Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.116
      1 /*	$NetBSD: genfs_vnops.c,v 1.116 2005/12/11 12:24:50 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.116 2005/12/11 12:24:50 christos Exp $");
     35 
     36 #if defined(_KERNEL_OPT)
     37 #include "opt_nfsserver.h"
     38 #endif
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/proc.h>
     43 #include <sys/kernel.h>
     44 #include <sys/mount.h>
     45 #include <sys/namei.h>
     46 #include <sys/vnode.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/malloc.h>
     49 #include <sys/poll.h>
     50 #include <sys/mman.h>
     51 #include <sys/file.h>
     52 
     53 #include <miscfs/genfs/genfs.h>
     54 #include <miscfs/genfs/genfs_node.h>
     55 #include <miscfs/specfs/specdev.h>
     56 
     57 #include <uvm/uvm.h>
     58 #include <uvm/uvm_pager.h>
     59 
     60 #ifdef NFSSERVER
     61 #include <nfs/rpcv2.h>
     62 #include <nfs/nfsproto.h>
     63 #include <nfs/nfs.h>
     64 #include <nfs/nqnfs.h>
     65 #include <nfs/nfs_var.h>
     66 #endif
     67 
     68 static __inline void genfs_rel_pages(struct vm_page **, int);
     69 static void filt_genfsdetach(struct knote *);
     70 static int filt_genfsread(struct knote *, long);
     71 static int filt_genfsvnode(struct knote *, long);
     72 
     73 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
     74 
     75 int
     76 genfs_poll(void *v)
     77 {
     78 	struct vop_poll_args /* {
     79 		struct vnode *a_vp;
     80 		int a_events;
     81 		struct lwp *a_l;
     82 	} */ *ap = v;
     83 
     84 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     85 }
     86 
     87 int
     88 genfs_seek(void *v)
     89 {
     90 	struct vop_seek_args /* {
     91 		struct vnode *a_vp;
     92 		off_t a_oldoff;
     93 		off_t a_newoff;
     94 		struct ucred *a_ucred;
     95 	} */ *ap = v;
     96 
     97 	if (ap->a_newoff < 0)
     98 		return (EINVAL);
     99 
    100 	return (0);
    101 }
    102 
    103 int
    104 genfs_abortop(void *v)
    105 {
    106 	struct vop_abortop_args /* {
    107 		struct vnode *a_dvp;
    108 		struct componentname *a_cnp;
    109 	} */ *ap = v;
    110 
    111 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    112 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    113 	return (0);
    114 }
    115 
    116 int
    117 genfs_fcntl(void *v)
    118 {
    119 	struct vop_fcntl_args /* {
    120 		struct vnode *a_vp;
    121 		u_int a_command;
    122 		caddr_t a_data;
    123 		int a_fflag;
    124 		struct ucred *a_cred;
    125 		struct lwp *a_l;
    126 	} */ *ap = v;
    127 
    128 	if (ap->a_command == F_SETFL)
    129 		return (0);
    130 	else
    131 		return (EOPNOTSUPP);
    132 }
    133 
    134 /*ARGSUSED*/
    135 int
    136 genfs_badop(void *v)
    137 {
    138 
    139 	panic("genfs: bad op");
    140 }
    141 
    142 /*ARGSUSED*/
    143 int
    144 genfs_nullop(void *v)
    145 {
    146 
    147 	return (0);
    148 }
    149 
    150 /*ARGSUSED*/
    151 int
    152 genfs_einval(void *v)
    153 {
    154 
    155 	return (EINVAL);
    156 }
    157 
    158 /*
    159  * Called when an fs doesn't support a particular vop.
    160  * This takes care to vrele, vput, or vunlock passed in vnodes.
    161  */
    162 int
    163 genfs_eopnotsupp(void *v)
    164 {
    165 	struct vop_generic_args /*
    166 		struct vnodeop_desc *a_desc;
    167 		/ * other random data follows, presumably * /
    168 	} */ *ap = v;
    169 	struct vnodeop_desc *desc = ap->a_desc;
    170 	struct vnode *vp, *vp_last = NULL;
    171 	int flags, i, j, offset;
    172 
    173 	flags = desc->vdesc_flags;
    174 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    175 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    176 			break;	/* stop at end of list */
    177 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    178 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
    179 
    180 			/* Skip if NULL */
    181 			if (!vp)
    182 				continue;
    183 
    184 			switch (j) {
    185 			case VDESC_VP0_WILLPUT:
    186 				/* Check for dvp == vp cases */
    187 				if (vp == vp_last)
    188 					vrele(vp);
    189 				else {
    190 					vput(vp);
    191 					vp_last = vp;
    192 				}
    193 				break;
    194 			case VDESC_VP0_WILLUNLOCK:
    195 				VOP_UNLOCK(vp, 0);
    196 				break;
    197 			case VDESC_VP0_WILLRELE:
    198 				vrele(vp);
    199 				break;
    200 			}
    201 		}
    202 	}
    203 
    204 	return (EOPNOTSUPP);
    205 }
    206 
    207 /*ARGSUSED*/
    208 int
    209 genfs_ebadf(void *v)
    210 {
    211 
    212 	return (EBADF);
    213 }
    214 
    215 /* ARGSUSED */
    216 int
    217 genfs_enoioctl(void *v)
    218 {
    219 
    220 	return (EPASSTHROUGH);
    221 }
    222 
    223 
    224 /*
    225  * Eliminate all activity associated with the requested vnode
    226  * and with all vnodes aliased to the requested vnode.
    227  */
    228 int
    229 genfs_revoke(void *v)
    230 {
    231 	struct vop_revoke_args /* {
    232 		struct vnode *a_vp;
    233 		int a_flags;
    234 	} */ *ap = v;
    235 	struct vnode *vp, *vq;
    236 	struct lwp *l = curlwp;		/* XXX */
    237 
    238 #ifdef DIAGNOSTIC
    239 	if ((ap->a_flags & REVOKEALL) == 0)
    240 		panic("genfs_revoke: not revokeall");
    241 #endif
    242 
    243 	vp = ap->a_vp;
    244 	simple_lock(&vp->v_interlock);
    245 
    246 	if (vp->v_flag & VALIASED) {
    247 		/*
    248 		 * If a vgone (or vclean) is already in progress,
    249 		 * wait until it is done and return.
    250 		 */
    251 		if (vp->v_flag & VXLOCK) {
    252 			vp->v_flag |= VXWANT;
    253 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
    254 				&vp->v_interlock);
    255 			return (0);
    256 		}
    257 		/*
    258 		 * Ensure that vp will not be vgone'd while we
    259 		 * are eliminating its aliases.
    260 		 */
    261 		vp->v_flag |= VXLOCK;
    262 		simple_unlock(&vp->v_interlock);
    263 		while (vp->v_flag & VALIASED) {
    264 			simple_lock(&spechash_slock);
    265 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    266 				if (vq->v_rdev != vp->v_rdev ||
    267 				    vq->v_type != vp->v_type || vp == vq)
    268 					continue;
    269 				simple_unlock(&spechash_slock);
    270 				vgone(vq);
    271 				break;
    272 			}
    273 			if (vq == NULLVP)
    274 				simple_unlock(&spechash_slock);
    275 		}
    276 		/*
    277 		 * Remove the lock so that vgone below will
    278 		 * really eliminate the vnode after which time
    279 		 * vgone will awaken any sleepers.
