 		if (pg->flags & PG_FAKE && !overwrite) {
    982 			pg->flags &= ~(PG_FAKE);
    983 			pmap_clear_modify(pgs[i]);
    984 		}
    985 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    986 		if (i < ridx || i >= ridx + orignpages || async) {
    987 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    988 			    pg, pg->offset,0,0);
    989 			if (pg->flags & PG_WANTED) {
    990 				wakeup(pg);
    991 			}
    992 			if (pg->flags & PG_FAKE) {
    993 				KASSERT(overwrite);
    994 				uvm_pagezero(pg);
    995 			}
    996 			if (pg->flags & PG_RELEASED) {
    997 				uvm_pagefree(pg);
    998 				continue;
    999 			}
   1000 			uvm_pageactivate(pg);
   1001 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
   1002 			UVM_PAGE_OWN(pg, NULL);
   1003 		}
   1004 	}
   1005 	uvm_unlock_pageq();
   1006 	simple_unlock(&uobj->vmobjlock);
   1007 	if (ap->a_m != NULL) {
   1008 		memcpy(ap->a_m, &pgs[ridx],
   1009 		    orignpages * sizeof(struct vm_page *));
   1010 	}
   1011 	if (pgs != pgs_onstack)
   1012 		free(pgs, M_DEVBUF);
   1013 	return (0);
   1014 }
   1015 
   1016 /*
   1017  * generic VM putpages routine.
   1018  * Write the given range of pages to backing store.
   1019  *
   1020  * => "offhi == 0" means flush all pages at or after "offlo".
   1021  * => object should be locked by caller.   we may _unlock_ the object
   1022  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
   1023  *	if PGO_SYNCIO is set and there are pages busy.
   1024  *	we return with the object locked.
   1025  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
   1026  *	thus, a caller might want to unlock higher level resources
   1027  *	(e.g. vm_map) before calling flush.
   1028  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
   1029  *	unlock the object nor block.
   1030  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
   1031  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
   1032  *	that new pages are inserted on the tail end of the list.   thus,
   1033  *	we can make a complete pass through the object in one go by starting
   1034  *	at the head and working towards the tail (new pages are put in
   1035  *	front of us).
   1036  * => NOTE: we are allowed to lock the page queues, so the caller
   1037  *	must not be holding the page queue lock.
   1038  *
   1039  * note on "cleaning" object and PG_BUSY pages:
   1040  *	this routine is holding the lock on the object.   the only time
   1041  *	that it can run into a PG_BUSY page that it does not own is if
   1042  *	some other process has started I/O on the page (e.g. either
   1043  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1044  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1045  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1046  *	paged out then it means that someone else has already started
   1047  *	cleaning the page for us (how nice!).    in this case, if we
   1048  *	have syncio specified, then after we make our pass through the
   1049  *	object we need to wait for the other PG_BUSY pages to clear
   1050  *	off (i.e. we need to do an iosync).   also note that once a
   1051  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1052  *
   1053  * note on page traversal:
   1054  *	we can traverse the pages in an object either by going down the
   1055  *	linked list in "uobj->memq", or we can go over the address range
   1056  *	by page doing hash table lookups for each address.    depending
   1057  *	on how many pages are in the object it may be cheaper to do one
   1058  *	or the other.   we set "by_list" to true if we are using memq.
   1059  *	if the cost of a hash lookup was equal to the cost of the list
   1060  *	traversal we could compare the number of pages in the start->stop
   1061  *	range to the total number of pages in the object.   however, it
   1062  *	seems that a hash table lookup is more expensive than the linked
   1063  *	list traversal, so we multiply the number of pages in the
   1064  *	range by an estimate of the relatively higher cost of the hash lookup.
