genfs_vnops.c revision 1.103 1 /* $NetBSD: genfs_vnops.c,v 1.103 2005/07/23 12:18:41 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.103 2005/07/23 12:18:41 yamt Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67
68 static __inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72
73
74 #define MAX_READ_AHEAD 16 /* XXXUBC 16 */
75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
76 int genfs_racount = 2; /* # of page chunks to readahead */
77 int genfs_raskip = 2; /* # of busy page chunks allowed to skip */
78
79 int
80 genfs_poll(void *v)
81 {
82 struct vop_poll_args /* {
83 struct vnode *a_vp;
84 int a_events;
85 struct proc *a_p;
86 } */ *ap = v;
87
88 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
89 }
90
91 int
92 genfs_fsync(void *v)
93 {
94 struct vop_fsync_args /* {
95 struct vnode *a_vp;
96 struct ucred *a_cred;
97 int a_flags;
98 off_t offlo;
99 off_t offhi;
100 struct proc *a_p;
101 } */ *ap = v;
102 struct vnode *vp = ap->a_vp, *dvp;
103 int wait;
104 int error;
105
106 wait = (ap->a_flags & FSYNC_WAIT) != 0;
107 vflushbuf(vp, wait);
108 if ((ap->a_flags & FSYNC_DATAONLY) != 0)
109 error = 0;
110 else
111 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
112
113 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
114 int l = 0;
115 if (VOP_BMAP(vp, 0, &dvp, NULL, NULL))
116 error = ENXIO;
117 else
118 error = VOP_IOCTL(dvp, DIOCCACHESYNC, &l, FWRITE,
119 ap->a_p->p_ucred, ap->a_p);
120 }
121
122 return (error);
123 }
124
125 int
126 genfs_seek(void *v)
127 {
128 struct vop_seek_args /* {
129 struct vnode *a_vp;
130 off_t a_oldoff;
131 off_t a_newoff;
132 struct ucred *a_ucred;
133 } */ *ap = v;
134
135 if (ap->a_newoff < 0)
136 return (EINVAL);
137
138 return (0);
139 }
140
141 int
142 genfs_abortop(void *v)
143 {
144 struct vop_abortop_args /* {
145 struct vnode *a_dvp;
146 struct componentname *a_cnp;
147 } */ *ap = v;
148
149 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
150 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
151 return (0);
152 }
153
154 int
155 genfs_fcntl(void *v)
156 {
157 struct vop_fcntl_args /* {
158 struct vnode *a_vp;
159 u_int a_command;
160 caddr_t a_data;
161 int a_fflag;
162 struct ucred *a_cred;
163 struct proc *a_p;
164 } */ *ap = v;
165
166 if (ap->a_command == F_SETFL)
167 return (0);
168 else
169 return (EOPNOTSUPP);
170 }
171
172 /*ARGSUSED*/
173 int
174 genfs_badop(void *v)
175 {
176
177 panic("genfs: bad op");
178 }
179
180 /*ARGSUSED*/
181 int
182 genfs_nullop(void *v)
183 {
184
185 return (0);
186 }
187
188 /*ARGSUSED*/
189 int
190 genfs_einval(void *v)
191 {
192
193 return (EINVAL);
194 }
195
196 /*
197 * Called when an fs doesn't support a particular vop.
198 * This takes care to vrele, vput, or vunlock passed in vnodes.
199 */
200 int
201 genfs_eopnotsupp(void *v)
202 {
203 struct vop_generic_args /*
204 struct vnodeop_desc *a_desc;
205 / * other random data follows, presumably * /
206 } */ *ap = v;
207 struct vnodeop_desc *desc = ap->a_desc;
208 struct vnode *vp, *vp_last = NULL;
209 int flags, i, j, offset;
210
211 flags = desc->vdesc_flags;
212 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
213 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
214 break; /* stop at end of list */
215 if ((j = flags & VDESC_VP0_WILLPUT)) {
216 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
217
218 /* Skip if NULL */
219 if (!vp)
220 continue;
221
222 switch (j) {
223 case VDESC_VP0_WILLPUT:
224 /* Check for dvp == vp cases */
225 if (vp == vp_last)
226 vrele(vp);
227 else {
228 vput(vp);
229 vp_last = vp;
230 }
231 break;
232 case VDESC_VP0_WILLUNLOCK:
233 VOP_UNLOCK(vp, 0);
234 break;
235 case VDESC_VP0_WILLRELE:
236 vrele(vp);
237 break;
238 }
239 }
240 }
241
242 return (EOPNOTSUPP);
243 }
244
245 /*ARGSUSED*/
246 int
247 genfs_ebadf(void *v)
248 {
249
250 return (EBADF);
251 }
252
253 /* ARGSUSED */
254 int
255 genfs_enoioctl(void *v)
256 {
257
258 return (EPASSTHROUGH);
259 }
260
261
262 /*
263 * Eliminate all activity associated with the requested vnode
264 * and with all vnodes aliased to the requested vnode.
265 */
266 int
267 genfs_revoke(void *v)
268 {
269 struct vop_revoke_args /* {
270 struct vnode *a_vp;
271 int a_flags;
272 } */ *ap = v;
273 struct vnode *vp, *vq;
274 struct proc *p = curproc; /* XXX */
275
276 #ifdef DIAGNOSTIC
277 if ((ap->a_flags & REVOKEALL) == 0)
278 panic("genfs_revoke: not revokeall");
279 #endif
280
281 vp = ap->a_vp;
282 simple_lock(&vp->v_interlock);
283
284 if (vp->v_flag & VALIASED) {
285 /*
286 * If a vgone (or vclean) is already in progress,
287 * wait until it is done and return.
288 */
289 if (vp->v_flag & VXLOCK) {
290 vp->v_flag |= VXWANT;
291 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
292 &vp->v_interlock);
293 return (0);
294 }
295 /*
296 * Ensure that vp will not be vgone'd while we
297 * are eliminating its aliases.
298 */
299 vp->v_flag |= VXLOCK;
300 simple_unlock(&vp->v_interlock);
301 while (vp->v_flag & VALIASED) {
302 simple_lock(&spechash_slock);
303 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
304 if (vq->v_rdev != vp->v_rdev ||
305 vq->v_type != vp->v_type || vp == vq)
306 continue;
307 simple_unlock(&spechash_slock);
308 vgone(vq);
309 break;
310 }
311 if (vq == NULLVP)
312 simple_unlock(&spechash_slock);
313 }
314 /*
315 * Remove the lock so that vgone below will
316 * really eliminate the vnode after which time
317 * vgone will awaken any sleepers.
318 */
319 simple_lock(&vp->v_interlock);
320 vp->v_flag &= ~VXLOCK;
321 }
322 vgonel(vp, p);
323 return (0);
324 }
325
326 /*
327 * Lock the node.
