genfs_vnops.c revision 1.123 1 /* $NetBSD: genfs_vnops.c,v 1.123 2006/03/30 12:40:06 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.123 2006/03/30 12:40:06 yamt Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52
53 #include <miscfs/genfs/genfs.h>
54 #include <miscfs/genfs/genfs_node.h>
55 #include <miscfs/specfs/specdev.h>
56
57 #include <uvm/uvm.h>
58 #include <uvm/uvm_pager.h>
59
60 #ifdef NFSSERVER
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nqnfs.h>
65 #include <nfs/nfs_var.h>
66 #endif
67
68 static inline void genfs_rel_pages(struct vm_page **, int);
69 static void filt_genfsdetach(struct knote *);
70 static int filt_genfsread(struct knote *, long);
71 static int filt_genfsvnode(struct knote *, long);
72
73 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
74
75 int
76 genfs_poll(void *v)
77 {
78 struct vop_poll_args /* {
79 struct vnode *a_vp;
80 int a_events;
81 struct lwp *a_l;
82 } */ *ap = v;
83
84 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
85 }
86
87 int
88 genfs_seek(void *v)
89 {
90 struct vop_seek_args /* {
91 struct vnode *a_vp;
92 off_t a_oldoff;
93 off_t a_newoff;
94 struct ucred *a_ucred;
95 } */ *ap = v;
96
97 if (ap->a_newoff < 0)
98 return (EINVAL);
99
100 return (0);
101 }
102
103 int
104 genfs_abortop(void *v)
105 {
106 struct vop_abortop_args /* {
107 struct vnode *a_dvp;
108 struct componentname *a_cnp;
109 } */ *ap = v;
110
111 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
112 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
113 return (0);
114 }
115
116 int
117 genfs_fcntl(void *v)
118 {
119 struct vop_fcntl_args /* {
120 struct vnode *a_vp;
121 u_int a_command;
122 caddr_t a_data;
123 int a_fflag;
124 struct ucred *a_cred;
125 struct lwp *a_l;
126 } */ *ap = v;
127
128 if (ap->a_command == F_SETFL)
129 return (0);
130 else
131 return (EOPNOTSUPP);
132 }
133
134 /*ARGSUSED*/
135 int
136 genfs_badop(void *v)
137 {
138
139 panic("genfs: bad op");
140 }
141
142 /*ARGSUSED*/
143 int
144 genfs_nullop(void *v)
145 {
146
147 return (0);
148 }
149
150 /*ARGSUSED*/
151 int
152 genfs_einval(void *v)
153 {
154
155 return (EINVAL);
156 }
157
158 /*
159 * Called when an fs doesn't support a particular vop.
160 * This takes care to vrele, vput, or vunlock passed in vnodes.
161 */
162 int
163 genfs_eopnotsupp(void *v)
164 {
165 struct vop_generic_args /*
166 struct vnodeop_desc *a_desc;
167 / * other random data follows, presumably * /
168 } */ *ap = v;
169 struct vnodeop_desc *desc = ap->a_desc;
170 struct vnode *vp, *vp_last = NULL;
171 int flags, i, j, offset;
172
173 flags = desc->vdesc_flags;
174 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
175 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
176 break; /* stop at end of list */
177 if ((j = flags & VDESC_VP0_WILLPUT)) {
178 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
179
180 /* Skip if NULL */
181 if (!vp)
182 continue;
183
184 switch (j) {
185 case VDESC_VP0_WILLPUT:
186 /* Check for dvp == vp cases */
187 if (vp == vp_last)
188 vrele(vp);
189 else {
190 vput(vp);
191 vp_last = vp;
192 }
193 break;
194 case VDESC_VP0_WILLUNLOCK:
195 VOP_UNLOCK(vp, 0);
196 break;
197 case VDESC_VP0_WILLRELE:
198 vrele(vp);
199 break;
200 }
201 }
202 }
203
204 return (EOPNOTSUPP);
205 }
206
207 /*ARGSUSED*/
208 int
209 genfs_ebadf(void *v)
210 {
211
212 return (EBADF);
213 }
214
215 /* ARGSUSED */
216 int
217 genfs_enoioctl(void *v)
218 {
219
220 return (EPASSTHROUGH);
221 }
222
223
224 /*
225 * Eliminate all activity associated with the requested vnode
226 * and with all vnodes aliased to the requested vnode.
227 */
228 int
229 genfs_revoke(void *v)
230 {
231 struct vop_revoke_args /* {
232 struct vnode *a_vp;
233 int a_flags;
234 } */ *ap = v;
235 struct vnode *vp, *vq;
236 struct lwp *l = curlwp; /* XXX */
237
238 #ifdef DIAGNOSTIC
239 if ((ap->a_flags & REVOKEALL) == 0)
240 panic("genfs_revoke: not revokeall");
241 #endif
242
243 vp = ap->a_vp;
244 simple_lock(&vp->v_interlock);
245
246 if (vp->v_flag & VALIASED) {
247 /*
248 * If a vgone (or vclean) is already in progress,
249 * wait until it is done and return.
250 */
251 if (vp->v_flag & VXLOCK) {
252 vp->v_flag |= VXWANT;
253 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
254 &vp->v_interlock);
255 return (0);
256 }
257 /*
258 * Ensure that vp will not be vgone'd while we
259 * are eliminating its aliases.
260 */
261 vp->v_flag |= VXLOCK;
262 simple_unlock(&vp->v_interlock);
263 while (vp->v_flag & VALIASED) {
264 simple_lock(&spechash_slock);
265 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
266 if (vq->v_rdev != vp->v_rdev ||
267 vq->v_type != vp->v_type || vp == vq)
268 continue;
269 simple_unlock(&spechash_slock);
270 vgone(vq);
271 break;
272 }
273 if (vq == NULLVP)
274 simple_unlock(&spechash_slock);
275 }
276 /*
277 * Remove the lock so that vgone below will
278 * really eliminate the vnode after which time
279 * vgone will awaken any sleepers.
280 */
281 simple_lock(&vp->v_interlock);
282 vp->v_flag &= ~VXLOCK;
283 }
284 vgonel(vp, l);
285 return (0);
286 }
287
288 /*
289 * Lock the node.
