Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.109
      1 /*	$NetBSD: genfs_vnops.c,v 1.109 2005/11/12 22:29:53 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.109 2005/11/12 22:29:53 yamt Exp $");
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_nfsserver.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/kernel.h>
     44 #include <sys/mount.h>
     45 #include <sys/namei.h>
     46 #include <sys/vnode.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/malloc.h>
     49 #include <sys/poll.h>
     50 #include <sys/mman.h>
     51 #include <sys/file.h>
     52 
     53 #include <miscfs/genfs/genfs.h>
     54 #include <miscfs/genfs/genfs_node.h>
     55 #include <miscfs/specfs/specdev.h>
     56 
     57 #include <uvm/uvm.h>
     58 #include <uvm/uvm_pager.h>
     59 
     60 #ifdef NFSSERVER
     61 #include <nfs/rpcv2.h>
     62 #include <nfs/nfsproto.h>
     63 #include <nfs/nfs.h>
     64 #include <nfs/nqnfs.h>
     65 #include <nfs/nfs_var.h>
     66 #endif
     67 
     68 static __inline void genfs_rel_pages(struct vm_page **, int);
     69 static void filt_genfsdetach(struct knote *);
     70 static int filt_genfsread(struct knote *, long);
     71 static int filt_genfsvnode(struct knote *, long);
     72 
     73 
     74 #define MAX_READ_AHEAD	16 	/* XXXUBC 16 */
     75 int genfs_rapages = MAX_READ_AHEAD; /* # of pages in each chunk of readahead */
     76 int genfs_racount = 2;		/* # of page chunks to readahead */
     77 int genfs_raskip = 2;		/* # of busy page chunks allowed to skip */
     78 
     79 int
     80 genfs_poll(void *v)
     81 {
     82 	struct vop_poll_args /* {
     83 		struct vnode *a_vp;
     84 		int a_events;
     85 		struct proc *a_p;
     86 	} */ *ap = v;
     87 
     88 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     89 }
     90 
     91 int
     92 genfs_seek(void *v)
     93 {
     94 	struct vop_seek_args /* {
     95 		struct vnode *a_vp;
     96 		off_t a_oldoff;
     97 		off_t a_newoff;
     98 		struct ucred *a_ucred;
     99 	} */ *ap = v;
    100 
    101 	if (ap->a_newoff < 0)
    102 		return (EINVAL);
    103 
    104 	return (0);
    105 }
    106 
    107 int
    108 genfs_abortop(void *v)
    109 {
    110 	struct vop_abortop_args /* {
    111 		struct vnode *a_dvp;
    112 		struct componentname *a_cnp;
    113 	} */ *ap = v;
    114 
    115 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    116 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    117 	return (0);
    118 }
    119 
    120 int
    121 genfs_fcntl(void *v)
    122 {
    123 	struct vop_fcntl_args /* {
    124 		struct vnode *a_vp;
    125 		u_int a_command;
    126 		caddr_t a_data;
    127 		int a_fflag;
    128 		struct ucred *a_cred;
    129 		struct proc *a_p;
    130 	} */ *ap = v;
    131 
    132 	if (ap->a_command == F_SETFL)
    133 		return (0);
    134 	else
    135 		return (EOPNOTSUPP);
    136 }
    137 
    138 /*ARGSUSED*/
    139 int
    140 genfs_badop(void *v)
    141 {
    142 
    143 	panic("genfs: bad op");
    144 }
    145 
    146 /*ARGSUSED*/
    147 int
    148 genfs_nullop(void *v)
    149 {
    150 
    151 	return (0);
    152 }
    153 
    154 /*ARGSUSED*/
    155 int
    156 genfs_einval(void *v)
    157 {
    158 
    159 	return (EINVAL);
    160 }
    161 
    162 /*
    163  * Called when an fs doesn't support a particular vop.
    164  * This takes care to vrele, vput, or vunlock passed in vnodes.
    165  */
    166 int
    167 genfs_eopnotsupp(void *v)
    168 {
    169 	struct vop_generic_args /*
    170 		struct vnodeop_desc *a_desc;
    171 		/ * other random data follows, presumably * /
    172 	} */ *ap = v;
    173 	struct vnodeop_desc *desc = ap->a_desc;
    174 	struct vnode *vp, *vp_last = NULL;
    175 	int flags, i, j, offset;
    176 
    177 	flags = desc->vdesc_flags;
    178 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    179 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    180 			break;	/* stop at end of list */
    181 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    182 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
    183 
    184 			/* Skip if NULL */
    185 			if (!vp)
    186 				continue;
    187 
    188 			switch (j) {
    189 			case VDESC_VP0_WILLPUT:
    190 				/* Check for dvp == vp cases */
    191 				if (vp == vp_last)
    192 					vrele(vp);
    193 				else {
    194 					vput(vp);
    195 					vp_last = vp;
    196 				}
    197 				break;
    198 			case VDESC_VP0_WILLUNLOCK:
    199 				VOP_UNLOCK(vp, 0);
    200 				break;
    201 			case VDESC_VP0_WILLRELE:
    202 				vrele(vp);
    203 				break;
    204 			}
    205 		}
    206 	}
    207 
    208 	return (EOPNOTSUPP);
    209 }
    210 
    211 /*ARGSUSED*/
    212 int
    213 genfs_ebadf(void *v)
    214 {
    215 
    216 	return (EBADF);
    217 }
    218 
    219 /* ARGSUSED */
    220 int
    221 genfs_enoioctl(void *v)
    222 {
    223 
    224 	return (EPASSTHROUGH);
    225 }
    226 
    227 
    228 /*
    229  * Eliminate all activity associated with the requested vnode
    230  * and with all vnodes aliased to the requested vnode.
    231  */
    232 int
    233 genfs_revoke(void *v)
    234 {
    235 	struct vop_revoke_args /* {
    236 		struct vnode *a_vp;
    237 		int a_flags;
    238 	} */ *ap = v;
    239 	struct vnode *vp, *vq;
    240 	struct proc *p = curproc;	/* XXX */
    241 
    242 #ifdef DIAGNOSTIC
    243 	if ((ap->a_flags & REVOKEALL) == 0)
    244 		panic("genfs_revoke: not revokeall");
    245 #endif
    246 
    247 	vp = ap->a_vp;
    248 	simple_lock(&vp->v_interlock);
    249 
    250 	if (vp->v_flag & VALIASED) {
    251 		/*
    252 		 * If a vgone (or vclean) is already in progress,
    253 		 * wait until it is done and return.
    254 		 */
    255 		if (vp->v_flag & VXLOCK) {
    256 			vp->v_flag |= VXWANT;
    257 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
    258 				&vp->v_interlock);
    259 			return (0);
    260 		}
    261 		/*
    262 		 * Ensure that vp will not be vgone'd while we
    263 		 * are eliminating its aliases.
    264 		 */
    265 		vp->v_flag |= VXLOCK;
    266 		simple_unlock(&vp->v_interlock);
    267 		while (vp->v_flag & VALIASED) {
    268 			simple_lock(&spechash_slock);
    269 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    270 				if (vq->v_rdev != vp->v_rdev ||
    271 				    vq->v_type != vp->v_type || vp == vq)
    272 					continue;
    273 				simple_unlock(&spechash_slock);
    274 				vgone(vq);
    275 				break;
    276 			}
    277 			if (vq == NULLVP)
    278 				simple_unlock(&spechash_slock);
    279 		}
    280 		/*
    281 		 * Remove the lock so that vgone below will
    282 		 * really eliminate the vnode after which time
    283 		 * vgone will awaken any sleepers.
