genfs_vnops.c revision 1.120 1 /* $NetBSD: genfs_vnops.c,v 1.120 2006/01/11 00:46:54 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.120 2006/01/11 00:46:54 yamt Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67
68 static inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72
73 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
74
75 int
76 genfs_poll(void *v)
77 {
78 struct vop_poll_args /* {
79 struct vnode *a_vp;
80 int a_events;
81 struct lwp *a_l;
82 } */ *ap = v;
83
84 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
85 }
86
87 int
88 genfs_seek(void *v)
89 {
90 struct vop_seek_args /* {
91 struct vnode *a_vp;
92 off_t a_oldoff;
93 off_t a_newoff;
94 struct ucred *a_ucred;
95 } */ *ap = v;
96
97 if (ap->a_newoff < 0)
98 return (EINVAL);
99
100 return (0);
101 }
102
103 int
104 genfs_abortop(void *v)
105 {
106 struct vop_abortop_args /* {
107 struct vnode *a_dvp;
108 struct componentname *a_cnp;
109 } */ *ap = v;
110
111 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
112 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
113 return (0);
114 }
115
116 int
117 genfs_fcntl(void *v)
118 {
119 struct vop_fcntl_args /* {
120 struct vnode *a_vp;
121 u_int a_command;
122 caddr_t a_data;
123 int a_fflag;
124 struct ucred *a_cred;
125 struct lwp *a_l;
126 } */ *ap = v;
127
128 if (ap->a_command == F_SETFL)
129 return (0);
130 else
131 return (EOPNOTSUPP);
132 }
133
134 /*ARGSUSED*/
135 int
136 genfs_badop(void *v)
137 {
138
139 panic("genfs: bad op");
140 }
141
142 /*ARGSUSED*/
143 int
144 genfs_nullop(void *v)
145 {
146
147 return (0);
148 }
149
150 /*ARGSUSED*/
151 int
152 genfs_einval(void *v)
153 {
154
155 return (EINVAL);
156 }
157
158 /*
159 * Called when an fs doesn't support a particular vop.
160 * This takes care to vrele, vput, or vunlock passed in vnodes.
161 */
162 int
163 genfs_eopnotsupp(void *v)
164 {
165 struct vop_generic_args /*
166 struct vnodeop_desc *a_desc;
167 / * other random data follows, presumably * /
168 } */ *ap = v;
169 struct vnodeop_desc *desc = ap->a_desc;
170 struct vnode *vp, *vp_last = NULL;
171 int flags, i, j, offset;
172
173 flags = desc->vdesc_flags;
174 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
175 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
176 break; /* stop at end of list */
177 if ((j = flags & VDESC_VP0_WILLPUT)) {
178 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
179
180 /* Skip if NULL */
181 if (!vp)
182 continue;
183
184 switch (j) {
185 case VDESC_VP0_WILLPUT:
186 /* Check for dvp == vp cases */
187 if (vp == vp_last)
188 vrele(vp);
189 else {
190 vput(vp);
191 vp_last = vp;
192 }
193 break;
194 case VDESC_VP0_WILLUNLOCK:
195 VOP_UNLOCK(vp, 0);
196 break;
197 case VDESC_VP0_WILLRELE:
198 vrele(vp);
199 break;
200 }
201 }
202 }
203
204 return (EOPNOTSUPP);
205 }
206
207 /*ARGSUSED*/
208 int
209 genfs_ebadf(void *v)
210 {
211
212 return (EBADF);
213 }
214
215 /* ARGSUSED */
216 int
217 genfs_enoioctl(void *v)
218 {
219
220 return (EPASSTHROUGH);
221 }
222
223
224 /*
225 * Eliminate all activity associated with the requested vnode
226 * and with all vnodes aliased to the requested vnode.
227 */
228 int
229 genfs_revoke(void *v)
230 {
231 struct vop_revoke_args /* {
232 struct vnode *a_vp;
233 int a_flags;
234 } */ *ap = v;
235 struct vnode *vp, *vq;
236 struct lwp *l = curlwp; /* XXX */
237
238 #ifdef DIAGNOSTIC
239 if ((ap->a_flags & REVOKEALL) == 0)
240 panic("genfs_revoke: not revokeall");
241 #endif
242
243 vp = ap->a_vp;
244 simple_lock(&vp->v_interlock);
245
246 if (vp->v_flag & VALIASED) {
247 /*
248 * If a vgone (or vclean) is already in progress,
249 * wait until it is done and return.
250 */
251 if (vp->v_flag & VXLOCK) {
252 vp->v_flag |= VXWANT;
253 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
254 &vp->v_interlock);
255 return (0);
256 }
257 /*
258 * Ensure that vp will not be vgone'd while we
259 * are eliminating its aliases.
260 */
261 vp->v_flag |= VXLOCK;
262 simple_unlock(&vp->v_interlock);
263 while (vp->v_flag & VALIASED) {
264 simple_lock(&spechash_slock);
265 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
266 if (vq->v_rdev != vp->v_rdev ||
267 vq->v_type != vp->v_type || vp == vq)
268 continue;
269 simple_unlock(&spechash_slock);
270 vgone(vq);
271 break;
272 }
273 if (vq == NULLVP)
274 simple_unlock(&spechash_slock);
275 }
276 /*
277 * Remove the lock so that vgone below will
278 * really eliminate the vnode after which time
279 * vgone will awaken any sleepers.
280 */
281 simple_lock(&vp->v_interlock);
282 vp->v_flag &= ~VXLOCK;
283 }
284 vgonel(vp, l);
285 return (0);
286 }
287
288 /*
289 * Lock the node.
290 */
291 int
292 genfs_lock(void *v)
293 {
294 struct vop_lock_args /* {
295 struct vnode *a_vp;
296 int a_flags;
297 } */ *ap = v;
298 struct vnode *vp = ap->a_vp;
299
300 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
301 }
302
303 /*
304 * Unlock the node.
305 */
306 int
307 genfs_unlock(void *v)
308 {
309 struct vop_unlock_args /* {
310 struct vnode *a_vp;
311 int a_flags;
312 } */ *ap = v;
313 struct vnode *vp = ap->a_vp;
314
315 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
316 &vp->v_interlock));
317 }
318
319 /*
320 * Return whether or not the node is locked.
