genfs_vnops.c revision 1.129 1 /* $NetBSD: genfs_vnops.c,v 1.129 2006/09/15 15:51:12 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.129 2006/09/15 15:51:12 yamt Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52 #include <sys/kauth.h>
53
54 #include <miscfs/genfs/genfs.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <miscfs/specfs/specdev.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_pager.h>
60
61 #ifdef NFSSERVER
62 #include <nfs/rpcv2.h>
63 #include <nfs/nfsproto.h>
64 #include <nfs/nfs.h>
65 #include <nfs/nqnfs.h>
66 #include <nfs/nfs_var.h>
67 #endif
68
69 static inline void genfs_rel_pages(struct vm_page **, int);
70 static void filt_genfsdetach(struct knote *);
71 static int filt_genfsread(struct knote *, long);
72 static int filt_genfsvnode(struct knote *, long);
73
74 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
75
76 int
77 genfs_poll(void *v)
78 {
79 struct vop_poll_args /* {
80 struct vnode *a_vp;
81 int a_events;
82 struct lwp *a_l;
83 } */ *ap = v;
84
85 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
86 }
87
88 int
89 genfs_seek(void *v)
90 {
91 struct vop_seek_args /* {
92 struct vnode *a_vp;
93 off_t a_oldoff;
94 off_t a_newoff;
95 kauth_cred_t cred;
96 } */ *ap = v;
97
98 if (ap->a_newoff < 0)
99 return (EINVAL);
100
101 return (0);
102 }
103
104 int
105 genfs_abortop(void *v)
106 {
107 struct vop_abortop_args /* {
108 struct vnode *a_dvp;
109 struct componentname *a_cnp;
110 } */ *ap = v;
111
112 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
113 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
114 return (0);
115 }
116
117 int
118 genfs_fcntl(void *v)
119 {
120 struct vop_fcntl_args /* {
121 struct vnode *a_vp;
122 u_int a_command;
123 caddr_t a_data;
124 int a_fflag;
125 kauth_cred_t a_cred;
126 struct lwp *a_l;
127 } */ *ap = v;
128
129 if (ap->a_command == F_SETFL)
130 return (0);
131 else
132 return (EOPNOTSUPP);
133 }
134
135 /*ARGSUSED*/
136 int
137 genfs_badop(void *v)
138 {
139
140 panic("genfs: bad op");
141 }
142
143 /*ARGSUSED*/
144 int
145 genfs_nullop(void *v)
146 {
147
148 return (0);
149 }
150
151 /*ARGSUSED*/
152 int
153 genfs_einval(void *v)
154 {
155
156 return (EINVAL);
157 }
158
159 /*
160 * Called when an fs doesn't support a particular vop.
161 * This takes care to vrele, vput, or vunlock passed in vnodes.
162 */
163 int
164 genfs_eopnotsupp(void *v)
165 {
166 struct vop_generic_args /*
167 struct vnodeop_desc *a_desc;
168 / * other random data follows, presumably * /
169 } */ *ap = v;
170 struct vnodeop_desc *desc = ap->a_desc;
171 struct vnode *vp, *vp_last = NULL;
172 int flags, i, j, offset;
173
174 flags = desc->vdesc_flags;
175 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
176 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
177 break; /* stop at end of list */
178 if ((j = flags & VDESC_VP0_WILLPUT)) {
179 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
180
181 /* Skip if NULL */
182 if (!vp)
183 continue;
184
185 switch (j) {
186 case VDESC_VP0_WILLPUT:
187 /* Check for dvp == vp cases */
188 if (vp == vp_last)
189 vrele(vp);
190 else {
191 vput(vp);
192 vp_last = vp;
193 }
194 break;
195 case VDESC_VP0_WILLUNLOCK:
196 VOP_UNLOCK(vp, 0);
197 break;
198 case VDESC_VP0_WILLRELE:
199 vrele(vp);
200 break;
201 }
202 }
203 }
204
205 return (EOPNOTSUPP);
206 }
207
208 /*ARGSUSED*/
209 int
210 genfs_ebadf(void *v)
211 {
212
213 return (EBADF);
214 }
215
216 /* ARGSUSED */
217 int
218 genfs_enoioctl(void *v)
219 {
220
221 return (EPASSTHROUGH);
222 }
223
224
225 /*
226 * Eliminate all activity associated with the requested vnode
227 * and with all vnodes aliased to the requested vnode.
228 */
229 int
230 genfs_revoke(void *v)
231 {
232 struct vop_revoke_args /* {
233 struct vnode *a_vp;
234 int a_flags;
235 } */ *ap = v;
236 struct vnode *vp, *vq;
237 struct lwp *l = curlwp; /* XXX */
238
239 #ifdef DIAGNOSTIC
240 if ((ap->a_flags & REVOKEALL) == 0)
241 panic("genfs_revoke: not revokeall");
242 #endif
243
244 vp = ap->a_vp;
245 simple_lock(&vp->v_interlock);
246
247 if (vp->v_flag & VALIASED) {
248 /*
249 * If a vgone (or vclean) is already in progress,
250 * wait until it is done and return.
251 */
252 if (vp->v_flag & VXLOCK) {
253 vp->v_flag |= VXWANT;
254 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
255 &vp->v_interlock);
256 return (0);
257 }
258 /*
259 * Ensure that vp will not be vgone'd while we
260 * are eliminating its aliases.