    284 		 */
    285 		simple_lock(&vp->v_interlock);
    286 		vp->v_flag &= ~VXLOCK;
    287 	}
    288 	vgonel(vp, p);
    289 	return (0);
    290 }
    291 
    292 /*
    293  * Lock the node.
    294  */
    295 int
    296 genfs_lock(void *v)
    297 {
    298 	struct vop_lock_args /* {
    299 		struct vnode *a_vp;
    300 		int a_flags;
    301 	} */ *ap = v;
    302 	struct vnode *vp = ap->a_vp;
    303 
    304 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
    305 }
    306 
    307 /*
    308  * Unlock the node.
    309  */
    310 int
    311 genfs_unlock(void *v)
    312 {
    313 	struct vop_unlock_args /* {
    314 		struct vnode *a_vp;
    315 		int a_flags;
    316 	} */ *ap = v;
    317 	struct vnode *vp = ap->a_vp;
    318 
    319 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    320 	    &vp->v_interlock));
    321 }
    322 
    323 /*
    324  * Return whether or not the node is locked.
    325  */
    326 int
    327 genfs_islocked(void *v)
    328 {
    329 	struct vop_islocked_args /* {
    330 		struct vnode *a_vp;
    331 	} */ *ap = v;
    332 	struct vnode *vp = ap->a_vp;
    333 
    334 	return (lockstatus(vp->v_vnlock));
    335 }
    336 
    337 /*
    338  * Stubs to use when there is no locking to be done on the underlying object.
    339  */
    340 int
    341 genfs_nolock(void *v)
    342 {
    343 	struct vop_lock_args /* {
    344 		struct vnode *a_vp;
    345 		int a_flags;
    346 		struct proc *a_p;
    347 	} */ *ap = v;
    348 
    349 	/*
    350 	 * Since we are not using the lock manager, we must clear
    351 	 * the interlock here.
    352 	 */
    353 	if (ap->a_flags & LK_INTERLOCK)
    354 		simple_unlock(&ap->a_vp->v_interlock);
    355 	return (0);
    356 }
    357 
    358 int
    359 genfs_nounlock(void *v)
    360 {
    361 
    362 	return (0);
    363 }
    364 
    365 int
    366 genfs_noislocked(void *v)
    367 {
    368 
    369 	return (0);
    370 }
    371 
    372 /*
    373  * Local lease check for NFS servers.  Just set up args and let
    374  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
    375  * this is a null operation.
    376  */
    377 int
    378 genfs_lease_check(void *v)
    379 {
    380 #ifdef NFSSERVER
    381 	struct vop_lease_args /* {
    382 		struct vnode *a_vp;
    383 		struct proc *a_p;
    384 		struct ucred *a_cred;
    385 		int a_flag;
    386 	} */ *ap = v;
    387 	u_int32_t duration = 0;
    388 	int cache;
    389 	u_quad_t frev;
    390 
    391 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
    392 	    NQLOCALSLP, ap->a_p, (struct mbuf *)0, &cache, &frev, ap->a_cred);
    393 	return (0);
    394 #else
    395 	return (0);
    396 #endif /* NFSSERVER */
    397 }
    398 
    399 int
    400 genfs_mmap(void *v)
    401 {
    402 
    403 	return (0);
    404 }
    405 
    406 static __inline void
    407 genfs_rel_pages(struct vm_page **pgs, int npages)
    408 {
    409 	int i;
    410 
    411 	for (i = 0; i < npages; i++) {
    412 		struct vm_page *pg = pgs[i];
    413 
    414 		if (pg == NULL)
    415 			continue;
    416 		if (pg->flags & PG_FAKE) {
    417 			pg->flags |= PG_RELEASED;
    418 		}
    419 	}
    420 	uvm_lock_pageq();
    421 	uvm_page_unbusy(pgs, npages);
    422 	uvm_unlock_pageq();
    423 }
    424 
    425 /*
    426  * generic VM getpages routine.
    427  * Return PG_BUSY pages for the given range,
    428  * reading from backing store if necessary.
    429  */
    430 
    431 int
    432 genfs_getpages(void *v)
    433 {
    434 	struct vop_getpages_args /* {
    435 		struct vnode *a_vp;
    436 		voff_t a_offset;
    437 		struct vm_page **a_m;
    438 		int *a_count;
    439 		int a_centeridx;
    440 		vm_prot_t a_access_type;
    441 		int a_advice;
    442 		int a_flags;
    443 	} */ *ap = v;
    444 
    445 	off_t newsize, diskeof, memeof;
    446 	off_t offset, origoffset, startoffset, endoffset, raoffset;
    447 	daddr_t lbn, blkno;
    448 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    449 	int fs_bshift, fs_bsize, dev_bshift;
    450 	int flags = ap->a_flags;
    451 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
    452 	vaddr_t kva;
    453 	struct buf *bp, *mbp;
    454 	struct vnode *vp = ap->a_vp;
    455 	struct vnode *devvp;
    456 	struct genfs_node *gp = VTOG(vp);
    457 	struct uvm_object *uobj = &vp->v_uobj;
    458 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_AHEAD];
    459 	int pgs_size;
    460 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
    461 	boolean_t async = (flags & PGO_SYNCIO) == 0;
    462 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    463 	boolean_t sawhole = FALSE;
    464 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
    465 	boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    466 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    467 
    468 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    469 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    470 
    471 	KASSERT(vp->v_type == VREG || vp->v_type == VBLK);
    472 
    473 	/* XXXUBC temp limit */
    474 	if (*ap->a_count > MAX_READ_AHEAD) {
    475 		panic("genfs_getpages: too many pages");
    476 	}
    477 
    478 	error = 0;
    479 	origoffset = ap->a_offset;
    480 	orignpages = *ap->a_count;
    481 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
    482 	if (flags & PGO_PASTEOF) {
    483 		newsize = MAX(vp->v_size,
    484 		    origoffset + (orignpages << PAGE_SHIFT));
    485 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    486 	} else {
    487 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    488 	}
    489 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    490 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    491 	KASSERT(orignpages > 0);
    492 
    493 	/*
    494 	 * Bounds-check the request.
    495 	 */
    496 
    497 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    498 		if ((flags & PGO_LOCKED) == 0) {
    499 			simple_unlock(&uobj->vmobjlock);
    500 		}
    501 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    502 		    origoffset, *ap->a_count, memeof,0);
    503 		return (EINVAL);
    504 	}
    505 
    506 	/* uobj is locked */
    507 
    508 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    509 	    (vp->v_type == VREG ||
    510 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    511 		int updflags = 0;
    512 
    513 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    514 			updflags = GOP_UPDATE_ACCESSED;
    515 		}
    516 		if (write) {
    517 			updflags |= GOP_UPDATE_MODIFIED;
    518 		}
    519 		if (updflags != 0) {
    520 			GOP_MARKUPDATE(vp, updflags);
    521 		}
    522 	}
    523 
    524 	if (write) {
    525 		gp->g_dirtygen++;
    526 		if ((vp->v_flag & VONWORKLST) == 0) {
    527 			vn_syncer_add_to_worklist(vp, filedelay);
    528 		}
    529 		if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
    530 			vp->v_flag |= VWRITEMAPDIRTY;
    531 		}
    532 	}
    533 
    534 	/*
    535 	 * For PGO_LOCKED requests, just return whatever's in memory.