   1065  */
   1066 
   1067 int
   1068 genfs_putpages(void *v)
   1069 {
   1070 	struct vop_putpages_args /* {
   1071 		struct vnode *a_vp;
   1072 		voff_t a_offlo;
   1073 		voff_t a_offhi;
   1074 		int a_flags;
   1075 	} */ *ap = v;
   1076 	struct vnode *vp = ap->a_vp;
   1077 	struct uvm_object *uobj = &vp->v_uobj;
   1078 	struct simplelock *slock = &uobj->vmobjlock;
   1079 	off_t startoff = ap->a_offlo;
   1080 	off_t endoff = ap->a_offhi;
   1081 	off_t off;
   1082 	int flags = ap->a_flags;
   1083 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1084 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
   1085 	int i, s, error, npages, nback;
   1086 	int freeflag;
   1087 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1088 	boolean_t wasclean, by_list, needs_clean, yld;
   1089 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1090 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
   1091 	struct lwp *l = curlwp ? curlwp : &lwp0;
   1092 
   1093 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1094 
   1095 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1096 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1097 	KASSERT(startoff < endoff || endoff == 0);
   1098 
   1099 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1100 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1101 	if (uobj->uo_npages == 0) {
   1102 		s = splbio();
   1103 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1104 		    (vp->v_flag & VONWORKLST)) {
   1105 			vp->v_flag &= ~VONWORKLST;
   1106 			LIST_REMOVE(vp, v_synclist);
   1107 		}
   1108 		splx(s);
   1109 		simple_unlock(slock);
   1110 		return (0);
   1111 	}
   1112 
   1113 	/*
   1114 	 * the vnode has pages, set up to process the request.
   1115 	 */
   1116 
   1117 	error = 0;
   1118 	s = splbio();
   1119 	simple_lock(&global_v_numoutput_slock);
   1120 	wasclean = (vp->v_numoutput == 0);
   1121 	simple_unlock(&global_v_numoutput_slock);
   1122 	splx(s);
   1123 	off = startoff;
   1124 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1125 		endoff = trunc_page(LLONG_MAX);
   1126 	}
   1127 	by_list = (uobj->uo_npages <=
   1128 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1129 
   1130 	/*
   1131 	 * start the loop.  when scanning by list, hold the last page
   1132 	 * in the list before we start.  pages allocated after we start
   1133 	 * will be added to the end of the list, so we can stop at the
   1134 	 * current last page.
   1135 	 */
   1136 
   1137 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1138 	curmp.uobject = uobj;
   1139 	curmp.offset = (voff_t)-1;
   1140 	curmp.flags = PG_BUSY;
   1141 	endmp.uobject = uobj;
   1142 	endmp.offset = (voff_t)-1;
   1143 	endmp.flags = PG_BUSY;
   1144 	if (by_list) {
   1145 		pg = TAILQ_FIRST(&uobj->memq);
   1146 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1147 		PHOLD(l);
   1148 	} else {
   1149 		pg = uvm_pagelookup(uobj, off);
   1150 	}
   1151 	nextpg = NULL;
   1152 	while (by_list || off < endoff) {
   1153 
   1154 		/*
   1155 		 * if the current page is not interesting, move on to the next.
   1156 		 */
   1157 
   1158 		KASSERT(pg == NULL || pg->uobject == uobj);
   1159 		KASSERT(pg == NULL ||
   1160 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1161 		    (pg->flags & PG_BUSY) != 0);
   1162 		if (by_list) {
   1163 			if (pg == &endmp) {
   1164 				break;
   1165 			}
   1166 			if (pg->offset < startoff || pg->offset >= endoff ||
   1167 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1168 				pg = TAILQ_NEXT(pg, listq);
   1169 				continue;
   1170 			}
   1171 			off = pg->offset;
   1172 		} else if (pg == NULL ||
   1173 		    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1174 			off += PAGE_SIZE;
   1175 			if (off < endoff) {
   1176 				pg = uvm_pagelookup(uobj, off);
   1177 			}
   1178 			continue;
   1179 		}
   1180 
   1181 		/*
   1182 		 * if the current page needs to be cleaned and it's busy,
   1183 		 * wait for it to become unbusy.