261 */
262 vp->v_flag |= VXLOCK;
263 simple_unlock(&vp->v_interlock);
264 while (vp->v_flag & VALIASED) {
265 simple_lock(&spechash_slock);
266 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
267 if (vq->v_rdev != vp->v_rdev ||
268 vq->v_type != vp->v_type || vp == vq)
269 continue;
270 simple_unlock(&spechash_slock);
271 vgone(vq);
272 break;
273 }
274 if (vq == NULLVP)
275 simple_unlock(&spechash_slock);
276 }
277 /*
278 * Remove the lock so that vgone below will
279 * really eliminate the vnode after which time
280 * vgone will awaken any sleepers.
281 */
282 simple_lock(&vp->v_interlock);
283 vp->v_flag &= ~VXLOCK;
284 }
285 vgonel(vp, l);
286 return (0);
287 }
288
289 /*
290 * Lock the node.
291 */
292 int
293 genfs_lock(void *v)
294 {
295 struct vop_lock_args /* {
296 struct vnode *a_vp;
297 int a_flags;
298 } */ *ap = v;
299 struct vnode *vp = ap->a_vp;
300
301 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
302 }
303
304 /*
305 * Unlock the node.
306 */
307 int
308 genfs_unlock(void *v)
309 {
310 struct vop_unlock_args /* {
311 struct vnode *a_vp;
312 int a_flags;
313 } */ *ap = v;
314 struct vnode *vp = ap->a_vp;
315
316 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
317 &vp->v_interlock));
318 }
319
320 /*
321 * Return whether or not the node is locked.
322 */
323 int
324 genfs_islocked(void *v)
325 {
326 struct vop_islocked_args /* {
327 struct vnode *a_vp;
328 } */ *ap = v;
329 struct vnode *vp = ap->a_vp;
330
331 return (lockstatus(vp->v_vnlock));
332 }
333
334 /*
335 * Stubs to use when there is no locking to be done on the underlying object.
336 */
337 int
338 genfs_nolock(void *v)
339 {
340 struct vop_lock_args /* {
341 struct vnode *a_vp;
342 int a_flags;
343 struct lwp *a_l;
344 } */ *ap = v;
345
346 /*
347 * Since we are not using the lock manager, we must clear
348 * the interlock here.
349 */
350 if (ap->a_flags & LK_INTERLOCK)
351 simple_unlock(&ap->a_vp->v_interlock);
352 return (0);
353 }
354
355 int
356 genfs_nounlock(void *v)
357 {
358
359 return (0);
360 }
361
362 int
363 genfs_noislocked(void *v)
364 {
365
366 return (0);
367 }
368
369 /*
370 * Local lease check for NFS servers. Just set up args and let
371 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
372 * this is a null operation.
373 */
374 int
375 genfs_lease_check(void *v)
376 {
377 #ifdef NFSSERVER
378 struct vop_lease_args /* {
379 struct vnode *a_vp;
380 struct lwp *a_l;
381 kauth_cred_t a_cred;
382 int a_flag;
383 } */ *ap = v;
384 u_int32_t duration = 0;
385 int cache;
386 u_quad_t frev;
387
388 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
389 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
390 return (0);
391 #else
392 return (0);
393 #endif /* NFSSERVER */
394 }
395
396 int
397 genfs_mmap(void *v)
398 {
399
400 return (0);
401 }
402
403 static inline void
404 genfs_rel_pages(struct vm_page **pgs, int npages)
405 {
406 int i;
407
408 for (i = 0; i < npages; i++) {
409 struct vm_page *pg = pgs[i];
410
411 if (pg == NULL || pg == PGO_DONTCARE)
412 continue;
413 if (pg->flags & PG_FAKE) {
414 pg->flags |= PG_RELEASED;
415 }
416 }
417 uvm_lock_pageq();
418 uvm_page_unbusy(pgs, npages);
419 uvm_unlock_pageq();
420 }
421
422 /*
423 * generic VM getpages routine.
424 * Return PG_BUSY pages for the given range,
425 * reading from backing store if necessary.
426 */
427
428 int
429 genfs_getpages(void *v)
430 {
431 struct vop_getpages_args /* {
432 struct vnode *a_vp;
433 voff_t a_offset;
434 struct vm_page **a_m;
435 int *a_count;
436 int a_centeridx;
437 vm_prot_t a_access_type;
438 int a_advice;
439 int a_flags;
440 } */ *ap = v;
441
442 off_t newsize, diskeof, memeof;
443 off_t offset, origoffset, startoffset, endoffset;
444 daddr_t lbn, blkno;
445 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
446 int fs_bshift, fs_bsize, dev_bshift;
447 int flags = ap->a_flags;
448 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
449 vaddr_t kva;
450 struct buf *bp, *mbp;
451 struct vnode *vp = ap->a_vp;
452 struct vnode *devvp;
453 struct genfs_node *gp = VTOG(vp);
454 struct uvm_object *uobj = &vp->v_uobj;
455 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
456 int pgs_size;
457 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
458 boolean_t async = (flags & PGO_SYNCIO) == 0;
459 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
460 boolean_t sawhole = FALSE;
461 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
462 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
463 voff_t origvsize;
464 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
465
466 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
467 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
468
469 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
470 vp->v_type == VLNK || vp->v_type == VBLK);
471
472 /* XXXUBC temp limit */
473 if (*ap->a_count > MAX_READ_PAGES) {
474 panic("genfs_getpages: too many pages");
475 }
476
477 startover:
478 error = 0;
479 origvsize = vp->v_size;
480 origoffset = ap->a_offset;
481 orignpages = *ap->a_count;
482 GOP_SIZE(vp, vp->v_size, &diskeof, 0);
483 if (flags & PGO_PASTEOF) {
484 newsize = MAX(vp->v_size,
485 origoffset + (orignpages << PAGE_SHIFT));
486 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
487 } else {
488 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
489 }
490 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
491 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
492 KASSERT(orignpages > 0);
493
494 /*
495 * Bounds-check the request.