    536 	 */
    537 
    538 	if (flags & PGO_LOCKED) {
    539 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
    540 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
    541 
    542 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    543 	}
    544 
    545 	/*
    546 	 * find the requested pages and make some simple checks.
    547 	 * leave space in the page array for a whole block.
    548 	 */
    549 
    550 	if (vp->v_type == VREG) {
    551 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    552 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    553 	} else {
    554 		fs_bshift = DEV_BSHIFT;
    555 		dev_bshift = DEV_BSHIFT;
    556 	}
    557 	fs_bsize = 1 << fs_bshift;
    558 
    559 	orignpages = MIN(orignpages,
    560 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    561 	npages = orignpages;
    562 	startoffset = origoffset & ~(fs_bsize - 1);
    563 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    564 	    fs_bsize - 1) & ~(fs_bsize - 1));
    565 	endoffset = MIN(endoffset, round_page(memeof));
    566 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    567 
    568 	pgs_size = sizeof(struct vm_page *) *
    569 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    570 	if (pgs_size > sizeof(pgs_onstack)) {
    571 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
    572 		if (pgs == NULL) {
    573 			simple_unlock(&uobj->vmobjlock);
    574 			return (ENOMEM);
    575 		}
    576 	} else {
    577 		pgs = pgs_onstack;
    578 		memset(pgs, 0, pgs_size);
    579 	}
    580 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    581 	    ridx, npages, startoffset, endoffset);
    582 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    583 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    584 		KASSERT(async != 0);
    585 		genfs_rel_pages(&pgs[ridx], orignpages);
    586 		simple_unlock(&uobj->vmobjlock);
    587 		if (pgs != pgs_onstack)
    588 			free(pgs, M_DEVBUF);
    589 		return (EBUSY);
    590 	}
    591 
    592 	/*
    593 	 * if the pages are already resident, just return them.
    594 	 */
    595 
    596 	for (i = 0; i < npages; i++) {
    597 		struct vm_page *pg1 = pgs[ridx + i];
    598 
    599 		if ((pg1->flags & PG_FAKE) ||
    600 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    601 			break;
    602 		}
    603 	}
    604 	if (i == npages) {
    605 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    606 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
    607 		npages += ridx;
    608 		goto raout;
    609 	}
    610 
    611 	/*
    612 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    613 	 */
    614 
    615 	if (flags & PGO_OVERWRITE) {
    616 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    617 
    618 		for (i = 0; i < npages; i++) {
    619 			struct vm_page *pg1 = pgs[ridx + i];
    620 
    621 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    622 		}
    623 		npages += ridx;
    624 		goto out;
    625 	}
    626 
    627 	/*
    628 	 * the page wasn't resident and we're not overwriting,
    629 	 * so we're going to have to do some i/o.
    630 	 * find any additional pages needed to cover the expanded range.
    631 	 */
    632 
    633 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    634 	if (startoffset != origoffset || npages != orignpages) {
    635 
    636 		/*
    637 		 * we need to avoid deadlocks caused by locking
    638 		 * additional pages at lower offsets than pages we
    639 		 * already have locked.  unlock them all and start over.
    640 		 */
    641 
    642 		genfs_rel_pages(&pgs[ridx], orignpages);
    643 		memset(pgs, 0, pgs_size);
    644 
    645 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    646 		    startoffset, endoffset, 0,0);
    647 		npgs = npages;
    648 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    649 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    650 			KASSERT(async != 0);
    651 			genfs_rel_pages(pgs, npages);
    652 			simple_unlock(&uobj->vmobjlock);
    653 			if (pgs != pgs_onstack)
    654 				free(pgs, M_DEVBUF);
    655 			return (EBUSY);
    656 		}
    657 	}
    658 	simple_unlock(&uobj->vmobjlock);
    659 
    660 	/*
    661 	 * read the desired page(s).
    662 	 */
    663 
    664 	totalbytes = npages << PAGE_SHIFT;
    665 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    666 	tailbytes = totalbytes - bytes;
    667 	skipbytes = 0;
    668 
    669 	kva = uvm_pagermapin(pgs, npages,
    670 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    671 
    672 	s = splbio();
    673 	mbp = pool_get(&bufpool, PR_WAITOK);
    674 	splx(s);
    675 	BUF_INIT(mbp);
    676 	mbp->b_bufsize = totalbytes;
    677 	mbp->b_data = (void *)kva;
    678 	mbp->b_resid = mbp->b_bcount = bytes;
    679 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    680 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    681 	mbp->b_vp = vp;
    682 
    683 	/*
    684 	 * if EOF is in the middle of the range, zero the part past EOF.
    685 	 * if the page including EOF is not PG_FAKE, skip over it since
    686 	 * in that case it has valid data that we need to preserve.
    687 	 */
    688 
    689 	if (tailbytes > 0) {
    690 		size_t tailstart = bytes;
    691 
    692 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
    693 			tailstart = round_page(tailstart);
    694 			tailbytes -= tailstart - bytes;
    695 		}
    696 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    697 		    kva, tailstart, tailbytes,0);
    698 		memset((void *)(kva + tailstart), 0, tailbytes);
    699 	}
    700 
    701 	/*
    702 	 * now loop over the pages, reading as needed.
    703 	 */
    704 
    705 	if (blockalloc) {
    706 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
    707 	} else {
    708 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
    709 	}
    710 
    711 	bp = NULL;
    712 	for (offset = startoffset;
    713 	    bytes > 0;
    714 	    offset += iobytes, bytes -= iobytes) {
    715 
    716 		/*
    717 		 * skip pages which don't need to be read.
    718 		 */
    719 
    720 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    721 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    722 			size_t b;
    723 
    724 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    725 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    726 				sawhole = TRUE;
    727 			}
    728 			b = MIN(PAGE_SIZE, bytes);
    729 			offset += b;
    730 			bytes -= b;
    731 			skipbytes += b;
    732 			pidx++;
    733 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    734 			    offset, 0,0,0);
    735 			if (bytes == 0) {
    736 				goto loopdone;
    737 			}
    738 		}
    739 
    740 		/*
    741 		 * bmap the file to find out the blkno to read from and
    742 		 * how much we can read in one i/o.  if bmap returns an error,
    743 		 * skip the rest of the top-level i/o.
    744 		 */
    745 
    746 		lbn = offset >> fs_bshift;
    747 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    748 		if (error) {
    749 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    750 			    lbn, error,0,0);
    751 			skipbytes += bytes;
    752 			goto loopdone;
    753 		}
    754 
    755 		/*
    756 		 * see how many pages can be read with this i/o.
    757 		 * reduce the i/o size if necessary to avoid
    758 		 * overwriting pages with valid data.
    759 		 */
    760 
    761 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    762 		    bytes);
    763 		if (offset + iobytes > round_page(offset)) {
    764 			pcount = 1;
    765 			while (pidx + pcount < npages &&
    766 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    767 				pcount++;
    768 			}
    769 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    770 			    (offset - trunc_page(offset)));
    771 		}
    772 
    773 		/*
    774 		 * if this block isn't allocated, zero it instead of
    775 		 * reading it.  unless we are going to allocate blocks,
    776 		 * mark the pages we zeroed PG_RDONLY.