   1184 		 */
   1185 
   1186 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1187 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1188 		if (pg->flags & PG_BUSY || yld) {
   1189 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1190 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1191 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1192 				error = EDEADLK;
   1193 				break;
   1194 			}
   1195 			KASSERT(!pagedaemon);
   1196 			if (by_list) {
   1197 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1198 				UVMHIST_LOG(ubchist, "curmp next %p",
   1199 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1200 			}
   1201 			if (yld) {
   1202 				simple_unlock(slock);
   1203 				preempt(1);
   1204 				simple_lock(slock);
   1205 			} else {
   1206 				pg->flags |= PG_WANTED;
   1207 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1208 				simple_lock(slock);
   1209 			}
   1210 			if (by_list) {
   1211 				UVMHIST_LOG(ubchist, "after next %p",
   1212 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1213 				pg = TAILQ_NEXT(&curmp, listq);
   1214 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1215 			} else {
   1216 				pg = uvm_pagelookup(uobj, off);
   1217 			}
   1218 			continue;
   1219 		}
   1220 
   1221 		/*
   1222 		 * if we're freeing, remove all mappings of the page now.
   1223 		 * if we're cleaning, check if the page is needs to be cleaned.
   1224 		 */
   1225 
   1226 		if (flags & PGO_FREE) {
   1227 			pmap_page_protect(pg, VM_PROT_NONE);
   1228 		}
   1229 		if (flags & PGO_CLEANIT) {
   1230 			needs_clean = pmap_clear_modify(pg) ||
   1231 			    (pg->flags & PG_CLEAN) == 0;
   1232 			pg->flags |= PG_CLEAN;
   1233 		} else {
   1234 			needs_clean = FALSE;
   1235 		}
   1236 
   1237 		/*
   1238 		 * if we're cleaning, build a cluster.
   1239 		 * the cluster will consist of pages which are currently dirty,
   1240 		 * but they will be returned to us marked clean.
   1241 		 * if not cleaning, just operate on the one page.
   1242 		 */
   1243 
   1244 		if (needs_clean) {
   1245 			wasclean = FALSE;
   1246 			memset(pgs, 0, sizeof(pgs));
   1247 			pg->flags |= PG_BUSY;
   1248 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1249 
   1250 			/*
   1251 			 * first look backward.
   1252 			 */
   1253 
   1254 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1255 			nback = npages;
   1256 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1257 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1258 			if (nback) {
   1259 				memmove(&pgs[0], &pgs[npages - nback],
   1260 				    nback * sizeof(pgs[0]));
   1261 				if (npages - nback < nback)
   1262 					memset(&pgs[nback], 0,
   1263 					    (npages - nback) * sizeof(pgs[0]));
   1264 				else
   1265 					memset(&pgs[npages - nback], 0,
   1266 					    nback * sizeof(pgs[0]));
   1267 			}
   1268 
   1269 			/*
   1270 			 * then plug in our page of interest.
   1271 			 */
   1272 
   1273 			pgs[nback] = pg;
   1274 
   1275 			/*
   1276 			 * then look forward to fill in the remaining space in
   1277 			 * the array of pages.
   1278 			 */
   1279 
   1280 			npages = maxpages - nback - 1;
   1281 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1282 			    &pgs[nback + 1],
   1283 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1284 			npages += nback + 1;
   1285 		} else {
   1286 			pgs[0] = pg;
   1287 			npages = 1;
   1288 			nback = 0;
   1289 		}
   1290 
   1291 		/*
   1292 		 * apply FREE or DEACTIVATE options if requested.
   1293 		 */
   1294 
   1295 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1296 			uvm_lock_pageq();
   1297 		}
   1298 		for (i = 0; i < npages; i++) {
   1299 			tpg = pgs[i];
   1300 			KASSERT(tpg->uobject == uobj);
   1301 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1302 				pg = tpg;
   1303 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1304 				continue;
   1305 			if (flags & PGO_DEACTIVATE &&
   1306 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
   1307 			    tpg->wire_count == 0) {
   1308 				(void) pmap_clear_reference(tpg);
   1309 				uvm_pagedeactivate(tpg);
   1310 			} else if (flags & PGO_FREE) {
   1311 				pmap_page_protect(tpg, VM_PROT_NONE);
   1312 				if (tpg->flags & PG_BUSY) {
   1313 					tpg->flags |= freeflag;
   1314 					if (pagedaemon) {
   1315 						uvmexp.paging++;
   1316 						uvm_pagedequeue(tpg);
   1317 					}
   1318 				} else {
   1319 
   1320 					/*
   1321 					 * ``page is not busy''
   1322 					 * implies that npages is 1
   1323 					 * and needs_clean is false.