496 */
497
498 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
499 if ((flags & PGO_LOCKED) == 0) {
500 simple_unlock(&uobj->vmobjlock);
501 }
502 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
503 origoffset, *ap->a_count, memeof,0);
504 return (EINVAL);
505 }
506
507 /* uobj is locked */
508
509 if ((flags & PGO_NOTIMESTAMP) == 0 &&
510 (vp->v_type != VBLK ||
511 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
512 int updflags = 0;
513
514 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
515 updflags = GOP_UPDATE_ACCESSED;
516 }
517 if (write) {
518 updflags |= GOP_UPDATE_MODIFIED;
519 }
520 if (updflags != 0) {
521 GOP_MARKUPDATE(vp, updflags);
522 }
523 }
524
525 if (write) {
526 gp->g_dirtygen++;
527 if ((vp->v_flag & VONWORKLST) == 0) {
528 vn_syncer_add_to_worklist(vp, filedelay);
529 }
530 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
531 vp->v_flag |= VWRITEMAPDIRTY;
532 }
533 }
534
535 /*
536 * For PGO_LOCKED requests, just return whatever's in memory.
537 */
538
539 if (flags & PGO_LOCKED) {
540 int nfound;
541
542 npages = *ap->a_count;
543 #if defined(DEBUG)
544 for (i = 0; i < npages; i++) {
545 pg = ap->a_m[i];
546 KASSERT(pg == NULL || pg == PGO_DONTCARE);
547 }
548 #endif /* defined(DEBUG) */
549 nfound = uvn_findpages(uobj, origoffset, &npages,
550 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
551 KASSERT(npages == *ap->a_count);
552 if (nfound == 0) {
553 return EBUSY;
554 }
555 if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) {
556 genfs_rel_pages(ap->a_m, npages);
557
558 /*
559 * restore the array.
560 */
561
562 for (i = 0; i < npages; i++) {
563 pg = ap->a_m[i];
564
565 if (pg != NULL || pg != PGO_DONTCARE) {
566 ap->a_m[i] = NULL;
567 }
568 }
569 } else {
570 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
571 }
572 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
573 }
574 simple_unlock(&uobj->vmobjlock);
575
576 /*
577 * find the requested pages and make some simple checks.
578 * leave space in the page array for a whole block.
579 */
580
581 if (vp->v_type != VBLK) {
582 fs_bshift = vp->v_mount->mnt_fs_bshift;
583 dev_bshift = vp->v_mount->mnt_dev_bshift;
584 } else {
585 fs_bshift = DEV_BSHIFT;
586 dev_bshift = DEV_BSHIFT;
587 }
588 fs_bsize = 1 << fs_bshift;
589
590 orignpages = MIN(orignpages,
591 round_page(memeof - origoffset) >> PAGE_SHIFT);
592 npages = orignpages;
593 startoffset = origoffset & ~(fs_bsize - 1);
594 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
595 fs_bsize - 1) & ~(fs_bsize - 1));
596 endoffset = MIN(endoffset, round_page(memeof));
597 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
598
599 pgs_size = sizeof(struct vm_page *) *
600 ((endoffset - startoffset) >> PAGE_SHIFT);
601 if (pgs_size > sizeof(pgs_onstack)) {
602 pgs = malloc(pgs_size, M_DEVBUF,
603 (async ? M_NOWAIT : M_WAITOK) | M_ZERO);
604 if (pgs == NULL) {
605 return (ENOMEM);
606 }
607 } else {
608 pgs = pgs_onstack;
609 memset(pgs, 0, pgs_size);
610 }
611 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
612 ridx, npages, startoffset, endoffset);
613
614 /*
615 * hold g_glock to prevent a race with truncate.
616 *
617 * check if our idea of v_size is still valid.
618 */
619
620 if (blockalloc) {
621 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
622 } else {
623 lockmgr(&gp->g_glock, LK_SHARED, NULL);
624 }
625 simple_lock(&uobj->vmobjlock);
626 if (vp->v_size < origvsize) {
627 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
628 if (pgs != pgs_onstack)
629 free(pgs, M_DEVBUF);
630 goto startover;
631 }
632
633 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
634 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
635 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
636 KASSERT(async != 0);
637 genfs_rel_pages(&pgs[ridx], orignpages);
638 simple_unlock(&uobj->vmobjlock);
639 if (pgs != pgs_onstack)
640 free(pgs, M_DEVBUF);
641 return (EBUSY);
642 }
643
644 /*
645 * if the pages are already resident, just return them.
646 */
647
648 for (i = 0; i < npages; i++) {
649 struct vm_page *pg1 = pgs[ridx + i];
650
651 if ((pg1->flags & PG_FAKE) ||
652 (blockalloc && (pg1->flags & PG_RDONLY))) {
653 break;
654 }
655 }
656 if (i == npages) {
657 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
658 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
659 npages += ridx;
660 goto out;
661 }
662
663 /*
664 * if PGO_OVERWRITE is set, don't bother reading the pages.
665 */
666
667 if (overwrite) {
668 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
669 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
670
671 for (i = 0; i < npages; i++) {
672 struct vm_page *pg1 = pgs[ridx + i];
673
674 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
675 }
676 npages += ridx;
677 goto out;
678 }
679
680 /*
681 * the page wasn't resident and we're not overwriting,
682 * so we're going to have to do some i/o.
683 * find any additional pages needed to cover the expanded range.
684 */
685
686 npages = (endoffset - startoffset) >> PAGE_SHIFT;
687 if (startoffset != origoffset || npages != orignpages) {
688
689 /*
690 * we need to avoid deadlocks caused by locking
691 * additional pages at lower offsets than pages we
692 * already have locked. unlock them all and start over.