321 */
322 int
323 genfs_islocked(void *v)
324 {
325 struct vop_islocked_args /* {
326 struct vnode *a_vp;
327 } */ *ap = v;
328 struct vnode *vp = ap->a_vp;
329
330 return (lockstatus(vp->v_vnlock));
331 }
332
333 /*
334 * Stubs to use when there is no locking to be done on the underlying object.
335 */
336 int
337 genfs_nolock(void *v)
338 {
339 struct vop_lock_args /* {
340 struct vnode *a_vp;
341 int a_flags;
342 struct lwp *a_l;
343 } */ *ap = v;
344
345 /*
346 * Since we are not using the lock manager, we must clear
347 * the interlock here.
348 */
349 if (ap->a_flags & LK_INTERLOCK)
350 simple_unlock(&ap->a_vp->v_interlock);
351 return (0);
352 }
353
354 int
355 genfs_nounlock(void *v)
356 {
357
358 return (0);
359 }
360
361 int
362 genfs_noislocked(void *v)
363 {
364
365 return (0);
366 }
367
368 /*
369 * Local lease check for NFS servers. Just set up args and let
370 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
371 * this is a null operation.
372 */
373 int
374 genfs_lease_check(void *v)
375 {
376 #ifdef NFSSERVER
377 struct vop_lease_args /* {
378 struct vnode *a_vp;
379 struct lwp *a_l;
380 struct ucred *a_cred;
381 int a_flag;
382 } */ *ap = v;
383 u_int32_t duration = 0;
384 int cache;
385 u_quad_t frev;
386
387 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
388 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
389 return (0);
390 #else
391 return (0);
392 #endif /* NFSSERVER */
393 }
394
395 int
396 genfs_mmap(void *v)
397 {
398
399 return (0);
400 }
401
402 static inline void
403 genfs_rel_pages(struct vm_page **pgs, int npages)
404 {
405 int i;
406
407 for (i = 0; i < npages; i++) {
408 struct vm_page *pg = pgs[i];
409
410 if (pg == NULL)
411 continue;
412 if (pg->flags & PG_FAKE) {
413 pg->flags |= PG_RELEASED;
414 }
415 }
416 uvm_lock_pageq();
417 uvm_page_unbusy(pgs, npages);
418 uvm_unlock_pageq();
419 }
420
421 /*
422 * generic VM getpages routine.
423 * Return PG_BUSY pages for the given range,
424 * reading from backing store if necessary.
425 */
426
427 int
428 genfs_getpages(void *v)
429 {
430 struct vop_getpages_args /* {
431 struct vnode *a_vp;
432 voff_t a_offset;
433 struct vm_page **a_m;
434 int *a_count;
435 int a_centeridx;
436 vm_prot_t a_access_type;
437 int a_advice;
438 int a_flags;
439 } */ *ap = v;
440
441 off_t newsize, diskeof, memeof;
442 off_t offset, origoffset, startoffset, endoffset, raoffset;
443 daddr_t lbn, blkno;
444 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
445 int fs_bshift, fs_bsize, dev_bshift;
446 int flags = ap->a_flags;
447 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
448 vaddr_t kva;
449 struct buf *bp, *mbp;
450 struct vnode *vp = ap->a_vp;
451 struct vnode *devvp;
452 struct genfs_node *gp = VTOG(vp);
453 struct uvm_object *uobj = &vp->v_uobj;
454 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
455 int pgs_size;
456 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
457 boolean_t async = (flags & PGO_SYNCIO) == 0;
458 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
459 boolean_t sawhole = FALSE;
460 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
461 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
462 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
463
464 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
465 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
466
467 KASSERT(vp->v_type == VREG || vp->v_type == VBLK);
468
469 /* XXXUBC temp limit */
470 if (*ap->a_count > MAX_READ_PAGES) {
471 panic("genfs_getpages: too many pages");
472 }
473
474 error = 0;
475 origoffset = ap->a_offset;
476 orignpages = *ap->a_count;
477 GOP_SIZE(vp, vp->v_size, &diskeof, GOP_SIZE_READ);
478 if (flags & PGO_PASTEOF) {
479 newsize = MAX(vp->v_size,
480 origoffset + (orignpages << PAGE_SHIFT));
481 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
482 } else {
483 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_READ|GOP_SIZE_MEM);
484 }
485 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
486 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
487 KASSERT(orignpages > 0);
488
489 /*
490 * Bounds-check the request.
491 */
492
493 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
494 if ((flags & PGO_LOCKED) == 0) {
495 simple_unlock(&uobj->vmobjlock);
496 }
497 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
498 origoffset, *ap->a_count, memeof,0);
499 return (EINVAL);
500 }
501
502 /* uobj is locked */
503
504 if ((flags & PGO_NOTIMESTAMP) == 0 &&
505 (vp->v_type == VREG ||
506 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
507 int updflags = 0;
508
509 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
510 updflags = GOP_UPDATE_ACCESSED;
511 }
512 if (write) {
513 updflags |= GOP_UPDATE_MODIFIED;
514 }
515 if (updflags != 0) {
516 GOP_MARKUPDATE(vp, updflags);
517 }
518 }
519
520 if (write) {
521 gp->g_dirtygen++;
522 if ((vp->v_flag & VONWORKLST) == 0) {
523 vn_syncer_add_to_worklist(vp, filedelay);
524 }
525 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
526 vp->v_flag |= VWRITEMAPDIRTY;
527 }
528 }
529
530 /*
531 * For PGO_LOCKED requests, just return whatever's in memory.
532 */
533
534 if (flags & PGO_LOCKED) {
535 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
536 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
537
538 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
539 }
540
541 /*
542 * find the requested pages and make some simple checks.
543 * leave space in the page array for a whole block.