328 */
329 int
330 genfs_lock(void *v)
331 {
332 struct vop_lock_args /* {
333 struct vnode *a_vp;
334 int a_flags;
335 } */ *ap = v;
336 struct vnode *vp = ap->a_vp;
337
338 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
339 }
340
341 /*
342 * Unlock the node.
343 */
344 int
345 genfs_unlock(void *v)
346 {
347 struct vop_unlock_args /* {
348 struct vnode *a_vp;
349 int a_flags;
350 } */ *ap = v;
351 struct vnode *vp = ap->a_vp;
352
353 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
354 &vp->v_interlock));
355 }
356
357 /*
358 * Return whether or not the node is locked.
359 */
360 int
361 genfs_islocked(void *v)
362 {
363 struct vop_islocked_args /* {
364 struct vnode *a_vp;
365 } */ *ap = v;
366 struct vnode *vp = ap->a_vp;
367
368 return (lockstatus(vp->v_vnlock));
369 }
370
371 /*
372 * Stubs to use when there is no locking to be done on the underlying object.
373 */
374 int
375 genfs_nolock(void *v)
376 {
377 struct vop_lock_args /* {
378 struct vnode *a_vp;
379 int a_flags;
380 struct proc *a_p;
381 } */ *ap = v;
382
383 /*
384 * Since we are not using the lock manager, we must clear
385 * the interlock here.
386 */
387 if (ap->a_flags & LK_INTERLOCK)
388 simple_unlock(&ap->a_vp->v_interlock);
389 return (0);
390 }
391
392 int
393 genfs_nounlock(void *v)
394 {
395
396 return (0);
397 }
398
399 int
400 genfs_noislocked(void *v)
401 {
402
403 return (0);
404 }
405
406 /*
407 * Local lease check for NFS servers. Just set up args and let
408 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
409 * this is a null operation.
410 */
411 int
412 genfs_lease_check(void *v)
413 {
414 #ifdef NFSSERVER
415 struct vop_lease_args /* {
416 struct vnode *a_vp;
417 struct proc *a_p;
418 struct ucred *a_cred;
419 int a_flag;
420 } */ *ap = v;
421 u_int32_t duration = 0;
422 int cache;
423 u_quad_t frev;
424
425 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
426 NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
427 return (0);
428 #else
429 return (0);
430 #endif /* NFSSERVER */
431 }
432
433 int
434 genfs_mmap(void *v)
435 {
436
437 return (0);
438 }
439
440 static __inline void
441 genfs_rel_pages(struct vm_page **pgs, int npages)
442 {
443 int i;
444
445 for (i = 0; i < npages; i++) {
446 struct vm_page *pg = pgs[i];
447
448 if (pg == NULL)
449 continue;
450 if (pg->flags & PG_FAKE) {
451 pg->flags |= PG_RELEASED;
452 }
453 }
454 uvm_lock_pageq();
455 uvm_page_unbusy(pgs, npages);
456 uvm_unlock_pageq();
457 }
458
459 /*
460 * generic VM getpages routine.
461 * Return PG_BUSY pages for the given range,
462 * reading from backing store if necessary.
463 */
464
465 int
466 genfs_getpages(void *v)
467 {
468 struct vop_getpages_args /* {
469 struct vnode *a_vp;
470 voff_t a_offset;
471 struct vm_page **a_m;
472 int *a_count;
473 int a_centeridx;
474 vm_prot_t a_access_type;
475 int a_advice;
476 int a_flags;
477 } */ *ap = v;
478
479 off_t newsize, diskeof, memeof;
480 off_t offset, origoffset, startoffset, endoffset, raoffset;
481 daddr_t lbn, blkno;
482 int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
483 int fs_bshift, fs_bsize, dev_bshift;
484 int flags = ap->a_flags;
485 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
486 vaddr_t kva;
487 struct buf *bp, *mbp;
488 struct vnode *vp = ap->a_vp;
489 struct vnode *devvp;
490 struct genfs_node *gp = VTOG(vp);
491 struct uvm_object *uobj = &vp->v_uobj;
492 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
493 int pgs_size;
494 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
495 boolean_t async = (flags & PGO_SYNCIO) == 0;
496 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
497 boolean_t sawhole = FALSE;
498 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
499 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
500 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
501
502 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
503 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
504
505 /* XXXUBC temp limit */
506 if (*ap->a_count > MAX_READ_AHEAD) {
507 panic("genfs_getpages: too many pages");
508 }
509
510 error = 0;
511 origoffset = ap->a_offset;
512 orignpages = *ap->a_count;
513 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
514 if (flags & PGO_PASTEOF) {
515 newsize = MAX(vp->v_size,
516 origoffset + (orignpages << PAGE_SHIFT));
517 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
518 } else {
519 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
520 }
521 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
522 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
523 KASSERT(orignpages > 0);
524
525 /*
526 * Bounds-check the request.
527 */
528
529 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
530 if ((flags & PGO_LOCKED) == 0) {
531 simple_unlock(&uobj->vmobjlock);
532 }
533 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
534 origoffset, *ap->a_count, memeof,0);
535 return (EINVAL);
536 }
537
538 /* uobj is locked */
539
540 if ((flags & PGO_NOTIMESTAMP) == 0 &&
541 (vp->v_type == VREG ||
542 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
543 int updflags = 0;
544
545 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
546 updflags = GOP_UPDATE_ACCESSED;
547 }
548 if (write) {
549 updflags |= GOP_UPDATE_MODIFIED;
550 }
551 if (updflags != 0) {
552 GOP_MARKUPDATE(vp, updflags);
553 }
554 }
555
556 if (write) {
557 gp->g_dirtygen++;
558 if ((vp->v_flag & VONWORKLST) == 0) {
559 vn_syncer_add_to_worklist(vp, filedelay);
560 }
561 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
562 vp->v_flag |= VWRITEMAPDIRTY;
563 }
564 }
565
566 /*
567 * For PGO_LOCKED requests, just return whatever's in memory.
568 */
569
570 if (flags & PGO_LOCKED) {
571 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
572 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
573
574 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
575 }
576
577 /*
578 * find the requested pages and make some simple checks.
579 * leave space in the page array for a whole block.