693 */
694
695 genfs_rel_pages(&pgs[ridx], orignpages);
696 memset(pgs, 0, pgs_size);
697
698 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
699 startoffset, endoffset, 0,0);
700 npgs = npages;
701 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
702 async ? UFP_NOWAIT : UFP_ALL) != npages) {
703 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
704 KASSERT(async != 0);
705 genfs_rel_pages(pgs, npages);
706 simple_unlock(&uobj->vmobjlock);
707 if (pgs != pgs_onstack)
708 free(pgs, M_DEVBUF);
709 return (EBUSY);
710 }
711 }
712 simple_unlock(&uobj->vmobjlock);
713
714 /*
715 * read the desired page(s).
716 */
717
718 totalbytes = npages << PAGE_SHIFT;
719 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
720 tailbytes = totalbytes - bytes;
721 skipbytes = 0;
722
723 kva = uvm_pagermapin(pgs, npages,
724 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
725
726 mbp = getiobuf();
727 mbp->b_bufsize = totalbytes;
728 mbp->b_data = (void *)kva;
729 mbp->b_resid = mbp->b_bcount = bytes;
730 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
731 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
732 mbp->b_vp = vp;
733 if (async)
734 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
735 else
736 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
737
738 /*
739 * if EOF is in the middle of the range, zero the part past EOF.
740 * if the page including EOF is not PG_FAKE, skip over it since
741 * in that case it has valid data that we need to preserve.
742 */
743
744 if (tailbytes > 0) {
745 size_t tailstart = bytes;
746
747 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
748 tailstart = round_page(tailstart);
749 tailbytes -= tailstart - bytes;
750 }
751 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
752 kva, tailstart, tailbytes,0);
753 memset((void *)(kva + tailstart), 0, tailbytes);
754 }
755
756 /*
757 * now loop over the pages, reading as needed.
758 */
759
760 bp = NULL;
761 for (offset = startoffset;
762 bytes > 0;
763 offset += iobytes, bytes -= iobytes) {
764
765 /*
766 * skip pages which don't need to be read.
767 */
768
769 pidx = (offset - startoffset) >> PAGE_SHIFT;
770 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
771 size_t b;
772
773 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
774 if ((pgs[pidx]->flags & PG_RDONLY)) {
775 sawhole = TRUE;
776 }
777 b = MIN(PAGE_SIZE, bytes);
778 offset += b;
779 bytes -= b;
780 skipbytes += b;
781 pidx++;
782 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
783 offset, 0,0,0);
784 if (bytes == 0) {
785 goto loopdone;
786 }
787 }
788
789 /*
790 * bmap the file to find out the blkno to read from and
791 * how much we can read in one i/o. if bmap returns an error,
792 * skip the rest of the top-level i/o.
793 */
794
795 lbn = offset >> fs_bshift;
796 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
797 if (error) {
798 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
799 lbn, error,0,0);
800 skipbytes += bytes;
801 goto loopdone;
802 }
803
804 /*
805 * see how many pages can be read with this i/o.
806 * reduce the i/o size if necessary to avoid
807 * overwriting pages with valid data.
808 */
809
810 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
811 bytes);
812 if (offset + iobytes > round_page(offset)) {
813 pcount = 1;
814 while (pidx + pcount < npages &&
815 pgs[pidx + pcount]->flags & PG_FAKE) {
816 pcount++;
817 }
818 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
819 (offset - trunc_page(offset)));
820 }
821
822 /*
823 * if this block isn't allocated, zero it instead of
824 * reading it. unless we are going to allocate blocks,
825 * mark the pages we zeroed PG_RDONLY.
826 */
827
828 if (blkno < 0) {
829 int holepages = (round_page(offset + iobytes) -
830 trunc_page(offset)) >> PAGE_SHIFT;
831 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
832
833 sawhole = TRUE;
834 memset((char *)kva + (offset - startoffset), 0,
835 iobytes);
836 skipbytes += iobytes;
837
838 for (i = 0; i < holepages; i++) {
839 if (write) {
840 pgs[pidx + i]->flags &= ~PG_CLEAN;
841 }
842 if (!blockalloc) {
843 pgs[pidx + i]->flags |= PG_RDONLY;
844 }
845 }
846 continue;
847 }
848
849 /*
850 * allocate a sub-buf for this piece of the i/o
851 * (or just use mbp if there's only 1 piece),
852 * and start it going.
853 */
854
855 if (offset == startoffset && iobytes == bytes) {
856 bp = mbp;
857 } else {
858 bp = getiobuf();
859 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
860 }
861 bp->b_lblkno = 0;
862
863 /* adjust physical blkno for partial blocks */
864 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
865 dev_bshift);
866
867 UVMHIST_LOG(ubchist,
868 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
869 bp, offset, iobytes, bp->b_blkno);
870
871 VOP_STRATEGY(devvp, bp);
872 }
873
874 loopdone:
875 nestiobuf_done(mbp, skipbytes, error);
876 if (async) {
877 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
878 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
879 if (pgs != pgs_onstack)
880 free(pgs, M_DEVBUF);
881 return (0);
882 }
883 if (bp != NULL) {
884 error = biowait(mbp);
885 }
886 putiobuf(mbp);
887 uvm_pagermapout(kva, npages);
888
889 /*
890 * if this we encountered a hole then we have to do a little more work.
891 * for read faults, we marked the page PG_RDONLY so that future
892 * write accesses to the page will fault again.
893 * for write faults, we must make sure that the backing store for
894 * the page is completely allocated while the pages are locked.
