genfs_vnops.c revision 1.128.4.2 1 /* $NetBSD: genfs_vnops.c,v 1.128.4.2 2007/01/12 01:04:11 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.128.4.2 2007/01/12 01:04:11 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49
50 #include <miscfs/genfs/genfs.h>
51 #include <miscfs/genfs/genfs_node.h>
52 #include <miscfs/specfs/specdev.h>
53
54 #include <uvm/uvm.h>
55 #include <uvm/uvm_pager.h>
56
57 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
58 off_t, enum uio_rw);
59 static void genfs_dio_iodone(struct buf *);
60
61 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
62 void (*)(struct buf *));
63 static inline void genfs_rel_pages(struct vm_page **, int);
64 static void filt_genfsdetach(struct knote *);
65 static int filt_genfsread(struct knote *, long);
66 static int filt_genfsvnode(struct knote *, long);
67
68 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
69
70 int genfs_maxdio = MAXPHYS;
71
72 int
73 genfs_poll(void *v)
74 {
75 struct vop_poll_args /* {
76 struct vnode *a_vp;
77 int a_events;
78 struct lwp *a_l;
79 } */ *ap = v;
80
81 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
82 }
83
84 int
85 genfs_seek(void *v)
86 {
87 struct vop_seek_args /* {
88 struct vnode *a_vp;
89 off_t a_oldoff;
90 off_t a_newoff;
91 kauth_cred_t cred;
92 } */ *ap = v;
93
94 if (ap->a_newoff < 0)
95 return (EINVAL);
96
97 return (0);
98 }
99
100 int
101 genfs_abortop(void *v)
102 {
103 struct vop_abortop_args /* {
104 struct vnode *a_dvp;
105 struct componentname *a_cnp;
106 } */ *ap = v;
107
108 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
109 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
110 return (0);
111 }
112
113 int
114 genfs_fcntl(void *v)
115 {
116 struct vop_fcntl_args /* {
117 struct vnode *a_vp;
118 u_int a_command;
119 caddr_t a_data;
120 int a_fflag;
121 kauth_cred_t a_cred;
122 struct lwp *a_l;
123 } */ *ap = v;
124
125 if (ap->a_command == F_SETFL)
126 return (0);
127 else
128 return (EOPNOTSUPP);
129 }
130
131 /*ARGSUSED*/
132 int
133 genfs_badop(void *v)
134 {
135
136 panic("genfs: bad op");
137 }
138
139 /*ARGSUSED*/
140 int
141 genfs_nullop(void *v)
142 {
143
144 return (0);
145 }
146
147 /*ARGSUSED*/
148 int
149 genfs_einval(void *v)
150 {
151
152 return (EINVAL);
153 }
154
155 /*
156 * Called when an fs doesn't support a particular vop.
157 * This takes care to vrele, vput, or vunlock passed in vnodes.
158 */
159 int
160 genfs_eopnotsupp(void *v)
161 {
162 struct vop_generic_args /*
163 struct vnodeop_desc *a_desc;
164 / * other random data follows, presumably * /
165 } */ *ap = v;
166 struct vnodeop_desc *desc = ap->a_desc;
167 struct vnode *vp, *vp_last = NULL;
168 int flags, i, j, offset;
169
170 flags = desc->vdesc_flags;
171 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
172 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
173 break; /* stop at end of list */
174 if ((j = flags & VDESC_VP0_WILLPUT)) {
175 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
176
177 /* Skip if NULL */
178 if (!vp)
179 continue;
180
181 switch (j) {
182 case VDESC_VP0_WILLPUT:
183 /* Check for dvp == vp cases */
184 if (vp == vp_last)
185 vrele(vp);
186 else {
187 vput(vp);
188 vp_last = vp;
189 }
190 break;
191 case VDESC_VP0_WILLUNLOCK:
192 VOP_UNLOCK(vp, 0);
193 break;
194 case VDESC_VP0_WILLRELE:
195 vrele(vp);
196 break;
197 }
198 }
199 }
200
201 return (EOPNOTSUPP);
202 }
203
204 /*ARGSUSED*/
205 int
206 genfs_ebadf(void *v)
207 {
208
209 return (EBADF);
210 }
211
212 /* ARGSUSED */
213 int
214 genfs_enoioctl(void *v)
215 {
216
217 return (EPASSTHROUGH);
218 }
219
220
221 /*
222 * Eliminate all activity associated with the requested vnode
223 * and with all vnodes aliased to the requested vnode.
224 */
225 int
226 genfs_revoke(void *v)
227 {
228 struct vop_revoke_args /* {
229 struct vnode *a_vp;
230 int a_flags;
231 } */ *ap = v;
232 struct vnode *vp, *vq;
233 struct lwp *l = curlwp; /* XXX */
234
235 #ifdef DIAGNOSTIC
236 if ((ap->a_flags & REVOKEALL) == 0)
237 panic("genfs_revoke: not revokeall");
238 #endif
239
240 vp = ap->a_vp;
241 simple_lock(&vp->v_interlock);
242
243 if (vp->v_flag & VALIASED) {
244 /*
245 * If a vgone (or vclean) is already in progress,
246 * wait until it is done and return.
247 */
248 if (vp->v_flag & VXLOCK) {
249 vp->v_flag |= VXWANT;
250 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
251 &vp->v_interlock);
252 return (0);
253 }
254 /*
255 * Ensure that vp will not be vgone'd while we
256 * are eliminating its aliases.
257 */
258 vp->v_flag |= VXLOCK;
259 simple_unlock(&vp->v_interlock);
260 while (vp->v_flag & VALIASED) {
261 simple_lock(&spechash_slock);
262 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
263 if (vq->v_rdev != vp->v_rdev ||
264 vq->v_type != vp->v_type || vp == vq)
265 continue;
266 simple_unlock(&spechash_slock);
267 vgone(vq);
268 break;
269 }
270 if (vq == NULLVP)
271 simple_unlock(&spechash_slock);
272 }
273 /*
274 * Remove the lock so that vgone below will
275 * really eliminate the vnode after which time
276 * vgone will awaken any sleepers.
277 */
278 simple_lock(&vp->v_interlock);
279 vp->v_flag &= ~VXLOCK;
280 }
281 vgonel(vp, l);
282 return (0);
283 }
284
285 /*
286 * Lock the node.
287 */
288 int
289 genfs_lock(void *v)
290 {
291 struct vop_lock_args /* {
292 struct vnode *a_vp;
293 int a_flags;
294 } */ *ap = v;
295 struct vnode *vp = ap->a_vp;
296
297 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
298 }
299
300 /*
301 * Unlock the node.
302 */
303 int
304 genfs_unlock(void *v)
305 {
306 struct vop_unlock_args /* {
307 struct vnode *a_vp;
308 int a_flags;
309 } */ *ap = v;
310 struct vnode *vp = ap->a_vp;
311
312 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
313 &vp->v_interlock));
314 }
315
316 /*
317 * Return whether or not the node is locked.
318 */
319 int
320 genfs_islocked(void *v)
321 {
322 struct vop_islocked_args /* {
323 struct vnode *a_vp;
324 } */ *ap = v;
325 struct vnode *vp = ap->a_vp;
326
327 return (lockstatus(vp->v_vnlock));
328 }
329
330 /*
331 * Stubs to use when there is no locking to be done on the underlying object.