290 */
291 int
292 genfs_lock(void *v)
293 {
294 struct vop_lock_args /* {
295 struct vnode *a_vp;
296 int a_flags;
297 } */ *ap = v;
298 struct vnode *vp = ap->a_vp;
299
300 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
301 }
302
303 /*
304 * Unlock the node.
305 */
306 int
307 genfs_unlock(void *v)
308 {
309 struct vop_unlock_args /* {
310 struct vnode *a_vp;
311 int a_flags;
312 } */ *ap = v;
313 struct vnode *vp = ap->a_vp;
314
315 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
316 &vp->v_interlock));
317 }
318
319 /*
320 * Return whether or not the node is locked.
321 */
322 int
323 genfs_islocked(void *v)
324 {
325 struct vop_islocked_args /* {
326 struct vnode *a_vp;
327 } */ *ap = v;
328 struct vnode *vp = ap->a_vp;
329
330 return (lockstatus(vp->v_vnlock));
331 }
332
333 /*
334 * Stubs to use when there is no locking to be done on the underlying object.
335 */
336 int
337 genfs_nolock(void *v)
338 {
339 struct vop_lock_args /* {
340 struct vnode *a_vp;
341 int a_flags;
342 struct lwp *a_l;
343 } */ *ap = v;
344
345 /*
346 * Since we are not using the lock manager, we must clear
347 * the interlock here.
348 */
349 if (ap->a_flags & LK_INTERLOCK)
350 simple_unlock(&ap->a_vp->v_interlock);
351 return (0);
352 }
353
354 int
355 genfs_nounlock(void *v)
356 {
357
358 return (0);
359 }
360
361 int
362 genfs_noislocked(void *v)
363 {
364
365 return (0);
366 }
367
368 /*
369 * Local lease check for NFS servers. Just set up args and let
370 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
371 * this is a null operation.
372 */
373 int
374 genfs_lease_check(void *v)
375 {
376 #ifdef NFSSERVER
377 struct vop_lease_args /* {
378 struct vnode *a_vp;
379 struct lwp *a_l;
380 struct ucred *a_cred;
381 int a_flag;
382 } */ *ap = v;
383 u_int32_t duration = 0;
384 int cache;
385 u_quad_t frev;
386
387 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
388 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
389 return (0);
390 #else
391 return (0);
392 #endif /* NFSSERVER */
393 }
394
395 int
396 genfs_mmap(void *v)
397 {
398
399 return (0);
400 }
401
402 static inline void
403 genfs_rel_pages(struct vm_page **pgs, int npages)
404 {
405 int i;
406
407 for (i = 0; i < npages; i++) {
408 struct vm_page *pg = pgs[i];
409
410 if (pg == NULL)
411 continue;
412 if (pg->flags & PG_FAKE) {
413 pg->flags |= PG_RELEASED;
414 }
415 }
416 uvm_lock_pageq();
417 uvm_page_unbusy(pgs, npages);
418 uvm_unlock_pageq();
419 }
420
421 /*
422 * generic VM getpages routine.
423 * Return PG_BUSY pages for the given range,
424 * reading from backing store if necessary.
425 */
426
427 int
428 genfs_getpages(void *v)
429 {
430 struct vop_getpages_args /* {
431 struct vnode *a_vp;
432 voff_t a_offset;
433 struct vm_page **a_m;
434 int *a_count;
435 int a_centeridx;
436 vm_prot_t a_access_type;
437 int a_advice;
438 int a_flags;
439 } */ *ap = v;
440
441 off_t newsize, diskeof, memeof;
442 off_t offset, origoffset, startoffset, endoffset, raoffset;
443 daddr_t lbn, blkno;
444 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
445 int fs_bshift, fs_bsize, dev_bshift;
446 int flags = ap->a_flags;
447 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
448 vaddr_t kva;
449 struct buf *bp, *mbp;
450 struct vnode *vp = ap->a_vp;
451 struct vnode *devvp;
452 struct genfs_node *gp = VTOG(vp);
453 struct uvm_object *uobj = &vp->v_uobj;
454 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
455 int pgs_size;
456 struct ucred *cred = curproc->p_ucred; /* XXXUBC curlwp */
457 boolean_t async = (flags & PGO_SYNCIO) == 0;
458 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
459 boolean_t sawhole = FALSE;
460 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
461 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
462 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
463
464 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
465 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
466
467 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
468 vp->v_type == VLNK || vp->v_type == VBLK);
469
470 /* XXXUBC temp limit */
471 if (*ap->a_count > MAX_READ_PAGES) {
472 panic("genfs_getpages: too many pages");
473 }
474
475 error = 0;
476 origoffset = ap->a_offset;
477 orignpages = *ap->a_count;
478 GOP_SIZE(vp, vp->v_size, &diskeof, 0);
479 if (flags & PGO_PASTEOF) {
480 newsize = MAX(vp->v_size,
481 origoffset + (orignpages << PAGE_SHIFT));
482 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
483 } else {
484 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
485 }
486 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
487 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
488 KASSERT(orignpages > 0);
489
490 /*
491 * Bounds-check the request.
492 */
493
494 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
495 if ((flags & PGO_LOCKED) == 0) {
496 simple_unlock(&uobj->vmobjlock);
497 }
498 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
499 origoffset, *ap->a_count, memeof,0);
500 return (EINVAL);
501 }
502
503 /* uobj is locked */
504
505 if ((flags & PGO_NOTIMESTAMP) == 0 &&
506 (vp->v_type != VBLK ||
507 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
508 int updflags = 0;
509
510 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
511 updflags = GOP_UPDATE_ACCESSED;
512 }
513 if (write) {
514 updflags |= GOP_UPDATE_MODIFIED;
515 }
516 if (updflags != 0) {
517 GOP_MARKUPDATE(vp, updflags);
518 }
519 }
520
521 if (write) {
522 gp->g_dirtygen++;
523 if ((vp->v_flag & VONWORKLST) == 0) {
524 vn_syncer_add_to_worklist(vp, filedelay);
525 }
526 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
527 vp->v_flag |= VWRITEMAPDIRTY;
528 }
529 }
530
531 /*
532 * For PGO_LOCKED requests, just return whatever's in memory.
533 */
534
535 if (flags & PGO_LOCKED) {
536 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
537 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
538
539 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
540 }
541
542 /*
543 * find the requested pages and make some simple checks.
544 * leave space in the page array for a whole block.