895 */
896
897 if (!error && sawhole && blockalloc) {
898 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
899 cred);
900 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
901 startoffset, npages << PAGE_SHIFT, error,0);
902 if (!error) {
903 for (i = 0; i < npages; i++) {
904 if (pgs[i] == NULL) {
905 continue;
906 }
907 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
908 UVMHIST_LOG(ubchist, "mark dirty pg %p",
909 pgs[i],0,0,0);
910 }
911 }
912 }
913 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
914 simple_lock(&uobj->vmobjlock);
915
916 /*
917 * we're almost done! release the pages...
918 * for errors, we free the pages.
919 * otherwise we activate them and mark them as valid and clean.
920 * also, unbusy pages that were not actually requested.
921 */
922
923 if (error) {
924 for (i = 0; i < npages; i++) {
925 if (pgs[i] == NULL) {
926 continue;
927 }
928 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
929 pgs[i], pgs[i]->flags, 0,0);
930 if (pgs[i]->flags & PG_FAKE) {
931 pgs[i]->flags |= PG_RELEASED;
932 }
933 }
934 uvm_lock_pageq();
935 uvm_page_unbusy(pgs, npages);
936 uvm_unlock_pageq();
937 simple_unlock(&uobj->vmobjlock);
938 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
939 if (pgs != pgs_onstack)
940 free(pgs, M_DEVBUF);
941 return (error);
942 }
943
944 out:
945 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
946 uvm_lock_pageq();
947 for (i = 0; i < npages; i++) {
948 pg = pgs[i];
949 if (pg == NULL) {
950 continue;
951 }
952 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
953 pg, pg->flags, 0,0);
954 if (pg->flags & PG_FAKE && !overwrite) {
955 pg->flags &= ~(PG_FAKE);
956 pmap_clear_modify(pgs[i]);
957 }
958 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
959 if (i < ridx || i >= ridx + orignpages || async) {
960 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
961 pg, pg->offset,0,0);
962 if (pg->flags & PG_WANTED) {
963 wakeup(pg);
964 }
965 if (pg->flags & PG_FAKE) {
966 KASSERT(overwrite);
967 uvm_pagezero(pg);
968 }
969 if (pg->flags & PG_RELEASED) {
970 uvm_pagefree(pg);
971 continue;
972 }
973 uvm_pageenqueue(pg);
974 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
975 UVM_PAGE_OWN(pg, NULL);
976 }
977 }
978 uvm_unlock_pageq();
979 simple_unlock(&uobj->vmobjlock);
980 if (ap->a_m != NULL) {
981 memcpy(ap->a_m, &pgs[ridx],
982 orignpages * sizeof(struct vm_page *));
983 }
984 if (pgs != pgs_onstack)
985 free(pgs, M_DEVBUF);
986 return (0);
987 }
988
989 /*
990 * generic VM putpages routine.
991 * Write the given range of pages to backing store.
992 *
993 * => "offhi == 0" means flush all pages at or after "offlo".
994 * => object should be locked by caller. we may _unlock_ the object
995 * if (and only if) we need to clean a page (PGO_CLEANIT), or
996 * if PGO_SYNCIO is set and there are pages busy.
997 * we return with the object locked.
998 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
999 * thus, a caller might want to unlock higher level resources
1000 * (e.g. vm_map) before calling flush.
1001 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1002 * unlock the object nor block.
1003 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1004 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1005 * that new pages are inserted on the tail end of the list. thus,
1006 * we can make a complete pass through the object in one go by starting
1007 * at the head and working towards the tail (new pages are put in
1008 * front of us).
1009 * => NOTE: we are allowed to lock the page queues, so the caller
1010 * must not be holding the page queue lock.
1011 *
1012 * note on "cleaning" object and PG_BUSY pages:
1013 * this routine is holding the lock on the object. the only time
1014 * that it can run into a PG_BUSY page that it does not own is if
1015 * some other process has started I/O on the page (e.g. either
1016 * a pagein, or a pageout). if the PG_BUSY page is being paged
1017 * in, then it can not be dirty (!PG_CLEAN) because no one has
1018 * had a chance to modify it yet. if the PG_BUSY page is being
1019 * paged out then it means that someone else has already started
1020 * cleaning the page for us (how nice!). in this case, if we
1021 * have syncio specified, then after we make our pass through the
1022 * object we need to wait for the other PG_BUSY pages to clear
1023 * off (i.e. we need to do an iosync). also note that once a
1024 * page is PG_BUSY it must stay in its object until it is un-busyed.
1025 *
1026 * note on page traversal:
1027 * we can traverse the pages in an object either by going down the
1028 * linked list in "uobj->memq", or we can go over the address range
1029 * by page doing hash table lookups for each address. depending
1030 * on how many pages are in the object it may be cheaper to do one
1031 * or the other. we set "by_list" to true if we are using memq.
1032 * if the cost of a hash lookup was equal to the cost of the list
1033 * traversal we could compare the number of pages in the start->stop
1034 * range to the total number of pages in the object. however, it
1035 * seems that a hash table lookup is more expensive than the linked
1036 * list traversal, so we multiply the number of pages in the
1037 * range by an estimate of the relatively higher cost of the hash lookup.