332 */
333 int
334 genfs_nolock(void *v)
335 {
336 struct vop_lock_args /* {
337 struct vnode *a_vp;
338 int a_flags;
339 struct lwp *a_l;
340 } */ *ap = v;
341
342 /*
343 * Since we are not using the lock manager, we must clear
344 * the interlock here.
345 */
346 if (ap->a_flags & LK_INTERLOCK)
347 simple_unlock(&ap->a_vp->v_interlock);
348 return (0);
349 }
350
351 int
352 genfs_nounlock(void *v)
353 {
354
355 return (0);
356 }
357
358 int
359 genfs_noislocked(void *v)
360 {
361
362 return (0);
363 }
364
365 /*
366 * Local lease check.
367 */
368 int
369 genfs_lease_check(void *v)
370 {
371
372 return (0);
373 }
374
375 int
376 genfs_mmap(void *v)
377 {
378
379 return (0);
380 }
381
382 static inline void
383 genfs_rel_pages(struct vm_page **pgs, int npages)
384 {
385 int i;
386
387 for (i = 0; i < npages; i++) {
388 struct vm_page *pg = pgs[i];
389
390 if (pg == NULL || pg == PGO_DONTCARE)
391 continue;
392 if (pg->flags & PG_FAKE) {
393 pg->flags |= PG_RELEASED;
394 }
395 }
396 uvm_lock_pageq();
397 uvm_page_unbusy(pgs, npages);
398 uvm_unlock_pageq();
399 }
400
401 /*
402 * generic VM getpages routine.
403 * Return PG_BUSY pages for the given range,
404 * reading from backing store if necessary.
405 */
406
407 int
408 genfs_getpages(void *v)
409 {
410 struct vop_getpages_args /* {
411 struct vnode *a_vp;
412 voff_t a_offset;
413 struct vm_page **a_m;
414 int *a_count;
415 int a_centeridx;
416 vm_prot_t a_access_type;
417 int a_advice;
418 int a_flags;
419 } */ *ap = v;
420
421 off_t newsize, diskeof, memeof;
422 off_t offset, origoffset, startoffset, endoffset;
423 daddr_t lbn, blkno;
424 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
425 int fs_bshift, fs_bsize, dev_bshift;
426 int flags = ap->a_flags;
427 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
428 vaddr_t kva;
429 struct buf *bp, *mbp;
430 struct vnode *vp = ap->a_vp;
431 struct vnode *devvp;
432 struct genfs_node *gp = VTOG(vp);
433 struct uvm_object *uobj = &vp->v_uobj;
434 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
435 int pgs_size;
436 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
437 boolean_t async = (flags & PGO_SYNCIO) == 0;
438 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
439 boolean_t sawhole = FALSE;
440 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
441 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
442 voff_t origvsize;
443 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
444
445 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
446 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
447
448 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
449 vp->v_type == VLNK || vp->v_type == VBLK);
450
451 /* XXXUBC temp limit */
452 if (*ap->a_count > MAX_READ_PAGES) {
453 panic("genfs_getpages: too many pages");
454 }
455
456 startover:
457 error = 0;
458 origvsize = vp->v_size;
459 origoffset = ap->a_offset;
460 orignpages = *ap->a_count;
461 GOP_SIZE(vp, vp->v_size, &diskeof, 0);
462 if (flags & PGO_PASTEOF) {
463 newsize = MAX(vp->v_size,
464 origoffset + (orignpages << PAGE_SHIFT));
465 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
466 } else {
467 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
468 }
469 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
470 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
471 KASSERT(orignpages > 0);
472
473 /*
474 * Bounds-check the request.
475 */
476
477 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
478 if ((flags & PGO_LOCKED) == 0) {
479 simple_unlock(&uobj->vmobjlock);
480 }
481 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
482 origoffset, *ap->a_count, memeof,0);
483 return (EINVAL);
484 }
485
486 /* uobj is locked */
487
488 if ((flags & PGO_NOTIMESTAMP) == 0 &&
489 (vp->v_type != VBLK ||
490 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
491 int updflags = 0;
492
493 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
494 updflags = GOP_UPDATE_ACCESSED;
495 }
496 if (write) {
497 updflags |= GOP_UPDATE_MODIFIED;
498 }
499 if (updflags != 0) {
500 GOP_MARKUPDATE(vp, updflags);
501 }
502 }
503
504 if (write) {
505 gp->g_dirtygen++;
506 if ((vp->v_flag & VONWORKLST) == 0) {
507 vn_syncer_add_to_worklist(vp, filedelay);
508 }
509 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
510 vp->v_flag |= VWRITEMAPDIRTY;
511 }
512 }
513
514 /*
515 * For PGO_LOCKED requests, just return whatever's in memory.
516 */
517
518 if (flags & PGO_LOCKED) {
519 int nfound;
520
521 npages = *ap->a_count;
522 #if defined(DEBUG)
523 for (i = 0; i < npages; i++) {
524 pg = ap->a_m[i];
525 KASSERT(pg == NULL || pg == PGO_DONTCARE);
526 }
527 #endif /* defined(DEBUG) */
528 nfound = uvn_findpages(uobj, origoffset, &npages,
529 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
530 KASSERT(npages == *ap->a_count);
531 if (nfound == 0) {
532 return EBUSY;
533 }
534 if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) {
535 genfs_rel_pages(ap->a_m, npages);
536
537 /*
538 * restore the array.
539 */
540
541 for (i = 0; i < npages; i++) {
542 pg = ap->a_m[i];
543
544 if (pg != NULL || pg != PGO_DONTCARE) {
545 ap->a_m[i] = NULL;
546 }
547 }
548 } else {
549 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
550 }
551 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
552 }
553 simple_unlock(&uobj->vmobjlock);
554
555 /*
556 * find the requested pages and make some simple checks.
557 * leave space in the page array for a whole block.
558 */
559
560 if (vp->v_type != VBLK) {
561 fs_bshift = vp->v_mount->mnt_fs_bshift;
562 dev_bshift = vp->v_mount->mnt_dev_bshift;
563 } else {
564 fs_bshift = DEV_BSHIFT;
565 dev_bshift = DEV_BSHIFT;
566 }
567 fs_bsize = 1 << fs_bshift;
568
569 orignpages = MIN(orignpages,
570 round_page(memeof - origoffset) >> PAGE_SHIFT);
571 npages = orignpages;
572 startoffset = origoffset & ~(fs_bsize - 1);
573 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
574 fs_bsize - 1) & ~(fs_bsize - 1));
575 endoffset = MIN(endoffset, round_page(memeof));
576 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
577
578 pgs_size = sizeof(struct vm_page *) *
579 ((endoffset - startoffset) >> PAGE_SHIFT);
580 if (pgs_size > sizeof(pgs_onstack)) {
581 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
582 if (pgs == NULL) {
583 return (ENOMEM);
584 }
585 } else {
586 pgs = pgs_onstack;
587 memset(pgs, 0, pgs_size);
588 }
589 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
590 ridx, npages, startoffset, endoffset);
591
592 /*
593 * hold g_glock to prevent a race with truncate.
594 *
595 * check if our idea of v_size is still valid.