   1324 					 */
   1325 
   1326 					nextpg = TAILQ_NEXT(tpg, listq);
   1327 					uvm_pagefree(tpg);
   1328 					if (pagedaemon)
   1329 						uvmexp.pdfreed++;
   1330 				}
   1331 			}
   1332 		}
   1333 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1334 			uvm_unlock_pageq();
   1335 		}
   1336 		if (needs_clean) {
   1337 
   1338 			/*
   1339 			 * start the i/o.  if we're traversing by list,
   1340 			 * keep our place in the list with a marker page.
   1341 			 */
   1342 
   1343 			if (by_list) {
   1344 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1345 				    listq);
   1346 			}
   1347 			simple_unlock(slock);
   1348 			error = GOP_WRITE(vp, pgs, npages, flags);
   1349 			simple_lock(slock);
   1350 			if (by_list) {
   1351 				pg = TAILQ_NEXT(&curmp, listq);
   1352 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1353 			}
   1354 			if (error) {
   1355 				break;
   1356 			}
   1357 			if (by_list) {
   1358 				continue;
   1359 			}
   1360 		}
   1361 
   1362 		/*
   1363 		 * find the next page and continue if there was no error.
   1364 		 */
   1365 
   1366 		if (by_list) {
   1367 			if (nextpg) {
   1368 				pg = nextpg;
   1369 				nextpg = NULL;
   1370 			} else {
   1371 				pg = TAILQ_NEXT(pg, listq);
   1372 			}
   1373 		} else {
   1374 			off += (npages - nback) << PAGE_SHIFT;
   1375 			if (off < endoff) {
   1376 				pg = uvm_pagelookup(uobj, off);
   1377 			}
   1378 		}
   1379 	}
   1380 	if (by_list) {
   1381 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1382 		PRELE(l);
   1383 	}
   1384 
   1385 	/*
   1386 	 * if we're cleaning and there was nothing to clean,
   1387 	 * take us off the syncer list.  if we started any i/o
   1388 	 * and we're doing sync i/o, wait for all writes to finish.
   1389 	 */
   1390 
   1391 	s = splbio();
   1392 	if ((flags & PGO_CLEANIT) && wasclean &&
   1393 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1394 	    LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1395 	    (vp->v_flag & VONWORKLST)) {
   1396 		vp->v_flag &= ~VONWORKLST;
   1397 		LIST_REMOVE(vp, v_synclist);
   1398 	}
   1399 	splx(s);
   1400 	if (!wasclean && !async) {
   1401 		s = splbio();
   1402 		/*
   1403 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1404 		 *	 but the slot in ltsleep() is taken!
   1405 		 * XXX - try to recover from missed wakeups with a timeout..
   1406 		 *	 must think of something better.
   1407 		 */
   1408 		while (vp->v_numoutput != 0) {
   1409 			vp->v_flag |= VBWAIT;
   1410 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
   1411 			    "genput2", hz);
   1412 			simple_lock(slock);
   1413 		}
   1414 		splx(s);
   1415 	}
   1416 	simple_unlock(&uobj->vmobjlock);
   1417 	return (error);
   1418 }
   1419 
   1420 int
   1421 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1422 {
   1423 	int s, error, run;
   1424 	int fs_bshift, dev_bshift;
   1425 	vaddr_t kva;
   1426 	off_t eof, offset, startoffset;
   1427 	size_t bytes, iobytes, skipbytes;
   1428 	daddr_t lbn, blkno;
   1429 	struct vm_page *pg;
   1430 	struct buf *mbp, *bp;
   1431 	struct vnode *devvp;
   1432 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1433 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
   1434 
   1435 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1436 	    vp, pgs, npages, flags);
   1437 
   1438 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
   1439 	if (vp->v_type == VREG) {
   1440 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1441 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1442 	} else {
   1443 		fs_bshift = DEV_BSHIFT;
   1444 		dev_bshift = DEV_BSHIFT;
   1445 	}