    280 		 */
    281 		simple_lock(&vp->v_interlock);
    282 		vp->v_flag &= ~VXLOCK;
    283 	}
    284 	vgonel(vp, l);
    285 	return (0);
    286 }
    287 
    288 /*
    289  * Lock the node.
    290  */
    291 int
    292 genfs_lock(void *v)
    293 {
    294 	struct vop_lock_args /* {
    295 		struct vnode *a_vp;
    296 		int a_flags;
    297 	} */ *ap = v;
    298 	struct vnode *vp = ap->a_vp;
    299 
    300 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
    301 }
    302 
    303 /*
    304  * Unlock the node.
    305  */
    306 int
    307 genfs_unlock(void *v)
    308 {
    309 	struct vop_unlock_args /* {
    310 		struct vnode *a_vp;
    311 		int a_flags;
    312 	} */ *ap = v;
    313 	struct vnode *vp = ap->a_vp;
    314 
    315 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    316 	    &vp->v_interlock));
    317 }
    318 
    319 /*
    320  * Return whether or not the node is locked.
    321  */
    322 int
    323 genfs_islocked(void *v)
    324 {
    325 	struct vop_islocked_args /* {
    326 		struct vnode *a_vp;
    327 	} */ *ap = v;
    328 	struct vnode *vp = ap->a_vp;
    329 
    330 	return (lockstatus(vp->v_vnlock));
    331 }
    332 
    333 /*
    334  * Stubs to use when there is no locking to be done on the underlying object.
    335  */
    336 int
    337 genfs_nolock(void *v)
    338 {
    339 	struct vop_lock_args /* {
    340 		struct vnode *a_vp;
    341 		int a_flags;
    342 		struct lwp *a_l;
    343 	} */ *ap = v;
    344 
    345 	/*
    346 	 * Since we are not using the lock manager, we must clear
    347 	 * the interlock here.
    348 	 */
    349 	if (ap->a_flags & LK_INTERLOCK)
    350 		simple_unlock(&ap->a_vp->v_interlock);
    351 	return (0);
    352 }
    353 
    354 int
    355 genfs_nounlock(void *v)
    356 {
    357 
    358 	return (0);
    359 }
    360 
    361 int
    362 genfs_noislocked(void *v)
    363 {
    364 
    365 	return (0);
    366 }
    367 
    368 /*
    369  * Local lease check for NFS servers.  Just set up args and let
    370  * nqsrv_getlease() do the rest.  If NFSSERVER is not in the kernel,
    371  * this is a null operation.
    372  */
    373 int
    374 genfs_lease_check(void *v)
    375 {
    376 #ifdef NFSSERVER
    377 	struct vop_lease_args /* {
    378 		struct vnode *a_vp;
    379 		struct lwp *a_l;
    380 		struct ucred *a_cred;
    381 		int a_flag;
    382 	} */ *ap = v;
    383 	u_int32_t duration = 0;
    384 	int cache;
    385 	u_quad_t frev;
    386 
    387 	(void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
    388 	    NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
    389 	return (0);
    390 #else
    391 	return (0);
    392 #endif /* NFSSERVER */
    393 }
    394 
    395 int
    396 genfs_mmap(void *v)
    397 {
    398 
    399 	return (0);
    400 }
    401 
    402 static __inline void
    403 genfs_rel_pages(struct vm_page **pgs, int npages)
    404 {
    405 	int i;
    406 
    407 	for (i = 0; i < npages; i++) {
    408 		struct vm_page *pg = pgs[i];
    409 
    410 		if (pg == NULL)
    411 			continue;
    412 		if (pg->flags & PG_FAKE) {
    413 			pg->flags |= PG_RELEASED;
    414 		}
    415 	}
    416 	uvm_lock_pageq();
    417 	uvm_page_unbusy(pgs, npages);
    418 	uvm_unlock_pageq();
    419 }
    420 
    421 /*
    422  * generic VM getpages routine.
    423  * Return PG_BUSY pages for the given range,
    424  * reading from backing store if necessary.
    425  */
    426 
    427 int
    428 genfs_getpages(void *v)
    429 {
    430 	struct vop_getpages_args /* {
    431 		struct vnode *a_vp;
    432 		voff_t a_offset;
    433 		struct vm_page **a_m;
    434 		int *a_count;
    435 		int a_centeridx;
    436 		vm_prot_t a_access_type;
    437 		int a_advice;
    438 		int a_flags;
    439 	} */ *ap = v;
    440 
    441 	off_t newsize, diskeof, memeof;
    442 	off_t offset, origoffset, startoffset, endoffset, raoffset;
    443 	daddr_t lbn, blkno;
    444 	int s, i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    445 	int fs_bshift, fs_bsize, dev_bshift;
    446 	int flags = ap->a_flags;
    447 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
    448 	vaddr_t kva;
    449 	struct buf *bp, *mbp;
    450 	struct vnode *vp = ap->a_vp;
    451 	struct vnode *devvp;
    452 	struct genfs_node *gp = VTOG(vp);
    453 	struct uvm_object *uobj = &vp->v_uobj;
    454 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
    455 	int pgs_size;
    456 	struct ucred *cred = curproc->p_ucred;		/* XXXUBC curlwp */
    457 	boolean_t async = (flags & PGO_SYNCIO) == 0;
    458 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    459 	boolean_t sawhole = FALSE;
    460 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
    461 	boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    462 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    463 
    464 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    465 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    466 
    467 	KASSERT(vp->v_type == VREG || vp->v_type == VBLK);
    468 
    469 	/* XXXUBC temp limit */
    470 	if (*ap->a_count > MAX_READ_PAGES) {
    471 		panic("genfs_getpages: too many pages");
    472 	}
    473 
    474 	error = 0;
    475 	origoffset = ap->a_offset;
    476 	orignpages = *ap->a_count;
    477 	GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
    478 	if (flags & PGO_PASTEOF) {
    479 		newsize = MAX(vp->v_size,
    480 		    origoffset + (orignpages << PAGE_SHIFT));
    481 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    482 	} else {
    483 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
    484 	}
    485 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    486 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    487 	KASSERT(orignpages > 0);
    488 
    489 	/*
    490 	 * Bounds-check the request.
    491 	 */
    492 
    493 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    494 		if ((flags & PGO_LOCKED) == 0) {
    495 			simple_unlock(&uobj->vmobjlock);
    496 		}
    497 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    498 		    origoffset, *ap->a_count, memeof,0);
    499 		return (EINVAL);
    500 	}
    501 
    502 	/* uobj is locked */
    503 
    504 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    505 	    (vp->v_type == VREG ||
    506 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    507 		int updflags = 0;
    508 
    509 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    510 			updflags = GOP_UPDATE_ACCESSED;
    511 		}
    512 		if (write) {
    513 			updflags |= GOP_UPDATE_MODIFIED;
    514 		}
    515 		if (updflags != 0) {
    516 			GOP_MARKUPDATE(vp, updflags);
    517 		}
    518 	}
    519 
    520 	if (write) {
    521 		gp->g_dirtygen++;
    522 		if ((vp->v_flag & VONWORKLST) == 0) {
    523 			vn_syncer_add_to_worklist(vp, filedelay);
    524 		}
    525 		if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
    526 			vp->v_flag |= VWRITEMAPDIRTY;
    527 		}
    528 	}
    529 
    530 	/*
    531 	 * For PGO_LOCKED requests, just return whatever's in memory.