    777 		 */
    778 
    779 		if (blkno < 0) {
    780 			int holepages = (round_page(offset + iobytes) -
    781 			    trunc_page(offset)) >> PAGE_SHIFT;
    782 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    783 
    784 			sawhole = TRUE;
    785 			memset((char *)kva + (offset - startoffset), 0,
    786 			    iobytes);
    787 			skipbytes += iobytes;
    788 
    789 			for (i = 0; i < holepages; i++) {
    790 				if (write) {
    791 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    792 				}
    793 				if (!blockalloc) {
    794 					pgs[pidx + i]->flags |= PG_RDONLY;
    795 				}
    796 			}
    797 			continue;
    798 		}
    799 
    800 		/*
    801 		 * allocate a sub-buf for this piece of the i/o
    802 		 * (or just use mbp if there's only 1 piece),
    803 		 * and start it going.
    804 		 */
    805 
    806 		if (offset == startoffset && iobytes == bytes) {
    807 			bp = mbp;
    808 		} else {
    809 			s = splbio();
    810 			bp = pool_get(&bufpool, PR_WAITOK);
    811 			splx(s);
    812 			BUF_INIT(bp);
    813 			bp->b_data = (char *)kva + offset - startoffset;
    814 			bp->b_resid = bp->b_bcount = iobytes;
    815 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
    816 			bp->b_iodone = uvm_aio_biodone1;
    817 			bp->b_vp = vp;
    818 			bp->b_proc = NULL;
    819 		}
    820 		bp->b_lblkno = 0;
    821 		bp->b_private = mbp;
    822 
    823 		/* adjust physical blkno for partial blocks */
    824 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    825 		    dev_bshift);
    826 
    827 		UVMHIST_LOG(ubchist,
    828 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    829 		    bp, offset, iobytes, bp->b_blkno);
    830 
    831 		if (async)
    832 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    833 		else
    834 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    835 
    836 		VOP_STRATEGY(devvp, bp);
    837 	}
    838 
    839 loopdone:
    840 	if (skipbytes) {
    841 		s = splbio();
    842 		if (error) {
    843 			mbp->b_flags |= B_ERROR;
    844 			mbp->b_error = error;
    845 		}
    846 		mbp->b_resid -= skipbytes;
    847 		if (mbp->b_resid == 0) {
    848 			biodone(mbp);
    849 		}
    850 		splx(s);
    851 	}
    852 
    853 	if (async) {
    854 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    855 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    856 		if (pgs != pgs_onstack)
    857 			free(pgs, M_DEVBUF);
    858 		return (0);
    859 	}
    860 	if (bp != NULL) {
    861 		error = biowait(mbp);
    862 	}
    863 	s = splbio();
    864 	pool_put(&bufpool, mbp);
    865 	splx(s);
    866 	uvm_pagermapout(kva, npages);
    867 	raoffset = startoffset + totalbytes;
    868 
    869 	/*
    870 	 * if this we encountered a hole then we have to do a little more work.
    871 	 * for read faults, we marked the page PG_RDONLY so that future
    872 	 * write accesses to the page will fault again.
    873 	 * for write faults, we must make sure that the backing store for
    874 	 * the page is completely allocated while the pages are locked.
    875 	 */
    876 
    877 	if (!error && sawhole && blockalloc) {
    878 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    879 		    cred);
    880 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    881 		    startoffset, npages << PAGE_SHIFT, error,0);
    882 		if (!error) {
    883 			for (i = 0; i < npages; i++) {
    884 				if (pgs[i] == NULL) {
    885 					continue;
    886 				}
    887 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    888 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    889 				    pgs[i],0,0,0);
    890 			}
    891 		}
    892 	}
    893 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    894 	simple_lock(&uobj->vmobjlock);
    895 
    896 	/*
    897 	 * see if we want to start any readahead.
    898 	 * XXXUBC for now, just read the next 128k on 64k boundaries.
    899 	 * this is pretty nonsensical, but it is 50% faster than reading
    900 	 * just the next 64k.
    901 	 */
    902 
    903 raout:
    904 	if (!error && !async && !write && ((int)raoffset & 0xffff) == 0 &&
    905 	    PAGE_SHIFT <= 16) {
    906 		off_t rasize;
    907 		int rapages, err, j, skipped;
    908 
    909 		/* XXXUBC temp limit, from above */
    910 		rapages = MIN(MIN(1 << (16 - PAGE_SHIFT), MAX_READ_AHEAD),
    911 		    genfs_rapages);
    912 		rasize = rapages << PAGE_SHIFT;
    913 		for (j = skipped = 0; j < genfs_racount; j++) {
    914 
    915 			if (raoffset >= memeof)
    916 				break;
    917 
    918 			err = VOP_GETPAGES(vp, raoffset, NULL, &rapages, 0,
    919 			    VM_PROT_READ, 0, PGO_NOTIMESTAMP);
    920 			simple_lock(&uobj->vmobjlock);
    921 			if (err) {
    922 				if (err != EBUSY ||
    923 				    skipped++ == genfs_raskip)
    924 					break;
    925 			}
    926 			raoffset += rasize;
    927 			rapages = rasize >> PAGE_SHIFT;
    928 		}
    929 	}
    930 
    931 	/*
    932 	 * we're almost done!  release the pages...
    933 	 * for errors, we free the pages.
    934 	 * otherwise we activate them and mark them as valid and clean.
    935 	 * also, unbusy pages that were not actually requested.
    936 	 */
    937 
    938 	if (error) {
    939 		for (i = 0; i < npages; i++) {
    940 			if (pgs[i] == NULL) {
    941 				continue;
    942 			}
    943 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    944 			    pgs[i], pgs[i]->flags, 0,0);
    945 			if (pgs[i]->flags & PG_FAKE) {
    946 				pgs[i]->flags |= PG_RELEASED;
    947 			}
    948 		}
    949 		uvm_lock_pageq();
    950 		uvm_page_unbusy(pgs, npages);
    951 		uvm_unlock_pageq();
    952 		simple_unlock(&uobj->vmobjlock);
    953 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    954 		if (pgs != pgs_onstack)
    955 			free(pgs, M_DEVBUF);
    956 		return (error);
    957 	}
    958 
    959 out:
    960 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    961 	uvm_lock_pageq();
    962 	for (i = 0; i < npages; i++) {
    963 		pg = pgs[i];
    964 		if (pg == NULL) {
    965 			continue;
    966 		}
    967 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    968 		    pg, pg->flags, 0,0);
    969 		if (pg->flags & PG_FAKE && !overwrite) {
    970 			pg->flags &= ~(PG_FAKE);
    971 			pmap_clear_modify(pgs[i]);
    972 		}
    973 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    974 		if (i < ridx || i >= ridx + orignpages || async) {
    975 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    976 			    pg, pg->offset,0,0);
    977 			if (pg->flags & PG_WANTED) {
    978 				wakeup(pg);
    979 			}
    980 			if (pg->flags & PG_FAKE) {
    981 				KASSERT(overwrite);
    982 				uvm_pagezero(pg);
    983 			}
    984 			if (pg->flags & PG_RELEASED) {
    985 				uvm_pagefree(pg);
    986 				continue;
    987 			}
    988 			uvm_pageactivate(pg);
    989 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    990 			UVM_PAGE_OWN(pg, NULL);
    991 		}
    992 	}
    993 	uvm_unlock_pageq();
    994 	simple_unlock(&uobj->vmobjlock);
    995 	if (ap->a_m != NULL) {
    996 		memcpy(ap->a_m, &pgs[ridx],
    997 		    orignpages * sizeof(struct vm_page *));
    998 	}
    999 	if (pgs != pgs_onstack)
   1000 		free(pgs, M_DEVBUF);
   1001 	return (0);
   1002 }
   1003 
   1004 /*
   1005  * generic VM putpages routine.