580 */
581
582 if (vp->v_type == VREG) {
583 fs_bshift = vp->v_mount->mnt_fs_bshift;
584 dev_bshift = vp->v_mount->mnt_dev_bshift;
585 } else {
586 fs_bshift = DEV_BSHIFT;
587 dev_bshift = DEV_BSHIFT;
588 }
589 fs_bsize = 1 << fs_bshift;
590
591 orignpages = MIN(orignpages,
592 round_page(memeof - origoffset) >> PAGE_SHIFT);
593 npages = orignpages;
594 startoffset = origoffset & ~(fs_bsize - 1);
595 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
596 fs_bsize - 1) & ~(fs_bsize - 1));
597 endoffset = MIN(endoffset, round_page(memeof));
598 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
599
600 pgs_size = sizeof(struct vm_page *) *
601 ((endoffset - startoffset) >> PAGE_SHIFT);
602 if (pgs_size > sizeof(pgs_onstack)) {
603 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
604 if (pgs == NULL) {
605 simple_unlock(&uobj->vmobjlock);
606 return (ENOMEM);
607 }
608 } else {
609 pgs = pgs_onstack;
610 memset(pgs, 0, pgs_size);
611 }
612 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
613 ridx, npages, startoffset, endoffset);
614 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
615 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
616 KASSERT(async != 0);
617 genfs_rel_pages(&pgs[ridx], orignpages);
618 simple_unlock(&uobj->vmobjlock);
619 if (pgs != pgs_onstack)
620 free(pgs, M_DEVBUF);
621 return (EBUSY);
622 }
623
624 /*
625 * if the pages are already resident, just return them.
626 */
627
628 for (i = 0; i < npages; i++) {
629 struct vm_page *pg1 = pgs[ridx + i];
630
631 if ((pg1->flags & PG_FAKE) ||
632 (blockalloc && (pg1->flags & PG_RDONLY))) {
633 break;
634 }
635 }
636 if (i == npages) {
637 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
638 raoffset = origoffset + (orignpages << PAGE_SHIFT);
639 npages += ridx;
640 goto raout;
641 }
642
643 /*
644 * if PGO_OVERWRITE is set, don't bother reading the pages.
645 */
646
647 if (flags & PGO_OVERWRITE) {
648 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
649
650 for (i = 0; i < npages; i++) {
651 struct vm_page *pg1 = pgs[ridx + i];
652
653 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
654 }
655 npages += ridx;
656 goto out;
657 }
658
659 /*
660 * the page wasn't resident and we're not overwriting,
661 * so we're going to have to do some i/o.
662 * find any additional pages needed to cover the expanded range.
663 */
664
665 npages = (endoffset - startoffset) >> PAGE_SHIFT;
666 if (startoffset != origoffset || npages != orignpages) {
667
668 /*
669 * we need to avoid deadlocks caused by locking
670 * additional pages at lower offsets than pages we
671 * already have locked. unlock them all and start over.
672 */
673
674 genfs_rel_pages(&pgs[ridx], orignpages);
675 memset(pgs, 0, pgs_size);
676
677 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
678 startoffset, endoffset, 0,0);
679 npgs = npages;
680 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
681 async ? UFP_NOWAIT : UFP_ALL) != npages) {
682 KASSERT(async != 0);
683 genfs_rel_pages(pgs, npages);
684 simple_unlock(&uobj->vmobjlock);
685 if (pgs != pgs_onstack)
686 free(pgs, M_DEVBUF);
687 return (EBUSY);
688 }
689 }
690 simple_unlock(&uobj->vmobjlock);
691
692 /*
693 * read the desired page(s).
694 */
695
696 totalbytes = npages << PAGE_SHIFT;
697 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
698 tailbytes = totalbytes - bytes;
699 skipbytes = 0;
700
701 kva = uvm_pagermapin(pgs, npages,
702 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
703
704 s = splbio();
705 mbp = pool_get(&bufpool, PR_WAITOK);
706 splx(s);
707 BUF_INIT(mbp);
708 mbp->b_bufsize = totalbytes;
709 mbp->b_data = (void *)kva;
710 mbp->b_resid = mbp->b_bcount = bytes;
711 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
712 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
713 mbp->b_vp = vp;
714
715 /*
716 * if EOF is in the middle of the range, zero the part past EOF.
717 * if the page including EOF is not PG_FAKE, skip over it since
718 * in that case it has valid data that we need to preserve.
719 */
720
721 if (tailbytes > 0) {
722 size_t tailstart = bytes;
723
724 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
725 tailstart = round_page(tailstart);
726 tailbytes -= tailstart - bytes;
727 }
728 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
729 kva, tailstart, tailbytes,0);
730 memset((void *)(kva + tailstart), 0, tailbytes);
731 }
732
733 /*
734 * now loop over the pages, reading as needed.
735 */
736
737 if (blockalloc) {
738 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
739 } else {
740 lockmgr(&gp->g_glock, LK_SHARED, NULL);
741 }
742
743 bp = NULL;
744 for (offset = startoffset;
745 bytes > 0;
746 offset += iobytes, bytes -= iobytes) {
747
748 /*
749 * skip pages which don't need to be read.
750 */
751
752 pidx = (offset - startoffset) >> PAGE_SHIFT;
753 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
754 size_t b;
755
756 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
757 if ((pgs[pidx]->flags & PG_RDONLY)) {
758 sawhole = TRUE;
759 }
760 b = MIN(PAGE_SIZE, bytes);
761 offset += b;
762 bytes -= b;
763 skipbytes += b;
764 pidx++;
765 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
766 offset, 0,0,0);
767 if (bytes == 0) {
768 goto loopdone;
769 }
770 }
771
772 /*
773 * bmap the file to find out the blkno to read from and
774 * how much we can read in one i/o. if bmap returns an error,
775 * skip the rest of the top-level i/o.
776 */
777
778 lbn = offset >> fs_bshift;
779 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
780 if (error) {
781 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
782 lbn, error,0,0);
783 skipbytes += bytes;
784 goto loopdone;
785 }
786
787 /*
788 * see how many pages can be read with this i/o.
789 * reduce the i/o size if necessary to avoid
790 * overwriting pages with valid data.
791 */
792
793 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
794 bytes);
795 if (offset + iobytes > round_page(offset)) {
796 pcount = 1;
797 while (pidx + pcount < npages &&
798 pgs[pidx + pcount]->flags & PG_FAKE) {
799 pcount++;
800 }
801 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
802 (offset - trunc_page(offset)));
803 }
804
805 /*
806 * if this block isn't allocated, zero it instead of
807 * reading it. unless we are going to allocate blocks,
808 * mark the pages we zeroed PG_RDONLY.
809 */
810
811 if (blkno < 0) {
812 int holepages = (round_page(offset + iobytes) -
813 trunc_page(offset)) >> PAGE_SHIFT;
814 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
815
816 sawhole = TRUE;
817 memset((char *)kva + (offset - startoffset), 0,
818 iobytes);
819 skipbytes += iobytes;
820
821 for (i = 0; i < holepages; i++) {
822 if (write) {
823 pgs[pidx + i]->flags &= ~PG_CLEAN;
824 }
825 if (!blockalloc) {
826 pgs[pidx + i]->flags |= PG_RDONLY;
827 }
828 }
829 continue;
830 }
831
832 /*
833 * allocate a sub-buf for this piece of the i/o
834 * (or just use mbp if there's only 1 piece),
835 * and start it going.