545 */
546
547 if (vp->v_type != VBLK) {
548 fs_bshift = vp->v_mount->mnt_fs_bshift;
549 dev_bshift = vp->v_mount->mnt_dev_bshift;
550 } else {
551 fs_bshift = DEV_BSHIFT;
552 dev_bshift = DEV_BSHIFT;
553 }
554 fs_bsize = 1 << fs_bshift;
555
556 orignpages = MIN(orignpages,
557 round_page(memeof - origoffset) >> PAGE_SHIFT);
558 npages = orignpages;
559 startoffset = origoffset & ~(fs_bsize - 1);
560 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
561 fs_bsize - 1) & ~(fs_bsize - 1));
562 endoffset = MIN(endoffset, round_page(memeof));
563 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
564
565 pgs_size = sizeof(struct vm_page *) *
566 ((endoffset - startoffset) >> PAGE_SHIFT);
567 if (pgs_size > sizeof(pgs_onstack)) {
568 pgs = malloc(pgs_size, M_DEVBUF, M_NOWAIT | M_ZERO);
569 if (pgs == NULL) {
570 simple_unlock(&uobj->vmobjlock);
571 return (ENOMEM);
572 }
573 } else {
574 pgs = pgs_onstack;
575 memset(pgs, 0, pgs_size);
576 }
577 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
578 ridx, npages, startoffset, endoffset);
579 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
580 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
581 KASSERT(async != 0);
582 genfs_rel_pages(&pgs[ridx], orignpages);
583 simple_unlock(&uobj->vmobjlock);
584 if (pgs != pgs_onstack)
585 free(pgs, M_DEVBUF);
586 return (EBUSY);
587 }
588
589 /*
590 * if the pages are already resident, just return them.
591 */
592
593 for (i = 0; i < npages; i++) {
594 struct vm_page *pg1 = pgs[ridx + i];
595
596 if ((pg1->flags & PG_FAKE) ||
597 (blockalloc && (pg1->flags & PG_RDONLY))) {
598 break;
599 }
600 }
601 if (i == npages) {
602 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
603 raoffset = origoffset + (orignpages << PAGE_SHIFT);
604 npages += ridx;
605 goto out;
606 }
607
608 /*
609 * if PGO_OVERWRITE is set, don't bother reading the pages.
610 */
611
612 if (flags & PGO_OVERWRITE) {
613 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
614
615 for (i = 0; i < npages; i++) {
616 struct vm_page *pg1 = pgs[ridx + i];
617
618 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
619 }
620 npages += ridx;
621 goto out;
622 }
623
624 /*
625 * the page wasn't resident and we're not overwriting,
626 * so we're going to have to do some i/o.
627 * find any additional pages needed to cover the expanded range.
628 */
629
630 npages = (endoffset - startoffset) >> PAGE_SHIFT;
631 if (startoffset != origoffset || npages != orignpages) {
632
633 /*
634 * we need to avoid deadlocks caused by locking
635 * additional pages at lower offsets than pages we
636 * already have locked. unlock them all and start over.
637 */
638
639 genfs_rel_pages(&pgs[ridx], orignpages);
640 memset(pgs, 0, pgs_size);
641
642 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
643 startoffset, endoffset, 0,0);
644 npgs = npages;
645 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
646 async ? UFP_NOWAIT : UFP_ALL) != npages) {
647 KASSERT(async != 0);
648 genfs_rel_pages(pgs, npages);
649 simple_unlock(&uobj->vmobjlock);
650 if (pgs != pgs_onstack)
651 free(pgs, M_DEVBUF);
652 return (EBUSY);
653 }
654 }
655 simple_unlock(&uobj->vmobjlock);
656
657 /*
658 * read the desired page(s).
659 */
660
661 totalbytes = npages << PAGE_SHIFT;
662 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
663 tailbytes = totalbytes - bytes;
664 skipbytes = 0;
665
666 kva = uvm_pagermapin(pgs, npages,
667 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
668
669 mbp = getiobuf();
670 mbp->b_bufsize = totalbytes;
671 mbp->b_data = (void *)kva;
672 mbp->b_resid = mbp->b_bcount = bytes;
673 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
674 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
675 mbp->b_vp = vp;
676 if (async)
677 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
678 else
679 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
680
681 /*
682 * if EOF is in the middle of the range, zero the part past EOF.
683 * if the page including EOF is not PG_FAKE, skip over it since
684 * in that case it has valid data that we need to preserve.
685 */
686
687 if (tailbytes > 0) {
688 size_t tailstart = bytes;
689
690 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
691 tailstart = round_page(tailstart);
692 tailbytes -= tailstart - bytes;
693 }
694 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
695 kva, tailstart, tailbytes,0);
696 memset((void *)(kva + tailstart), 0, tailbytes);
697 }
698
699 /*
700 * now loop over the pages, reading as needed.
701 */
702
703 if (blockalloc) {
704 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
705 } else {
706 lockmgr(&gp->g_glock, LK_SHARED, NULL);
707 }
708
709 bp = NULL;
710 for (offset = startoffset;
711 bytes > 0;
712 offset += iobytes, bytes -= iobytes) {
713
714 /*
715 * skip pages which don't need to be read.
716 */
717
718 pidx = (offset - startoffset) >> PAGE_SHIFT;
719 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
720 size_t b;
721
722 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
723 if ((pgs[pidx]->flags & PG_RDONLY)) {
724 sawhole = TRUE;
725 }
726 b = MIN(PAGE_SIZE, bytes);
727 offset += b;
728 bytes -= b;
729 skipbytes += b;
730 pidx++;
731 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
732 offset, 0,0,0);
733 if (bytes == 0) {
734 goto loopdone;
735 }
736 }
737
738 /*
739 * bmap the file to find out the blkno to read from and
740 * how much we can read in one i/o. if bmap returns an error,
741 * skip the rest of the top-level i/o.
742 */
743
744 lbn = offset >> fs_bshift;
745 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
746 if (error) {
747 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
748 lbn, error,0,0);
749 skipbytes += bytes;
750 goto loopdone;
751 }
752
753 /*
754 * see how many pages can be read with this i/o.
755 * reduce the i/o size if necessary to avoid
756 * overwriting pages with valid data.