544 */
545
546 if (vp->v_type == VREG) {
547 fs_bshift = vp->v_mount->mnt_fs_bshift;
548 dev_bshift = vp->v_mount->mnt_dev_bshift;
549 } else {
550 fs_bshift = DEV_BSHIFT;
551 dev_bshift = DEV_BSHIFT;
552 }
553 fs_bsize = 1 << fs_bshift;
554
555 orignpages = MIN(orignpages,
556 round_page(memeof - origoffset) >> PAGE_SHIFT);
557 npages = orignpages;
558 startoffset = origoffset & ~(fs_bsize - 1);
559 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
560 fs_bsize - 1) & ~(fs_bsize - 1));
561 endoffset = MIN(endoffset, round_page(memeof));
562 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
563
564 pgs_size = sizeof(struct vm_page *) *
565 ((endoffset - startoffset) >> PAGE_SHIFT);
566 if (pgs_size > sizeof(pgs_onstack)) {
567 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
568 if (pgs == NULL) {
569 simple_unlock(&uobj->vmobjlock);
570 return (ENOMEM);
571 }
572 } else {
573 pgs = pgs_onstack;
574 memset(pgs, 0, pgs_size);
575 }
576 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
577 ridx, npages, startoffset, endoffset);
578 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
579 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
580 KASSERT(async != 0);
581 genfs_rel_pages(&pgs[ridx], orignpages);
582 simple_unlock(&uobj->vmobjlock);
583 if (pgs != pgs_onstack)
584 free(pgs, M_DEVBUF);
585 return (EBUSY);
586 }
587
588 /*
589 * if the pages are already resident, just return them.
590 */
591
592 for (i = 0; i < npages; i++) {
593 struct vm_page *pg1 = pgs[ridx + i];
594
595 if ((pg1->flags & PG_FAKE) ||
596 (blockalloc && (pg1->flags & PG_RDONLY))) {
597 break;
598 }
599 }
600 if (i == npages) {
601 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
602 raoffset = origoffset + (orignpages << PAGE_SHIFT);
603 npages += ridx;
604 goto out;
605 }
606
607 /*
608 * if PGO_OVERWRITE is set, don't bother reading the pages.
609 */
610
611 if (flags & PGO_OVERWRITE) {
612 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
613
614 for (i = 0; i < npages; i++) {
615 struct vm_page *pg1 = pgs[ridx + i];
616
617 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
618 }
619 npages += ridx;
620 goto out;
621 }
622
623 /*
624 * the page wasn't resident and we're not overwriting,
625 * so we're going to have to do some i/o.
626 * find any additional pages needed to cover the expanded range.
627 */
628
629 npages = (endoffset - startoffset) >> PAGE_SHIFT;
630 if (startoffset != origoffset || npages != orignpages) {
631
632 /*
633 * we need to avoid deadlocks caused by locking
634 * additional pages at lower offsets than pages we
635 * already have locked. unlock them all and start over.
636 */
637
638 genfs_rel_pages(&pgs[ridx], orignpages);
639 memset(pgs, 0, pgs_size);
640
641 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
642 startoffset, endoffset, 0,0);
643 npgs = npages;
644 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
645 async ? UFP_NOWAIT : UFP_ALL) != npages) {
646 KASSERT(async != 0);
647 genfs_rel_pages(pgs, npages);
648 simple_unlock(&uobj->vmobjlock);
649 if (pgs != pgs_onstack)
650 free(pgs, M_DEVBUF);
651 return (EBUSY);
652 }
653 }
654 simple_unlock(&uobj->vmobjlock);
655
656 /*
657 * read the desired page(s).
658 */
659
660 totalbytes = npages << PAGE_SHIFT;
661 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
662 tailbytes = totalbytes - bytes;
663 skipbytes = 0;
664
665 kva = uvm_pagermapin(pgs, npages,
666 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
667
668 mbp = getiobuf();
669 mbp->b_bufsize = totalbytes;
670 mbp->b_data = (void *)kva;
671 mbp->b_resid = mbp->b_bcount = bytes;
672 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
673 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
674 mbp->b_vp = vp;
675 if (async)
676 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
677 else
678 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
679
680 /*
681 * if EOF is in the middle of the range, zero the part past EOF.
682 * if the page including EOF is not PG_FAKE, skip over it since
683 * in that case it has valid data that we need to preserve.
684 */
685
686 if (tailbytes > 0) {
687 size_t tailstart = bytes;
688
689 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
690 tailstart = round_page(tailstart);
691 tailbytes -= tailstart - bytes;
692 }
693 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
694 kva, tailstart, tailbytes,0);
695 memset((void *)(kva + tailstart), 0, tailbytes);
696 }
697
698 /*
699 * now loop over the pages, reading as needed.
700 */
701
702 if (blockalloc) {
703 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
704 } else {
705 lockmgr(&gp->g_glock, LK_SHARED, NULL);
706 }
707
708 bp = NULL;
709 for (offset = startoffset;
710 bytes > 0;
711 offset += iobytes, bytes -= iobytes) {
712
713 /*
714 * skip pages which don't need to be read.
715 */
716
717 pidx = (offset - startoffset) >> PAGE_SHIFT;
718 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
719 size_t b;
720
721 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
722 if ((pgs[pidx]->flags & PG_RDONLY)) {
723 sawhole = TRUE;
724 }
725 b = MIN(PAGE_SIZE, bytes);
726 offset += b;
727 bytes -= b;
728 skipbytes += b;
729 pidx++;
730 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
731 offset, 0,0,0);
732 if (bytes == 0) {
733 goto loopdone;
734 }
735 }
736
737 /*
738 * bmap the file to find out the blkno to read from and
739 * how much we can read in one i/o. if bmap returns an error,
740 * skip the rest of the top-level i/o.
741 */
742
743 lbn = offset >> fs_bshift;
744 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
745 if (error) {
746 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
747 lbn, error,0,0);
748 skipbytes += bytes;
749 goto loopdone;
750 }
751
752 /*
753 * see how many pages can be read with this i/o.
754 * reduce the i/o size if necessary to avoid
755 * overwriting pages with valid data.
756 */
757
758 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
759 bytes);
760 if (offset + iobytes > round_page(offset)) {
761 pcount = 1;
762 while (pidx + pcount < npages &&
763 pgs[pidx + pcount]->flags & PG_FAKE) {
764 pcount++;
765 }
766 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
767 (offset - trunc_page(offset)));
768 }
769
770 /*
771 * if this block isn't allocated, zero it instead of
772 * reading it. unless we are going to allocate blocks,
773 * mark the pages we zeroed PG_RDONLY.