836 */
837
838 if (offset == startoffset && iobytes == bytes) {
839 bp = mbp;
840 } else {
841 s = splbio();
842 bp = pool_get(&bufpool, PR_WAITOK);
843 splx(s);
844 BUF_INIT(bp);
845 bp->b_data = (char *)kva + offset - startoffset;
846 bp->b_resid = bp->b_bcount = iobytes;
847 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
848 bp->b_iodone = uvm_aio_biodone1;
849 bp->b_vp = vp;
850 bp->b_proc = NULL;
851 }
852 bp->b_lblkno = 0;
853 bp->b_private = mbp;
854 if (devvp->v_type == VBLK) {
855 bp->b_dev = devvp->v_rdev;
856 }
857
858 /* adjust physical blkno for partial blocks */
859 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
860 dev_bshift);
861
862 UVMHIST_LOG(ubchist,
863 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
864 bp, offset, iobytes, bp->b_blkno);
865
866 if (async)
867 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
868 else
869 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
870 VOP_STRATEGY(bp->b_vp, bp);
871 }
872
873 loopdone:
874 if (skipbytes) {
875 s = splbio();
876 if (error) {
877 mbp->b_flags |= B_ERROR;
878 mbp->b_error = error;
879 }
880 mbp->b_resid -= skipbytes;
881 if (mbp->b_resid == 0) {
882 biodone(mbp);
883 }
884 splx(s);
885 }
886
887 if (async) {
888 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
889 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
890 if (pgs != pgs_onstack)
891 free(pgs, M_DEVBUF);
892 return (0);
893 }
894 if (bp != NULL) {
895 error = biowait(mbp);
896 }
897 s = splbio();
898 pool_put(&bufpool, mbp);
899 splx(s);
900 uvm_pagermapout(kva, npages);
901 raoffset = startoffset + totalbytes;
902
903 /*
904 * if this we encountered a hole then we have to do a little more work.
905 * for read faults, we marked the page PG_RDONLY so that future
906 * write accesses to the page will fault again.
907 * for write faults, we must make sure that the backing store for
908 * the page is completely allocated while the pages are locked.
909 */
910
911 if (!error && sawhole && blockalloc) {
912 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
913 cred);
914 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
915 startoffset, npages << PAGE_SHIFT, error,0);
916 if (!error) {
917 for (i = 0; i < npages; i++) {
918 if (pgs[i] == NULL) {
919 continue;
920 }
921 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
922 UVMHIST_LOG(ubchist, "mark dirty pg %p",
923 pgs[i],0,0,0);
924 }
925 }
926 }
927 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
928 simple_lock(&uobj->vmobjlock);
929
930 /*
931 * see if we want to start any readahead.
932 * XXXUBC for now, just read the next 128k on 64k boundaries.
933 * this is pretty nonsensical, but it is 50% faster than reading
934 * just the next 64k.
935 */
936
937 raout:
938 if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
939 PAGE_SHIFT <= 16) {
940 off_t rasize;
941 int rapages, err, j, skipped;
942
943 /* XXXUBC temp limit, from above */
944 rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
945 genfs_rapages);
946 rasize = rapages << PAGE_SHIFT;
947 for (j = skipped = 0; j < genfs_racount; j++) {
948
949 if (raoffset >= memeof)
950 break;
951
952 err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
953 VM_PROT_READ, 0, PGO_NOTIMESTAMP);
954 simple_lock(&uobj->vmobjlock);
955 if (err) {
956 if (err != EBUSY ||
957 skipped++ == genfs_raskip)
958 break;
959 }
960 raoffset += rasize;
961 rapages = rasize >> PAGE_SHIFT;
962 }
963 }
964
965 /*
966 * we're almost done! release the pages...
967 * for errors, we free the pages.
968 * otherwise we activate them and mark them as valid and clean.
969 * also, unbusy pages that were not actually requested.
970 */
971
972 if (error) {
973 for (i = 0; i < npages; i++) {
974 if (pgs[i] == NULL) {
975 continue;
976 }
977 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
978 pgs[i], pgs[i]->flags, 0,0);
979 if (pgs[i]->flags & PG_FAKE) {
980 pgs[i]->flags |= PG_RELEASED;
981 }
982 }
983 uvm_lock_pageq();
984 uvm_page_unbusy(pgs, npages);
985 uvm_unlock_pageq();
986 simple_unlock(&uobj->vmobjlock);
987 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
988 if (pgs != pgs_onstack)
989 free(pgs, M_DEVBUF);
990 return (error);
991 }
992
993 out:
994 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
995 uvm_lock_pageq();
996 for (i = 0; i < npages; i++) {
997 pg = pgs[i];
998 if (pg == NULL) {
999 continue;
1000 }
1001 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
1002 pg, pg->flags, 0,0);
1003 if (pg->flags & PG_FAKE && !overwrite) {
1004 pg->flags &= ~(PG_FAKE);
1005 pmap_clear_modify(pgs[i]);
1006 }
1007 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
1008 if (i < ridx || i >= ridx + orignpages || async) {
1009 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
1010 pg, pg->offset,0,0);
1011 if (pg->flags & PG_WANTED) {
1012 wakeup(pg);
1013 }
1014 if (pg->flags & PG_FAKE) {
1015 KASSERT(overwrite);
1016 uvm_pagezero(pg);
1017 }
1018 if (pg->flags & PG_RELEASED) {
1019 uvm_pagefree(pg);
1020 continue;
1021 }
1022 uvm_pageactivate(pg);
1023 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
1024 UVM_PAGE_OWN(pg, NULL);
1025 }
1026 }
1027 uvm_unlock_pageq();
1028 simple_unlock(&uobj->vmobjlock);
1029 if (ap->a_m != NULL) {
1030 memcpy(ap->a_m, &pgs[ridx],
1031 orignpages * sizeof(struct vm_page *));
1032 }
1033 if (pgs != pgs_onstack)
1034 free(pgs, M_DEVBUF);
1035 return (0);
1036 }
1037
1038 /*
1039 * generic VM putpages routine.
1040 * Write the given range of pages to backing store.
1041 *
1042 * => "offhi == 0" means flush all pages at or after "offlo".
1043 * => object should be locked by caller. we may _unlock_ the object
1044 * if (and only if) we need to clean a page (PGO_CLEANIT), or
1045 * if PGO_SYNCIO is set and there are pages busy.