   1006  * Write the given range of pages to backing store.
   1007  *
   1008  * => "offhi == 0" means flush all pages at or after "offlo".
   1009  * => object should be locked by caller.   we may _unlock_ the object
   1010  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
   1011  *	if PGO_SYNCIO is set and there are pages busy.
   1012  *	we return with the object locked.
   1013  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
   1014  *	thus, a caller might want to unlock higher level resources
   1015  *	(e.g. vm_map) before calling flush.
   1016  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
   1017  *	unlock the object nor block.
   1018  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
   1019  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
   1020  *	that new pages are inserted on the tail end of the list.   thus,
   1021  *	we can make a complete pass through the object in one go by starting
   1022  *	at the head and working towards the tail (new pages are put in
   1023  *	front of us).
   1024  * => NOTE: we are allowed to lock the page queues, so the caller
   1025  *	must not be holding the page queue lock.
   1026  *
   1027  * note on "cleaning" object and PG_BUSY pages:
   1028  *	this routine is holding the lock on the object.   the only time
   1029  *	that it can run into a PG_BUSY page that it does not own is if
   1030  *	some other process has started I/O on the page (e.g. either
   1031  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1032  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1033  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1034  *	paged out then it means that someone else has already started
   1035  *	cleaning the page for us (how nice!).    in this case, if we
   1036  *	have syncio specified, then after we make our pass through the
   1037  *	object we need to wait for the other PG_BUSY pages to clear
   1038  *	off (i.e. we need to do an iosync).   also note that once a
   1039  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1040  *
   1041  * note on page traversal:
   1042  *	we can traverse the pages in an object either by going down the
   1043  *	linked list in "uobj->memq", or we can go over the address range
   1044  *	by page doing hash table lookups for each address.    depending
   1045  *	on how many pages are in the object it may be cheaper to do one
   1046  *	or the other.   we set "by_list" to true if we are using memq.
   1047  *	if the cost of a hash lookup was equal to the cost of the list
   1048  *	traversal we could compare the number of pages in the start->stop
   1049  *	range to the total number of pages in the object.   however, it
   1050  *	seems that a hash table lookup is more expensive than the linked
   1051  *	list traversal, so we multiply the number of pages in the
   1052  *	range by an estimate of the relatively higher cost of the hash lookup.
   1053  */
   1054 
   1055 int
   1056 genfs_putpages(void *v)
   1057 {
   1058 	struct vop_putpages_args /* {
   1059 		struct vnode *a_vp;
   1060 		voff_t a_offlo;
   1061 		voff_t a_offhi;
   1062 		int a_flags;
   1063 	} */ *ap = v;
   1064 	struct vnode *vp = ap->a_vp;
   1065 	struct uvm_object *uobj = &vp->v_uobj;
   1066 	struct simplelock *slock = &uobj->vmobjlock;
   1067 	off_t startoff = ap->a_offlo;
   1068 	off_t endoff = ap->a_offhi;
   1069 	off_t off;
   1070 	int flags = ap->a_flags;
   1071 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1072 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
   1073 	int i, s, error, npages, nback;
   1074 	int freeflag;
   1075 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1076 	boolean_t wasclean, by_list, needs_clean, yld;
   1077 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1078 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
   1079 	struct lwp *l = curlwp ? curlwp : &lwp0;
   1080 	struct genfs_node *gp = VTOG(vp);
   1081 	int dirtygen;
   1082 	boolean_t modified = FALSE;
   1083 	boolean_t cleanall;
   1084 
   1085 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1086 
   1087 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1088 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1089 	KASSERT(startoff < endoff || endoff == 0);
   1090 
   1091 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1092 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1093 
   1094 	KASSERT((vp->v_flag & VONWORKLST) != 0 ||
   1095 	    (vp->v_flag & VWRITEMAPDIRTY) == 0);
   1096 	if (uobj->uo_npages == 0) {
   1097 		s = splbio();
   1098 		if (vp->v_flag & VONWORKLST) {
   1099 			vp->v_flag &= ~VWRITEMAPDIRTY;
   1100 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   1101 				vp->v_flag &= ~VONWORKLST;
   1102 				LIST_REMOVE(vp, v_synclist);
   1103 			}
   1104 		}
   1105 		splx(s);
   1106 		simple_unlock(slock);
   1107 		return (0);
   1108 	}
   1109 
   1110 	/*
   1111 	 * the vnode has pages, set up to process the request.
   1112 	 */
   1113 
   1114 	error = 0;
   1115 	s = splbio();
   1116 	simple_lock(&global_v_numoutput_slock);
   1117 	wasclean = (vp->v_numoutput == 0);
   1118 	simple_unlock(&global_v_numoutput_slock);
   1119 	splx(s);
   1120 	off = startoff;
   1121 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1122 		endoff = trunc_page(LLONG_MAX);
   1123 	}
   1124 	by_list = (uobj->uo_npages <=
   1125 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1126 
   1127 #if !defined(DEBUG)
   1128 	/*
   1129 	 * if this vnode is known not to have dirty pages,
   1130 	 * don't bother to clean it out.
   1131 	 */
   1132 
   1133 	if ((vp->v_flag & VONWORKLST) == 0) {
   1134 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1135 			goto skip_scan;
   1136 		}
   1137 		flags &= ~PGO_CLEANIT;
   1138 	}
   1139 #endif /* !defined(DEBUG) */
   1140 
   1141 	/*
   1142 	 * start the loop.  when scanning by list, hold the last page
   1143 	 * in the list before we start.  pages allocated after we start
   1144 	 * will be added to the end of the list, so we can stop at the
   1145 	 * current last page.
   1146 	 */
   1147 
   1148 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1149 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1150 	    (vp->v_flag & VONWORKLST) != 0;
   1151 	dirtygen = gp->g_dirtygen;
   1152 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1153 	curmp.uobject = uobj;
   1154 	curmp.offset = (voff_t)-1;
   1155 	curmp.flags = PG_BUSY;
   1156 	endmp.uobject = uobj;
   1157 	endmp.offset = (voff_t)-1;
   1158 	endmp.flags = PG_BUSY;
   1159 	if (by_list) {
   1160 		pg = TAILQ_FIRST(&uobj->memq);
   1161 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1162 		PHOLD(l);
   1163 	} else {
   1164 		pg = uvm_pagelookup(uobj, off);
   1165 	}
   1166 	nextpg = NULL;
   1167 	while (by_list || off < endoff) {
   1168 
   1169 		/*
   1170 		 * if the current page is not interesting, move on to the next.
   1171 		 */
   1172 
   1173 		KASSERT(pg == NULL || pg->uobject == uobj);
   1174 		KASSERT(pg == NULL ||
   1175 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1176 		    (pg->flags & PG_BUSY) != 0);
   1177 		if (by_list) {
   1178 			if (pg == &endmp) {
   1179 				break;
   1180 			}
   1181 			if (pg->offset < startoff || pg->offset >= endoff ||
   1182 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1183 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1184 					wasclean = FALSE;
   1185 				}
   1186 				pg = TAILQ_NEXT(pg, listq);
   1187 				continue;
   1188 			}
   1189 			off = pg->offset;
   1190 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1191 			if (pg != NULL) {
   1192 				wasclean = FALSE;
   1193 			}
   1194 			off += PAGE_SIZE;
   1195 			if (off < endoff) {
   1196 				pg = uvm_pagelookup(uobj, off);
   1197 			}
   1198 			continue;
   1199 		}
   1200 
   1201 		/*
   1202 		 * if the current page needs to be cleaned and it's busy,
   1203 		 * wait for it to become unbusy.