596 */
597
598 if (blockalloc) {
599 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
600 } else {
601 lockmgr(&gp->g_glock, LK_SHARED, NULL);
602 }
603 simple_lock(&uobj->vmobjlock);
604 if (vp->v_size < origvsize) {
605 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
606 if (pgs != pgs_onstack)
607 kmem_free(pgs, pgs_size);
608 goto startover;
609 }
610
611 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
612 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
613 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
614 KASSERT(async != 0);
615 genfs_rel_pages(&pgs[ridx], orignpages);
616 simple_unlock(&uobj->vmobjlock);
617 if (pgs != pgs_onstack)
618 kmem_free(pgs, pgs_size);
619 return (EBUSY);
620 }
621
622 /*
623 * if the pages are already resident, just return them.
624 */
625
626 for (i = 0; i < npages; i++) {
627 struct vm_page *pg1 = pgs[ridx + i];
628
629 if ((pg1->flags & PG_FAKE) ||
630 (blockalloc && (pg1->flags & PG_RDONLY))) {
631 break;
632 }
633 }
634 if (i == npages) {
635 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
636 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
637 npages += ridx;
638 goto out;
639 }
640
641 /*
642 * if PGO_OVERWRITE is set, don't bother reading the pages.
643 */
644
645 if (overwrite) {
646 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
647 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
648
649 for (i = 0; i < npages; i++) {
650 struct vm_page *pg1 = pgs[ridx + i];
651
652 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
653 }
654 npages += ridx;
655 goto out;
656 }
657
658 /*
659 * the page wasn't resident and we're not overwriting,
660 * so we're going to have to do some i/o.
661 * find any additional pages needed to cover the expanded range.
662 */
663
664 npages = (endoffset - startoffset) >> PAGE_SHIFT;
665 if (startoffset != origoffset || npages != orignpages) {
666
667 /*
668 * we need to avoid deadlocks caused by locking
669 * additional pages at lower offsets than pages we
670 * already have locked. unlock them all and start over.
671 */
672
673 genfs_rel_pages(&pgs[ridx], orignpages);
674 memset(pgs, 0, pgs_size);
675
676 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
677 startoffset, endoffset, 0,0);
678 npgs = npages;
679 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
680 async ? UFP_NOWAIT : UFP_ALL) != npages) {
681 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
682 KASSERT(async != 0);
683 genfs_rel_pages(pgs, npages);
684 simple_unlock(&uobj->vmobjlock);
685 if (pgs != pgs_onstack)
686 kmem_free(pgs, pgs_size);
687 return (EBUSY);
688 }
689 }
690 simple_unlock(&uobj->vmobjlock);
691
692 /*
693 * read the desired page(s).
694 */
695
696 totalbytes = npages << PAGE_SHIFT;
697 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
698 tailbytes = totalbytes - bytes;
699 skipbytes = 0;
700
701 kva = uvm_pagermapin(pgs, npages,
702 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
703
704 mbp = getiobuf();
705 mbp->b_bufsize = totalbytes;
706 mbp->b_data = (void *)kva;
707 mbp->b_resid = mbp->b_bcount = bytes;
708 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
709 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
710 mbp->b_vp = vp;
711 if (async)
712 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
713 else
714 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
715
716 /*
717 * if EOF is in the middle of the range, zero the part past EOF.
718 * if the page including EOF is not PG_FAKE, skip over it since
719 * in that case it has valid data that we need to preserve.
720 */
721
722 if (tailbytes > 0) {
723 size_t tailstart = bytes;
724
725 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
726 tailstart = round_page(tailstart);
727 tailbytes -= tailstart - bytes;
728 }
729 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
730 kva, tailstart, tailbytes,0);
731 memset((void *)(kva + tailstart), 0, tailbytes);
732 }
733
734 /*
735 * now loop over the pages, reading as needed.
736 */
737
738 bp = NULL;
739 for (offset = startoffset;
740 bytes > 0;
741 offset += iobytes, bytes -= iobytes) {
742
743 /*
744 * skip pages which don't need to be read.
745 */
746
747 pidx = (offset - startoffset) >> PAGE_SHIFT;
748 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
749 size_t b;
750
751 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
752 if ((pgs[pidx]->flags & PG_RDONLY)) {
753 sawhole = TRUE;
754 }
755 b = MIN(PAGE_SIZE, bytes);
756 offset += b;
757 bytes -= b;
758 skipbytes += b;
759 pidx++;
760 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
761 offset, 0,0,0);
762 if (bytes == 0) {
763 goto loopdone;
764 }
765 }
766
767 /*
768 * bmap the file to find out the blkno to read from and
769 * how much we can read in one i/o. if bmap returns an error,
770 * skip the rest of the top-level i/o.
771 */
772
773 lbn = offset >> fs_bshift;
774 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
775 if (error) {
776 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
777 lbn, error,0,0);
778 skipbytes += bytes;
779 goto loopdone;
780 }
781
782 /*
783 * see how many pages can be read with this i/o.
784 * reduce the i/o size if necessary to avoid
785 * overwriting pages with valid data.
786 */
787
788 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
789 bytes);
790 if (offset + iobytes > round_page(offset)) {
791 pcount = 1;
792 while (pidx + pcount < npages &&
793 pgs[pidx + pcount]->flags & PG_FAKE) {
794 pcount++;
795 }
796 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
797 (offset - trunc_page(offset)));
798 }
799
800 /*
801 * if this block isn't allocated, zero it instead of
802 * reading it. unless we are going to allocate blocks,
803 * mark the pages we zeroed PG_RDONLY.
804 */
805
806 if (blkno < 0) {
807 int holepages = (round_page(offset + iobytes) -
808 trunc_page(offset)) >> PAGE_SHIFT;
809 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
810
811 sawhole = TRUE;
812 memset((char *)kva + (offset - startoffset), 0,
813 iobytes);
814 skipbytes += iobytes;
815
816 for (i = 0; i < holepages; i++) {
817 if (write) {
818 pgs[pidx + i]->flags &= ~PG_CLEAN;
819 }
820 if (!blockalloc) {
821 pgs[pidx + i]->flags |= PG_RDONLY;
822 }
823 }
824 continue;
825 }
826
827 /*
828 * allocate a sub-buf for this piece of the i/o
829 * (or just use mbp if there's only 1 piece),
830 * and start it going.
831 */
832
833 if (offset == startoffset && iobytes == bytes) {
834 bp = mbp;
835 } else {
836 bp = getiobuf();
837 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
838 }
839 bp->b_lblkno = 0;
840
841 /* adjust physical blkno for partial blocks */
842 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
843 dev_bshift);
844
845 UVMHIST_LOG(ubchist,
846 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
847 bp, offset, iobytes, bp->b_blkno);
848
849 VOP_STRATEGY(devvp, bp);
850 }
851
852 loopdone:
853 nestiobuf_done(mbp, skipbytes, error);
854 if (async) {
855 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
856 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
857 if (pgs != pgs_onstack)
858 kmem_free(pgs, pgs_size);
859 return (0);
860 }
861 if (bp != NULL) {
862 error = biowait(mbp);
863 }
864 putiobuf(mbp);
865 uvm_pagermapout(kva, npages);
866
867 /*
868 * if this we encountered a hole then we have to do a little more work.