1046 * we return with the object locked.
1047 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1048 * thus, a caller might want to unlock higher level resources
1049 * (e.g. vm_map) before calling flush.
1050 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1051 * unlock the object nor block.
1052 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1053 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1054 * that new pages are inserted on the tail end of the list. thus,
1055 * we can make a complete pass through the object in one go by starting
1056 * at the head and working towards the tail (new pages are put in
1057 * front of us).
1058 * => NOTE: we are allowed to lock the page queues, so the caller
1059 * must not be holding the page queue lock.
1060 *
1061 * note on "cleaning" object and PG_BUSY pages:
1062 * this routine is holding the lock on the object. the only time
1063 * that it can run into a PG_BUSY page that it does not own is if
1064 * some other process has started I/O on the page (e.g. either
1065 * a pagein, or a pageout). if the PG_BUSY page is being paged
1066 * in, then it can not be dirty (!PG_CLEAN) because no one has
1067 * had a chance to modify it yet. if the PG_BUSY page is being
1068 * paged out then it means that someone else has already started
1069 * cleaning the page for us (how nice!). in this case, if we
1070 * have syncio specified, then after we make our pass through the
1071 * object we need to wait for the other PG_BUSY pages to clear
1072 * off (i.e. we need to do an iosync). also note that once a
1073 * page is PG_BUSY it must stay in its object until it is un-busyed.
1074 *
1075 * note on page traversal:
1076 * we can traverse the pages in an object either by going down the
1077 * linked list in "uobj->memq", or we can go over the address range
1078 * by page doing hash table lookups for each address. depending
1079 * on how many pages are in the object it may be cheaper to do one
1080 * or the other. we set "by_list" to true if we are using memq.
1081 * if the cost of a hash lookup was equal to the cost of the list
1082 * traversal we could compare the number of pages in the start->stop
1083 * range to the total number of pages in the object. however, it
1084 * seems that a hash table lookup is more expensive than the linked
1085 * list traversal, so we multiply the number of pages in the
1086 * range by an estimate of the relatively higher cost of the hash lookup.
1087 */
1088
1089 int
1090 genfs_putpages(void *v)
1091 {
1092 struct vop_putpages_args /* {
1093 struct vnode *a_vp;
1094 voff_t a_offlo;
1095 voff_t a_offhi;
1096 int a_flags;
1097 } */ *ap = v;
1098 struct vnode *vp = ap->a_vp;
1099 struct uvm_object *uobj = &vp->v_uobj;
1100 struct simplelock *slock = &uobj->vmobjlock;
1101 off_t startoff = ap->a_offlo;
1102 off_t endoff = ap->a_offhi;
1103 off_t off;
1104 int flags = ap->a_flags;
1105 /* Even for strange MAXPHYS, the shift rounds down to a page */
1106 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1107 int i, s, error, npages, nback;
1108 int freeflag;
1109 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1110 boolean_t wasclean, by_list, needs_clean, yld;
1111 boolean_t async = (flags & PGO_SYNCIO) == 0;
1112 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1113 struct lwp *l = curlwp ? curlwp : &lwp0;
1114 struct genfs_node *gp = VTOG(vp);
1115 int dirtygen;
1116 boolean_t modified = FALSE;
1117
1118 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1119
1120 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1121 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1122 KASSERT(startoff < endoff || endoff == 0);
1123
1124 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1125 vp, uobj->uo_npages, startoff, endoff - startoff);
1126
1127 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1128 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1129 if (uobj->uo_npages == 0) {
1130 s = splbio();
1131 if (vp->v_flag & VONWORKLST) {
1132 vp->v_flag &= ~VWRITEMAPDIRTY;
1133 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1134 vp->v_flag &= ~VONWORKLST;
1135 LIST_REMOVE(vp, v_synclist);
1136 }
1137 }
1138 splx(s);
1139 simple_unlock(slock);
1140 return (0);
1141 }
1142
1143 /*
1144 * the vnode has pages, set up to process the request.
1145 */
1146
1147 error = 0;
1148 s = splbio();
1149 simple_lock(&global_v_numoutput_slock);
1150 wasclean = (vp->v_numoutput == 0);
1151 simple_unlock(&global_v_numoutput_slock);
1152 splx(s);
1153 off = startoff;
1154 if (endoff == 0 || flags & PGO_ALLPAGES) {
1155 endoff = trunc_page(LLONG_MAX);
1156 }
1157 by_list = (uobj->uo_npages <=
1158 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1159
1160 #if !defined(DEBUG)
1161 /*
1162 * if this vnode is known not to have dirty pages,
1163 * don't bother to clean it out.
1164 */
1165
1166 if ((vp->v_flag & VONWORKLST) == 0) {
1167 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1168 goto skip_scan;
1169 }
1170 flags &= ~PGO_CLEANIT;
1171 }
1172 #endif /* !defined(DEBUG) */
1173
1174 /*
1175 * start the loop. when scanning by list, hold the last page
1176 * in the list before we start. pages allocated after we start
1177 * will be added to the end of the list, so we can stop at the
1178 * current last page.
1179 */
1180
1181 dirtygen = gp->g_dirtygen;
1182 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1183 curmp.uobject = uobj;
1184 curmp.offset = (voff_t)-1;
1185 curmp.flags = PG_BUSY;
1186 endmp.uobject = uobj;
1187 endmp.offset = (voff_t)-1;
1188 endmp.flags = PG_BUSY;
1189 if (by_list) {
1190 pg = TAILQ_FIRST(&uobj->memq);
1191 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1192 PHOLD(l);
1193 } else {
1194 pg = uvm_pagelookup(uobj, off);
1195 }
1196 nextpg = NULL;
1197 while (by_list || off < endoff) {
1198
1199 /*
1200 * if the current page is not interesting, move on to the next.
1201 */
1202
1203 KASSERT(pg == NULL || pg->uobject == uobj);
1204 KASSERT(pg == NULL ||
1205 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1206 (pg->flags & PG_BUSY) != 0);
1207 if (by_list) {
1208 if (pg == &endmp) {
1209 break;
1210 }
1211 if (pg->offset < startoff || pg->offset >= endoff ||
1212 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1213 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1214 wasclean = FALSE;
1215 }
1216 pg = TAILQ_NEXT(pg, listq);
1217 continue;
1218 }
1219 off = pg->offset;
1220 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1221 if (pg != NULL) {
1222 wasclean = FALSE;
1223 }
1224 off += PAGE_SIZE;
1225 if (off < endoff) {
1226 pg = uvm_pagelookup(uobj, off);
1227 }
1228 continue;
1229 }
1230
1231 /*
1232 * if the current page needs to be cleaned and it's busy,
1233 * wait for it to become unbusy.