    532 	 */
    533 
    534 	if (flags & PGO_LOCKED) {
    535 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
    536 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
    537 
    538 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    539 	}
    540 
    541 	/*
    542 	 * find the requested pages and make some simple checks.
    543 	 * leave space in the page array for a whole block.
    544 	 */
    545 
    546 	if (vp->v_type == VREG) {
    547 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    548 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    549 	} else {
    550 		fs_bshift = DEV_BSHIFT;
    551 		dev_bshift = DEV_BSHIFT;
    552 	}
    553 	fs_bsize = 1 << fs_bshift;
    554 
    555 	orignpages = MIN(orignpages,
    556 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    557 	npages = orignpages;
    558 	startoffset = origoffset & ~(fs_bsize - 1);
    559 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    560 	    fs_bsize - 1) & ~(fs_bsize - 1));
    561 	endoffset = MIN(endoffset, round_page(memeof));
    562 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    563 
    564 	pgs_size = sizeof(struct vm_page *) *
    565 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    566 	if (pgs_size > sizeof(pgs_onstack)) {
    567 		pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
    568 		if (pgs == NULL) {
    569 			simple_unlock(&uobj->vmobjlock);
    570 			return (ENOMEM);
    571 		}
    572 	} else {
    573 		pgs = pgs_onstack;
    574 		memset(pgs, 0, pgs_size);
    575 	}
    576 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    577 	    ridx, npages, startoffset, endoffset);
    578 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    579 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    580 		KASSERT(async != 0);
    581 		genfs_rel_pages(&pgs[ridx], orignpages);
    582 		simple_unlock(&uobj->vmobjlock);
    583 		if (pgs != pgs_onstack)
    584 			free(pgs, M_DEVBUF);
    585 		return (EBUSY);
    586 	}
    587 
    588 	/*
    589 	 * if the pages are already resident, just return them.
    590 	 */
    591 
    592 	for (i = 0; i < npages; i++) {
    593 		struct vm_page *pg1 = pgs[ridx + i];
    594 
    595 		if ((pg1->flags & PG_FAKE) ||
    596 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    597 			break;
    598 		}
    599 	}
    600 	if (i == npages) {
    601 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    602 		raoffset = origoffset + (orignpages << PAGE_SHIFT);
    603 		npages += ridx;
    604 		goto out;
    605 	}
    606 
    607 	/*
    608 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    609 	 */
    610 
    611 	if (flags & PGO_OVERWRITE) {
    612 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    613 
    614 		for (i = 0; i < npages; i++) {
    615 			struct vm_page *pg1 = pgs[ridx + i];
    616 
    617 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    618 		}
    619 		npages += ridx;
    620 		goto out;
    621 	}
    622 
    623 	/*
    624 	 * the page wasn't resident and we're not overwriting,
    625 	 * so we're going to have to do some i/o.
    626 	 * find any additional pages needed to cover the expanded range.
    627 	 */
    628 
    629 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    630 	if (startoffset != origoffset || npages != orignpages) {
    631 
    632 		/*
    633 		 * we need to avoid deadlocks caused by locking
    634 		 * additional pages at lower offsets than pages we
    635 		 * already have locked.  unlock them all and start over.
    636 		 */
    637 
    638 		genfs_rel_pages(&pgs[ridx], orignpages);
    639 		memset(pgs, 0, pgs_size);
    640 
    641 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    642 		    startoffset, endoffset, 0,0);
    643 		npgs = npages;
    644 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    645 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    646 			KASSERT(async != 0);
    647 			genfs_rel_pages(pgs, npages);
    648 			simple_unlock(&uobj->vmobjlock);
    649 			if (pgs != pgs_onstack)
    650 				free(pgs, M_DEVBUF);
    651 			return (EBUSY);
    652 		}
    653 	}
    654 	simple_unlock(&uobj->vmobjlock);
    655 
    656 	/*
    657 	 * read the desired page(s).
    658 	 */
    659 
    660 	totalbytes = npages << PAGE_SHIFT;
    661 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    662 	tailbytes = totalbytes - bytes;
    663 	skipbytes = 0;
    664 
    665 	kva = uvm_pagermapin(pgs, npages,
    666 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    667 
    668 	s = splbio();
    669 	mbp = pool_get(&bufpool, PR_WAITOK);
    670 	splx(s);
    671 	BUF_INIT(mbp);
    672 	mbp->b_bufsize = totalbytes;
    673 	mbp->b_data = (void *)kva;
    674 	mbp->b_resid = mbp->b_bcount = bytes;
    675 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    676 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    677 	mbp->b_vp = vp;
    678 
    679 	/*
    680 	 * if EOF is in the middle of the range, zero the part past EOF.
    681 	 * if the page including EOF is not PG_FAKE, skip over it since
    682 	 * in that case it has valid data that we need to preserve.
    683 	 */
    684 
    685 	if (tailbytes > 0) {
    686 		size_t tailstart = bytes;
    687 
    688 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
    689 			tailstart = round_page(tailstart);
    690 			tailbytes -= tailstart - bytes;
    691 		}
    692 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    693 		    kva, tailstart, tailbytes,0);
    694 		memset((void *)(kva + tailstart), 0, tailbytes);
    695 	}
    696 
    697 	/*
    698 	 * now loop over the pages, reading as needed.
    699 	 */
    700 
    701 	if (blockalloc) {
    702 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
    703 	} else {
    704 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
    705 	}
    706 
    707 	bp = NULL;
    708 	for (offset = startoffset;
    709 	    bytes > 0;
    710 	    offset += iobytes, bytes -= iobytes) {
    711 
    712 		/*
    713 		 * skip pages which don't need to be read.
    714 		 */
    715 
    716 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    717 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    718 			size_t b;
    719 
    720 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    721 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    722 				sawhole = TRUE;
    723 			}
    724 			b = MIN(PAGE_SIZE, bytes);
    725 			offset += b;
    726 			bytes -= b;
    727 			skipbytes += b;
    728 			pidx++;
    729 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    730 			    offset, 0,0,0);
    731 			if (bytes == 0) {
    732 				goto loopdone;
    733 			}
    734 		}
    735 
    736 		/*
    737 		 * bmap the file to find out the blkno to read from and
    738 		 * how much we can read in one i/o.  if bmap returns an error,
    739 		 * skip the rest of the top-level i/o.
    740 		 */
    741 
    742 		lbn = offset >> fs_bshift;
    743 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    744 		if (error) {
    745 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    746 			    lbn, error,0,0);
    747 			skipbytes += bytes;
    748 			goto loopdone;
    749 		}
    750 
    751 		/*
    752 		 * see how many pages can be read with this i/o.
    753 		 * reduce the i/o size if necessary to avoid
    754 		 * overwriting pages with valid data.
    755 		 */
    756 
    757 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    758 		    bytes);
    759 		if (offset + iobytes > round_page(offset)) {
    760 			pcount = 1;
    761 			while (pidx + pcount < npages &&
    762 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    763 				pcount++;
    764 			}
    765 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    766 			    (offset - trunc_page(offset)));
    767 		}
    768 
    769 		/*
    770 		 * if this block isn't allocated, zero it instead of
    771 		 * reading it.  unless we are going to allocate blocks,
    772 		 * mark the pages we zeroed PG_RDONLY.