774 */
775
776 if (blkno < 0) {
777 int holepages = (round_page(offset + iobytes) -
778 trunc_page(offset)) >> PAGE_SHIFT;
779 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
780
781 sawhole = TRUE;
782 memset((char *)kva + (offset - startoffset), 0,
783 iobytes);
784 skipbytes += iobytes;
785
786 for (i = 0; i < holepages; i++) {
787 if (write) {
788 pgs[pidx + i]->flags &= ~PG_CLEAN;
789 }
790 if (!blockalloc) {
791 pgs[pidx + i]->flags |= PG_RDONLY;
792 }
793 }
794 continue;
795 }
796
797 /*
798 * allocate a sub-buf for this piece of the i/o
799 * (or just use mbp if there's only 1 piece),
800 * and start it going.
801 */
802
803 if (offset == startoffset && iobytes == bytes) {
804 bp = mbp;
805 } else {
806 bp = getiobuf();
807 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
808 }
809 bp->b_lblkno = 0;
810
811 /* adjust physical blkno for partial blocks */
812 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
813 dev_bshift);
814
815 UVMHIST_LOG(ubchist,
816 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
817 bp, offset, iobytes, bp->b_blkno);
818
819 VOP_STRATEGY(devvp, bp);
820 }
821
822 loopdone:
823 nestiobuf_done(mbp, skipbytes, error);
824 if (async) {
825 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
826 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
827 if (pgs != pgs_onstack)
828 free(pgs, M_DEVBUF);
829 return (0);
830 }
831 if (bp != NULL) {
832 error = biowait(mbp);
833 }
834 putiobuf(mbp);
835 uvm_pagermapout(kva, npages);
836 raoffset = startoffset + totalbytes;
837
838 /*
839 * if this we encountered a hole then we have to do a little more work.
840 * for read faults, we marked the page PG_RDONLY so that future
841 * write accesses to the page will fault again.
842 * for write faults, we must make sure that the backing store for
843 * the page is completely allocated while the pages are locked.
844 */
845
846 if (!error && sawhole && blockalloc) {
847 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
848 cred);
849 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
850 startoffset, npages << PAGE_SHIFT, error,0);
851 if (!error) {
852 for (i = 0; i < npages; i++) {
853 if (pgs[i] == NULL) {
854 continue;
855 }
856 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
857 UVMHIST_LOG(ubchist, "mark dirty pg %p",
858 pgs[i],0,0,0);
859 }
860 }
861 }
862 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
863 simple_lock(&uobj->vmobjlock);
864
865 /*
866 * we're almost done! release the pages...
867 * for errors, we free the pages.
868 * otherwise we activate them and mark them as valid and clean.
869 * also, unbusy pages that were not actually requested.
870 */
871
872 if (error) {
873 for (i = 0; i < npages; i++) {
874 if (pgs[i] == NULL) {
875 continue;
876 }
877 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
878 pgs[i], pgs[i]->flags, 0,0);
879 if (pgs[i]->flags & PG_FAKE) {
880 pgs[i]->flags |= PG_RELEASED;
881 }
882 }
883 uvm_lock_pageq();
884 uvm_page_unbusy(pgs, npages);
885 uvm_unlock_pageq();
886 simple_unlock(&uobj->vmobjlock);
887 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
888 if (pgs != pgs_onstack)
889 free(pgs, M_DEVBUF);
890 return (error);
891 }
892
893 out:
894 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
895 uvm_lock_pageq();
896 for (i = 0; i < npages; i++) {
897 pg = pgs[i];
898 if (pg == NULL) {
899 continue;
900 }
901 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
902 pg, pg->flags, 0,0);
903 if (pg->flags & PG_FAKE && !overwrite) {
904 pg->flags &= ~(PG_FAKE);
905 pmap_clear_modify(pgs[i]);
906 }
907 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
908 if (i < ridx || i >= ridx + orignpages || async) {
909 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
910 pg, pg->offset,0,0);
911 if (pg->flags & PG_WANTED) {
912 wakeup(pg);
913 }
914 if (pg->flags & PG_FAKE) {
915 KASSERT(overwrite);
916 uvm_pagezero(pg);
917 }
918 if (pg->flags & PG_RELEASED) {
919 uvm_pagefree(pg);
920 continue;
921 }
922 uvm_pageactivate(pg);
923 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
924 UVM_PAGE_OWN(pg, NULL);
925 }
926 }
927 uvm_unlock_pageq();
928 simple_unlock(&uobj->vmobjlock);
929 if (ap->a_m != NULL) {
930 memcpy(ap->a_m, &pgs[ridx],
931 orignpages * sizeof(struct vm_page *));
932 }
933 if (pgs != pgs_onstack)
934 free(pgs, M_DEVBUF);
935 return (0);
936 }
937
938 /*
939 * generic VM putpages routine.
940 * Write the given range of pages to backing store.
941 *
942 * => "offhi == 0" means flush all pages at or after "offlo".
943 * => object should be locked by caller. we may _unlock_ the object
944 * if (and only if) we need to clean a page (PGO_CLEANIT), or
945 * if PGO_SYNCIO is set and there are pages busy.
946 * we return with the object locked.
947 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
948 * thus, a caller might want to unlock higher level resources
949 * (e.g. vm_map) before calling flush.
950 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
951 * unlock the object nor block.
952 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
953 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
954 * that new pages are inserted on the tail end of the list. thus,
955 * we can make a complete pass through the object in one go by starting
956 * at the head and working towards the tail (new pages are put in
957 * front of us).
958 * => NOTE: we are allowed to lock the page queues, so the caller
959 * must not be holding the page queue lock.
960 *
961 * note on "cleaning" object and PG_BUSY pages:
962 * this routine is holding the lock on the object. the only time
963 * that it can run into a PG_BUSY page that it does not own is if
964 * some other process has started I/O on the page (e.g. either
965 * a pagein, or a pageout). if the PG_BUSY page is being paged
966 * in, then it can not be dirty (!PG_CLEAN) because no one has
967 * had a chance to modify it yet. if the PG_BUSY page is being
968 * paged out then it means that someone else has already started
969 * cleaning the page for us (how nice!). in this case, if we
970 * have syncio specified, then after we make our pass through the
971 * object we need to wait for the other PG_BUSY pages to clear
972 * off (i.e. we need to do an iosync). also note that once a
973 * page is PG_BUSY it must stay in its object until it is un-busyed.