   1446 	error = 0;
   1447 	pg = pgs[0];
   1448 	startoffset = pg->offset;
   1449 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1450 	skipbytes = 0;
   1451 	KASSERT(bytes != 0);
   1452 
   1453 	kva = uvm_pagermapin(pgs, npages,
   1454 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1455 
   1456 	s = splbio();
   1457 	simple_lock(&global_v_numoutput_slock);
   1458 	vp->v_numoutput += 2;
   1459 	simple_unlock(&global_v_numoutput_slock);
   1460 	mbp = pool_get(&bufpool, PR_WAITOK);
   1461 	BUF_INIT(mbp);
   1462 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1463 	    vp, mbp, vp->v_numoutput, bytes);
   1464 	splx(s);
   1465 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1466 	mbp->b_data = (void *)kva;
   1467 	mbp->b_resid = mbp->b_bcount = bytes;
   1468 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
   1469 	mbp->b_iodone = uvm_aio_biodone;
   1470 	mbp->b_vp = vp;
   1471 
   1472 	bp = NULL;
   1473 	for (offset = startoffset;
   1474 	    bytes > 0;
   1475 	    offset += iobytes, bytes -= iobytes) {
   1476 		lbn = offset >> fs_bshift;
   1477 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1478 		if (error) {
   1479 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1480 			skipbytes += bytes;
   1481 			bytes = 0;
   1482 			break;
   1483 		}
   1484 
   1485 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1486 		    bytes);
   1487 		if (blkno == (daddr_t)-1) {
   1488 			skipbytes += iobytes;
   1489 			continue;
   1490 		}
   1491 
   1492 		/* if it's really one i/o, don't make a second buf */
   1493 		if (offset == startoffset && iobytes == bytes) {
   1494 			bp = mbp;
   1495 		} else {
   1496 			s = splbio();
   1497 			V_INCR_NUMOUTPUT(vp);
   1498 			bp = pool_get(&bufpool, PR_WAITOK);
   1499 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1500 			    vp, bp, vp->v_numoutput, 0);
   1501 			splx(s);
   1502 			BUF_INIT(bp);
   1503 			bp->b_data = (char *)kva +
   1504 			    (vaddr_t)(offset - pg->offset);
   1505 			bp->b_resid = bp->b_bcount = iobytes;
   1506 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
   1507 			bp->b_iodone = uvm_aio_biodone1;
   1508 			bp->b_vp = vp;
   1509 		}
   1510 		bp->b_lblkno = 0;
   1511 		bp->b_private = mbp;
   1512 		if (devvp->v_type == VBLK) {
   1513 			bp->b_dev = devvp->v_rdev;
   1514 		}
   1515 
   1516 		/* adjust physical blkno for partial blocks */
   1517 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1518 		    dev_bshift);
   1519 		UVMHIST_LOG(ubchist,
   1520 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1521 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1522 		if (curproc == uvm.pagedaemon_proc)
   1523 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1524 		else if (async)
   1525 			BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
   1526 		else
   1527 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1528 		VOP_STRATEGY(bp->b_vp, bp);
   1529 	}
   1530 	if (skipbytes) {
   1531 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1532 		s = splbio();
   1533 		if (error) {
   1534 			mbp->b_flags |= B_ERROR;
   1535 			mbp->b_error = error;
   1536 		}
   1537 		mbp->b_resid -= skipbytes;
   1538 		if (mbp->b_resid == 0) {
   1539 			biodone(mbp);
   1540 		}
   1541 		splx(s);
   1542 	}
   1543 	if (async) {
   1544 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1545 		return (0);
   1546 	}
   1547 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1548 	error = biowait(mbp);
   1549 	uvm_aio_aiodone(mbp);
   1550 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1551 	return (error);
   1552 }
   1553 
   1554 /*
   1555  * VOP_PUTPAGES() for vnodes which never have pages.