    773 		 */
    774 
    775 		if (blkno < 0) {
    776 			int holepages = (round_page(offset + iobytes) -
    777 			    trunc_page(offset)) >> PAGE_SHIFT;
    778 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    779 
    780 			sawhole = TRUE;
    781 			memset((char *)kva + (offset - startoffset), 0,
    782 			    iobytes);
    783 			skipbytes += iobytes;
    784 
    785 			for (i = 0; i < holepages; i++) {
    786 				if (write) {
    787 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    788 				}
    789 				if (!blockalloc) {
    790 					pgs[pidx + i]->flags |= PG_RDONLY;
    791 				}
    792 			}
    793 			continue;
    794 		}
    795 
    796 		/*
    797 		 * allocate a sub-buf for this piece of the i/o
    798 		 * (or just use mbp if there's only 1 piece),
    799 		 * and start it going.
    800 		 */
    801 
    802 		if (offset == startoffset && iobytes == bytes) {
    803 			bp = mbp;
    804 		} else {
    805 			s = splbio();
    806 			bp = pool_get(&bufpool, PR_WAITOK);
    807 			splx(s);
    808 			BUF_INIT(bp);
    809 			bp->b_data = (char *)kva + offset - startoffset;
    810 			bp->b_resid = bp->b_bcount = iobytes;
    811 			bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
    812 			bp->b_iodone = uvm_aio_biodone1;
    813 			bp->b_vp = vp;
    814 			bp->b_proc = NULL;
    815 		}
    816 		bp->b_lblkno = 0;
    817 		bp->b_private = mbp;
    818 
    819 		/* adjust physical blkno for partial blocks */
    820 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    821 		    dev_bshift);
    822 
    823 		UVMHIST_LOG(ubchist,
    824 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    825 		    bp, offset, iobytes, bp->b_blkno);
    826 
    827 		if (async)
    828 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
    829 		else
    830 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    831 
    832 		VOP_STRATEGY(devvp, bp);
    833 	}
    834 
    835 loopdone:
    836 	if (skipbytes) {
    837 		s = splbio();
    838 		if (error) {
    839 			mbp->b_flags |= B_ERROR;
    840 			mbp->b_error = error;
    841 		}
    842 		mbp->b_resid -= skipbytes;
    843 		if (mbp->b_resid == 0) {
    844 			biodone(mbp);
    845 		}
    846 		splx(s);
    847 	}
    848 
    849 	if (async) {
    850 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    851 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    852 		if (pgs != pgs_onstack)
    853 			free(pgs, M_DEVBUF);
    854 		return (0);
    855 	}
    856 	if (bp != NULL) {
    857 		error = biowait(mbp);
    858 	}
    859 	s = splbio();
    860 	pool_put(&bufpool, mbp);
    861 	splx(s);
    862 	uvm_pagermapout(kva, npages);
    863 	raoffset = startoffset + totalbytes;
    864 
    865 	/*
    866 	 * if this we encountered a hole then we have to do a little more work.
    867 	 * for read faults, we marked the page PG_RDONLY so that future
    868 	 * write accesses to the page will fault again.
    869 	 * for write faults, we must make sure that the backing store for
    870 	 * the page is completely allocated while the pages are locked.
    871 	 */
    872 
    873 	if (!error && sawhole && blockalloc) {
    874 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    875 		    cred);
    876 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    877 		    startoffset, npages << PAGE_SHIFT, error,0);
    878 		if (!error) {
    879 			for (i = 0; i < npages; i++) {
    880 				if (pgs[i] == NULL) {
    881 					continue;
    882 				}
    883 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    884 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    885 				    pgs[i],0,0,0);
    886 			}
    887 		}
    888 	}
    889 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    890 	simple_lock(&uobj->vmobjlock);
    891 
    892 	/*
    893 	 * we're almost done!  release the pages...
    894 	 * for errors, we free the pages.
    895 	 * otherwise we activate them and mark them as valid and clean.
    896 	 * also, unbusy pages that were not actually requested.
    897 	 */
    898 
    899 	if (error) {
    900 		for (i = 0; i < npages; i++) {
    901 			if (pgs[i] == NULL) {
    902 				continue;
    903 			}
    904 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    905 			    pgs[i], pgs[i]->flags, 0,0);
    906 			if (pgs[i]->flags & PG_FAKE) {
    907 				pgs[i]->flags |= PG_RELEASED;
    908 			}
    909 		}
    910 		uvm_lock_pageq();
    911 		uvm_page_unbusy(pgs, npages);
    912 		uvm_unlock_pageq();
    913 		simple_unlock(&uobj->vmobjlock);
    914 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    915 		if (pgs != pgs_onstack)
    916 			free(pgs, M_DEVBUF);
    917 		return (error);
    918 	}
    919 
    920 out:
    921 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    922 	uvm_lock_pageq();
    923 	for (i = 0; i < npages; i++) {
    924 		pg = pgs[i];
    925 		if (pg == NULL) {
    926 			continue;
    927 		}
    928 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    929 		    pg, pg->flags, 0,0);
    930 		if (pg->flags & PG_FAKE && !overwrite) {
    931 			pg->flags &= ~(PG_FAKE);
    932 			pmap_clear_modify(pgs[i]);
    933 		}
    934 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    935 		if (i < ridx || i >= ridx + orignpages || async) {
    936 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    937 			    pg, pg->offset,0,0);
    938 			if (pg->flags & PG_WANTED) {
    939 				wakeup(pg);
    940 			}
    941 			if (pg->flags & PG_FAKE) {
    942 				KASSERT(overwrite);
    943 				uvm_pagezero(pg);
    944 			}
    945 			if (pg->flags & PG_RELEASED) {
    946 				uvm_pagefree(pg);
    947 				continue;
    948 			}
    949 			uvm_pageactivate(pg);
    950 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    951 			UVM_PAGE_OWN(pg, NULL);
    952 		}
    953 	}
    954 	uvm_unlock_pageq();
    955 	simple_unlock(&uobj->vmobjlock);
    956 	if (ap->a_m != NULL) {
    957 		memcpy(ap->a_m, &pgs[ridx],
    958 		    orignpages * sizeof(struct vm_page *));
    959 	}
    960 	if (pgs != pgs_onstack)
    961 		free(pgs, M_DEVBUF);
    962 	return (0);
    963 }
    964 
    965 /*
    966  * generic VM putpages routine.
    967  * Write the given range of pages to backing store.
    968  *
    969  * => "offhi == 0" means flush all pages at or after "offlo".
    970  * => object should be locked by caller.   we may _unlock_ the object
    971  *	if (and only if) we need to clean a page (PGO_CLEANIT), or
    972  *	if PGO_SYNCIO is set and there are pages busy.
    973  *	we return with the object locked.
    974  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    975  *	thus, a caller might want to unlock higher level resources
    976  *	(e.g. vm_map) before calling flush.
    977  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
    978  *	unlock the object nor block.
    979  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    980  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    981  *	that new pages are inserted on the tail end of the list.   thus,
    982  *	we can make a complete pass through the object in one go by starting
    983  *	at the head and working towards the tail (new pages are put in
    984  *	front of us).