974 *
975 * note on page traversal:
976 * we can traverse the pages in an object either by going down the
977 * linked list in "uobj->memq", or we can go over the address range
978 * by page doing hash table lookups for each address. depending
979 * on how many pages are in the object it may be cheaper to do one
980 * or the other. we set "by_list" to true if we are using memq.
981 * if the cost of a hash lookup was equal to the cost of the list
982 * traversal we could compare the number of pages in the start->stop
983 * range to the total number of pages in the object. however, it
984 * seems that a hash table lookup is more expensive than the linked
985 * list traversal, so we multiply the number of pages in the
986 * range by an estimate of the relatively higher cost of the hash lookup.
987 */
988
989 int
990 genfs_putpages(void *v)
991 {
992 struct vop_putpages_args /* {
993 struct vnode *a_vp;
994 voff_t a_offlo;
995 voff_t a_offhi;
996 int a_flags;
997 } */ *ap = v;
998 struct vnode *vp = ap->a_vp;
999 struct uvm_object *uobj = &vp->v_uobj;
1000 struct simplelock *slock = &uobj->vmobjlock;
1001 off_t startoff = ap->a_offlo;
1002 off_t endoff = ap->a_offhi;
1003 off_t off;
1004 int flags = ap->a_flags;
1005 /* Even for strange MAXPHYS, the shift rounds down to a page */
1006 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1007 int i, s, error, npages, nback;
1008 int freeflag;
1009 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1010 boolean_t wasclean, by_list, needs_clean, yld;
1011 boolean_t async = (flags & PGO_SYNCIO) == 0;
1012 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1013 struct lwp *l = curlwp ? curlwp : &lwp0;
1014 struct genfs_node *gp = VTOG(vp);
1015 int dirtygen;
1016 boolean_t modified = FALSE;
1017 boolean_t cleanall;
1018
1019 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1020
1021 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1022 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1023 KASSERT(startoff < endoff || endoff == 0);
1024
1025 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1026 vp, uobj->uo_npages, startoff, endoff - startoff);
1027
1028 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1029 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1030 if (uobj->uo_npages == 0) {
1031 s = splbio();
1032 if (vp->v_flag & VONWORKLST) {
1033 vp->v_flag &= ~VWRITEMAPDIRTY;
1034 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1035 vp->v_flag &= ~VONWORKLST;
1036 LIST_REMOVE(vp, v_synclist);
1037 }
1038 }
1039 splx(s);
1040 simple_unlock(slock);
1041 return (0);
1042 }
1043
1044 /*
1045 * the vnode has pages, set up to process the request.
1046 */
1047
1048 error = 0;
1049 s = splbio();
1050 simple_lock(&global_v_numoutput_slock);
1051 wasclean = (vp->v_numoutput == 0);
1052 simple_unlock(&global_v_numoutput_slock);
1053 splx(s);
1054 off = startoff;
1055 if (endoff == 0 || flags & PGO_ALLPAGES) {
1056 endoff = trunc_page(LLONG_MAX);
1057 }
1058 by_list = (uobj->uo_npages <=
1059 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1060
1061 #if !defined(DEBUG)
1062 /*
1063 * if this vnode is known not to have dirty pages,
1064 * don't bother to clean it out.
1065 */
1066
1067 if ((vp->v_flag & VONWORKLST) == 0) {
1068 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1069 goto skip_scan;
1070 }
1071 flags &= ~PGO_CLEANIT;
1072 }
1073 #endif /* !defined(DEBUG) */
1074
1075 /*
1076 * start the loop. when scanning by list, hold the last page
1077 * in the list before we start. pages allocated after we start
1078 * will be added to the end of the list, so we can stop at the
1079 * current last page.
1080 */
1081
1082 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1083 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1084 (vp->v_flag & VONWORKLST) != 0;
1085 dirtygen = gp->g_dirtygen;
1086 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1087 if (by_list) {
1088 curmp.uobject = uobj;
1089 curmp.offset = (voff_t)-1;
1090 curmp.flags = PG_BUSY;
1091 endmp.uobject = uobj;
1092 endmp.offset = (voff_t)-1;
1093 endmp.flags = PG_BUSY;
1094 pg = TAILQ_FIRST(&uobj->memq);
1095 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1096 PHOLD(l);
1097 } else {
1098 pg = uvm_pagelookup(uobj, off);
1099 }
1100 nextpg = NULL;
1101 while (by_list || off < endoff) {
1102
1103 /*
1104 * if the current page is not interesting, move on to the next.
1105 */
1106
1107 KASSERT(pg == NULL || pg->uobject == uobj);
1108 KASSERT(pg == NULL ||
1109 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1110 (pg->flags & PG_BUSY) != 0);
1111 if (by_list) {
1112 if (pg == &endmp) {
1113 break;
1114 }
1115 if (pg->offset < startoff || pg->offset >= endoff ||
1116 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1117 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1118 wasclean = FALSE;
1119 }
1120 pg = TAILQ_NEXT(pg, listq);
1121 continue;
1122 }
1123 off = pg->offset;
1124 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1125 if (pg != NULL) {
1126 wasclean = FALSE;
1127 }
1128 off += PAGE_SIZE;
1129 if (off < endoff) {
1130 pg = uvm_pagelookup(uobj, off);
1131 }
1132 continue;
1133 }
1134
1135 /*
1136 * if the current page needs to be cleaned and it's busy,
1137 * wait for it to become unbusy.
1138 */
1139
1140 yld = (l->l_cpu->ci_schedstate.spc_flags &
1141 SPCF_SHOULDYIELD) && !pagedaemon;
1142 if (pg->flags & PG_BUSY || yld) {
1143 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1144 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1145 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1146 error = EDEADLK;
1147 break;
1148 }
1149 KASSERT(!pagedaemon);
1150 if (by_list) {
1151 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1152 UVMHIST_LOG(ubchist, "curmp next %p",
1153 TAILQ_NEXT(&curmp, listq), 0,0,0);
1154 }
1155 if (yld) {
1156 simple_unlock(slock);
1157 preempt(1);
1158 simple_lock(slock);
1159 } else {
1160 pg->flags |= PG_WANTED;
1161 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1162 simple_lock(slock);
1163 }
1164 if (by_list) {
1165 UVMHIST_LOG(ubchist, "after next %p",
1166 TAILQ_NEXT(&curmp, listq), 0,0,0);
1167 pg = TAILQ_NEXT(&curmp, listq);
1168 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1169 } else {
1170 pg = uvm_pagelookup(uobj, off);
1171 }
1172 continue;
1173 }
1174
1175 /*
1176 * if we're freeing, remove all mappings of the page now.