757 */
758
759 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
760 bytes);
761 if (offset + iobytes > round_page(offset)) {
762 pcount = 1;
763 while (pidx + pcount < npages &&
764 pgs[pidx + pcount]->flags & PG_FAKE) {
765 pcount++;
766 }
767 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
768 (offset - trunc_page(offset)));
769 }
770
771 /*
772 * if this block isn't allocated, zero it instead of
773 * reading it. unless we are going to allocate blocks,
774 * mark the pages we zeroed PG_RDONLY.
775 */
776
777 if (blkno < 0) {
778 int holepages = (round_page(offset + iobytes) -
779 trunc_page(offset)) >> PAGE_SHIFT;
780 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
781
782 sawhole = TRUE;
783 memset((char *)kva + (offset - startoffset), 0,
784 iobytes);
785 skipbytes += iobytes;
786
787 for (i = 0; i < holepages; i++) {
788 if (write) {
789 pgs[pidx + i]->flags &= ~PG_CLEAN;
790 }
791 if (!blockalloc) {
792 pgs[pidx + i]->flags |= PG_RDONLY;
793 }
794 }
795 continue;
796 }
797
798 /*
799 * allocate a sub-buf for this piece of the i/o
800 * (or just use mbp if there's only 1 piece),
801 * and start it going.
802 */
803
804 if (offset == startoffset && iobytes == bytes) {
805 bp = mbp;
806 } else {
807 bp = getiobuf();
808 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
809 }
810 bp->b_lblkno = 0;
811
812 /* adjust physical blkno for partial blocks */
813 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
814 dev_bshift);
815
816 UVMHIST_LOG(ubchist,
817 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
818 bp, offset, iobytes, bp->b_blkno);
819
820 VOP_STRATEGY(devvp, bp);
821 }
822
823 loopdone:
824 nestiobuf_done(mbp, skipbytes, error);
825 if (async) {
826 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
827 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
828 if (pgs != pgs_onstack)
829 free(pgs, M_DEVBUF);
830 return (0);
831 }
832 if (bp != NULL) {
833 error = biowait(mbp);
834 }
835 putiobuf(mbp);
836 uvm_pagermapout(kva, npages);
837 raoffset = startoffset + totalbytes;
838
839 /*
840 * if this we encountered a hole then we have to do a little more work.
841 * for read faults, we marked the page PG_RDONLY so that future
842 * write accesses to the page will fault again.
843 * for write faults, we must make sure that the backing store for
844 * the page is completely allocated while the pages are locked.
845 */
846
847 if (!error && sawhole && blockalloc) {
848 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
849 cred);
850 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
851 startoffset, npages << PAGE_SHIFT, error,0);
852 if (!error) {
853 for (i = 0; i < npages; i++) {
854 if (pgs[i] == NULL) {
855 continue;
856 }
857 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
858 UVMHIST_LOG(ubchist, "mark dirty pg %p",
859 pgs[i],0,0,0);
860 }
861 }
862 }
863 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
864 simple_lock(&uobj->vmobjlock);
865
866 /*
867 * we're almost done! release the pages...
868 * for errors, we free the pages.
869 * otherwise we activate them and mark them as valid and clean.
870 * also, unbusy pages that were not actually requested.
871 */
872
873 if (error) {
874 for (i = 0; i < npages; i++) {
875 if (pgs[i] == NULL) {
876 continue;
877 }
878 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
879 pgs[i], pgs[i]->flags, 0,0);
880 if (pgs[i]->flags & PG_FAKE) {
881 pgs[i]->flags |= PG_RELEASED;
882 }
883 }
884 uvm_lock_pageq();
885 uvm_page_unbusy(pgs, npages);
886 uvm_unlock_pageq();
887 simple_unlock(&uobj->vmobjlock);
888 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
889 if (pgs != pgs_onstack)
890 free(pgs, M_DEVBUF);
891 return (error);
892 }
893
894 out:
895 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
896 uvm_lock_pageq();
897 for (i = 0; i < npages; i++) {
898 pg = pgs[i];
899 if (pg == NULL) {
900 continue;
901 }
902 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
903 pg, pg->flags, 0,0);
904 if (pg->flags & PG_FAKE && !overwrite) {
905 pg->flags &= ~(PG_FAKE);
906 pmap_clear_modify(pgs[i]);
907 }
908 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
909 if (i < ridx || i >= ridx + orignpages || async) {
910 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
911 pg, pg->offset,0,0);
912 if (pg->flags & PG_WANTED) {
913 wakeup(pg);
914 }
915 if (pg->flags & PG_FAKE) {
916 KASSERT(overwrite);
917 uvm_pagezero(pg);
918 }
919 if (pg->flags & PG_RELEASED) {
920 uvm_pagefree(pg);
921 continue;
922 }
923 uvm_pageactivate(pg);
924 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
925 UVM_PAGE_OWN(pg, NULL);
926 }
927 }
928 uvm_unlock_pageq();
929 simple_unlock(&uobj->vmobjlock);
930 if (ap->a_m != NULL) {
931 memcpy(ap->a_m, &pgs[ridx],
932 orignpages * sizeof(struct vm_page *));
933 }
934 if (pgs != pgs_onstack)
935 free(pgs, M_DEVBUF);
936 return (0);
937 }
938
939 /*
940 * generic VM putpages routine.
941 * Write the given range of pages to backing store.
942 *
943 * => "offhi == 0" means flush all pages at or after "offlo".
944 * => object should be locked by caller. we may _unlock_ the object
945 * if (and only if) we need to clean a page (PGO_CLEANIT), or
946 * if PGO_SYNCIO is set and there are pages busy.
947 * we return with the object locked.
948 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
949 * thus, a caller might want to unlock higher level resources
950 * (e.g. vm_map) before calling flush.
951 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
952 * unlock the object nor block.
953 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
954 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
955 * that new pages are inserted on the tail end of the list. thus,
956 * we can make a complete pass through the object in one go by starting
957 * at the head and working towards the tail (new pages are put in
958 * front of us).
959 * => NOTE: we are allowed to lock the page queues, so the caller
960 * must not be holding the page queue lock.