1038 */
1039
1040 int
1041 genfs_putpages(void *v)
1042 {
1043 struct vop_putpages_args /* {
1044 struct vnode *a_vp;
1045 voff_t a_offlo;
1046 voff_t a_offhi;
1047 int a_flags;
1048 } */ *ap = v;
1049 struct vnode *vp = ap->a_vp;
1050 struct uvm_object *uobj = &vp->v_uobj;
1051 struct simplelock *slock = &uobj->vmobjlock;
1052 off_t startoff = ap->a_offlo;
1053 off_t endoff = ap->a_offhi;
1054 off_t off;
1055 int flags = ap->a_flags;
1056 /* Even for strange MAXPHYS, the shift rounds down to a page */
1057 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1058 int i, s, error, npages, nback;
1059 int freeflag;
1060 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1061 boolean_t wasclean, by_list, needs_clean, yld;
1062 boolean_t async = (flags & PGO_SYNCIO) == 0;
1063 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1064 struct lwp *l = curlwp ? curlwp : &lwp0;
1065 struct genfs_node *gp = VTOG(vp);
1066 int dirtygen;
1067 boolean_t modified = FALSE;
1068 boolean_t cleanall;
1069
1070 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1071
1072 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1073 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1074 KASSERT(startoff < endoff || endoff == 0);
1075
1076 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1077 vp, uobj->uo_npages, startoff, endoff - startoff);
1078
1079 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1080 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1081 if (uobj->uo_npages == 0) {
1082 s = splbio();
1083 if (vp->v_flag & VONWORKLST) {
1084 vp->v_flag &= ~VWRITEMAPDIRTY;
1085 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1086 vp->v_flag &= ~VONWORKLST;
1087 LIST_REMOVE(vp, v_synclist);
1088 }
1089 }
1090 splx(s);
1091 simple_unlock(slock);
1092 return (0);
1093 }
1094
1095 /*
1096 * the vnode has pages, set up to process the request.
1097 */
1098
1099 error = 0;
1100 s = splbio();
1101 simple_lock(&global_v_numoutput_slock);
1102 wasclean = (vp->v_numoutput == 0);
1103 simple_unlock(&global_v_numoutput_slock);
1104 splx(s);
1105 off = startoff;
1106 if (endoff == 0 || flags & PGO_ALLPAGES) {
1107 endoff = trunc_page(LLONG_MAX);
1108 }
1109 by_list = (uobj->uo_npages <=
1110 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1111
1112 #if !defined(DEBUG)
1113 /*
1114 * if this vnode is known not to have dirty pages,
1115 * don't bother to clean it out.
1116 */
1117
1118 if ((vp->v_flag & VONWORKLST) == 0) {
1119 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1120 goto skip_scan;
1121 }
1122 flags &= ~PGO_CLEANIT;
1123 }
1124 #endif /* !defined(DEBUG) */
1125
1126 /*
1127 * start the loop. when scanning by list, hold the last page
1128 * in the list before we start. pages allocated after we start
1129 * will be added to the end of the list, so we can stop at the
1130 * current last page.
1131 */
1132
1133 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1134 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1135 (vp->v_flag & VONWORKLST) != 0;
1136 dirtygen = gp->g_dirtygen;
1137 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1138 if (by_list) {
1139 curmp.uobject = uobj;
1140 curmp.offset = (voff_t)-1;
1141 curmp.flags = PG_BUSY;
1142 endmp.uobject = uobj;
1143 endmp.offset = (voff_t)-1;
1144 endmp.flags = PG_BUSY;
1145 pg = TAILQ_FIRST(&uobj->memq);
1146 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1147 PHOLD(l);
1148 } else {
1149 pg = uvm_pagelookup(uobj, off);
1150 }
1151 nextpg = NULL;
1152 while (by_list || off < endoff) {
1153
1154 /*
1155 * if the current page is not interesting, move on to the next.
1156 */
1157
1158 KASSERT(pg == NULL || pg->uobject == uobj);
1159 KASSERT(pg == NULL ||
1160 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1161 (pg->flags & PG_BUSY) != 0);
1162 if (by_list) {
1163 if (pg == &endmp) {
1164 break;
1165 }
1166 if (pg->offset < startoff || pg->offset >= endoff ||
1167 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1168 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1169 wasclean = FALSE;
1170 }
1171 pg = TAILQ_NEXT(pg, listq);
1172 continue;
1173 }
1174 off = pg->offset;
1175 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1176 if (pg != NULL) {
1177 wasclean = FALSE;
1178 }
1179 off += PAGE_SIZE;
1180 if (off < endoff) {
1181 pg = uvm_pagelookup(uobj, off);
1182 }
1183 continue;
1184 }
1185
1186 /*
1187 * if the current page needs to be cleaned and it's busy,
1188 * wait for it to become unbusy.
1189 */
1190
1191 yld = (l->l_cpu->ci_schedstate.spc_flags &
1192 SPCF_SHOULDYIELD) && !pagedaemon;
1193 if (pg->flags & PG_BUSY || yld) {
1194 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1195 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1196 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1197 error = EDEADLK;
1198 break;
1199 }
1200 KASSERT(!pagedaemon);
1201 if (by_list) {
1202 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1203 UVMHIST_LOG(ubchist, "curmp next %p",
1204 TAILQ_NEXT(&curmp, listq), 0,0,0);
1205 }
1206 if (yld) {
1207 simple_unlock(slock);
1208 preempt(1);
1209 simple_lock(slock);
1210 } else {
1211 pg->flags |= PG_WANTED;
1212 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1213 simple_lock(slock);
1214 }
1215 if (by_list) {
1216 UVMHIST_LOG(ubchist, "after next %p",
1217 TAILQ_NEXT(&curmp, listq), 0,0,0);
1218 pg = TAILQ_NEXT(&curmp, listq);
1219 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1220 } else {
1221 pg = uvm_pagelookup(uobj, off);
1222 }
1223 continue;
1224 }
1225
1226 /*
1227 * if we're freeing, remove all mappings of the page now.
1228 * if we're cleaning, check if the page is needs to be cleaned.