1177 * if we're cleaning, check if the page is needs to be cleaned.
1178 */
1179
1180 if (flags & PGO_FREE) {
1181 pmap_page_protect(pg, VM_PROT_NONE);
1182 } else if (flags & PGO_CLEANIT) {
1183
1184 /*
1185 * if we still have some hope to pull this vnode off
1186 * from the syncer queue, write-protect the page.
1187 */
1188
1189 if (cleanall && wasclean &&
1190 gp->g_dirtygen == dirtygen) {
1191
1192 /*
1193 * uobj pages get wired only by uvm_fault
1194 * where uobj is locked.
1195 */
1196
1197 if (pg->wire_count == 0) {
1198 pmap_page_protect(pg,
1199 VM_PROT_READ|VM_PROT_EXECUTE);
1200 } else {
1201 cleanall = FALSE;
1202 }
1203 }
1204 }
1205
1206 if (flags & PGO_CLEANIT) {
1207 needs_clean = pmap_clear_modify(pg) ||
1208 (pg->flags & PG_CLEAN) == 0;
1209 pg->flags |= PG_CLEAN;
1210 } else {
1211 needs_clean = FALSE;
1212 }
1213
1214 /*
1215 * if we're cleaning, build a cluster.
1216 * the cluster will consist of pages which are currently dirty,
1217 * but they will be returned to us marked clean.
1218 * if not cleaning, just operate on the one page.
1219 */
1220
1221 if (needs_clean) {
1222 KDASSERT((vp->v_flag & VONWORKLST));
1223 wasclean = FALSE;
1224 memset(pgs, 0, sizeof(pgs));
1225 pg->flags |= PG_BUSY;
1226 UVM_PAGE_OWN(pg, "genfs_putpages");
1227
1228 /*
1229 * first look backward.
1230 */
1231
1232 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1233 nback = npages;
1234 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1235 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1236 if (nback) {
1237 memmove(&pgs[0], &pgs[npages - nback],
1238 nback * sizeof(pgs[0]));
1239 if (npages - nback < nback)
1240 memset(&pgs[nback], 0,
1241 (npages - nback) * sizeof(pgs[0]));
1242 else
1243 memset(&pgs[npages - nback], 0,
1244 nback * sizeof(pgs[0]));
1245 }
1246
1247 /*
1248 * then plug in our page of interest.
1249 */
1250
1251 pgs[nback] = pg;
1252
1253 /*
1254 * then look forward to fill in the remaining space in
1255 * the array of pages.
1256 */
1257
1258 npages = maxpages - nback - 1;
1259 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1260 &pgs[nback + 1],
1261 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1262 npages += nback + 1;
1263 } else {
1264 pgs[0] = pg;
1265 npages = 1;
1266 nback = 0;
1267 }
1268
1269 /*
1270 * apply FREE or DEACTIVATE options if requested.
1271 */
1272
1273 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1274 uvm_lock_pageq();
1275 }
1276 for (i = 0; i < npages; i++) {
1277 tpg = pgs[i];
1278 KASSERT(tpg->uobject == uobj);
1279 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1280 pg = tpg;
1281 if (tpg->offset < startoff || tpg->offset >= endoff)
1282 continue;
1283 if (flags & PGO_DEACTIVATE &&
1284 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1285 tpg->wire_count == 0) {
1286 (void) pmap_clear_reference(tpg);
1287 uvm_pagedeactivate(tpg);
1288 } else if (flags & PGO_FREE) {
1289 pmap_page_protect(tpg, VM_PROT_NONE);
1290 if (tpg->flags & PG_BUSY) {
1291 tpg->flags |= freeflag;
1292 if (pagedaemon) {
1293 uvmexp.paging++;
1294 uvm_pagedequeue(tpg);
1295 }
1296 } else {
1297
1298 /*
1299 * ``page is not busy''
1300 * implies that npages is 1
1301 * and needs_clean is false.
1302 */
1303
1304 nextpg = TAILQ_NEXT(tpg, listq);
1305 uvm_pagefree(tpg);
1306 if (pagedaemon)
1307 uvmexp.pdfreed++;
1308 }
1309 }
1310 }
1311 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1312 uvm_unlock_pageq();
1313 }
1314 if (needs_clean) {
1315 modified = TRUE;
1316
1317 /*
1318 * start the i/o. if we're traversing by list,
1319 * keep our place in the list with a marker page.
1320 */
1321
1322 if (by_list) {
1323 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1324 listq);
1325 }
1326 simple_unlock(slock);
1327 error = GOP_WRITE(vp, pgs, npages, flags);
1328 simple_lock(slock);
1329 if (by_list) {
1330 pg = TAILQ_NEXT(&curmp, listq);
1331 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1332 }
1333 if (error) {
1334 break;
1335 }
1336 if (by_list) {
1337 continue;
1338 }
1339 }
1340
1341 /*
1342 * find the next page and continue if there was no error.
1343 */
1344
1345 if (by_list) {
1346 if (nextpg) {
1347 pg = nextpg;
1348 nextpg = NULL;
1349 } else {
1350 pg = TAILQ_NEXT(pg, listq);
1351 }
1352 } else {
1353 off += (npages - nback) << PAGE_SHIFT;
1354 if (off < endoff) {
1355 pg = uvm_pagelookup(uobj, off);
1356 }
1357 }
1358 }
1359 if (by_list) {
1360 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1361 PRELE(l);
1362 }
1363
1364 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1365 (vp->v_type == VREG ||
1366 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1367 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1368 }
1369
1370 /*
1371 * if we're cleaning and there was nothing to clean,
1372 * take us off the syncer list. if we started any i/o
1373 * and we're doing sync i/o, wait for all writes to finish.