1234 */
1235
1236 yld = (l->l_cpu->ci_schedstate.spc_flags &
1237 SPCF_SHOULDYIELD) && !pagedaemon;
1238 if (pg->flags & PG_BUSY || yld) {
1239 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1240 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1241 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1242 error = EDEADLK;
1243 break;
1244 }
1245 KASSERT(!pagedaemon);
1246 if (by_list) {
1247 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1248 UVMHIST_LOG(ubchist, "curmp next %p",
1249 TAILQ_NEXT(&curmp, listq), 0,0,0);
1250 }
1251 if (yld) {
1252 simple_unlock(slock);
1253 preempt(1);
1254 simple_lock(slock);
1255 } else {
1256 pg->flags |= PG_WANTED;
1257 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1258 simple_lock(slock);
1259 }
1260 if (by_list) {
1261 UVMHIST_LOG(ubchist, "after next %p",
1262 TAILQ_NEXT(&curmp, listq), 0,0,0);
1263 pg = TAILQ_NEXT(&curmp, listq);
1264 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1265 } else {
1266 pg = uvm_pagelookup(uobj, off);
1267 }
1268 continue;
1269 }
1270
1271 /*
1272 * if we're freeing, remove all mappings of the page now.
1273 * if we're cleaning, check if the page is needs to be cleaned.
1274 */
1275
1276 if (flags & PGO_FREE) {
1277 pmap_page_protect(pg, VM_PROT_NONE);
1278 } else if (flags & PGO_CLEANIT) {
1279
1280 /*
1281 * if we still have some hope to pull this vnode off
1282 * from the syncer queue, write-protect the page.
1283 */
1284
1285 if (wasclean && gp->g_dirtygen == dirtygen &&
1286 startoff == 0 && endoff == trunc_page(LLONG_MAX)) {
1287 pmap_page_protect(pg,
1288 VM_PROT_READ|VM_PROT_EXECUTE);
1289 }
1290 }
1291
1292 if (flags & PGO_CLEANIT) {
1293 needs_clean = pmap_clear_modify(pg) ||
1294 (pg->flags & PG_CLEAN) == 0;
1295 pg->flags |= PG_CLEAN;
1296 } else {
1297 needs_clean = FALSE;
1298 }
1299
1300 /*
1301 * if we're cleaning, build a cluster.
1302 * the cluster will consist of pages which are currently dirty,
1303 * but they will be returned to us marked clean.
1304 * if not cleaning, just operate on the one page.
1305 */
1306
1307 if (needs_clean) {
1308 KDASSERT((vp->v_flag & VONWORKLST));
1309 wasclean = FALSE;
1310 memset(pgs, 0, sizeof(pgs));
1311 pg->flags |= PG_BUSY;
1312 UVM_PAGE_OWN(pg, "genfs_putpages");
1313
1314 /*
1315 * first look backward.
1316 */
1317
1318 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1319 nback = npages;
1320 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1321 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1322 if (nback) {
1323 memmove(&pgs[0], &pgs[npages - nback],
1324 nback * sizeof(pgs[0]));
1325 if (npages - nback < nback)
1326 memset(&pgs[nback], 0,
1327 (npages - nback) * sizeof(pgs[0]));
1328 else
1329 memset(&pgs[npages - nback], 0,
1330 nback * sizeof(pgs[0]));
1331 }
1332
1333 /*
1334 * then plug in our page of interest.
1335 */
1336
1337 pgs[nback] = pg;
1338
1339 /*
1340 * then look forward to fill in the remaining space in
1341 * the array of pages.
1342 */
1343
1344 npages = maxpages - nback - 1;
1345 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1346 &pgs[nback + 1],
1347 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1348 npages += nback + 1;
1349 } else {
1350 pgs[0] = pg;
1351 npages = 1;
1352 nback = 0;
1353 }
1354
1355 /*
1356 * apply FREE or DEACTIVATE options if requested.
1357 */
1358
1359 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1360 uvm_lock_pageq();
1361 }
1362 for (i = 0; i < npages; i++) {
1363 tpg = pgs[i];
1364 KASSERT(tpg->uobject == uobj);
1365 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1366 pg = tpg;
1367 if (tpg->offset < startoff || tpg->offset >= endoff)
1368 continue;
1369 if (flags & PGO_DEACTIVATE &&
1370 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1371 tpg->wire_count == 0) {
1372 (void) pmap_clear_reference(tpg);
1373 uvm_pagedeactivate(tpg);
1374 } else if (flags & PGO_FREE) {
1375 pmap_page_protect(tpg, VM_PROT_NONE);
1376 if (tpg->flags & PG_BUSY) {
1377 tpg->flags |= freeflag;
1378 if (pagedaemon) {
1379 uvmexp.paging++;
1380 uvm_pagedequeue(tpg);
1381 }
1382 } else {
1383
1384 /*
1385 * ``page is not busy''
1386 * implies that npages is 1
1387 * and needs_clean is false.
1388 */
1389
1390 nextpg = TAILQ_NEXT(tpg, listq);
1391 uvm_pagefree(tpg);
1392 if (pagedaemon)
1393 uvmexp.pdfreed++;
1394 }
1395 }
1396 }
1397 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1398 uvm_unlock_pageq();
1399 }
1400 if (needs_clean) {
1401 modified = TRUE;
1402
1403 /*
1404 * start the i/o. if we're traversing by list,
1405 * keep our place in the list with a marker page.
1406 */
1407
1408 if (by_list) {
1409 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1410 listq);
1411 }
1412 simple_unlock(slock);
1413 error = GOP_WRITE(vp, pgs, npages, flags);
1414 simple_lock(slock);
1415 if (by_list) {
1416 pg = TAILQ_NEXT(&curmp, listq);
1417 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1418 }
1419 if (error) {
1420 break;
1421 }
1422 if (by_list) {
1423 continue;
1424 }
1425 }
1426
1427 /*
1428 * find the next page and continue if there was no error.
1429 */
1430
1431 if (by_list) {
1432 if (nextpg) {
1433 pg = nextpg;
1434 nextpg = NULL;
1435 } else {
1436 pg = TAILQ_NEXT(pg, listq);
1437 }
1438 } else {
1439 off += (npages - nback) << PAGE_SHIFT;
1440 if (off < endoff) {
1441 pg = uvm_pagelookup(uobj, off);
1442 }
1443 }
1444 }
1445 if (by_list) {
1446 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1447 PRELE(l);
1448 }
1449
1450 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1451 (vp->v_type == VREG ||
1452 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1453 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1454 }
1455
1456 /*
1457 * if we're cleaning and there was nothing to clean,
1458 * take us off the syncer list. if we started any i/o
1459 * and we're doing sync i/o, wait for all writes to finish.