869 * for read faults, we marked the page PG_RDONLY so that future
870 * write accesses to the page will fault again.
871 * for write faults, we must make sure that the backing store for
872 * the page is completely allocated while the pages are locked.
873 */
874
875 if (!error && sawhole && blockalloc) {
876 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
877 cred);
878 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
879 startoffset, npages << PAGE_SHIFT, error,0);
880 if (!error) {
881 for (i = 0; i < npages; i++) {
882 if (pgs[i] == NULL) {
883 continue;
884 }
885 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
886 UVMHIST_LOG(ubchist, "mark dirty pg %p",
887 pgs[i],0,0,0);
888 }
889 }
890 }
891 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
892 simple_lock(&uobj->vmobjlock);
893
894 /*
895 * we're almost done! release the pages...
896 * for errors, we free the pages.
897 * otherwise we activate them and mark them as valid and clean.
898 * also, unbusy pages that were not actually requested.
899 */
900
901 if (error) {
902 for (i = 0; i < npages; i++) {
903 if (pgs[i] == NULL) {
904 continue;
905 }
906 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
907 pgs[i], pgs[i]->flags, 0,0);
908 if (pgs[i]->flags & PG_FAKE) {
909 pgs[i]->flags |= PG_RELEASED;
910 }
911 }
912 uvm_lock_pageq();
913 uvm_page_unbusy(pgs, npages);
914 uvm_unlock_pageq();
915 simple_unlock(&uobj->vmobjlock);
916 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
917 if (pgs != pgs_onstack)
918 kmem_free(pgs, pgs_size);
919 return (error);
920 }
921
922 out:
923 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
924 uvm_lock_pageq();
925 for (i = 0; i < npages; i++) {
926 pg = pgs[i];
927 if (pg == NULL) {
928 continue;
929 }
930 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
931 pg, pg->flags, 0,0);
932 if (pg->flags & PG_FAKE && !overwrite) {
933 pg->flags &= ~(PG_FAKE);
934 pmap_clear_modify(pgs[i]);
935 }
936 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
937 if (i < ridx || i >= ridx + orignpages || async) {
938 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
939 pg, pg->offset,0,0);
940 if (pg->flags & PG_WANTED) {
941 wakeup(pg);
942 }
943 if (pg->flags & PG_FAKE) {
944 KASSERT(overwrite);
945 uvm_pagezero(pg);
946 }
947 if (pg->flags & PG_RELEASED) {
948 uvm_pagefree(pg);
949 continue;
950 }
951 uvm_pageenqueue(pg);
952 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
953 UVM_PAGE_OWN(pg, NULL);
954 }
955 }
956 uvm_unlock_pageq();
957 simple_unlock(&uobj->vmobjlock);
958 if (ap->a_m != NULL) {
959 memcpy(ap->a_m, &pgs[ridx],
960 orignpages * sizeof(struct vm_page *));
961 }
962 if (pgs != pgs_onstack)
963 kmem_free(pgs, pgs_size);
964 return (0);
965 }
966
967 /*
968 * generic VM putpages routine.
969 * Write the given range of pages to backing store.
970 *
971 * => "offhi == 0" means flush all pages at or after "offlo".
972 * => object should be locked by caller. we return with the
973 * object unlocked.
974 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
975 * thus, a caller might want to unlock higher level resources
976 * (e.g. vm_map) before calling flush.
977 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
978 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
979 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
980 * that new pages are inserted on the tail end of the list. thus,
981 * we can make a complete pass through the object in one go by starting
982 * at the head and working towards the tail (new pages are put in
983 * front of us).
984 * => NOTE: we are allowed to lock the page queues, so the caller
985 * must not be holding the page queue lock.
986 *
987 * note on "cleaning" object and PG_BUSY pages:
988 * this routine is holding the lock on the object. the only time
989 * that it can run into a PG_BUSY page that it does not own is if
990 * some other process has started I/O on the page (e.g. either
991 * a pagein, or a pageout). if the PG_BUSY page is being paged
992 * in, then it can not be dirty (!PG_CLEAN) because no one has
993 * had a chance to modify it yet. if the PG_BUSY page is being
994 * paged out then it means that someone else has already started
995 * cleaning the page for us (how nice!). in this case, if we
996 * have syncio specified, then after we make our pass through the
997 * object we need to wait for the other PG_BUSY pages to clear
998 * off (i.e. we need to do an iosync). also note that once a
999 * page is PG_BUSY it must stay in its object until it is un-busyed.
1000 *
1001 * note on page traversal:
1002 * we can traverse the pages in an object either by going down the
1003 * linked list in "uobj->memq", or we can go over the address range
1004 * by page doing hash table lookups for each address. depending
1005 * on how many pages are in the object it may be cheaper to do one
1006 * or the other. we set "by_list" to true if we are using memq.
1007 * if the cost of a hash lookup was equal to the cost of the list
1008 * traversal we could compare the number of pages in the start->stop
1009 * range to the total number of pages in the object. however, it
1010 * seems that a hash table lookup is more expensive than the linked
1011 * list traversal, so we multiply the number of pages in the
1012 * range by an estimate of the relatively higher cost of the hash lookup.
1013 */
1014
1015 int
1016 genfs_putpages(void *v)
1017 {
1018 struct vop_putpages_args /* {
1019 struct vnode *a_vp;
1020 voff_t a_offlo;
1021 voff_t a_offhi;
1022 int a_flags;
1023 } */ *ap = v;
1024 struct vnode *vp = ap->a_vp;
1025 struct uvm_object *uobj = &vp->v_uobj;
1026 struct simplelock *slock = &uobj->vmobjlock;
1027 off_t startoff = ap->a_offlo;
1028 off_t endoff = ap->a_offhi;
1029 off_t off;
1030 int flags = ap->a_flags;
1031 /* Even for strange MAXPHYS, the shift rounds down to a page */
1032 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1033 int i, s, error, npages, nback;
1034 int freeflag;
1035 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1036 boolean_t wasclean, by_list, needs_clean, yld;
1037 boolean_t async = (flags & PGO_SYNCIO) == 0;
1038 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1039 struct lwp *l = curlwp ? curlwp : &lwp0;
1040 struct genfs_node *gp = VTOG(vp);
1041 int dirtygen;
1042 boolean_t modified = FALSE;
1043 boolean_t cleanall;
1044
1045 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1046
1047 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1048 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1049 KASSERT(startoff < endoff || endoff == 0);
1050
1051 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1052 vp, uobj->uo_npages, startoff, endoff - startoff);
1053
1054 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1055 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1056 if (uobj->uo_npages == 0) {
1057 s = splbio();
1058 if (vp->v_flag & VONWORKLST) {
1059 vp->v_flag &= ~VWRITEMAPDIRTY;
1060 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1061 vn_syncer_remove_from_worklist(vp);
1062 }
1063 splx(s);
1064 simple_unlock(slock);
1065 return (0);
1066 }
1067
1068 /*
1069 * the vnode has pages, set up to process the request.