1374 */
1375
1376 s = splbio();
1377 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1378 (vp->v_flag & VONWORKLST) != 0) {
1379 vp->v_flag &= ~VWRITEMAPDIRTY;
1380 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1381 vp->v_flag &= ~VONWORKLST;
1382 LIST_REMOVE(vp, v_synclist);
1383 }
1384 }
1385 splx(s);
1386
1387 #if !defined(DEBUG)
1388 skip_scan:
1389 #endif /* !defined(DEBUG) */
1390 if (!wasclean && !async) {
1391 s = splbio();
1392 /*
1393 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1394 * but the slot in ltsleep() is taken!
1395 * XXX - try to recover from missed wakeups with a timeout..
1396 * must think of something better.
1397 */
1398 while (vp->v_numoutput != 0) {
1399 vp->v_flag |= VBWAIT;
1400 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1401 "genput2", hz);
1402 simple_lock(slock);
1403 }
1404 splx(s);
1405 }
1406 simple_unlock(&uobj->vmobjlock);
1407 return (error);
1408 }
1409
1410 int
1411 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1412 {
1413 int s, error, run;
1414 int fs_bshift, dev_bshift;
1415 vaddr_t kva;
1416 off_t eof, offset, startoffset;
1417 size_t bytes, iobytes, skipbytes;
1418 daddr_t lbn, blkno;
1419 struct vm_page *pg;
1420 struct buf *mbp, *bp;
1421 struct vnode *devvp;
1422 boolean_t async = (flags & PGO_SYNCIO) == 0;
1423 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1424
1425 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1426 vp, pgs, npages, flags);
1427
1428 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_WRITE);
1429 if (vp->v_type == VREG) {
1430 fs_bshift = vp->v_mount->mnt_fs_bshift;
1431 dev_bshift = vp->v_mount->mnt_dev_bshift;
1432 } else {
1433 fs_bshift = DEV_BSHIFT;
1434 dev_bshift = DEV_BSHIFT;
1435 }
1436 error = 0;
1437 pg = pgs[0];
1438 startoffset = pg->offset;
1439 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1440 skipbytes = 0;
1441 KASSERT(bytes != 0);
1442
1443 kva = uvm_pagermapin(pgs, npages,
1444 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1445
1446 s = splbio();
1447 simple_lock(&global_v_numoutput_slock);
1448 vp->v_numoutput += 2;
1449 simple_unlock(&global_v_numoutput_slock);
1450 splx(s);
1451 mbp = getiobuf();
1452 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1453 vp, mbp, vp->v_numoutput, bytes);
1454 mbp->b_bufsize = npages << PAGE_SHIFT;
1455 mbp->b_data = (void *)kva;
1456 mbp->b_resid = mbp->b_bcount = bytes;
1457 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1458 mbp->b_iodone = uvm_aio_biodone;
1459 mbp->b_vp = vp;
1460 if (curproc == uvm.pagedaemon_proc)
1461 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1462 else if (async)
1463 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1464 else
1465 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1466
1467 bp = NULL;
1468 for (offset = startoffset;
1469 bytes > 0;
1470 offset += iobytes, bytes -= iobytes) {
1471 lbn = offset >> fs_bshift;
1472 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1473 if (error) {
1474 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1475 skipbytes += bytes;
1476 bytes = 0;
1477 break;
1478 }
1479
1480 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1481 bytes);
1482 if (blkno == (daddr_t)-1) {
1483 skipbytes += iobytes;
1484 continue;
1485 }
1486
1487 /* if it's really one i/o, don't make a second buf */
1488 if (offset == startoffset && iobytes == bytes) {
1489 bp = mbp;
1490 } else {
1491 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1492 vp, bp, vp->v_numoutput, 0);
1493 bp = getiobuf();
1494 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1495 }
1496 bp->b_lblkno = 0;
1497
1498 /* adjust physical blkno for partial blocks */
1499 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1500 dev_bshift);
1501 UVMHIST_LOG(ubchist,
1502 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1503 vp, offset, bp->b_bcount, bp->b_blkno);
1504
1505 VOP_STRATEGY(devvp, bp);
1506 }
1507 if (skipbytes) {
1508 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1509 }
1510 nestiobuf_done(mbp, skipbytes, error);
1511 if (async) {
1512 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1513 return (0);
1514 }
1515 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1516 error = biowait(mbp);
1517 uvm_aio_aiodone(mbp);
1518 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1519 return (error);
1520 }
1521
1522 /*
1523 * VOP_PUTPAGES() for vnodes which never have pages.