   1204 		 */
   1205 
   1206 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1207 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1208 		if (pg->flags & PG_BUSY || yld) {
   1209 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1210 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1211 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1212 				error = EDEADLK;
   1213 				break;
   1214 			}
   1215 			KASSERT(!pagedaemon);
   1216 			if (by_list) {
   1217 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1218 				UVMHIST_LOG(ubchist, "curmp next %p",
   1219 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1220 			}
   1221 			if (yld) {
   1222 				simple_unlock(slock);
   1223 				preempt(1);
   1224 				simple_lock(slock);
   1225 			} else {
   1226 				pg->flags |= PG_WANTED;
   1227 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1228 				simple_lock(slock);
   1229 			}
   1230 			if (by_list) {
   1231 				UVMHIST_LOG(ubchist, "after next %p",
   1232 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1233 				pg = TAILQ_NEXT(&curmp, listq);
   1234 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1235 			} else {
   1236 				pg = uvm_pagelookup(uobj, off);
   1237 			}
   1238 			continue;
   1239 		}
   1240 
   1241 		/*
   1242 		 * if we're freeing, remove all mappings of the page now.
   1243 		 * if we're cleaning, check if the page is needs to be cleaned.
   1244 		 */
   1245 
   1246 		if (flags & PGO_FREE) {
   1247 			pmap_page_protect(pg, VM_PROT_NONE);
   1248 		} else if (flags & PGO_CLEANIT) {
   1249 
   1250 			/*
   1251 			 * if we still have some hope to pull this vnode off
   1252 			 * from the syncer queue, write-protect the page.
   1253 			 */
   1254 
   1255 			if (cleanall && wasclean &&
   1256 			    gp->g_dirtygen == dirtygen) {
   1257 
   1258 				/*
   1259 				 * uobj pages get wired only by uvm_fault
   1260 				 * where uobj is locked.
   1261 				 */
   1262 
   1263 				if (pg->wire_count == 0) {
   1264 					pmap_page_protect(pg,
   1265 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1266 				} else {
   1267 					cleanall = FALSE;
   1268 				}
   1269 			}
   1270 		}
   1271 
   1272 		if (flags & PGO_CLEANIT) {
   1273 			needs_clean = pmap_clear_modify(pg) ||
   1274 			    (pg->flags & PG_CLEAN) == 0;
   1275 			pg->flags |= PG_CLEAN;
   1276 		} else {
   1277 			needs_clean = FALSE;
   1278 		}
   1279 
   1280 		/*
   1281 		 * if we're cleaning, build a cluster.
   1282 		 * the cluster will consist of pages which are currently dirty,
   1283 		 * but they will be returned to us marked clean.
   1284 		 * if not cleaning, just operate on the one page.
   1285 		 */
   1286 
   1287 		if (needs_clean) {
   1288 			KDASSERT((vp->v_flag & VONWORKLST));
   1289 			wasclean = FALSE;
   1290 			memset(pgs, 0, sizeof(pgs));
   1291 			pg->flags |= PG_BUSY;
   1292 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1293 
   1294 			/*
   1295 			 * first look backward.
   1296 			 */
   1297 
   1298 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1299 			nback = npages;
   1300 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1301 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1302 			if (nback) {
   1303 				memmove(&pgs[0], &pgs[npages - nback],
   1304 				    nback * sizeof(pgs[0]));
   1305 				if (npages - nback < nback)
   1306 					memset(&pgs[nback], 0,
   1307 					    (npages - nback) * sizeof(pgs[0]));
   1308 				else
   1309 					memset(&pgs[npages - nback], 0,
   1310 					    nback * sizeof(pgs[0]));
   1311 			}
   1312 
   1313 			/*
   1314 			 * then plug in our page of interest.
   1315 			 */
   1316 
   1317 			pgs[nback] = pg;
   1318 
   1319 			/*
   1320 			 * then look forward to fill in the remaining space in
   1321 			 * the array of pages.
   1322 			 */
   1323 
   1324 			npages = maxpages - nback - 1;
   1325 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1326 			    &pgs[nback + 1],
   1327 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1328 			npages += nback + 1;
   1329 		} else {
   1330 			pgs[0] = pg;
   1331 			npages = 1;
   1332 			nback = 0;
   1333 		}
   1334 
   1335 		/*
   1336 		 * apply FREE or DEACTIVATE options if requested.
   1337 		 */
   1338 
   1339 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1340 			uvm_lock_pageq();
   1341 		}
   1342 		for (i = 0; i < npages; i++) {
   1343 			tpg = pgs[i];
   1344 			KASSERT(tpg->uobject == uobj);
   1345 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1346 				pg = tpg;
   1347 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1348 				continue;
   1349 			if (flags & PGO_DEACTIVATE &&
   1350 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
   1351 			    tpg->wire_count == 0) {
   1352 				(void) pmap_clear_reference(tpg);
   1353 				uvm_pagedeactivate(tpg);
   1354 			} else if (flags & PGO_FREE) {
   1355 				pmap_page_protect(tpg, VM_PROT_NONE);
   1356 				if (tpg->flags & PG_BUSY) {
   1357 					tpg->flags |= freeflag;
   1358 					if (pagedaemon) {
   1359 						uvmexp.paging++;
   1360 						uvm_pagedequeue(tpg);
   1361 					}
   1362 				} else {
   1363 
   1364 					/*
   1365 					 * ``page is not busy''
   1366 					 * implies that npages is 1
   1367 					 * and needs_clean is false.
   1368 					 */
   1369 
   1370 					nextpg = TAILQ_NEXT(tpg, listq);
   1371 					uvm_pagefree(tpg);
   1372 					if (pagedaemon)
   1373 						uvmexp.pdfreed++;
   1374 				}
   1375 			}
   1376 		}
   1377 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1378 			uvm_unlock_pageq();
   1379 		}
   1380 		if (needs_clean) {
   1381 			modified = TRUE;
   1382 
   1383 			/*
   1384 			 * start the i/o.  if we're traversing by list,
   1385 			 * keep our place in the list with a marker page.
   1386 			 */
   1387 
   1388 			if (by_list) {
   1389 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1390 				    listq);
   1391 			}
   1392 			simple_unlock(slock);
   1393 			error = GOP_WRITE(vp, pgs, npages, flags);
   1394 			simple_lock(slock);
   1395 			if (by_list) {
   1396 				pg = TAILQ_NEXT(&curmp, listq);
   1397 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1398 			}
   1399 			if (error) {
   1400 				break;
   1401 			}
   1402 			if (by_list) {
   1403 				continue;
   1404 			}
   1405 		}
   1406 
   1407 		/*
   1408 		 * find the next page and continue if there was no error.
   1409 		 */
   1410 
   1411 		if (by_list) {
   1412 			if (nextpg) {
   1413 				pg = nextpg;
   1414 				nextpg = NULL;
   1415 			} else {
   1416 				pg = TAILQ_NEXT(pg, listq);
   1417 			}
   1418 		} else {
   1419 			off += (npages - nback) << PAGE_SHIFT;
   1420 			if (off < endoff) {
   1421 				pg = uvm_pagelookup(uobj, off);
   1422 			}
   1423 		}
   1424 	}
   1425 	if (by_list) {
   1426 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1427 		PRELE(l);
   1428 	}
   1429 
   1430 	if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
   1431 	    (vp->v_type == VREG ||
   1432 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1433 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1434 	}
   1435 
   1436 	/*
   1437 	 * if we're cleaning and there was nothing to clean,
   1438 	 * take us off the syncer list.  if we started any i/o
   1439 	 * and we're doing sync i/o, wait for all writes to finish.