    985  * => NOTE: we are allowed to lock the page queues, so the caller
    986  *	must not be holding the page queue lock.
    987  *
    988  * note on "cleaning" object and PG_BUSY pages:
    989  *	this routine is holding the lock on the object.   the only time
    990  *	that it can run into a PG_BUSY page that it does not own is if
    991  *	some other process has started I/O on the page (e.g. either
    992  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    993  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    994  *	had a chance to modify it yet.    if the PG_BUSY page is being
    995  *	paged out then it means that someone else has already started
    996  *	cleaning the page for us (how nice!).    in this case, if we
    997  *	have syncio specified, then after we make our pass through the
    998  *	object we need to wait for the other PG_BUSY pages to clear
    999  *	off (i.e. we need to do an iosync).   also note that once a
   1000  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1001  *
   1002  * note on page traversal:
   1003  *	we can traverse the pages in an object either by going down the
   1004  *	linked list in "uobj->memq", or we can go over the address range
   1005  *	by page doing hash table lookups for each address.    depending
   1006  *	on how many pages are in the object it may be cheaper to do one
   1007  *	or the other.   we set "by_list" to true if we are using memq.
   1008  *	if the cost of a hash lookup was equal to the cost of the list
   1009  *	traversal we could compare the number of pages in the start->stop
   1010  *	range to the total number of pages in the object.   however, it
   1011  *	seems that a hash table lookup is more expensive than the linked
   1012  *	list traversal, so we multiply the number of pages in the
   1013  *	range by an estimate of the relatively higher cost of the hash lookup.
   1014  */
   1015 
   1016 int
   1017 genfs_putpages(void *v)
   1018 {
   1019 	struct vop_putpages_args /* {
   1020 		struct vnode *a_vp;
   1021 		voff_t a_offlo;
   1022 		voff_t a_offhi;
   1023 		int a_flags;
   1024 	} */ *ap = v;
   1025 	struct vnode *vp = ap->a_vp;
   1026 	struct uvm_object *uobj = &vp->v_uobj;
   1027 	struct simplelock *slock = &uobj->vmobjlock;
   1028 	off_t startoff = ap->a_offlo;
   1029 	off_t endoff = ap->a_offhi;
   1030 	off_t off;
   1031 	int flags = ap->a_flags;
   1032 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1033 	const int maxpages = MAXPHYS >> PAGE_SHIFT;
   1034 	int i, s, error, npages, nback;
   1035 	int freeflag;
   1036 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1037 	boolean_t wasclean, by_list, needs_clean, yld;
   1038 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1039 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
   1040 	struct lwp *l = curlwp ? curlwp : &lwp0;
   1041 	struct genfs_node *gp = VTOG(vp);
   1042 	int dirtygen;
   1043 	boolean_t modified = FALSE;
   1044 	boolean_t cleanall;
   1045 
   1046 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1047 
   1048 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1049 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1050 	KASSERT(startoff < endoff || endoff == 0);
   1051 
   1052 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1053 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1054 
   1055 	KASSERT((vp->v_flag & VONWORKLST) != 0 ||
   1056 	    (vp->v_flag & VWRITEMAPDIRTY) == 0);
   1057 	if (uobj->uo_npages == 0) {
   1058 		s = splbio();
   1059 		if (vp->v_flag & VONWORKLST) {
   1060 			vp->v_flag &= ~VWRITEMAPDIRTY;
   1061 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   1062 				vp->v_flag &= ~VONWORKLST;
   1063 				LIST_REMOVE(vp, v_synclist);
   1064 			}
   1065 		}
   1066 		splx(s);
   1067 		simple_unlock(slock);
   1068 		return (0);
   1069 	}
   1070 
   1071 	/*
   1072 	 * the vnode has pages, set up to process the request.
   1073 	 */
   1074 
   1075 	error = 0;
   1076 	s = splbio();
   1077 	simple_lock(&global_v_numoutput_slock);
   1078 	wasclean = (vp->v_numoutput == 0);
   1079 	simple_unlock(&global_v_numoutput_slock);
   1080 	splx(s);
   1081 	off = startoff;
   1082 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1083 		endoff = trunc_page(LLONG_MAX);
   1084 	}
   1085 	by_list = (uobj->uo_npages <=
   1086 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1087 
   1088 #if !defined(DEBUG)
   1089 	/*
   1090 	 * if this vnode is known not to have dirty pages,
   1091 	 * don't bother to clean it out.
   1092 	 */
   1093 
   1094 	if ((vp->v_flag & VONWORKLST) == 0) {
   1095 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1096 			goto skip_scan;
   1097 		}
   1098 		flags &= ~PGO_CLEANIT;
   1099 	}
   1100 #endif /* !defined(DEBUG) */
   1101 
   1102 	/*
   1103 	 * start the loop.  when scanning by list, hold the last page
   1104 	 * in the list before we start.  pages allocated after we start
   1105 	 * will be added to the end of the list, so we can stop at the
   1106 	 * current last page.
   1107 	 */
   1108 
   1109 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1110 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1111 	    (vp->v_flag & VONWORKLST) != 0;
   1112 	dirtygen = gp->g_dirtygen;
   1113 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1114 	if (by_list) {
   1115 		curmp.uobject = uobj;
   1116 		curmp.offset = (voff_t)-1;
   1117 		curmp.flags = PG_BUSY;
   1118 		endmp.uobject = uobj;
   1119 		endmp.offset = (voff_t)-1;
   1120 		endmp.flags = PG_BUSY;
   1121 		pg = TAILQ_FIRST(&uobj->memq);
   1122 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1123 		PHOLD(l);
   1124 	} else {
   1125 		pg = uvm_pagelookup(uobj, off);
   1126 	}
   1127 	nextpg = NULL;
   1128 	while (by_list || off < endoff) {
   1129 
   1130 		/*
   1131 		 * if the current page is not interesting, move on to the next.
   1132 		 */
   1133 
   1134 		KASSERT(pg == NULL || pg->uobject == uobj);
   1135 		KASSERT(pg == NULL ||
   1136 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1137 		    (pg->flags & PG_BUSY) != 0);
   1138 		if (by_list) {
   1139 			if (pg == &endmp) {
   1140 				break;
   1141 			}
   1142 			if (pg->offset < startoff || pg->offset >= endoff ||
   1143 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1144 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1145 					wasclean = FALSE;
   1146 				}
   1147 				pg = TAILQ_NEXT(pg, listq);
   1148 				continue;
   1149 			}
   1150 			off = pg->offset;
   1151 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1152 			if (pg != NULL) {
   1153 				wasclean = FALSE;
   1154 			}
   1155 			off += PAGE_SIZE;
   1156 			if (off < endoff) {
   1157 				pg = uvm_pagelookup(uobj, off);
   1158 			}
   1159 			continue;
   1160 		}
   1161 
   1162 		/*
   1163 		 * if the current page needs to be cleaned and it's busy,
   1164 		 * wait for it to become unbusy.