961 *
962 * note on "cleaning" object and PG_BUSY pages:
963 * this routine is holding the lock on the object. the only time
964 * that it can run into a PG_BUSY page that it does not own is if
965 * some other process has started I/O on the page (e.g. either
966 * a pagein, or a pageout). if the PG_BUSY page is being paged
967 * in, then it can not be dirty (!PG_CLEAN) because no one has
968 * had a chance to modify it yet. if the PG_BUSY page is being
969 * paged out then it means that someone else has already started
970 * cleaning the page for us (how nice!). in this case, if we
971 * have syncio specified, then after we make our pass through the
972 * object we need to wait for the other PG_BUSY pages to clear
973 * off (i.e. we need to do an iosync). also note that once a
974 * page is PG_BUSY it must stay in its object until it is un-busyed.
975 *
976 * note on page traversal:
977 * we can traverse the pages in an object either by going down the
978 * linked list in "uobj->memq", or we can go over the address range
979 * by page doing hash table lookups for each address. depending
980 * on how many pages are in the object it may be cheaper to do one
981 * or the other. we set "by_list" to true if we are using memq.
982 * if the cost of a hash lookup was equal to the cost of the list
983 * traversal we could compare the number of pages in the start->stop
984 * range to the total number of pages in the object. however, it
985 * seems that a hash table lookup is more expensive than the linked
986 * list traversal, so we multiply the number of pages in the
987 * range by an estimate of the relatively higher cost of the hash lookup.
988 */
989
990 int
991 genfs_putpages(void *v)
992 {
993 struct vop_putpages_args /* {
994 struct vnode *a_vp;
995 voff_t a_offlo;
996 voff_t a_offhi;
997 int a_flags;
998 } */ *ap = v;
999 struct vnode *vp = ap->a_vp;
1000 struct uvm_object *uobj = &vp->v_uobj;
1001 struct simplelock *slock = &uobj->vmobjlock;
1002 off_t startoff = ap->a_offlo;
1003 off_t endoff = ap->a_offhi;
1004 off_t off;
1005 int flags = ap->a_flags;
1006 /* Even for strange MAXPHYS, the shift rounds down to a page */
1007 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1008 int i, s, error, npages, nback;
1009 int freeflag;
1010 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1011 boolean_t wasclean, by_list, needs_clean, yld;
1012 boolean_t async = (flags & PGO_SYNCIO) == 0;
1013 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1014 struct lwp *l = curlwp ? curlwp : &lwp0;
1015 struct genfs_node *gp = VTOG(vp);
1016 int dirtygen;
1017 boolean_t modified = FALSE;
1018 boolean_t cleanall;
1019
1020 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1021
1022 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1023 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1024 KASSERT(startoff < endoff || endoff == 0);
1025
1026 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1027 vp, uobj->uo_npages, startoff, endoff - startoff);
1028
1029 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1030 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1031 if (uobj->uo_npages == 0) {
1032 s = splbio();
1033 if (vp->v_flag & VONWORKLST) {
1034 vp->v_flag &= ~VWRITEMAPDIRTY;
1035 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1036 vp->v_flag &= ~VONWORKLST;
1037 LIST_REMOVE(vp, v_synclist);
1038 }
1039 }
1040 splx(s);
1041 simple_unlock(slock);
1042 return (0);
1043 }
1044
1045 /*
1046 * the vnode has pages, set up to process the request.
1047 */
1048
1049 error = 0;
1050 s = splbio();
1051 simple_lock(&global_v_numoutput_slock);
1052 wasclean = (vp->v_numoutput == 0);
1053 simple_unlock(&global_v_numoutput_slock);
1054 splx(s);
1055 off = startoff;
1056 if (endoff == 0 || flags & PGO_ALLPAGES) {
1057 endoff = trunc_page(LLONG_MAX);
1058 }
1059 by_list = (uobj->uo_npages <=
1060 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1061
1062 #if !defined(DEBUG)
1063 /*
1064 * if this vnode is known not to have dirty pages,
1065 * don't bother to clean it out.
1066 */
1067
1068 if ((vp->v_flag & VONWORKLST) == 0) {
1069 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1070 goto skip_scan;
1071 }
1072 flags &= ~PGO_CLEANIT;
1073 }
1074 #endif /* !defined(DEBUG) */
1075
1076 /*
1077 * start the loop. when scanning by list, hold the last page
1078 * in the list before we start. pages allocated after we start
1079 * will be added to the end of the list, so we can stop at the
1080 * current last page.
1081 */
1082
1083 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1084 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1085 (vp->v_flag & VONWORKLST) != 0;
1086 dirtygen = gp->g_dirtygen;
1087 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1088 if (by_list) {
1089 curmp.uobject = uobj;
1090 curmp.offset = (voff_t)-1;
1091 curmp.flags = PG_BUSY;
1092 endmp.uobject = uobj;
1093 endmp.offset = (voff_t)-1;
1094 endmp.flags = PG_BUSY;
1095 pg = TAILQ_FIRST(&uobj->memq);
1096 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1097 PHOLD(l);
1098 } else {
1099 pg = uvm_pagelookup(uobj, off);
1100 }
1101 nextpg = NULL;
1102 while (by_list || off < endoff) {
1103
1104 /*
1105 * if the current page is not interesting, move on to the next.
1106 */
1107
1108 KASSERT(pg == NULL || pg->uobject == uobj);
1109 KASSERT(pg == NULL ||
1110 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1111 (pg->flags & PG_BUSY) != 0);
1112 if (by_list) {
1113 if (pg == &endmp) {
1114 break;
1115 }
1116 if (pg->offset < startoff || pg->offset >= endoff ||
1117 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1118 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1119 wasclean = FALSE;
1120 }
1121 pg = TAILQ_NEXT(pg, listq);
1122 continue;
1123 }
1124 off = pg->offset;
1125 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1126 if (pg != NULL) {
1127 wasclean = FALSE;
1128 }
1129 off += PAGE_SIZE;
1130 if (off < endoff) {
1131 pg = uvm_pagelookup(uobj, off);
1132 }
1133 continue;
1134 }
1135
1136 /*
1137 * if the current page needs to be cleaned and it's busy,
1138 * wait for it to become unbusy.