   1440 	 */
   1441 
   1442 	s = splbio();
   1443 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1444 	    (vp->v_flag & VONWORKLST) != 0) {
   1445 		vp->v_flag &= ~VWRITEMAPDIRTY;
   1446 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   1447 			vp->v_flag &= ~VONWORKLST;
   1448 			LIST_REMOVE(vp, v_synclist);
   1449 		}
   1450 	}
   1451 	splx(s);
   1452 
   1453 #if !defined(DEBUG)
   1454 skip_scan:
   1455 #endif /* !defined(DEBUG) */
   1456 	if (!wasclean && !async) {
   1457 		s = splbio();
   1458 		/*
   1459 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1460 		 *	 but the slot in ltsleep() is taken!
   1461 		 * XXX - try to recover from missed wakeups with a timeout..
   1462 		 *	 must think of something better.
   1463 		 */
   1464 		while (vp->v_numoutput != 0) {
   1465 			vp->v_flag |= VBWAIT;
   1466 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
   1467 			    "genput2", hz);
   1468 			simple_lock(slock);
   1469 		}
   1470 		splx(s);
   1471 	}
   1472 	simple_unlock(&uobj->vmobjlock);
   1473 	return (error);
   1474 }
   1475 
   1476 int
   1477 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1478 {
   1479 	int s, error, run;
   1480 	int fs_bshift, dev_bshift;
   1481 	vaddr_t kva;
   1482 	off_t eof, offset, startoffset;
   1483 	size_t bytes, iobytes, skipbytes;
   1484 	daddr_t lbn, blkno;
   1485 	struct vm_page *pg;
   1486 	struct buf *mbp, *bp;
   1487 	struct vnode *devvp;
   1488 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1489 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
   1490 
   1491 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1492 	    vp, pgs, npages, flags);
   1493 
   1494 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
   1495 	if (vp->v_type == VREG) {
   1496 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1497 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1498 	} else {
   1499 		fs_bshift = DEV_BSHIFT;
   1500 		dev_bshift = DEV_BSHIFT;
   1501 	}
   1502 	error = 0;
   1503 	pg = pgs[0];
   1504 	startoffset = pg->offset;
   1505 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1506 	skipbytes = 0;
   1507 	KASSERT(bytes != 0);
   1508 
   1509 	kva = uvm_pagermapin(pgs, npages,
   1510 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1511 
   1512 	s = splbio();
   1513 	simple_lock(&global_v_numoutput_slock);
   1514 	vp->v_numoutput += 2;
   1515 	simple_unlock(&global_v_numoutput_slock);
   1516 	mbp = pool_get(&bufpool, PR_WAITOK);
   1517 	BUF_INIT(mbp);
   1518 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1519 	    vp, mbp, vp->v_numoutput, bytes);
   1520 	splx(s);
   1521 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1522 	mbp->b_data = (void *)kva;
   1523 	mbp->b_resid = mbp->b_bcount = bytes;
   1524 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
   1525 	mbp->b_iodone = uvm_aio_biodone;
   1526 	mbp->b_vp = vp;
   1527 
   1528 	bp = NULL;
   1529 	for (offset = startoffset;
   1530 	    bytes > 0;
   1531 	    offset += iobytes, bytes -= iobytes) {
   1532 		lbn = offset >> fs_bshift;
   1533 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1534 		if (error) {
   1535 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1536 			skipbytes += bytes;
   1537 			bytes = 0;
   1538 			break;
   1539 		}
   1540 
   1541 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1542 		    bytes);
   1543 		if (blkno == (daddr_t)-1) {
   1544 			skipbytes += iobytes;
   1545 			continue;
   1546 		}
   1547 
   1548 		/* if it's really one i/o, don't make a second buf */
   1549 		if (offset == startoffset && iobytes == bytes) {
   1550 			bp = mbp;
   1551 		} else {
   1552 			s = splbio();
   1553 			V_INCR_NUMOUTPUT(vp);
   1554 			bp = pool_get(&bufpool, PR_WAITOK);
   1555 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1556 			    vp, bp, vp->v_numoutput, 0);
   1557 			splx(s);
   1558 			BUF_INIT(bp);
   1559 			bp->b_data = (char *)kva +
   1560 			    (vaddr_t)(offset - pg->offset);
   1561 			bp->b_resid = bp->b_bcount = iobytes;
   1562 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
   1563 			bp->b_iodone = uvm_aio_biodone1;
   1564 			bp->b_vp = vp;
   1565 		}
   1566 		bp->b_lblkno = 0;
   1567 		bp->b_private = mbp;
   1568 		if (devvp->v_type == VBLK) {
   1569 			bp->b_dev = devvp->v_rdev;
   1570 		}
   1571 
   1572 		/* adjust physical blkno for partial blocks */
   1573 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1574 		    dev_bshift);
   1575 		UVMHIST_LOG(ubchist,
   1576 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1577 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1578 		if (curproc == uvm.pagedaemon_proc)
   1579 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1580 		else if (async)
   1581 			BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
   1582 		else
   1583 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1584 		VOP_STRATEGY(bp->b_vp, bp);
   1585 	}
   1586 	if (skipbytes) {
   1587 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1588 		s = splbio();
   1589 		if (error) {
   1590 			mbp->b_flags |= B_ERROR;
   1591 			mbp->b_error = error;
   1592 		}
   1593 		mbp->b_resid -= skipbytes;
   1594 		if (mbp->b_resid == 0) {
   1595 			biodone(mbp);
   1596 		}
   1597 		splx(s);
   1598 	}
   1599 	if (async) {
   1600 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1601 		return (0);
   1602 	}
   1603 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1604 	error = biowait(mbp);
   1605 	uvm_aio_aiodone(mbp);
   1606 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1607 	return (error);
   1608 }
   1609 
   1610 /*
   1611  * VOP_PUTPAGES() for vnodes which never have pages.