   1165 		 */
   1166 
   1167 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1168 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1169 		if (pg->flags & PG_BUSY || yld) {
   1170 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1171 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1172 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1173 				error = EDEADLK;
   1174 				break;
   1175 			}
   1176 			KASSERT(!pagedaemon);
   1177 			if (by_list) {
   1178 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1179 				UVMHIST_LOG(ubchist, "curmp next %p",
   1180 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1181 			}
   1182 			if (yld) {
   1183 				simple_unlock(slock);
   1184 				preempt(1);
   1185 				simple_lock(slock);
   1186 			} else {
   1187 				pg->flags |= PG_WANTED;
   1188 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1189 				simple_lock(slock);
   1190 			}
   1191 			if (by_list) {
   1192 				UVMHIST_LOG(ubchist, "after next %p",
   1193 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1194 				pg = TAILQ_NEXT(&curmp, listq);
   1195 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1196 			} else {
   1197 				pg = uvm_pagelookup(uobj, off);
   1198 			}
   1199 			continue;
   1200 		}
   1201 
   1202 		/*
   1203 		 * if we're freeing, remove all mappings of the page now.
   1204 		 * if we're cleaning, check if the page is needs to be cleaned.
   1205 		 */
   1206 
   1207 		if (flags & PGO_FREE) {
   1208 			pmap_page_protect(pg, VM_PROT_NONE);
   1209 		} else if (flags & PGO_CLEANIT) {
   1210 
   1211 			/*
   1212 			 * if we still have some hope to pull this vnode off
   1213 			 * from the syncer queue, write-protect the page.
   1214 			 */
   1215 
   1216 			if (cleanall && wasclean &&
   1217 			    gp->g_dirtygen == dirtygen) {
   1218 
   1219 				/*
   1220 				 * uobj pages get wired only by uvm_fault
   1221 				 * where uobj is locked.
   1222 				 */
   1223 
   1224 				if (pg->wire_count == 0) {
   1225 					pmap_page_protect(pg,
   1226 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1227 				} else {
   1228 					cleanall = FALSE;
   1229 				}
   1230 			}
   1231 		}
   1232 
   1233 		if (flags & PGO_CLEANIT) {
   1234 			needs_clean = pmap_clear_modify(pg) ||
   1235 			    (pg->flags & PG_CLEAN) == 0;
   1236 			pg->flags |= PG_CLEAN;
   1237 		} else {
   1238 			needs_clean = FALSE;
   1239 		}
   1240 
   1241 		/*
   1242 		 * if we're cleaning, build a cluster.
   1243 		 * the cluster will consist of pages which are currently dirty,
   1244 		 * but they will be returned to us marked clean.
   1245 		 * if not cleaning, just operate on the one page.
   1246 		 */
   1247 
   1248 		if (needs_clean) {
   1249 			KDASSERT((vp->v_flag & VONWORKLST));
   1250 			wasclean = FALSE;
   1251 			memset(pgs, 0, sizeof(pgs));
   1252 			pg->flags |= PG_BUSY;
   1253 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1254 
   1255 			/*
   1256 			 * first look backward.
   1257 			 */
   1258 
   1259 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1260 			nback = npages;
   1261 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1262 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1263 			if (nback) {
   1264 				memmove(&pgs[0], &pgs[npages - nback],
   1265 				    nback * sizeof(pgs[0]));
   1266 				if (npages - nback < nback)
   1267 					memset(&pgs[nback], 0,
   1268 					    (npages - nback) * sizeof(pgs[0]));
   1269 				else
   1270 					memset(&pgs[npages - nback], 0,
   1271 					    nback * sizeof(pgs[0]));
   1272 			}
   1273 
   1274 			/*
   1275 			 * then plug in our page of interest.
   1276 			 */
   1277 
   1278 			pgs[nback] = pg;
   1279 
   1280 			/*
   1281 			 * then look forward to fill in the remaining space in
   1282 			 * the array of pages.
   1283 			 */
   1284 
   1285 			npages = maxpages - nback - 1;
   1286 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1287 			    &pgs[nback + 1],
   1288 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1289 			npages += nback + 1;
   1290 		} else {
   1291 			pgs[0] = pg;
   1292 			npages = 1;
   1293 			nback = 0;
   1294 		}
   1295 
   1296 		/*
   1297 		 * apply FREE or DEACTIVATE options if requested.
   1298 		 */
   1299 
   1300 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1301 			uvm_lock_pageq();
   1302 		}
   1303 		for (i = 0; i < npages; i++) {
   1304 			tpg = pgs[i];
   1305 			KASSERT(tpg->uobject == uobj);
   1306 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1307 				pg = tpg;
   1308 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1309 				continue;
   1310 			if (flags & PGO_DEACTIVATE &&
   1311 			    (tpg->pqflags & PQ_INACTIVE) == 0 &&
   1312 			    tpg->wire_count == 0) {
   1313 				(void) pmap_clear_reference(tpg);
   1314 				uvm_pagedeactivate(tpg);
   1315 			} else if (flags & PGO_FREE) {
   1316 				pmap_page_protect(tpg, VM_PROT_NONE);
   1317 				if (tpg->flags & PG_BUSY) {
   1318 					tpg->flags |= freeflag;
   1319 					if (pagedaemon) {
   1320 						uvmexp.paging++;
   1321 						uvm_pagedequeue(tpg);
   1322 					}
   1323 				} else {
   1324 
   1325 					/*
   1326 					 * ``page is not busy''
   1327 					 * implies that npages is 1
   1328 					 * and needs_clean is false.
   1329 					 */
   1330 
   1331 					nextpg = TAILQ_NEXT(tpg, listq);
   1332 					uvm_pagefree(tpg);
   1333 					if (pagedaemon)
   1334 						uvmexp.pdfreed++;
   1335 				}
   1336 			}
   1337 		}
   1338 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1339 			uvm_unlock_pageq();
   1340 		}
   1341 		if (needs_clean) {
   1342 			modified = TRUE;
   1343 
   1344 			/*
   1345 			 * start the i/o.  if we're traversing by list,
   1346 			 * keep our place in the list with a marker page.
   1347 			 */
   1348 
   1349 			if (by_list) {
   1350 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1351 				    listq);
   1352 			}
   1353 			simple_unlock(slock);
   1354 			error = GOP_WRITE(vp, pgs, npages, flags);
   1355 			simple_lock(slock);
   1356 			if (by_list) {
   1357 				pg = TAILQ_NEXT(&curmp, listq);
   1358 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1359 			}
   1360 			if (error) {
   1361 				break;
   1362 			}
   1363 			if (by_list) {
   1364 				continue;
   1365 			}
   1366 		}
   1367 
   1368 		/*
   1369 		 * find the next page and continue if there was no error.
   1370 		 */
   1371 
   1372 		if (by_list) {
   1373 			if (nextpg) {
   1374 				pg = nextpg;
   1375 				nextpg = NULL;
   1376 			} else {
   1377 				pg = TAILQ_NEXT(pg, listq);
   1378 			}
   1379 		} else {
   1380 			off += (npages - nback) << PAGE_SHIFT;
   1381 			if (off < endoff) {
   1382 				pg = uvm_pagelookup(uobj, off);
   1383 			}
   1384 		}
   1385 	}
   1386 	if (by_list) {
   1387 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1388 		PRELE(l);
   1389 	}
   1390 
   1391 	if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
   1392 	    (vp->v_type == VREG ||
   1393 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1394 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1395 	}
   1396 
   1397 	/*
   1398 	 * if we're cleaning and there was nothing to clean,
   1399 	 * take us off the syncer list.  if we started any i/o
   1400 	 * and we're doing sync i/o, wait for all writes to finish.