1070 */
1071
1072 error = 0;
1073 s = splbio();
1074 simple_lock(&global_v_numoutput_slock);
1075 wasclean = (vp->v_numoutput == 0);
1076 simple_unlock(&global_v_numoutput_slock);
1077 splx(s);
1078 off = startoff;
1079 if (endoff == 0 || flags & PGO_ALLPAGES) {
1080 endoff = trunc_page(LLONG_MAX);
1081 }
1082 by_list = (uobj->uo_npages <=
1083 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1084
1085 #if !defined(DEBUG)
1086 /*
1087 * if this vnode is known not to have dirty pages,
1088 * don't bother to clean it out.
1089 */
1090
1091 if ((vp->v_flag & VONWORKLST) == 0) {
1092 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1093 goto skip_scan;
1094 }
1095 flags &= ~PGO_CLEANIT;
1096 }
1097 #endif /* !defined(DEBUG) */
1098
1099 /*
1100 * start the loop. when scanning by list, hold the last page
1101 * in the list before we start. pages allocated after we start
1102 * will be added to the end of the list, so we can stop at the
1103 * current last page.
1104 */
1105
1106 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1107 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1108 (vp->v_flag & VONWORKLST) != 0;
1109 dirtygen = gp->g_dirtygen;
1110 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1111 if (by_list) {
1112 curmp.uobject = uobj;
1113 curmp.offset = (voff_t)-1;
1114 curmp.flags = PG_BUSY;
1115 endmp.uobject = uobj;
1116 endmp.offset = (voff_t)-1;
1117 endmp.flags = PG_BUSY;
1118 pg = TAILQ_FIRST(&uobj->memq);
1119 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1120 PHOLD(l);
1121 } else {
1122 pg = uvm_pagelookup(uobj, off);
1123 }
1124 nextpg = NULL;
1125 while (by_list || off < endoff) {
1126
1127 /*
1128 * if the current page is not interesting, move on to the next.
1129 */
1130
1131 KASSERT(pg == NULL || pg->uobject == uobj);
1132 KASSERT(pg == NULL ||
1133 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1134 (pg->flags & PG_BUSY) != 0);
1135 if (by_list) {
1136 if (pg == &endmp) {
1137 break;
1138 }
1139 if (pg->offset < startoff || pg->offset >= endoff ||
1140 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1141 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1142 wasclean = FALSE;
1143 }
1144 pg = TAILQ_NEXT(pg, listq);
1145 continue;
1146 }
1147 off = pg->offset;
1148 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1149 if (pg != NULL) {
1150 wasclean = FALSE;
1151 }
1152 off += PAGE_SIZE;
1153 if (off < endoff) {
1154 pg = uvm_pagelookup(uobj, off);
1155 }
1156 continue;
1157 }
1158
1159 /*
1160 * if the current page needs to be cleaned and it's busy,
1161 * wait for it to become unbusy.
1162 */
1163
1164 yld = (l->l_cpu->ci_schedstate.spc_flags &
1165 SPCF_SHOULDYIELD) && !pagedaemon;
1166 if (pg->flags & PG_BUSY || yld) {
1167 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1168 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1169 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1170 error = EDEADLK;
1171 break;
1172 }
1173 KASSERT(!pagedaemon);
1174 if (by_list) {
1175 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1176 UVMHIST_LOG(ubchist, "curmp next %p",
1177 TAILQ_NEXT(&curmp, listq), 0,0,0);
1178 }
1179 if (yld) {
1180 simple_unlock(slock);
1181 preempt(1);
1182 simple_lock(slock);
1183 } else {
1184 pg->flags |= PG_WANTED;
1185 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1186 simple_lock(slock);
1187 }
1188 if (by_list) {
1189 UVMHIST_LOG(ubchist, "after next %p",
1190 TAILQ_NEXT(&curmp, listq), 0,0,0);
1191 pg = TAILQ_NEXT(&curmp, listq);
1192 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1193 } else {
1194 pg = uvm_pagelookup(uobj, off);
1195 }
1196 continue;
1197 }
1198
1199 /*
1200 * if we're freeing, remove all mappings of the page now.
1201 * if we're cleaning, check if the page is needs to be cleaned.
1202 */
1203
1204 if (flags & PGO_FREE) {
1205 pmap_page_protect(pg, VM_PROT_NONE);
1206 } else if (flags & PGO_CLEANIT) {
1207
1208 /*
1209 * if we still have some hope to pull this vnode off
1210 * from the syncer queue, write-protect the page.
1211 */
1212
1213 if (cleanall && wasclean &&
1214 gp->g_dirtygen == dirtygen) {
1215
1216 /*
1217 * uobj pages get wired only by uvm_fault
1218 * where uobj is locked.
1219 */
1220
1221 if (pg->wire_count == 0) {
1222 pmap_page_protect(pg,
1223 VM_PROT_READ|VM_PROT_EXECUTE);
1224 } else {
1225 cleanall = FALSE;
1226 }
1227 }
1228 }
1229
1230 if (flags & PGO_CLEANIT) {
1231 needs_clean = pmap_clear_modify(pg) ||
1232 (pg->flags & PG_CLEAN) == 0;
1233 pg->flags |= PG_CLEAN;
1234 } else {
1235 needs_clean = FALSE;
1236 }
1237
1238 /*
1239 * if we're cleaning, build a cluster.
1240 * the cluster will consist of pages which are currently dirty,
1241 * but they will be returned to us marked clean.
1242 * if not cleaning, just operate on the one page.
1243 */
1244
1245 if (needs_clean) {
1246 KDASSERT((vp->v_flag & VONWORKLST));
1247 wasclean = FALSE;
1248 memset(pgs, 0, sizeof(pgs));
1249 pg->flags |= PG_BUSY;
1250 UVM_PAGE_OWN(pg, "genfs_putpages");
1251
1252 /*
1253 * first look backward.
1254 */
1255
1256 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1257 nback = npages;
1258 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1259 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1260 if (nback) {
1261 memmove(&pgs[0], &pgs[npages - nback],
1262 nback * sizeof(pgs[0]));
1263 if (npages - nback < nback)
1264 memset(&pgs[nback], 0,
1265 (npages - nback) * sizeof(pgs[0]));
1266 else
1267 memset(&pgs[npages - nback], 0,
1268 nback * sizeof(pgs[0]));
1269 }
1270
1271 /*
1272 * then plug in our page of interest.
1273 */
1274
1275 pgs[nback] = pg;
1276
1277 /*
1278 * then look forward to fill in the remaining space in
1279 * the array of pages.
1280 */
1281
1282 npages = maxpages - nback - 1;
1283 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1284 &pgs[nback + 1],
1285 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1286 npages += nback + 1;
1287 } else {
1288 pgs[0] = pg;
1289 npages = 1;
1290 nback = 0;
1291 }
1292
1293 /*
1294 * apply FREE or DEACTIVATE options if requested.
1295 */
1296
1297 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1298 uvm_lock_pageq();
1299 }
1300 for (i = 0; i < npages; i++) {
1301 tpg = pgs[i];
1302 KASSERT(tpg->uobject == uobj);
1303 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1304 pg = tpg;
1305 if (tpg->offset < startoff || tpg->offset >= endoff)
1306 continue;
1307 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1308 (void) pmap_clear_reference(tpg);
1309 uvm_pagedeactivate(tpg);
1310 } else if (flags & PGO_FREE) {
1311 pmap_page_protect(tpg, VM_PROT_NONE);
1312 if (tpg->flags & PG_BUSY) {
1313 tpg->flags |= freeflag;
1314 if (pagedaemon) {
1315 uvmexp.paging++;
1316 uvm_pagedequeue(tpg);
1317 }
1318 } else {
1319
1320 /*
1321 * ``page is not busy''
1322 * implies that npages is 1
1323 * and needs_clean is false.