   1612  */
   1613 
   1614 int
   1615 genfs_null_putpages(void *v)
   1616 {
   1617 	struct vop_putpages_args /* {
   1618 		struct vnode *a_vp;
   1619 		voff_t a_offlo;
   1620 		voff_t a_offhi;
   1621 		int a_flags;
   1622 	} */ *ap = v;
   1623 	struct vnode *vp = ap->a_vp;
   1624 
   1625 	KASSERT(vp->v_uobj.uo_npages == 0);
   1626 	simple_unlock(&vp->v_interlock);
   1627 	return (0);
   1628 }
   1629 
   1630 void
   1631 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
   1632 {
   1633 	struct genfs_node *gp = VTOG(vp);
   1634 
   1635 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
   1636 	gp->g_op = ops;
   1637 }
   1638 
   1639 void
   1640 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   1641 {
   1642 	int bsize;
   1643 
   1644 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1645 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1646 }
   1647 
   1648 int
   1649 genfs_compat_getpages(void *v)
   1650 {
   1651 	struct vop_getpages_args /* {
   1652 		struct vnode *a_vp;
   1653 		voff_t a_offset;
   1654 		struct vm_page **a_m;
   1655 		int *a_count;
   1656 		int a_centeridx;
   1657 		vm_prot_t a_access_type;
   1658 		int a_advice;
   1659 		int a_flags;
   1660 	} */ *ap = v;
   1661 
   1662 	off_t origoffset;
   1663 	struct vnode *vp = ap->a_vp;
   1664 	struct uvm_object *uobj = &vp->v_uobj;
   1665 	struct vm_page *pg, **pgs;
   1666 	vaddr_t kva;
   1667 	int i, error, orignpages, npages;
   1668 	struct iovec iov;
   1669 	struct uio uio;
   1670 	struct ucred *cred = curproc->p_ucred;
   1671 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1672 
   1673 	error = 0;
   1674 	origoffset = ap->a_offset;
   1675 	orignpages = *ap->a_count;
   1676 	pgs = ap->a_m;
   1677 
   1678 	if (write && (vp->v_flag & VONWORKLST) == 0) {
   1679 		vn_syncer_add_to_worklist(vp, filedelay);
   1680 	}
   1681 	if (ap->a_flags & PGO_LOCKED) {
   1682 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1683 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1684 
   1685 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1686 	}
   1687 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1688 		simple_unlock(&uobj->vmobjlock);
   1689 		return (EINVAL);
   1690 	}
   1691 	npages = orignpages;
   1692 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1693 	simple_unlock(&uobj->vmobjlock);
   1694 	kva = uvm_pagermapin(pgs, npages,
   1695 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1696 	for (i = 0; i < npages; i++) {
   1697 		pg = pgs[i];
   1698 		if ((pg->flags & PG_FAKE) == 0) {
   1699 			continue;
   1700 		}
   1701 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1702 		iov.iov_len = PAGE_SIZE;
   1703 		uio.uio_iov = &iov;
   1704 		uio.uio_iovcnt = 1;
   1705 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1706 		uio.uio_segflg = UIO_SYSSPACE;
   1707 		uio.uio_rw = UIO_READ;
   1708 		uio.uio_resid = PAGE_SIZE;
   1709 		uio.uio_procp = NULL;
   1710 		/* XXX vn_lock */
   1711 		error = VOP_READ(vp, &uio, 0, cred);
   1712 		if (error) {
   1713 			break;
   1714 		}
   1715 		if (uio.uio_resid) {
   1716 			memset(iov.iov_base, 0, uio.uio_resid);
   1717 		}
   1718 	}
   1719 	uvm_pagermapout(kva, npages);
   1720 	simple_lock(&uobj->vmobjlock);
   1721 	uvm_lock_pageq();
   1722 	for (i = 0; i < npages; i++) {
   1723 		pg = pgs[i];
   1724 		if (error && (pg->flags & PG_FAKE) != 0) {
   1725 			pg->flags |= PG_RELEASED;
   1726 		} else {
   1727 			pmap_clear_modify(pg);
   1728 			uvm_pageactivate(pg);
   1729 		}
   1730 	}
   1731 	if (error) {
   1732 		uvm_page_unbusy(pgs, npages);
   1733 	}
   1734 	uvm_unlock_pageq();
   1735 	simple_unlock(&uobj->vmobjlock);
   1736 	return (error);
   1737 }
   1738 
   1739 int
   1740 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1741     int flags)
   1742 {
   1743 	off_t offset;
   1744 	struct iovec iov;
   1745 	struct uio uio;
   1746 	struct ucred *cred = curproc->p_ucred;
   1747 	struct buf *bp;
   1748 	vaddr_t kva;
   1749 	int s, error;
   1750 
   1751 	offset = pgs[0]->offset;
   1752 	kva = uvm_pagermapin(pgs, npages,
   1753 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1754 
   1755 	iov.iov_base = (void *)kva;
   1756 	iov.iov_len = npages << PAGE_SHIFT;
   1757 	uio.uio_iov = &iov;
   1758 	uio.uio_iovcnt = 1;
   1759 	uio.uio_offset = offset;
   1760 	uio.uio_segflg = UIO_SYSSPACE;
   1761 	uio.uio_rw = UIO_WRITE;
   1762 	uio.uio_resid = npages << PAGE_SHIFT;
   1763 	uio.uio_procp = NULL;
   1764 	/* XXX vn_lock */
   1765 	error = VOP_WRITE(vp, &uio, 0, cred);
   1766 
   1767 	s = splbio();
   1768 	V_INCR_NUMOUTPUT(vp);
   1769 	bp = pool_get(&bufpool, PR_WAITOK);
   1770 	splx(s);
   1771 
   1772 	BUF_INIT(bp);
   1773 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1774 	bp->b_vp = vp;
   1775 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1776 	bp->b_data = (char *)kva;
   1777 	bp->b_bcount = npages << PAGE_SHIFT;
   1778 	bp->b_bufsize = npages << PAGE_SHIFT;
   1779 	bp->b_resid = 0;
   1780 	if (error) {
   1781 		bp->b_flags |= B_ERROR;
   1782 		bp->b_error = error;
   1783 	}
   1784 	uvm_aio_aiodone(bp);
   1785 	return (error);
   1786 }
   1787 
   1788 static void
   1789 filt_genfsdetach(struct knote *kn)
   1790 {
   1791 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1792 
   1793 	/* XXXLUKEM lock the struct? */
   1794 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
   1795 }
   1796 
   1797 static int
   1798 filt_genfsread(struct knote *kn, long hint)
   1799 {
   1800 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1801 
   1802 	/*
   1803 	 * filesystem is gone, so set the EOF flag and schedule
   1804 	 * the knote for deletion.
   1805 	 */
   1806 	if (hint == NOTE_REVOKE) {
   1807 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1808 		return (1);
   1809 	}
   1810 
   1811 	/* XXXLUKEM lock the struct? */
   1812 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
   1813         return (kn->kn_data != 0);
   1814 }
   1815 
   1816 static int
   1817 filt_genfsvnode(struct knote *kn, long hint)
   1818 {
   1819 
   1820 	if (kn->kn_sfflags & hint)
   1821 		kn->kn_fflags |= hint;
   1822 	if (hint == NOTE_REVOKE) {
   1823 		kn->kn_flags |= EV_EOF;
   1824 		return (1);
   1825 	}
   1826 	return (kn->kn_fflags != 0);
   1827 }
   1828 
   1829 static const struct filterops genfsread_filtops =
   1830 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
   1831 static const struct filterops genfsvnode_filtops =
   1832 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
   1833 
   1834 int
   1835 genfs_kqfilter(void *v)
   1836 {
   1837 	struct vop_kqfilter_args /* {
   1838 		struct vnode	*a_vp;
   1839 		struct knote	*a_kn;
   1840 	} */ *ap = v;
   1841 	struct vnode *vp;
   1842 	struct knote *kn;
   1843 
   1844 	vp = ap->a_vp;
   1845 	kn = ap->a_kn;
   1846 	switch (kn->kn_filter) {
   1847 	case EVFILT_READ:
   1848 		kn->kn_fop = &genfsread_filtops;
   1849 		break;
   1850 	case EVFILT_VNODE:
   1851 		kn->kn_fop = &genfsvnode_filtops;
   1852 		break;
   1853 	default:
   1854 		return (1);
   1855 	}
   1856 
   1857 	kn->kn_hook = vp;
   1858 
   1859 	/* XXXLUKEM lock the struct? */
   1860 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
   1861 
   1862 	return (0);
   1863 }
   1864