   1401 	 */
   1402 
   1403 	s = splbio();
   1404 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1405 	    (vp->v_flag & VONWORKLST) != 0) {
   1406 		vp->v_flag &= ~VWRITEMAPDIRTY;
   1407 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   1408 			vp->v_flag &= ~VONWORKLST;
   1409 			LIST_REMOVE(vp, v_synclist);
   1410 		}
   1411 	}
   1412 	splx(s);
   1413 
   1414 #if !defined(DEBUG)
   1415 skip_scan:
   1416 #endif /* !defined(DEBUG) */
   1417 	if (!wasclean && !async) {
   1418 		s = splbio();
   1419 		/*
   1420 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1421 		 *	 but the slot in ltsleep() is taken!
   1422 		 * XXX - try to recover from missed wakeups with a timeout..
   1423 		 *	 must think of something better.
   1424 		 */
   1425 		while (vp->v_numoutput != 0) {
   1426 			vp->v_flag |= VBWAIT;
   1427 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
   1428 			    "genput2", hz);
   1429 			simple_lock(slock);
   1430 		}
   1431 		splx(s);
   1432 	}
   1433 	simple_unlock(&uobj->vmobjlock);
   1434 	return (error);
   1435 }
   1436 
   1437 int
   1438 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1439 {
   1440 	int s, error, run;
   1441 	int fs_bshift, dev_bshift;
   1442 	vaddr_t kva;
   1443 	off_t eof, offset, startoffset;
   1444 	size_t bytes, iobytes, skipbytes;
   1445 	daddr_t lbn, blkno;
   1446 	struct vm_page *pg;
   1447 	struct buf *mbp, *bp;
   1448 	struct vnode *devvp;
   1449 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1450 	UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
   1451 
   1452 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1453 	    vp, pgs, npages, flags);
   1454 
   1455 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
   1456 	if (vp->v_type == VREG) {
   1457 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1458 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1459 	} else {
   1460 		fs_bshift = DEV_BSHIFT;
   1461 		dev_bshift = DEV_BSHIFT;
   1462 	}
   1463 	error = 0;
   1464 	pg = pgs[0];
   1465 	startoffset = pg->offset;
   1466 	bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
   1467 	skipbytes = 0;
   1468 	KASSERT(bytes != 0);
   1469 
   1470 	kva = uvm_pagermapin(pgs, npages,
   1471 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1472 
   1473 	s = splbio();
   1474 	simple_lock(&global_v_numoutput_slock);
   1475 	vp->v_numoutput += 2;
   1476 	simple_unlock(&global_v_numoutput_slock);
   1477 	mbp = pool_get(&bufpool, PR_WAITOK);
   1478 	BUF_INIT(mbp);
   1479 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1480 	    vp, mbp, vp->v_numoutput, bytes);
   1481 	splx(s);
   1482 	mbp->b_bufsize = npages << PAGE_SHIFT;
   1483 	mbp->b_data = (void *)kva;
   1484 	mbp->b_resid = mbp->b_bcount = bytes;
   1485 	mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
   1486 	mbp->b_iodone = uvm_aio_biodone;
   1487 	mbp->b_vp = vp;
   1488 
   1489 	bp = NULL;
   1490 	for (offset = startoffset;
   1491 	    bytes > 0;
   1492 	    offset += iobytes, bytes -= iobytes) {
   1493 		lbn = offset >> fs_bshift;
   1494 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1495 		if (error) {
   1496 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1497 			skipbytes += bytes;
   1498 			bytes = 0;
   1499 			break;
   1500 		}
   1501 
   1502 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1503 		    bytes);
   1504 		if (blkno == (daddr_t)-1) {
   1505 			skipbytes += iobytes;
   1506 			continue;
   1507 		}
   1508 
   1509 		/* if it's really one i/o, don't make a second buf */
   1510 		if (offset == startoffset && iobytes == bytes) {
   1511 			bp = mbp;
   1512 		} else {
   1513 			s = splbio();
   1514 			V_INCR_NUMOUTPUT(vp);
   1515 			bp = pool_get(&bufpool, PR_WAITOK);
   1516 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1517 			    vp, bp, vp->v_numoutput, 0);
   1518 			splx(s);
   1519 			BUF_INIT(bp);
   1520 			bp->b_data = (char *)kva +
   1521 			    (vaddr_t)(offset - pg->offset);
   1522 			bp->b_resid = bp->b_bcount = iobytes;
   1523 			bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
   1524 			bp->b_iodone = uvm_aio_biodone1;
   1525 			bp->b_vp = vp;
   1526 		}
   1527 		bp->b_lblkno = 0;
   1528 		bp->b_private = mbp;
   1529 
   1530 		/* adjust physical blkno for partial blocks */
   1531 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1532 		    dev_bshift);
   1533 		UVMHIST_LOG(ubchist,
   1534 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1535 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1536 		if (curproc == uvm.pagedaemon_proc)
   1537 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1538 		else if (async)
   1539 			BIO_SETPRIO(bp, BPRIO_TIMENONCRITICAL);
   1540 		else
   1541 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1542 
   1543 		VOP_STRATEGY(devvp, bp);
   1544 	}
   1545 	if (skipbytes) {
   1546 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1547 		s = splbio();
   1548 		if (error) {
   1549 			mbp->b_flags |= B_ERROR;
   1550 			mbp->b_error = error;
   1551 		}
   1552 		mbp->b_resid -= skipbytes;
   1553 		if (mbp->b_resid == 0) {
   1554 			biodone(mbp);
   1555 		}
   1556 		splx(s);
   1557 	}
   1558 	if (async) {
   1559 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1560 		return (0);
   1561 	}
   1562 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1563 	error = biowait(mbp);
   1564 	uvm_aio_aiodone(mbp);
   1565 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1566 	return (error);
   1567 }
   1568 
   1569 /*
   1570  * VOP_PUTPAGES() for vnodes which never have pages.