1324 */
1325
1326 nextpg = TAILQ_NEXT(tpg, listq);
1327 uvm_pagefree(tpg);
1328 if (pagedaemon)
1329 uvmexp.pdfreed++;
1330 }
1331 }
1332 }
1333 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1334 uvm_unlock_pageq();
1335 }
1336 if (needs_clean) {
1337 modified = TRUE;
1338
1339 /*
1340 * start the i/o. if we're traversing by list,
1341 * keep our place in the list with a marker page.
1342 */
1343
1344 if (by_list) {
1345 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1346 listq);
1347 }
1348 simple_unlock(slock);
1349 error = GOP_WRITE(vp, pgs, npages, flags);
1350 simple_lock(slock);
1351 if (by_list) {
1352 pg = TAILQ_NEXT(&curmp, listq);
1353 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1354 }
1355 if (error) {
1356 break;
1357 }
1358 if (by_list) {
1359 continue;
1360 }
1361 }
1362
1363 /*
1364 * find the next page and continue if there was no error.
1365 */
1366
1367 if (by_list) {
1368 if (nextpg) {
1369 pg = nextpg;
1370 nextpg = NULL;
1371 } else {
1372 pg = TAILQ_NEXT(pg, listq);
1373 }
1374 } else {
1375 off += (npages - nback) << PAGE_SHIFT;
1376 if (off < endoff) {
1377 pg = uvm_pagelookup(uobj, off);
1378 }
1379 }
1380 }
1381 if (by_list) {
1382 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1383 PRELE(l);
1384 }
1385
1386 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1387 (vp->v_type != VBLK ||
1388 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1389 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1390 }
1391
1392 /*
1393 * if we're cleaning and there was nothing to clean,
1394 * take us off the syncer list. if we started any i/o
1395 * and we're doing sync i/o, wait for all writes to finish.
1396 */
1397
1398 s = splbio();
1399 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1400 (vp->v_flag & VONWORKLST) != 0) {
1401 vp->v_flag &= ~VWRITEMAPDIRTY;
1402 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1403 vn_syncer_remove_from_worklist(vp);
1404 }
1405 splx(s);
1406
1407 #if !defined(DEBUG)
1408 skip_scan:
1409 #endif /* !defined(DEBUG) */
1410 if (!wasclean && !async) {
1411 s = splbio();
1412 /*
1413 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1414 * but the slot in ltsleep() is taken!
1415 * XXX - try to recover from missed wakeups with a timeout..
1416 * must think of something better.
1417 */
1418 while (vp->v_numoutput != 0) {
1419 vp->v_flag |= VBWAIT;
1420 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1421 "genput2", hz);
1422 simple_lock(slock);
1423 }
1424 splx(s);
1425 }
1426 simple_unlock(slock);
1427 return (error);
1428 }
1429
1430 int
1431 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1432 {
1433 off_t off;
1434 vaddr_t kva;
1435 size_t len;
1436 int error;
1437 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1438
1439 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1440 vp, pgs, npages, flags);
1441
1442 off = pgs[0]->offset;
1443 kva = uvm_pagermapin(pgs, npages,
1444 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1445 len = npages << PAGE_SHIFT;
1446
1447 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1448 uvm_aio_biodone);
1449
1450 return error;
1451 }
1452
1453 /*
1454 * Backend routine for doing I/O to vnode pages. Pages are already locked
1455 * and mapped into kernel memory. Here we just look up the underlying
1456 * device block addresses and call the strategy routine.
1457 */
1458
1459 static int
1460 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1461 enum uio_rw rw, void (*iodone)(struct buf *))
1462 {
1463 int s, error, run;
1464 int fs_bshift, dev_bshift;
1465 off_t eof, offset, startoffset;
1466 size_t bytes, iobytes, skipbytes;
1467 daddr_t lbn, blkno;
1468 struct buf *mbp, *bp;
1469 struct vnode *devvp;
1470 boolean_t async = (flags & PGO_SYNCIO) == 0;
1471 boolean_t write = rw == UIO_WRITE;
1472 int brw = write ? B_WRITE : B_READ;
1473 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1474
1475 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1476 vp, kva, len, flags);
1477
1478 GOP_SIZE(vp, vp->v_size, &eof, 0);
1479 if (vp->v_type != VBLK) {
1480 fs_bshift = vp->v_mount->mnt_fs_bshift;
1481 dev_bshift = vp->v_mount->mnt_dev_bshift;
1482 } else {
1483 fs_bshift = DEV_BSHIFT;
1484 dev_bshift = DEV_BSHIFT;
1485 }
1486 error = 0;
1487 startoffset = off;
1488 bytes = MIN(len, eof - startoffset);
1489 skipbytes = 0;
1490 KASSERT(bytes != 0);
1491
1492 if (write) {
1493 s = splbio();
1494 simple_lock(&global_v_numoutput_slock);
1495 vp->v_numoutput += 2;
1496 simple_unlock(&global_v_numoutput_slock);
1497 splx(s);
1498 }
1499 mbp = getiobuf();
1500 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1501 vp, mbp, vp->v_numoutput, bytes);
1502 mbp->b_bufsize = len;
1503 mbp->b_data = (void *)kva;
1504 mbp->b_resid = mbp->b_bcount = bytes;
1505 mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1506 mbp->b_iodone = iodone;
1507 mbp->b_vp = vp;
1508 if (curproc == uvm.pagedaemon_proc)
1509 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1510 else if (async)
1511 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1512 else
1513 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1514
1515 bp = NULL;
1516 for (offset = startoffset;
1517 bytes > 0;
1518 offset += iobytes, bytes -= iobytes) {
1519 lbn = offset >> fs_bshift;
1520 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1521 if (error) {
1522 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1523 skipbytes += bytes;
1524 bytes = 0;
1525 break;
1526 }
1527
1528 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1529 bytes);
1530 if (blkno == (daddr_t)-1) {
1531 if (!write) {
1532 memset((char *)kva + (offset - startoffset), 0,
1533 iobytes);
1534 }
1535 skipbytes += iobytes;
1536 continue;
1537 }
1538
1539 /* if it's really one i/o, don't make a second buf */
1540 if (offset == startoffset && iobytes == bytes) {
1541 bp = mbp;
1542 } else {
1543 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1544 vp, bp, vp->v_numoutput, 0);
1545 bp = getiobuf();
1546 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1547 }
1548 bp->b_lblkno = 0;
1549
1550 /* adjust physical blkno for partial blocks */
1551 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1552 dev_bshift);
1553 UVMHIST_LOG(ubchist,
1554 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1555 vp, offset, bp->b_bcount, bp->b_blkno);
1556
1557 VOP_STRATEGY(devvp, bp);
1558 }
1559 if (skipbytes) {
1560 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1561 }
1562 nestiobuf_done(mbp, skipbytes, error);
1563 if (async) {
1564 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1565 return (0);
1566 }
1567 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1568 error = biowait(mbp);
1569 s = splbio();
1570 (*iodone)(mbp);
1571 splx(s);
1572 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1573 return (error);
1574 }
1575
1576 /*
1577 * VOP_PUTPAGES() for vnodes which never have pages.