1139 */
1140
1141 yld = (l->l_cpu->ci_schedstate.spc_flags &
1142 SPCF_SHOULDYIELD) && !pagedaemon;
1143 if (pg->flags & PG_BUSY || yld) {
1144 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1145 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1146 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1147 error = EDEADLK;
1148 break;
1149 }
1150 KASSERT(!pagedaemon);
1151 if (by_list) {
1152 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1153 UVMHIST_LOG(ubchist, "curmp next %p",
1154 TAILQ_NEXT(&curmp, listq), 0,0,0);
1155 }
1156 if (yld) {
1157 simple_unlock(slock);
1158 preempt(1);
1159 simple_lock(slock);
1160 } else {
1161 pg->flags |= PG_WANTED;
1162 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1163 simple_lock(slock);
1164 }
1165 if (by_list) {
1166 UVMHIST_LOG(ubchist, "after next %p",
1167 TAILQ_NEXT(&curmp, listq), 0,0,0);
1168 pg = TAILQ_NEXT(&curmp, listq);
1169 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1170 } else {
1171 pg = uvm_pagelookup(uobj, off);
1172 }
1173 continue;
1174 }
1175
1176 /*
1177 * if we're freeing, remove all mappings of the page now.
1178 * if we're cleaning, check if the page is needs to be cleaned.
1179 */
1180
1181 if (flags & PGO_FREE) {
1182 pmap_page_protect(pg, VM_PROT_NONE);
1183 } else if (flags & PGO_CLEANIT) {
1184
1185 /*
1186 * if we still have some hope to pull this vnode off
1187 * from the syncer queue, write-protect the page.
1188 */
1189
1190 if (cleanall && wasclean &&
1191 gp->g_dirtygen == dirtygen) {
1192
1193 /*
1194 * uobj pages get wired only by uvm_fault
1195 * where uobj is locked.
1196 */
1197
1198 if (pg->wire_count == 0) {
1199 pmap_page_protect(pg,
1200 VM_PROT_READ|VM_PROT_EXECUTE);
1201 } else {
1202 cleanall = FALSE;
1203 }
1204 }
1205 }
1206
1207 if (flags & PGO_CLEANIT) {
1208 needs_clean = pmap_clear_modify(pg) ||
1209 (pg->flags & PG_CLEAN) == 0;
1210 pg->flags |= PG_CLEAN;
1211 } else {
1212 needs_clean = FALSE;
1213 }
1214
1215 /*
1216 * if we're cleaning, build a cluster.
1217 * the cluster will consist of pages which are currently dirty,
1218 * but they will be returned to us marked clean.
1219 * if not cleaning, just operate on the one page.
1220 */
1221
1222 if (needs_clean) {
1223 KDASSERT((vp->v_flag & VONWORKLST));
1224 wasclean = FALSE;
1225 memset(pgs, 0, sizeof(pgs));
1226 pg->flags |= PG_BUSY;
1227 UVM_PAGE_OWN(pg, "genfs_putpages");
1228
1229 /*
1230 * first look backward.
1231 */
1232
1233 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1234 nback = npages;
1235 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1236 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1237 if (nback) {
1238 memmove(&pgs[0], &pgs[npages - nback],
1239 nback * sizeof(pgs[0]));
1240 if (npages - nback < nback)
1241 memset(&pgs[nback], 0,
1242 (npages - nback) * sizeof(pgs[0]));
1243 else
1244 memset(&pgs[npages - nback], 0,
1245 nback * sizeof(pgs[0]));
1246 }
1247
1248 /*
1249 * then plug in our page of interest.
1250 */
1251
1252 pgs[nback] = pg;
1253
1254 /*
1255 * then look forward to fill in the remaining space in
1256 * the array of pages.
1257 */
1258
1259 npages = maxpages - nback - 1;
1260 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1261 &pgs[nback + 1],
1262 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1263 npages += nback + 1;
1264 } else {
1265 pgs[0] = pg;
1266 npages = 1;
1267 nback = 0;
1268 }
1269
1270 /*
1271 * apply FREE or DEACTIVATE options if requested.
1272 */
1273
1274 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1275 uvm_lock_pageq();
1276 }
1277 for (i = 0; i < npages; i++) {
1278 tpg = pgs[i];
1279 KASSERT(tpg->uobject == uobj);
1280 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1281 pg = tpg;
1282 if (tpg->offset < startoff || tpg->offset >= endoff)
1283 continue;
1284 if (flags & PGO_DEACTIVATE &&
1285 (tpg->pqflags & PQ_INACTIVE) == 0 &&
1286 tpg->wire_count == 0) {
1287 (void) pmap_clear_reference(tpg);
1288 uvm_pagedeactivate(tpg);
1289 } else if (flags & PGO_FREE) {
1290 pmap_page_protect(tpg, VM_PROT_NONE);
1291 if (tpg->flags & PG_BUSY) {
1292 tpg->flags |= freeflag;
1293 if (pagedaemon) {
1294 uvmexp.paging++;
1295 uvm_pagedequeue(tpg);
1296 }
1297 } else {
1298
1299 /*
1300 * ``page is not busy''
1301 * implies that npages is 1
1302 * and needs_clean is false.
1303 */
1304
1305 nextpg = TAILQ_NEXT(tpg, listq);
1306 uvm_pagefree(tpg);
1307 if (pagedaemon)
1308 uvmexp.pdfreed++;
1309 }
1310 }
1311 }
1312 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1313 uvm_unlock_pageq();
1314 }
1315 if (needs_clean) {
1316 modified = TRUE;
1317
1318 /*
1319 * start the i/o. if we're traversing by list,
1320 * keep our place in the list with a marker page.
1321 */
1322
1323 if (by_list) {
1324 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1325 listq);
1326 }
1327 simple_unlock(slock);
1328 error = GOP_WRITE(vp, pgs, npages, flags);
1329 simple_lock(slock);
1330 if (by_list) {
1331 pg = TAILQ_NEXT(&curmp, listq);
1332 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1333 }
1334 if (error) {
1335 break;
1336 }
1337 if (by_list) {
1338 continue;
1339 }
1340 }
1341
1342 /*
1343 * find the next page and continue if there was no error.
1344 */
1345
1346 if (by_list) {
1347 if (nextpg) {
1348 pg = nextpg;
1349 nextpg = NULL;
1350 } else {
1351 pg = TAILQ_NEXT(pg, listq);
1352 }
1353 } else {
1354 off += (npages - nback) << PAGE_SHIFT;
1355 if (off < endoff) {
1356 pg = uvm_pagelookup(uobj, off);
1357 }
1358 }
1359 }
1360 if (by_list) {
1361 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1362 PRELE(l);
1363 }
1364
1365 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1366 (vp->v_type != VBLK ||
1367 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1368 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1369 }
1370
1371 /*
1372 * if we're cleaning and there was nothing to clean,
1373 * take us off the syncer list. if we started any i/o
1374 * and we're doing sync i/o, wait for all writes to finish.