1229 */
1230
1231 if (flags & PGO_FREE) {
1232 pmap_page_protect(pg, VM_PROT_NONE);
1233 } else if (flags & PGO_CLEANIT) {
1234
1235 /*
1236 * if we still have some hope to pull this vnode off
1237 * from the syncer queue, write-protect the page.
1238 */
1239
1240 if (cleanall && wasclean &&
1241 gp->g_dirtygen == dirtygen) {
1242
1243 /*
1244 * uobj pages get wired only by uvm_fault
1245 * where uobj is locked.
1246 */
1247
1248 if (pg->wire_count == 0) {
1249 pmap_page_protect(pg,
1250 VM_PROT_READ|VM_PROT_EXECUTE);
1251 } else {
1252 cleanall = FALSE;
1253 }
1254 }
1255 }
1256
1257 if (flags & PGO_CLEANIT) {
1258 needs_clean = pmap_clear_modify(pg) ||
1259 (pg->flags & PG_CLEAN) == 0;
1260 pg->flags |= PG_CLEAN;
1261 } else {
1262 needs_clean = FALSE;
1263 }
1264
1265 /*
1266 * if we're cleaning, build a cluster.
1267 * the cluster will consist of pages which are currently dirty,
1268 * but they will be returned to us marked clean.
1269 * if not cleaning, just operate on the one page.
1270 */
1271
1272 if (needs_clean) {
1273 KDASSERT((vp->v_flag & VONWORKLST));
1274 wasclean = FALSE;
1275 memset(pgs, 0, sizeof(pgs));
1276 pg->flags |= PG_BUSY;
1277 UVM_PAGE_OWN(pg, "genfs_putpages");
1278
1279 /*
1280 * first look backward.
1281 */
1282
1283 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1284 nback = npages;
1285 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1286 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1287 if (nback) {
1288 memmove(&pgs[0], &pgs[npages - nback],
1289 nback * sizeof(pgs[0]));
1290 if (npages - nback < nback)
1291 memset(&pgs[nback], 0,
1292 (npages - nback) * sizeof(pgs[0]));
1293 else
1294 memset(&pgs[npages - nback], 0,
1295 nback * sizeof(pgs[0]));
1296 }
1297
1298 /*
1299 * then plug in our page of interest.
1300 */
1301
1302 pgs[nback] = pg;
1303
1304 /*
1305 * then look forward to fill in the remaining space in
1306 * the array of pages.
1307 */
1308
1309 npages = maxpages - nback - 1;
1310 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1311 &pgs[nback + 1],
1312 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1313 npages += nback + 1;
1314 } else {
1315 pgs[0] = pg;
1316 npages = 1;
1317 nback = 0;
1318 }
1319
1320 /*
1321 * apply FREE or DEACTIVATE options if requested.
1322 */
1323
1324 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1325 uvm_lock_pageq();
1326 }
1327 for (i = 0; i < npages; i++) {
1328 tpg = pgs[i];
1329 KASSERT(tpg->uobject == uobj);
1330 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1331 pg = tpg;
1332 if (tpg->offset < startoff || tpg->offset >= endoff)
1333 continue;
1334 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1335 (void) pmap_clear_reference(tpg);
1336 uvm_pagedeactivate(tpg);
1337 } else if (flags & PGO_FREE) {
1338 pmap_page_protect(tpg, VM_PROT_NONE);
1339 if (tpg->flags & PG_BUSY) {
1340 tpg->flags |= freeflag;
1341 if (pagedaemon) {
1342 uvmexp.paging++;
1343 uvm_pagedequeue(tpg);
1344 }
1345 } else {
1346
1347 /*
1348 * ``page is not busy''
1349 * implies that npages is 1
1350 * and needs_clean is false.
1351 */
1352
1353 nextpg = TAILQ_NEXT(tpg, listq);
1354 uvm_pagefree(tpg);
1355 if (pagedaemon)
1356 uvmexp.pdfreed++;
1357 }
1358 }
1359 }
1360 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1361 uvm_unlock_pageq();
1362 }
1363 if (needs_clean) {
1364 modified = TRUE;
1365
1366 /*
1367 * start the i/o. if we're traversing by list,
1368 * keep our place in the list with a marker page.
1369 */
1370
1371 if (by_list) {
1372 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1373 listq);
1374 }
1375 simple_unlock(slock);
1376 error = GOP_WRITE(vp, pgs, npages, flags);
1377 simple_lock(slock);
1378 if (by_list) {
1379 pg = TAILQ_NEXT(&curmp, listq);
1380 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1381 }
1382 if (error) {
1383 break;
1384 }
1385 if (by_list) {
1386 continue;
1387 }
1388 }
1389
1390 /*
1391 * find the next page and continue if there was no error.
1392 */
1393
1394 if (by_list) {
1395 if (nextpg) {
1396 pg = nextpg;
1397 nextpg = NULL;
1398 } else {
1399 pg = TAILQ_NEXT(pg, listq);
1400 }
1401 } else {
1402 off += (npages - nback) << PAGE_SHIFT;
1403 if (off < endoff) {
1404 pg = uvm_pagelookup(uobj, off);
1405 }
1406 }
1407 }
1408 if (by_list) {
1409 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1410 PRELE(l);
1411 }
1412
1413 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1414 (vp->v_type != VBLK ||
1415 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1416 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1417 }
1418
1419 /*
1420 * if we're cleaning and there was nothing to clean,
1421 * take us off the syncer list. if we started any i/o
1422 * and we're doing sync i/o, wait for all writes to finish.