1578 */
1579
1580 int
1581 genfs_null_putpages(void *v)
1582 {
1583 struct vop_putpages_args /* {
1584 struct vnode *a_vp;
1585 voff_t a_offlo;
1586 voff_t a_offhi;
1587 int a_flags;
1588 } */ *ap = v;
1589 struct vnode *vp = ap->a_vp;
1590
1591 KASSERT(vp->v_uobj.uo_npages == 0);
1592 simple_unlock(&vp->v_interlock);
1593 return (0);
1594 }
1595
1596 void
1597 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1598 {
1599 struct genfs_node *gp = VTOG(vp);
1600
1601 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1602 gp->g_op = ops;
1603 }
1604
1605 void
1606 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1607 {
1608 int bsize;
1609
1610 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1611 *eobp = (size + bsize - 1) & ~(bsize - 1);
1612 }
1613
1614 int
1615 genfs_compat_getpages(void *v)
1616 {
1617 struct vop_getpages_args /* {
1618 struct vnode *a_vp;
1619 voff_t a_offset;
1620 struct vm_page **a_m;
1621 int *a_count;
1622 int a_centeridx;
1623 vm_prot_t a_access_type;
1624 int a_advice;
1625 int a_flags;
1626 } */ *ap = v;
1627
1628 off_t origoffset;
1629 struct vnode *vp = ap->a_vp;
1630 struct uvm_object *uobj = &vp->v_uobj;
1631 struct vm_page *pg, **pgs;
1632 vaddr_t kva;
1633 int i, error, orignpages, npages;
1634 struct iovec iov;
1635 struct uio uio;
1636 kauth_cred_t cred = curlwp->l_cred;
1637 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1638
1639 error = 0;
1640 origoffset = ap->a_offset;
1641 orignpages = *ap->a_count;
1642 pgs = ap->a_m;
1643
1644 if (write && (vp->v_flag & VONWORKLST) == 0) {
1645 vn_syncer_add_to_worklist(vp, filedelay);
1646 }
1647 if (ap->a_flags & PGO_LOCKED) {
1648 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1649 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1650
1651 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1652 }
1653 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1654 simple_unlock(&uobj->vmobjlock);
1655 return (EINVAL);
1656 }
1657 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1658 simple_unlock(&uobj->vmobjlock);
1659 return 0;
1660 }
1661 npages = orignpages;
1662 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1663 simple_unlock(&uobj->vmobjlock);
1664 kva = uvm_pagermapin(pgs, npages,
1665 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1666 for (i = 0; i < npages; i++) {
1667 pg = pgs[i];
1668 if ((pg->flags & PG_FAKE) == 0) {
1669 continue;
1670 }
1671 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1672 iov.iov_len = PAGE_SIZE;
1673 uio.uio_iov = &iov;
1674 uio.uio_iovcnt = 1;
1675 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1676 uio.uio_rw = UIO_READ;
1677 uio.uio_resid = PAGE_SIZE;
1678 UIO_SETUP_SYSSPACE(&uio);
1679 /* XXX vn_lock */
1680 error = VOP_READ(vp, &uio, 0, cred);
1681 if (error) {
1682 break;
1683 }
1684 if (uio.uio_resid) {
1685 memset(iov.iov_base, 0, uio.uio_resid);
1686 }
1687 }
1688 uvm_pagermapout(kva, npages);
1689 simple_lock(&uobj->vmobjlock);
1690 uvm_lock_pageq();
1691 for (i = 0; i < npages; i++) {
1692 pg = pgs[i];
1693 if (error && (pg->flags & PG_FAKE) != 0) {
1694 pg->flags |= PG_RELEASED;
1695 } else {
1696 pmap_clear_modify(pg);
1697 uvm_pageactivate(pg);
1698 }
1699 }
1700 if (error) {
1701 uvm_page_unbusy(pgs, npages);
1702 }
1703 uvm_unlock_pageq();
1704 simple_unlock(&uobj->vmobjlock);
1705 return (error);
1706 }
1707
1708 int
1709 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1710 int flags)
1711 {
1712 off_t offset;
1713 struct iovec iov;
1714 struct uio uio;
1715 kauth_cred_t cred = curlwp->l_cred;
1716 struct buf *bp;
1717 vaddr_t kva;
1718 int s, error;
1719
1720 offset = pgs[0]->offset;
1721 kva = uvm_pagermapin(pgs, npages,
1722 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1723
1724 iov.iov_base = (void *)kva;
1725 iov.iov_len = npages << PAGE_SHIFT;
1726 uio.uio_iov = &iov;
1727 uio.uio_iovcnt = 1;
1728 uio.uio_offset = offset;
1729 uio.uio_rw = UIO_WRITE;
1730 uio.uio_resid = npages << PAGE_SHIFT;
1731 UIO_SETUP_SYSSPACE(&uio);
1732 /* XXX vn_lock */
1733 error = VOP_WRITE(vp, &uio, 0, cred);
1734
1735 s = splbio();
1736 V_INCR_NUMOUTPUT(vp);
1737 splx(s);
1738
1739 bp = getiobuf();
1740 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1741 bp->b_vp = vp;
1742 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1743 bp->b_data = (char *)kva;
1744 bp->b_bcount = npages << PAGE_SHIFT;
1745 bp->b_bufsize = npages << PAGE_SHIFT;
1746 bp->b_resid = 0;
1747 if (error) {
1748 bp->b_flags |= B_ERROR;
1749 bp->b_error = error;
1750 }
1751 uvm_aio_aiodone(bp);
1752 return (error);
1753 }
1754
1755 /*
1756 * Process a uio using direct I/O. If we reach a part of the request
1757 * which cannot be processed in this fashion for some reason, just return.
1758 * The caller must handle some additional part of the request using
1759 * buffered I/O before trying direct I/O again.
1760 */
1761
1762 void
1763 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1764 {
1765 struct vmspace *vs;
1766 struct iovec *iov;
1767 vaddr_t va;
1768 size_t len;
1769 const int mask = DEV_BSIZE - 1;
1770 int error;
1771
1772 /*
1773 * We only support direct I/O to user space for now.
1774 */
1775
1776 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1777 return;
1778 }
1779
1780 /*
1781 * If the vnode is mapped, we would need to get the getpages lock
1782 * to stabilize the bmap, but then we would get into trouble whil e
1783 * locking the pages if the pages belong to this same vnode (or a
1784 * multi-vnode cascade to the same effect). Just fall back to
1785 * buffered I/O if the vnode is mapped to avoid this mess.
1786 */
1787
1788 if (vp->v_flag & VMAPPED) {
1789 return;
1790 }
1791
1792 /*
1793 * Do as much of the uio as possible with direct I/O.
1794 */
1795
1796 vs = uio->uio_vmspace;
1797 while (uio->uio_resid) {
1798 iov = uio->uio_iov;
1799 if (iov->iov_len == 0) {
1800 uio->uio_iov++;
1801 uio->uio_iovcnt--;
1802 continue;
1803 }
1804 va = (vaddr_t)iov->iov_base;
1805 len = MIN(iov->iov_len, genfs_maxdio);
1806 len &= ~mask;
1807
1808 /*
1809 * If the next chunk is smaller than DEV_BSIZE or extends past
1810 * the current EOF, then fall back to buffered I/O.