1524 */
1525
1526 int
1527 genfs_null_putpages(void *v)
1528 {
1529 struct vop_putpages_args /* {
1530 struct vnode *a_vp;
1531 voff_t a_offlo;
1532 voff_t a_offhi;
1533 int a_flags;
1534 } */ *ap = v;
1535 struct vnode *vp = ap->a_vp;
1536
1537 KASSERT(vp->v_uobj.uo_npages == 0);
1538 simple_unlock(&vp->v_interlock);
1539 return (0);
1540 }
1541
1542 void
1543 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1544 {
1545 struct genfs_node *gp = VTOG(vp);
1546
1547 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1548 gp->g_op = ops;
1549 }
1550
1551 void
1552 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1553 {
1554 int bsize;
1555
1556 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1557 *eobp = (size + bsize - 1) & ~(bsize - 1);
1558 }
1559
1560 int
1561 genfs_compat_getpages(void *v)
1562 {
1563 struct vop_getpages_args /* {
1564 struct vnode *a_vp;
1565 voff_t a_offset;
1566 struct vm_page **a_m;
1567 int *a_count;
1568 int a_centeridx;
1569 vm_prot_t a_access_type;
1570 int a_advice;
1571 int a_flags;
1572 } */ *ap = v;
1573
1574 off_t origoffset;
1575 struct vnode *vp = ap->a_vp;
1576 struct uvm_object *uobj = &vp->v_uobj;
1577 struct vm_page *pg, **pgs;
1578 vaddr_t kva;
1579 int i, error, orignpages, npages;
1580 struct iovec iov;
1581 struct uio uio;
1582 struct ucred *cred = curproc->p_ucred;
1583 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1584
1585 error = 0;
1586 origoffset = ap->a_offset;
1587 orignpages = *ap->a_count;
1588 pgs = ap->a_m;
1589
1590 if (write && (vp->v_flag & VONWORKLST) == 0) {
1591 vn_syncer_add_to_worklist(vp, filedelay);
1592 }
1593 if (ap->a_flags & PGO_LOCKED) {
1594 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1595 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1596
1597 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1598 }
1599 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1600 simple_unlock(&uobj->vmobjlock);
1601 return (EINVAL);
1602 }
1603 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1604 simple_unlock(&uobj->vmobjlock);
1605 return 0;
1606 }
1607 npages = orignpages;
1608 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1609 simple_unlock(&uobj->vmobjlock);
1610 kva = uvm_pagermapin(pgs, npages,
1611 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1612 for (i = 0; i < npages; i++) {
1613 pg = pgs[i];
1614 if ((pg->flags & PG_FAKE) == 0) {
1615 continue;
1616 }
1617 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1618 iov.iov_len = PAGE_SIZE;
1619 uio.uio_iov = &iov;
1620 uio.uio_iovcnt = 1;
1621 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1622 uio.uio_segflg = UIO_SYSSPACE;
1623 uio.uio_rw = UIO_READ;
1624 uio.uio_resid = PAGE_SIZE;
1625 uio.uio_lwp = NULL;
1626 /* XXX vn_lock */
1627 error = VOP_READ(vp, &uio, 0, cred);
1628 if (error) {
1629 break;
1630 }
1631 if (uio.uio_resid) {
1632 memset(iov.iov_base, 0, uio.uio_resid);
1633 }
1634 }
1635 uvm_pagermapout(kva, npages);
1636 simple_lock(&uobj->vmobjlock);
1637 uvm_lock_pageq();
1638 for (i = 0; i < npages; i++) {
1639 pg = pgs[i];
1640 if (error && (pg->flags & PG_FAKE) != 0) {
1641 pg->flags |= PG_RELEASED;
1642 } else {
1643 pmap_clear_modify(pg);
1644 uvm_pageactivate(pg);
1645 }
1646 }
1647 if (error) {
1648 uvm_page_unbusy(pgs, npages);
1649 }
1650 uvm_unlock_pageq();
1651 simple_unlock(&uobj->vmobjlock);
1652 return (error);
1653 }
1654
1655 int
1656 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1657 int flags)
1658 {
1659 off_t offset;
1660 struct iovec iov;
1661 struct uio uio;
1662 struct ucred *cred = curproc->p_ucred;
1663 struct buf *bp;
1664 vaddr_t kva;
1665 int s, error;
1666
1667 offset = pgs[0]->offset;
1668 kva = uvm_pagermapin(pgs, npages,
1669 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1670
1671 iov.iov_base = (void *)kva;
1672 iov.iov_len = npages << PAGE_SHIFT;
1673 uio.uio_iov = &iov;
1674 uio.uio_iovcnt = 1;
1675 uio.uio_offset = offset;
1676 uio.uio_segflg = UIO_SYSSPACE;
1677 uio.uio_rw = UIO_WRITE;
1678 uio.uio_resid = npages << PAGE_SHIFT;
1679 uio.uio_lwp = NULL;
1680 /* XXX vn_lock */
1681 error = VOP_WRITE(vp, &uio, 0, cred);
1682
1683 s = splbio();
1684 V_INCR_NUMOUTPUT(vp);
1685 splx(s);
1686
1687 bp = getiobuf();
1688 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1689 bp->b_vp = vp;
1690 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1691 bp->b_data = (char *)kva;
1692 bp->b_bcount = npages << PAGE_SHIFT;
1693 bp->b_bufsize = npages << PAGE_SHIFT;
1694 bp->b_resid = 0;
1695 if (error) {
1696 bp->b_flags |= B_ERROR;
1697 bp->b_error = error;
1698 }
1699 uvm_aio_aiodone(bp);
1700 return (error);
1701 }
1702
1703 static void
1704 filt_genfsdetach(struct knote *kn)
1705 {
1706 struct vnode *vp = (struct vnode *)kn->kn_hook;
1707
1708 /* XXXLUKEM lock the struct? */
1709 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1710 }
1711
1712 static int
1713 filt_genfsread(struct knote *kn, long hint)
1714 {
1715 struct vnode *vp = (struct vnode *)kn->kn_hook;
1716
1717 /*
1718 * filesystem is gone, so set the EOF flag and schedule
1719 * the knote for deletion.
1720 */
1721 if (hint == NOTE_REVOKE) {
1722 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1723 return (1);
1724 }
1725
1726 /* XXXLUKEM lock the struct? */
1727 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1728 return (kn->kn_data != 0);
1729 }
1730
1731 static int
1732 filt_genfsvnode(struct knote *kn, long hint)
1733 {
1734
1735 if (kn->kn_sfflags & hint)
1736 kn->kn_fflags |= hint;
1737 if (hint == NOTE_REVOKE) {
1738 kn->kn_flags |= EV_EOF;
1739 return (1);
1740 }
1741 return (kn->kn_fflags != 0);
1742 }
1743
1744 static const struct filterops genfsread_filtops =
1745 { 1, NULL, filt_genfsdetach, filt_genfsread };
1746 static const struct filterops genfsvnode_filtops =
1747 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1748
1749 int
1750 genfs_kqfilter(void *v)
1751 {
1752 struct vop_kqfilter_args /* {
1753 struct vnode *a_vp;
1754 struct knote *a_kn;
1755 } */ *ap = v;
1756 struct vnode *vp;
1757 struct knote *kn;
1758
1759 vp = ap->a_vp;
1760 kn = ap->a_kn;
1761 switch (kn->kn_filter) {
1762 case EVFILT_READ:
1763 kn->kn_fop = &genfsread_filtops;
1764 break;
1765 case EVFILT_VNODE:
1766 kn->kn_fop = &genfsvnode_filtops;
1767 break;
1768 default:
1769 return (1);
1770 }
1771
1772 kn->kn_hook = vp;
1773
1774 /* XXXLUKEM lock the struct? */
1775 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1776
1777 return (0);
1778 }
1779