1460 */
1461
1462 s = splbio();
1463 if ((flags & PGO_CLEANIT) && wasclean && gp->g_dirtygen == dirtygen &&
1464 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1465 (vp->v_flag & VONWORKLST)) {
1466 vp->v_flag &= ~VWRITEMAPDIRTY;
1467 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1468 vp->v_flag &= ~VONWORKLST;
1469 LIST_REMOVE(vp, v_synclist);
1470 }
1471 }
1472 splx(s);
1473
1474 #if !defined(DEBUG)
1475 skip_scan:
1476 #endif /* !defined(DEBUG) */
1477 if (!wasclean && !async) {
1478 s = splbio();
1479 /*
1480 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1481 * but the slot in ltsleep() is taken!
1482 * XXX - try to recover from missed wakeups with a timeout..
1483 * must think of something better.
1484 */
1485 while (vp->v_numoutput != 0) {
1486 vp->v_flag |= VBWAIT;
1487 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1488 "genput2", hz);
1489 simple_lock(slock);
1490 }
1491 splx(s);
1492 }
1493 simple_unlock(&uobj->vmobjlock);
1494 return (error);
1495 }
1496
1497 int
1498 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1499 {
1500 int s, error, run;
1501 int fs_bshift, dev_bshift;
1502 vaddr_t kva;
1503 off_t eof, offset, startoffset;
1504 size_t bytes, iobytes, skipbytes;
1505 daddr_t lbn, blkno;
1506 struct vm_page *pg;
1507 struct buf *mbp, *bp;
1508 struct vnode *devvp;
1509 boolean_t async = (flags & PGO_SYNCIO) == 0;
1510 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1511
1512 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1513 vp, pgs, npages, flags);
1514
1515 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1516 if (vp->v_type == VREG) {
1517 fs_bshift = vp->v_mount->mnt_fs_bshift;
1518 dev_bshift = vp->v_mount->mnt_dev_bshift;
1519 } else {
1520 fs_bshift = DEV_BSHIFT;
1521 dev_bshift = DEV_BSHIFT;
1522 }
1523 error = 0;
1524 pg = pgs[0];
1525 startoffset = pg->offset;
1526 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1527 skipbytes = 0;
1528 KASSERT(bytes != 0);
1529
1530 kva = uvm_pagermapin(pgs, npages,
1531 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1532
1533 s = splbio();
1534 simple_lock(&global_v_numoutput_slock);
1535 vp->v_numoutput += 2;
1536 simple_unlock(&global_v_numoutput_slock);
1537 mbp = pool_get(&bufpool, PR_WAITOK);
1538 BUF_INIT(mbp);
1539 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1540 vp, mbp, vp->v_numoutput, bytes);
1541 splx(s);
1542 mbp->b_bufsize = npages << PAGE_SHIFT;
1543 mbp->b_data = (void *)kva;
1544 mbp->b_resid = mbp->b_bcount = bytes;
1545 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1546 mbp->b_iodone = uvm_aio_biodone;
1547 mbp->b_vp = vp;
1548
1549 bp = NULL;
1550 for (offset = startoffset;
1551 bytes > 0;
1552 offset += iobytes, bytes -= iobytes) {
1553 lbn = offset >> fs_bshift;
1554 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1555 if (error) {
1556 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1557 skipbytes += bytes;
1558 bytes = 0;
1559 break;
1560 }
1561
1562 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1563 bytes);
1564 if (blkno == (daddr_t)-1) {
1565 skipbytes += iobytes;
1566 continue;
1567 }
1568
1569 /* if it's really one i/o, don't make a second buf */
1570 if (offset == startoffset && iobytes == bytes) {
1571 bp = mbp;
1572 } else {
1573 s = splbio();
1574 V_INCR_NUMOUTPUT(vp);
1575 bp = pool_get(&bufpool, PR_WAITOK);
1576 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1577 vp, bp, vp->v_numoutput, 0);
1578 splx(s);
1579 BUF_INIT(bp);
1580 bp->b_data = (char *)kva +
1581 (vaddr_t)(offset - pg->offset);
1582 bp->b_resid = bp->b_bcount = iobytes;
1583 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1584 bp->b_iodone = uvm_aio_biodone1;
1585 bp->b_vp = vp;
1586 }
1587 bp->b_lblkno = 0;
1588 bp->b_private = mbp;
1589 if (devvp->v_type == VBLK) {
1590 bp->b_dev = devvp->v_rdev;
1591 }
1592
1593 /* adjust physical blkno for partial blocks */
1594 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1595 dev_bshift);
1596 UVMHIST_LOG(ubchist,
1597 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1598 vp, offset, bp->b_bcount, bp->b_blkno);
1599 if (curproc == uvm.pagedaemon_proc)
1600 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1601 else if (async)
1602 BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
1603 else
1604 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1605 VOP_STRATEGY(bp->b_vp, bp);
1606 }
1607 if (skipbytes) {
1608 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1609 s = splbio();
1610 if (error) {
1611 mbp->b_flags |= B_ERROR;
1612 mbp->b_error = error;
1613 }
1614 mbp->b_resid -= skipbytes;
1615 if (mbp->b_resid == 0) {
1616 biodone(mbp);
1617 }
1618 splx(s);
1619 }
1620 if (async) {
1621 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1622 return (0);
1623 }
1624 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1625 error = biowait(mbp);
1626 uvm_aio_aiodone(mbp);
1627 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1628 return (error);
1629 }
1630
1631 /*
1632 * VOP_PUTPAGES() for vnodes which never have pages.