1811 */
1812
1813 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1814 return;
1815 }
1816
1817 /*
1818 * Check alignment. The file offset must be at least
1819 * sector-aligned. The exact constraint on memory alignment
1820 * is very hardware-dependent, but requiring sector-aligned
1821 * addresses there too is safe.
1822 */
1823
1824 if (uio->uio_offset & mask || va & mask) {
1825 return;
1826 }
1827 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1828 uio->uio_rw);
1829 if (error) {
1830 break;
1831 }
1832 iov->iov_base = (caddr_t)iov->iov_base + len;
1833 iov->iov_len -= len;
1834 uio->uio_offset += len;
1835 uio->uio_resid -= len;
1836 }
1837 }
1838
1839 /*
1840 * Iodone routine for direct I/O. We don't do much here since the request is
1841 * always synchronous, so the caller will do most of the work after biowait().
1842 */
1843
1844 static void
1845 genfs_dio_iodone(struct buf *bp)
1846 {
1847 int s;
1848
1849 KASSERT((bp->b_flags & B_ASYNC) == 0);
1850 s = splbio();
1851 if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1852 vwakeup(bp);
1853 }
1854 putiobuf(bp);
1855 splx(s);
1856 }
1857
1858 /*
1859 * Process one chunk of a direct I/O request.
1860 */
1861
1862 static int
1863 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1864 off_t off, enum uio_rw rw)
1865 {
1866 struct vm_map *map;
1867 struct pmap *upm, *kpm;
1868 size_t klen = round_page(uva + len) - trunc_page(uva);
1869 off_t spoff, epoff;
1870 vaddr_t kva, puva;
1871 paddr_t pa;
1872 vm_prot_t prot;
1873 int error, rv, poff, koff;
1874 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1875 (rw == UIO_WRITE ? PGO_FREE : 0);
1876
1877 /*
1878 * For writes, verify that this range of the file already has fully
1879 * allocated backing store. If there are any holes, just punt and
1880 * make the caller take the buffered write path.
1881 */
1882
1883 if (rw == UIO_WRITE) {
1884 daddr_t lbn, elbn, blkno;
1885 int bsize, bshift, run;
1886
1887 bshift = vp->v_mount->mnt_fs_bshift;
1888 bsize = 1 << bshift;
1889 lbn = off >> bshift;
1890 elbn = (off + len + bsize - 1) >> bshift;
1891 while (lbn < elbn) {
1892 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1893 if (error) {
1894 return error;
1895 }
1896 if (blkno == (daddr_t)-1) {
1897 return ENOSPC;
1898 }
1899 lbn += 1 + run;
1900 }
1901 }
1902
1903 /*
1904 * Flush any cached pages for parts of the file that we're about to
1905 * access. If we're writing, invalidate pages as well.
1906 */
1907
1908 spoff = trunc_page(off);
1909 epoff = round_page(off + len);
1910 simple_lock(&vp->v_interlock);
1911 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1912 if (error) {
1913 return error;
1914 }
1915
1916 /*
1917 * Wire the user pages and remap them into kernel memory.
1918 */
1919
1920 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1921 error = uvm_vslock(vs, (void *)uva, len, prot);
1922 if (error) {
1923 return error;
1924 }
1925
1926 map = &vs->vm_map;
1927 upm = vm_map_pmap(map);
1928 kpm = vm_map_pmap(kernel_map);
1929 kva = uvm_km_alloc(kernel_map, klen, 0,
1930 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1931 puva = trunc_page(uva);
1932 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1933 rv = pmap_extract(upm, puva + poff, &pa);
1934 KASSERT(rv);
1935 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1936 }
1937 pmap_update(kpm);
1938
1939 /*
1940 * Do the I/O.
1941 */
1942
1943 koff = uva - trunc_page(uva);
1944 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1945 genfs_dio_iodone);
1946
1947 /*
1948 * Tear down the kernel mapping.
1949 */
1950
1951 pmap_remove(kpm, kva, kva + klen);
1952 pmap_update(kpm);
1953 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1954
1955 /*
1956 * Unwire the user pages.
1957 */
1958
1959 uvm_vsunlock(vs, (void *)uva, len);
1960 return error;
1961 }
1962
1963
1964 static void
1965 filt_genfsdetach(struct knote *kn)
1966 {
1967 struct vnode *vp = (struct vnode *)kn->kn_hook;
1968
1969 /* XXXLUKEM lock the struct? */
1970 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1971 }
1972
1973 static int
1974 filt_genfsread(struct knote *kn, long hint)
1975 {
1976 struct vnode *vp = (struct vnode *)kn->kn_hook;
1977
1978 /*
1979 * filesystem is gone, so set the EOF flag and schedule
1980 * the knote for deletion.
1981 */
1982 if (hint == NOTE_REVOKE) {
1983 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1984 return (1);
1985 }
1986
1987 /* XXXLUKEM lock the struct? */
1988 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1989 return (kn->kn_data != 0);
1990 }
1991
1992 static int
1993 filt_genfsvnode(struct knote *kn, long hint)
1994 {
1995
1996 if (kn->kn_sfflags & hint)
1997 kn->kn_fflags |= hint;
1998 if (hint == NOTE_REVOKE) {
1999 kn->kn_flags |= EV_EOF;
2000 return (1);
2001 }
2002 return (kn->kn_fflags != 0);
2003 }
2004
2005 static const struct filterops genfsread_filtops =
2006 { 1, NULL, filt_genfsdetach, filt_genfsread };
2007 static const struct filterops genfsvnode_filtops =
2008 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
2009
2010 int
2011 genfs_kqfilter(void *v)
2012 {
2013 struct vop_kqfilter_args /* {
2014 struct vnode *a_vp;
2015 struct knote *a_kn;
2016 } */ *ap = v;
2017 struct vnode *vp;
2018 struct knote *kn;
2019
2020 vp = ap->a_vp;
2021 kn = ap->a_kn;
2022 switch (kn->kn_filter) {
2023 case EVFILT_READ:
2024 kn->kn_fop = &genfsread_filtops;
2025 break;
2026 case EVFILT_VNODE:
2027 kn->kn_fop = &genfsvnode_filtops;
2028 break;
2029 default:
2030 return (1);
2031 }
2032
2033 kn->kn_hook = vp;
2034
2035 /* XXXLUKEM lock the struct? */
2036 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2037
2038 return (0);
2039 }
2040
2041 void
2042 genfs_node_wrlock(struct vnode *vp)
2043 {
2044 struct genfs_node *gp = VTOG(vp);
2045
2046 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
2047 }
2048
2049 void
2050 genfs_node_rdlock(struct vnode *vp)
2051 {
2052 struct genfs_node *gp = VTOG(vp);
2053
2054 lockmgr(&gp->g_glock, LK_SHARED, NULL);
2055 }
2056
2057 void
2058 genfs_node_unlock(struct vnode *vp)
2059 {
2060 struct genfs_node *gp = VTOG(vp);
2061
2062 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
2063 }
2064