   1556  */
   1557 
   1558 int
   1559 genfs_null_putpages(void *v)
   1560 {
   1561 	struct vop_putpages_args /* {
   1562 		struct vnode *a_vp;
   1563 		voff_t a_offlo;
   1564 		voff_t a_offhi;
   1565 		int a_flags;
   1566 	} */ *ap = v;
   1567 	struct vnode *vp = ap->a_vp;
   1568 
   1569 	KASSERT(vp->v_uobj.uo_npages == 0);
   1570 	simple_unlock(&vp->v_interlock);
   1571 	return (0);
   1572 }
   1573 
   1574 void
   1575 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
   1576 {
   1577 	struct genfs_node *gp = VTOG(vp);
   1578 
   1579 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
   1580 	gp->g_op = ops;
   1581 }
   1582 
   1583 void
   1584 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   1585 {
   1586 	int bsize;
   1587 
   1588 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1589 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1590 }
   1591 
   1592 int
   1593 genfs_compat_getpages(void *v)
   1594 {
   1595 	struct vop_getpages_args /* {
   1596 		struct vnode *a_vp;
   1597 		voff_t a_offset;
   1598 		struct vm_page **a_m;
   1599 		int *a_count;
   1600 		int a_centeridx;
   1601 		vm_prot_t a_access_type;
   1602 		int a_advice;
   1603 		int a_flags;
   1604 	} */ *ap = v;
   1605 
   1606 	off_t origoffset;
   1607 	struct vnode *vp = ap->a_vp;
   1608 	struct uvm_object *uobj = &vp->v_uobj;
   1609 	struct vm_page *pg, **pgs;
   1610 	vaddr_t kva;
   1611 	int i, error, orignpages, npages;
   1612 	struct iovec iov;
   1613 	struct uio uio;
   1614 	struct ucred *cred = curproc->p_ucred;
   1615 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1616 
   1617 	error = 0;
   1618 	origoffset = ap->a_offset;
   1619 	orignpages = *ap->a_count;
   1620 	pgs = ap->a_m;
   1621 
   1622 	if (write && (vp->v_flag & VONWORKLST) == 0) {
   1623 		vn_syncer_add_to_worklist(vp, filedelay);
   1624 	}
   1625 	if (ap->a_flags & PGO_LOCKED) {
   1626 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1627 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1628 
   1629 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1630 	}
   1631 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1632 		simple_unlock(&uobj->vmobjlock);
   1633 		return (EINVAL);
   1634 	}
   1635 	npages = orignpages;
   1636 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1637 	simple_unlock(&uobj->vmobjlock);
   1638 	kva = uvm_pagermapin(pgs, npages,
   1639 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1640 	for (i = 0; i < npages; i++) {
   1641 		pg = pgs[i];
   1642 		if ((pg->flags & PG_FAKE) == 0) {
   1643 			continue;
   1644 		}
   1645 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1646 		iov.iov_len = PAGE_SIZE;
   1647 		uio.uio_iov = &iov;
   1648 		uio.uio_iovcnt = 1;
   1649 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1650 		uio.uio_segflg = UIO_SYSSPACE;
   1651 		uio.uio_rw = UIO_READ;
   1652 		uio.uio_resid = PAGE_SIZE;
   1653 		uio.uio_procp = NULL;
   1654 		/* XXX vn_lock */
   1655 		error = VOP_READ(vp, &uio, 0, cred);
   1656 		if (error) {
   1657 			break;
   1658 		}
   1659 		if (uio.uio_resid) {
   1660 			memset(iov.iov_base, 0, uio.uio_resid);
   1661 		}
   1662 	}
   1663 	uvm_pagermapout(kva, npages);
   1664 	simple_lock(&uobj->vmobjlock);
   1665 	uvm_lock_pageq();
   1666 	for (i = 0; i < npages; i++) {
   1667 		pg = pgs[i];
   1668 		if (error && (pg->flags & PG_FAKE) != 0) {
   1669 			pg->flags |= PG_RELEASED;
   1670 		} else {
   1671 			pmap_clear_modify(pg);
   1672 			uvm_pageactivate(pg);
   1673 		}
   1674 	}
   1675 	if (error) {
   1676 		uvm_page_unbusy(pgs, npages);
   1677 	}
   1678 	uvm_unlock_pageq();