   1571  */
   1572 
   1573 int
   1574 genfs_null_putpages(void *v)
   1575 {
   1576 	struct vop_putpages_args /* {
   1577 		struct vnode *a_vp;
   1578 		voff_t a_offlo;
   1579 		voff_t a_offhi;
   1580 		int a_flags;
   1581 	} */ *ap = v;
   1582 	struct vnode *vp = ap->a_vp;
   1583 
   1584 	KASSERT(vp->v_uobj.uo_npages == 0);
   1585 	simple_unlock(&vp->v_interlock);
   1586 	return (0);
   1587 }
   1588 
   1589 void
   1590 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
   1591 {
   1592 	struct genfs_node *gp = VTOG(vp);
   1593 
   1594 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
   1595 	gp->g_op = ops;
   1596 }
   1597 
   1598 void
   1599 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   1600 {
   1601 	int bsize;
   1602 
   1603 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1604 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1605 }
   1606 
   1607 int
   1608 genfs_compat_getpages(void *v)
   1609 {
   1610 	struct vop_getpages_args /* {
   1611 		struct vnode *a_vp;
   1612 		voff_t a_offset;
   1613 		struct vm_page **a_m;
   1614 		int *a_count;
   1615 		int a_centeridx;
   1616 		vm_prot_t a_access_type;
   1617 		int a_advice;
   1618 		int a_flags;
   1619 	} */ *ap = v;
   1620 
   1621 	off_t origoffset;
   1622 	struct vnode *vp = ap->a_vp;
   1623 	struct uvm_object *uobj = &vp->v_uobj;
   1624 	struct vm_page *pg, **pgs;
   1625 	vaddr_t kva;
   1626 	int i, error, orignpages, npages;
   1627 	struct iovec iov;
   1628 	struct uio uio;
   1629 	struct ucred *cred = curproc->p_ucred;
   1630 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1631 
   1632 	error = 0;
   1633 	origoffset = ap->a_offset;
   1634 	orignpages = *ap->a_count;
   1635 	pgs = ap->a_m;
   1636 
   1637 	if (write && (vp->v_flag & VONWORKLST) == 0) {
   1638 		vn_syncer_add_to_worklist(vp, filedelay);
   1639 	}
   1640 	if (ap->a_flags & PGO_LOCKED) {
   1641 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1642 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1643 
   1644 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1645 	}
   1646 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1647 		simple_unlock(&uobj->vmobjlock);
   1648 		return (EINVAL);
   1649 	}
   1650 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1651 		return 0;
   1652 	}
   1653 	npages = orignpages;
   1654 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1655 	simple_unlock(&uobj->vmobjlock);
   1656 	kva = uvm_pagermapin(pgs, npages,
   1657 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1658 	for (i = 0; i < npages; i++) {
   1659 		pg = pgs[i];
   1660 		if ((pg->flags & PG_FAKE) == 0) {
   1661 			continue;
   1662 		}
   1663 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1664 		iov.iov_len = PAGE_SIZE;
   1665 		uio.uio_iov = &iov;
   1666 		uio.uio_iovcnt = 1;
   1667 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1668 		uio.uio_segflg = UIO_SYSSPACE;
   1669 		uio.uio_rw = UIO_READ;
   1670 		uio.uio_resid = PAGE_SIZE;
   1671 		uio.uio_lwp = NULL;
   1672 		/* XXX vn_lock */
   1673 		error = VOP_READ(vp, &uio, 0, cred);
   1674 		if (error) {
   1675 			break;
   1676 		}
   1677 		if (uio.uio_resid) {
   1678 			memset(iov.iov_base, 0, uio.uio_resid);
   1679 		}
   1680 	}
   1681 	uvm_pagermapout(kva, npages);
   1682 	simple_lock(&uobj->vmobjlock);
   1683 	uvm_lock_pageq();
   1684 	for (i = 0; i < npages; i++) {
   1685 		pg = pgs[i];
   1686 		if (error && (pg->flags & PG_FAKE) != 0) {
   1687 			pg->flags |= PG_RELEASED;
   1688 		} else {
   1689 			pmap_clear_modify(pg);
   1690 			uvm_pageactivate(pg);
   1691 		}
   1692 	}
   1693 	if (error) {
   1694 		uvm_page_unbusy(pgs, npages);
   1695 	}
   1696 	uvm_unlock_pageq();
   1697 	simple_unlock(&uobj->vmobjlock);
   1698 	return (error);
   1699 }
   1700 
   1701 int
   1702 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1703     int flags)
   1704 {
   1705 	off_t offset;
   1706 	struct iovec iov;
   1707 	struct uio uio;
   1708 	struct ucred *cred = curproc->p_ucred;
   1709 	struct buf *bp;
   1710 	vaddr_t kva;
   1711 	int s, error;
   1712 
   1713 	offset = pgs[0]->offset;
   1714 	kva = uvm_pagermapin(pgs, npages,
   1715 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1716 
   1717 	iov.iov_base = (void *)kva;
   1718 	iov.iov_len = npages << PAGE_SHIFT;
   1719 	uio.uio_iov = &iov;
   1720 	uio.uio_iovcnt = 1;
   1721 	uio.uio_offset = offset;
   1722 	uio.uio_segflg = UIO_SYSSPACE;
   1723 	uio.uio_rw = UIO_WRITE;
   1724 	uio.uio_resid = npages << PAGE_SHIFT;
   1725 	uio.uio_lwp = NULL;
   1726 	/* XXX vn_lock */
   1727 	error = VOP_WRITE(vp, &uio, 0, cred);
   1728 
   1729 	s = splbio();
   1730 	V_INCR_NUMOUTPUT(vp);
   1731 	bp = pool_get(&bufpool, PR_WAITOK);
   1732 	splx(s);
   1733 
   1734 	BUF_INIT(bp);
   1735 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1736 	bp->b_vp = vp;
   1737 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1738 	bp->b_data = (char *)kva;
   1739 	bp->b_bcount = npages << PAGE_SHIFT;
   1740 	bp->b_bufsize = npages << PAGE_SHIFT;
   1741 	bp->b_resid = 0;
   1742 	if (error) {
   1743 		bp->b_flags |= B_ERROR;
   1744 		bp->b_error = error;
   1745 	}
   1746 	uvm_aio_aiodone(bp);
   1747 	return (error);
   1748 }
   1749 
   1750 static void
   1751 filt_genfsdetach(struct knote *kn)
   1752 {
   1753 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1754 
   1755 	/* XXXLUKEM lock the struct? */
   1756 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
   1757 }
   1758 
   1759 static int
   1760 filt_genfsread(struct knote *kn, long hint)
   1761 {
   1762 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   1763 
   1764 	/*
   1765 	 * filesystem is gone, so set the EOF flag and schedule
   1766 	 * the knote for deletion.
   1767 	 */
   1768 	if (hint == NOTE_REVOKE) {
   1769 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   1770 		return (1);
   1771 	}
   1772 
   1773 	/* XXXLUKEM lock the struct? */
   1774 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
   1775         return (kn->kn_data != 0);
   1776 }
   1777 
   1778 static int
   1779 filt_genfsvnode(struct knote *kn, long hint)
   1780 {
   1781 
   1782 	if (kn->kn_sfflags & hint)
   1783 		kn->kn_fflags |= hint;
   1784 	if (hint == NOTE_REVOKE) {
   1785 		kn->kn_flags |= EV_EOF;
   1786 		return (1);
   1787 	}
   1788 	return (kn->kn_fflags != 0);
   1789 }
   1790 
   1791 static const struct filterops genfsread_filtops =
   1792 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
   1793 static const struct filterops genfsvnode_filtops =
   1794 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
   1795 
   1796 int
   1797 genfs_kqfilter(void *v)
   1798 {
   1799 	struct vop_kqfilter_args /* {
   1800 		struct vnode	*a_vp;
   1801 		struct knote	*a_kn;
   1802 	} */ *ap = v;
   1803 	struct vnode *vp;
   1804 	struct knote *kn;
   1805 
   1806 	vp = ap->a_vp;
   1807 	kn = ap->a_kn;
   1808 	switch (kn->kn_filter) {
   1809 	case EVFILT_READ:
   1810 		kn->kn_fop = &genfsread_filtops;
   1811 		break;
   1812 	case EVFILT_VNODE:
   1813 		kn->kn_fop = &genfsvnode_filtops;
   1814 		break;
   1815 	default:
   1816 		return (1);
   1817 	}
   1818 
   1819 	kn->kn_hook = vp;
   1820 
   1821 	/* XXXLUKEM lock the struct? */
   1822 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
   1823 
   1824 	return (0);
   1825 }
   1826