1375 */
1376
1377 s = splbio();
1378 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1379 (vp->v_flag & VONWORKLST) != 0) {
1380 vp->v_flag &= ~VWRITEMAPDIRTY;
1381 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1382 vp->v_flag &= ~VONWORKLST;
1383 LIST_REMOVE(vp, v_synclist);
1384 }
1385 }
1386 splx(s);
1387
1388 #if !defined(DEBUG)
1389 skip_scan:
1390 #endif /* !defined(DEBUG) */
1391 if (!wasclean && !async) {
1392 s = splbio();
1393 /*
1394 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1395 * but the slot in ltsleep() is taken!
1396 * XXX - try to recover from missed wakeups with a timeout..
1397 * must think of something better.
1398 */
1399 while (vp->v_numoutput != 0) {
1400 vp->v_flag |= VBWAIT;
1401 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1402 "genput2", hz);
1403 simple_lock(slock);
1404 }
1405 splx(s);
1406 }
1407 simple_unlock(&uobj->vmobjlock);
1408 return (error);
1409 }
1410
1411 int
1412 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1413 {
1414 int s, error, run;
1415 int fs_bshift, dev_bshift;
1416 vaddr_t kva;
1417 off_t eof, offset, startoffset;
1418 size_t bytes, iobytes, skipbytes;
1419 daddr_t lbn, blkno;
1420 struct vm_page *pg;
1421 struct buf *mbp, *bp;
1422 struct vnode *devvp;
1423 boolean_t async = (flags & PGO_SYNCIO) == 0;
1424 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1425
1426 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1427 vp, pgs, npages, flags);
1428
1429 GOP_SIZE(vp, vp->v_size, &eof, 0);
1430 if (vp->v_type != VBLK) {
1431 fs_bshift = vp->v_mount->mnt_fs_bshift;
1432 dev_bshift = vp->v_mount->mnt_dev_bshift;
1433 } else {
1434 fs_bshift = DEV_BSHIFT;
1435 dev_bshift = DEV_BSHIFT;
1436 }
1437 error = 0;
1438 pg = pgs[0];
1439 startoffset = pg->offset;
1440 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1441 skipbytes = 0;
1442 KASSERT(bytes != 0);
1443
1444 kva = uvm_pagermapin(pgs, npages,
1445 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1446
1447 s = splbio();
1448 simple_lock(&global_v_numoutput_slock);
1449 vp->v_numoutput += 2;
1450 simple_unlock(&global_v_numoutput_slock);
1451 splx(s);
1452 mbp = getiobuf();
1453 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1454 vp, mbp, vp->v_numoutput, bytes);
1455 mbp->b_bufsize = npages << PAGE_SHIFT;
1456 mbp->b_data = (void *)kva;
1457 mbp->b_resid = mbp->b_bcount = bytes;
1458 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1459 mbp->b_iodone = uvm_aio_biodone;
1460 mbp->b_vp = vp;
1461 if (curproc == uvm.pagedaemon_proc)
1462 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1463 else if (async)
1464 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1465 else
1466 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1467
1468 bp = NULL;
1469 for (offset = startoffset;
1470 bytes > 0;
1471 offset += iobytes, bytes -= iobytes) {
1472 lbn = offset >> fs_bshift;
1473 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1474 if (error) {
1475 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1476 skipbytes += bytes;
1477 bytes = 0;
1478 break;
1479 }
1480
1481 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1482 bytes);
1483 if (blkno == (daddr_t)-1) {
1484 skipbytes += iobytes;
1485 continue;
1486 }
1487
1488 /* if it's really one i/o, don't make a second buf */
1489 if (offset == startoffset && iobytes == bytes) {
1490 bp = mbp;
1491 } else {
1492 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1493 vp, bp, vp->v_numoutput, 0);
1494 bp = getiobuf();
1495 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1496 }
1497 bp->b_lblkno = 0;
1498
1499 /* adjust physical blkno for partial blocks */
1500 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1501 dev_bshift);
1502 UVMHIST_LOG(ubchist,
1503 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1504 vp, offset, bp->b_bcount, bp->b_blkno);
1505
1506 VOP_STRATEGY(devvp, bp);
1507 }
1508 if (skipbytes) {
1509 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1510 }
1511 nestiobuf_done(mbp, skipbytes, error);
1512 if (async) {
1513 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1514 return (0);
1515 }
1516 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1517 error = biowait(mbp);
1518 uvm_aio_aiodone(mbp);
1519 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1520 return (error);
1521 }
1522
1523 /*
1524 * VOP_PUTPAGES() for vnodes which never have pages.