1633 */
1634
1635 int
1636 genfs_null_putpages(void *v)
1637 {
1638 struct vop_putpages_args /* {
1639 struct vnode *a_vp;
1640 voff_t a_offlo;
1641 voff_t a_offhi;
1642 int a_flags;
1643 } */ *ap = v;
1644 struct vnode *vp = ap->a_vp;
1645
1646 KASSERT(vp->v_uobj.uo_npages == 0);
1647 simple_unlock(&vp->v_interlock);
1648 return (0);
1649 }
1650
1651 void
1652 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1653 {
1654 struct genfs_node *gp = VTOG(vp);
1655
1656 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1657 gp->g_op = ops;
1658 }
1659
1660 void
1661 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1662 {
1663 int bsize;
1664
1665 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1666 *eobp = (size + bsize - 1) & ~(bsize - 1);
1667 }
1668
1669 int
1670 genfs_compat_getpages(void *v)
1671 {
1672 struct vop_getpages_args /* {
1673 struct vnode *a_vp;
1674 voff_t a_offset;
1675 struct vm_page **a_m;
1676 int *a_count;
1677 int a_centeridx;
1678 vm_prot_t a_access_type;
1679 int a_advice;
1680 int a_flags;
1681 } */ *ap = v;
1682
1683 off_t origoffset;
1684 struct vnode *vp = ap->a_vp;
1685 struct uvm_object *uobj = &vp->v_uobj;
1686 struct vm_page *pg, **pgs;
1687 vaddr_t kva;
1688 int i, error, orignpages, npages;
1689 struct iovec iov;
1690 struct uio uio;
1691 struct ucred *cred = curproc->p_ucred;
1692 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1693
1694 error = 0;
1695 origoffset = ap->a_offset;
1696 orignpages = *ap->a_count;
1697 pgs = ap->a_m;
1698
1699 if (write && (vp->v_flag & VONWORKLST) == 0) {
1700 vn_syncer_add_to_worklist(vp, filedelay);
1701 }
1702 if (ap->a_flags & PGO_LOCKED) {
1703 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1704 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1705
1706 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1707 }
1708 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1709 simple_unlock(&uobj->vmobjlock);
1710 return (EINVAL);
1711 }
1712 npages = orignpages;
1713 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1714 simple_unlock(&uobj->vmobjlock);
1715 kva = uvm_pagermapin(pgs, npages,
1716 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1717 for (i = 0; i < npages; i++) {
1718 pg = pgs[i];
1719 if ((pg->flags & PG_FAKE) == 0) {
1720 continue;
1721 }
1722 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1723 iov.iov_len = PAGE_SIZE;
1724 uio.uio_iov = &iov;
1725 uio.uio_iovcnt = 1;
1726 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1727 uio.uio_segflg = UIO_SYSSPACE;
1728 uio.uio_rw = UIO_READ;
1729 uio.uio_resid = PAGE_SIZE;
1730 uio.uio_procp = NULL;
1731 /* XXX vn_lock */
1732 error = VOP_READ(vp, &uio, 0, cred);
1733 if (error) {
1734 break;
1735 }
1736 if (uio.uio_resid) {
1737 memset(iov.iov_base, 0, uio.uio_resid);
1738 }
1739 }
1740 uvm_pagermapout(kva, npages);
1741 simple_lock(&uobj->vmobjlock);
1742 uvm_lock_pageq();
1743 for (i = 0; i < npages; i++) {
1744 pg = pgs[i];
1745 if (error && (pg->flags & PG_FAKE) != 0) {
1746 pg->flags |= PG_RELEASED;
1747 } else {
1748 pmap_clear_modify(pg);
1749 uvm_pageactivate(pg);
1750 }
1751 }
1752 if (error) {
1753 uvm_page_unbusy(pgs, npages);
1754 }
1755 uvm_unlock_pageq();
1756 simple_unlock(&uobj->vmobjlock);
1757 return (error);
1758 }
1759
1760 int
1761 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1762 int flags)
1763 {
1764 off_t offset;
1765 struct iovec iov;
1766 struct uio uio;
1767 struct ucred *cred = curproc->p_ucred;
1768 struct buf *bp;
1769 vaddr_t kva;
1770 int s, error;
1771
1772 offset = pgs[0]->offset;
1773 kva = uvm_pagermapin(pgs, npages,
1774 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1775
1776 iov.iov_base = (void *)kva;
1777 iov.iov_len = npages << PAGE_SHIFT;
1778 uio.uio_iov = &iov;
1779 uio.uio_iovcnt = 1;
1780 uio.uio_offset = offset;
1781 uio.uio_segflg = UIO_SYSSPACE;
1782 uio.uio_rw = UIO_WRITE;
1783 uio.uio_resid = npages << PAGE_SHIFT;
1784 uio.uio_procp = NULL;
1785 /* XXX vn_lock */
1786 error = VOP_WRITE(vp, &uio, 0, cred);
1787
1788 s = splbio();
1789 V_INCR_NUMOUTPUT(vp);
1790 bp = pool_get(&bufpool, PR_WAITOK);
1791 splx(s);
1792
1793 BUF_INIT(bp);
1794 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1795 bp->b_vp = vp;
1796 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1797 bp->b_data = (char *)kva;
1798 bp->b_bcount = npages << PAGE_SHIFT;
1799 bp->b_bufsize = npages << PAGE_SHIFT;
1800 bp->b_resid = 0;
1801 if (error) {
1802 bp->b_flags |= B_ERROR;
1803 bp->b_error = error;
1804 }
1805 uvm_aio_aiodone(bp);
1806 return (error);
1807 }
1808
1809 static void
1810 filt_genfsdetach(struct knote *kn)
1811 {
1812 struct vnode *vp = (struct vnode *)kn->kn_hook;
1813
1814 /* XXXLUKEM lock the struct? */
1815 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1816 }
1817
1818 static int
1819 filt_genfsread(struct knote *kn, long hint)
1820 {
1821 struct vnode *vp = (struct vnode *)kn->kn_hook;
1822
1823 /*
1824 * filesystem is gone, so set the EOF flag and schedule
1825 * the knote for deletion.
1826 */
1827 if (hint == NOTE_REVOKE) {
1828 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1829 return (1);
1830 }
1831
1832 /* XXXLUKEM lock the struct? */
1833 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1834 return (kn->kn_data != 0);
1835 }
1836
1837 static int
1838 filt_genfsvnode(struct knote *kn, long hint)
1839 {
1840
1841 if (kn->kn_sfflags & hint)
1842 kn->kn_fflags |= hint;
1843 if (hint == NOTE_REVOKE) {
1844 kn->kn_flags |= EV_EOF;
1845 return (1);
1846 }
1847 return (kn->kn_fflags != 0);
1848 }
1849
1850 static const struct filterops genfsread_filtops =
1851 { 1, NULL, filt_genfsdetach, filt_genfsread };
1852 static const struct filterops genfsvnode_filtops =
1853 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1854
1855 int
1856 genfs_kqfilter(void *v)
1857 {
1858 struct vop_kqfilter_args /* {
1859 struct vnode *a_vp;
1860 struct knote *a_kn;
1861 } */ *ap = v;
1862 struct vnode *vp;
1863 struct knote *kn;
1864
1865 vp = ap->a_vp;
1866 kn = ap->a_kn;
1867 switch (kn->kn_filter) {
1868 case EVFILT_READ:
1869 kn->kn_fop = &genfsread_filtops;
1870 break;
1871 case EVFILT_VNODE:
1872 kn->kn_fop = &genfsvnode_filtops;
1873 break;
1874 default:
1875 return (1);
1876 }
1877
1878 kn->kn_hook = vp;
1879
1880 /* XXXLUKEM lock the struct? */
1881 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1882
1883 return (0);
1884 }
1885