   1679 	simple_unlock(&uobj->vmobjlock);
   1680 	return (error);
   1681 }
   1682 
   1683 int
   1684 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1685     int flags)
   1686 {
   1687 	off_t offset;
   1688 	struct iovec iov;
   1689 	struct uio uio;
   1690 	struct ucred *cred = curproc->p_ucred;
   1691 	struct buf *bp;
   1692 	vaddr_t kva;
   1693 	int s, error;
   1694 
   1695 	offset = pgs[0]->offset;
   1696 	kva = uvm_pagermapin(pgs, npages,
   1697 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1698 
   1699 	iov.iov_base = (void *)kva;
   1700 	iov.iov_len = npages << PAGE_SHIFT;
   1701 	uio.uio_iov = &iov;
   1702 	uio.uio_iovcnt = 1;
   1703 	uio.uio_offset = offset;
   1704 	uio.uio_segflg = UIO_SYSSPACE;
   1705 	uio.uio_rw = UIO_WRITE;
   1706 	uio.uio_resid = npages << PAGE_SHIFT;
   1707 	uio.uio_procp = NULL;
   1708 	/* XXX vn_lock */
   1709 	error = VOP_WRITE(vp, &uio, 0, cred);
   1710 
   1711 	s = splbio();
   1712 	V_INCR_NUMOUTPUT(vp);
   1713 	bp = pool_get(&bufpool, PR_WAITOK);
   1714 	splx(s);
   1715 
   1716 	BUF_INIT(bp);
   1717 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1718 	bp->b_vp = vp;
   1719 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1720 	bp->b_data = (char *)kva;
   1721 	bp->b_bcount = npages << PAGE_SHIFT;
   1722 	bp->b_bufsize = npages << PAGE_SHIFT;
   1723 	bp->b_resid = 0;
   1724 	if (error) {
   1725 		bp->b_flags |= B_ERROR;
   1726 		bp->b_error = error;
   1727 	}
   1728 	uvm_aio_aiodone(bp);
   1729 	return (error);
   1730 }
   1731 
   1732 static void
   1733 filt_genfsdetach(struct knote *kn)
   1734 {
   1735 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1736 
   1737 	/* XXXLUKEM lock the struct? */
   1738 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
   1739 }
   1740 
   1741 static int
   1742 filt_genfsread(struct knote *kn, long hint)
   1743 {
   1744 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1745 
   1746 	/*
   1747 	 * filesystem is gone, so set the EOF flag and schedule
   1748 	 * the knote for deletion.
   1749 	 */
   1750 	if (hint == NOTE_REVOKE) {
   1751 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1752 		return (1);
   1753 	}
   1754 
   1755 	/* XXXLUKEM lock the struct? */
   1756 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
   1757         return (kn->kn_data != 0);
   1758 }
   1759 
   1760 static int
   1761 filt_genfsvnode(struct knote *kn, long hint)
   1762 {
   1763 
   1764 	if (kn->kn_sfflags & hint)
   1765 		kn->kn_fflags |= hint;
   1766 	if (hint == NOTE_REVOKE) {
   1767 		kn->kn_flags |= EV_EOF;
   1768 		return (1);
   1769 	}
   1770 	return (kn->kn_fflags != 0);
   1771 }
   1772 
   1773 static const struct filterops genfsread_filtops =
   1774 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
   1775 static const struct filterops genfsvnode_filtops =
   1776 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
   1777 
   1778 int
   1779 genfs_kqfilter(void *v)
   1780 {
   1781 	struct vop_kqfilter_args /* {
   1782 		struct vnode	*a_vp;
   1783 		struct knote	*a_kn;
   1784 	} */ *ap = v;
   1785 	struct vnode *vp;
   1786 	struct knote *kn;
   1787 
   1788 	vp = ap->a_vp;
   1789 	kn = ap->a_kn;
   1790 	switch (kn->kn_filter) {
   1791 	case EVFILT_READ:
   1792 		kn->kn_fop = &genfsread_filtops;
   1793 		break;
   1794 	case EVFILT_VNODE:
   1795 		kn->kn_fop = &genfsvnode_filtops;
   1796 		break;
   1797 	default:
   1798 		return (1);
   1799 	}
   1800 
   1801 	kn->kn_hook = vp;
   1802 
   1803 	/* XXXLUKEM lock the struct? */
   1804 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
   1805 
   1806 	return (0);
   1807 }
   1808