1525 */
1526
1527 int
1528 genfs_null_putpages(void *v)
1529 {
1530 struct vop_putpages_args /* {
1531 struct vnode *a_vp;
1532 voff_t a_offlo;
1533 voff_t a_offhi;
1534 int a_flags;
1535 } */ *ap = v;
1536 struct vnode *vp = ap->a_vp;
1537
1538 KASSERT(vp->v_uobj.uo_npages == 0);
1539 simple_unlock(&vp->v_interlock);
1540 return (0);
1541 }
1542
1543 void
1544 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1545 {
1546 struct genfs_node *gp = VTOG(vp);
1547
1548 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1549 gp->g_op = ops;
1550 }
1551
1552 void
1553 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1554 {
1555 int bsize;
1556
1557 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1558 *eobp = (size + bsize - 1) & ~(bsize - 1);
1559 }
1560
1561 int
1562 genfs_compat_getpages(void *v)
1563 {
1564 struct vop_getpages_args /* {
1565 struct vnode *a_vp;
1566 voff_t a_offset;
1567 struct vm_page **a_m;
1568 int *a_count;
1569 int a_centeridx;
1570 vm_prot_t a_access_type;
1571 int a_advice;
1572 int a_flags;
1573 } */ *ap = v;
1574
1575 off_t origoffset;
1576 struct vnode *vp = ap->a_vp;
1577 struct uvm_object *uobj = &vp->v_uobj;
1578 struct vm_page *pg, **pgs;
1579 vaddr_t kva;
1580 int i, error, orignpages, npages;
1581 struct iovec iov;
1582 struct uio uio;
1583 struct ucred *cred = curproc->p_ucred;
1584 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1585
1586 error = 0;
1587 origoffset = ap->a_offset;
1588 orignpages = *ap->a_count;
1589 pgs = ap->a_m;
1590
1591 if (write && (vp->v_flag & VONWORKLST) == 0) {
1592 vn_syncer_add_to_worklist(vp, filedelay);
1593 }
1594 if (ap->a_flags & PGO_LOCKED) {
1595 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1596 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1597
1598 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1599 }
1600 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1601 simple_unlock(&uobj->vmobjlock);
1602 return (EINVAL);
1603 }
1604 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1605 simple_unlock(&uobj->vmobjlock);
1606 return 0;
1607 }
1608 npages = orignpages;
1609 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1610 simple_unlock(&uobj->vmobjlock);
1611 kva = uvm_pagermapin(pgs, npages,
1612 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1613 for (i = 0; i < npages; i++) {
1614 pg = pgs[i];
1615 if ((pg->flags & PG_FAKE) == 0) {
1616 continue;
1617 }
1618 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1619 iov.iov_len = PAGE_SIZE;
1620 uio.uio_iov = &iov;
1621 uio.uio_iovcnt = 1;
1622 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1623 uio.uio_rw = UIO_READ;
1624 uio.uio_resid = PAGE_SIZE;
1625 UIO_SETUP_SYSSPACE(&uio);
1626 /* XXX vn_lock */
1627 error = VOP_READ(vp, &uio, 0, cred);
1628 if (error) {
1629 break;
1630 }
1631 if (uio.uio_resid) {
1632 memset(iov.iov_base, 0, uio.uio_resid);
1633 }
1634 }
1635 uvm_pagermapout(kva, npages);
1636 simple_lock(&uobj->vmobjlock);
1637 uvm_lock_pageq();
1638 for (i = 0; i < npages; i++) {
1639 pg = pgs[i];
1640 if (error && (pg->flags & PG_FAKE) != 0) {
1641 pg->flags |= PG_RELEASED;
1642 } else {
1643 pmap_clear_modify(pg);
1644 uvm_pageactivate(pg);
1645 }
1646 }
1647 if (error) {
1648 uvm_page_unbusy(pgs, npages);
1649 }
1650 uvm_unlock_pageq();
1651 simple_unlock(&uobj->vmobjlock);
1652 return (error);
1653 }
1654
1655 int
1656 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1657 int flags)
1658 {
1659 off_t offset;
1660 struct iovec iov;
1661 struct uio uio;
1662 struct ucred *cred = curproc->p_ucred;
1663 struct buf *bp;
1664 vaddr_t kva;
1665 int s, error;
1666
1667 offset = pgs[0]->offset;
1668 kva = uvm_pagermapin(pgs, npages,
1669 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1670
1671 iov.iov_base = (void *)kva;
1672 iov.iov_len = npages << PAGE_SHIFT;
1673 uio.uio_iov = &iov;
1674 uio.uio_iovcnt = 1;
1675 uio.uio_offset = offset;
1676 uio.uio_rw = UIO_WRITE;
1677 uio.uio_resid = npages << PAGE_SHIFT;
1678 UIO_SETUP_SYSSPACE(&uio);
1679 /* XXX vn_lock */
1680 error = VOP_WRITE(vp, &uio, 0, cred);
1681
1682 s = splbio();
1683 V_INCR_NUMOUTPUT(vp);
1684 splx(s);
1685
1686 bp = getiobuf();
1687 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1688 bp->b_vp = vp;
1689 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1690 bp->b_data = (char *)kva;
1691 bp->b_bcount = npages << PAGE_SHIFT;
1692 bp->b_bufsize = npages << PAGE_SHIFT;
1693 bp->b_resid = 0;
1694 if (error) {
1695 bp->b_flags |= B_ERROR;
1696 bp->b_error = error;
1697 }
1698 uvm_aio_aiodone(bp);
1699 return (error);
1700 }
1701
1702 static void
1703 filt_genfsdetach(struct knote *kn)
1704 {
1705 struct vnode *vp = (struct vnode *)kn->kn_hook;
1706
1707 /* XXXLUKEM lock the struct? */
1708 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1709 }
1710
1711 static int
1712 filt_genfsread(struct knote *kn, long hint)
1713 {
1714 struct vnode *vp = (struct vnode *)kn->kn_hook;
1715
1716 /*
1717 * filesystem is gone, so set the EOF flag and schedule
1718 * the knote for deletion.
1719 */
1720 if (hint == NOTE_REVOKE) {
1721 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1722 return (1);
1723 }
1724
1725 /* XXXLUKEM lock the struct? */
1726 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1727 return (kn->kn_data != 0);
1728 }
1729
1730 static int
1731 filt_genfsvnode(struct knote *kn, long hint)
1732 {
1733
1734 if (kn->kn_sfflags & hint)
1735 kn->kn_fflags |= hint;
1736 if (hint == NOTE_REVOKE) {
1737 kn->kn_flags |= EV_EOF;
1738 return (1);
1739 }
1740 return (kn->kn_fflags != 0);
1741 }
1742
1743 static const struct filterops genfsread_filtops =
1744 { 1, NULL, filt_genfsdetach, filt_genfsread };
1745 static const struct filterops genfsvnode_filtops =
1746 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1747
1748 int
1749 genfs_kqfilter(void *v)
1750 {
1751 struct vop_kqfilter_args /* {
1752 struct vnode *a_vp;
1753 struct knote *a_kn;
1754 } */ *ap = v;
1755 struct vnode *vp;
1756 struct knote *kn;
1757
1758 vp = ap->a_vp;
1759 kn = ap->a_kn;
1760 switch (kn->kn_filter) {
1761 case EVFILT_READ:
1762 kn->kn_fop = &genfsread_filtops;
1763 break;
1764 case EVFILT_VNODE:
1765 kn->kn_fop = &genfsvnode_filtops;
1766 break;
1767 default:
1768 return (1);
1769 }
1770
1771 kn->kn_hook = vp;
1772
1773 /* XXXLUKEM lock the struct? */
1774 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1775
1776 return (0);
1777 }
1778