1423 */
1424
1425 s = splbio();
1426 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1427 (vp->v_flag & VONWORKLST) != 0) {
1428 vp->v_flag &= ~VWRITEMAPDIRTY;
1429 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1430 vp->v_flag &= ~VONWORKLST;
1431 LIST_REMOVE(vp, v_synclist);
1432 }
1433 }
1434 splx(s);
1435
1436 #if !defined(DEBUG)
1437 skip_scan:
1438 #endif /* !defined(DEBUG) */
1439 if (!wasclean && !async) {
1440 s = splbio();
1441 /*
1442 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1443 * but the slot in ltsleep() is taken!
1444 * XXX - try to recover from missed wakeups with a timeout..
1445 * must think of something better.
1446 */
1447 while (vp->v_numoutput != 0) {
1448 vp->v_flag |= VBWAIT;
1449 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1450 "genput2", hz);
1451 simple_lock(slock);
1452 }
1453 splx(s);
1454 }
1455 simple_unlock(&uobj->vmobjlock);
1456 return (error);
1457 }
1458
1459 int
1460 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1461 {
1462 int s, error, run;
1463 int fs_bshift, dev_bshift;
1464 vaddr_t kva;
1465 off_t eof, offset, startoffset;
1466 size_t bytes, iobytes, skipbytes;
1467 daddr_t lbn, blkno;
1468 struct vm_page *pg;
1469 struct buf *mbp, *bp;
1470 struct vnode *devvp;
1471 boolean_t async = (flags & PGO_SYNCIO) == 0;
1472 UVMHIST_FUNC("genfs_gop_write"); UVMHIST_CALLED(ubchist);
1473
1474 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1475 vp, pgs, npages, flags);
1476
1477 GOP_SIZE(vp, vp->v_size, &eof, 0);
1478 if (vp->v_type != VBLK) {
1479 fs_bshift = vp->v_mount->mnt_fs_bshift;
1480 dev_bshift = vp->v_mount->mnt_dev_bshift;
1481 } else {
1482 fs_bshift = DEV_BSHIFT;
1483 dev_bshift = DEV_BSHIFT;
1484 }
1485 error = 0;
1486 pg = pgs[0];
1487 startoffset = pg->offset;
1488 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1489 skipbytes = 0;
1490 KASSERT(bytes != 0);
1491
1492 kva = uvm_pagermapin(pgs, npages,
1493 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1494
1495 s = splbio();
1496 simple_lock(&global_v_numoutput_slock);
1497 vp->v_numoutput += 2;
1498 simple_unlock(&global_v_numoutput_slock);
1499 splx(s);
1500 mbp = getiobuf();
1501 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1502 vp, mbp, vp->v_numoutput, bytes);
1503 mbp->b_bufsize = npages << PAGE_SHIFT;
1504 mbp->b_data = (void *)kva;
1505 mbp->b_resid = mbp->b_bcount = bytes;
1506 mbp->b_flags = B_BUSY|B_WRITE|B_AGE| (async ? (B_CALL|B_ASYNC) : 0);
1507 mbp->b_iodone = uvm_aio_biodone;
1508 mbp->b_vp = vp;
1509 if (curproc == uvm.pagedaemon_proc)
1510 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1511 else if (async)
1512 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1513 else
1514 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1515
1516 bp = NULL;
1517 for (offset = startoffset;
1518 bytes > 0;
1519 offset += iobytes, bytes -= iobytes) {
1520 lbn = offset >> fs_bshift;
1521 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1522 if (error) {
1523 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1524 skipbytes += bytes;
1525 bytes = 0;
1526 break;
1527 }
1528
1529 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1530 bytes);
1531 if (blkno == (daddr_t)-1) {
1532 skipbytes += iobytes;
1533 continue;
1534 }
1535
1536 /* if it's really one i/o, don't make a second buf */
1537 if (offset == startoffset && iobytes == bytes) {
1538 bp = mbp;
1539 } else {
1540 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1541 vp, bp, vp->v_numoutput, 0);
1542 bp = getiobuf();
1543 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1544 }
1545 bp->b_lblkno = 0;
1546
1547 /* adjust physical blkno for partial blocks */
1548 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1549 dev_bshift);
1550 UVMHIST_LOG(ubchist,
1551 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1552 vp, offset, bp->b_bcount, bp->b_blkno);
1553
1554 VOP_STRATEGY(devvp, bp);
1555 }
1556 if (skipbytes) {
1557 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1558 }
1559 nestiobuf_done(mbp, skipbytes, error);
1560 if (async) {
1561 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1562 return (0);
1563 }
1564 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1565 error = biowait(mbp);
1566 uvm_aio_aiodone(mbp);
1567 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1568 return (error);
1569 }
1570
1571 /*
1572 * VOP_PUTPAGES() for vnodes which never have pages.
1573 */
1574
1575 int
1576 genfs_null_putpages(void *v)
1577 {
1578 struct vop_putpages_args /* {
1579 struct vnode *a_vp;
1580 voff_t a_offlo;
1581 voff_t a_offhi;
1582 int a_flags;
1583 } */ *ap = v;
1584 struct vnode *vp = ap->a_vp;
1585
1586 KASSERT(vp->v_uobj.uo_npages == 0);
1587 simple_unlock(&vp->v_interlock);
1588 return (0);
1589 }
1590
1591 void
1592 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1593 {
1594 struct genfs_node *gp = VTOG(vp);
1595
1596 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1597 gp->g_op = ops;
1598 }
1599
1600 void
1601 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1602 {
1603 int bsize;
1604
1605 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1606 *eobp = (size + bsize - 1) & ~(bsize - 1);
1607 }
1608
1609 int
1610 genfs_compat_getpages(void *v)
1611 {
1612 struct vop_getpages_args /* {
1613 struct vnode *a_vp;
1614 voff_t a_offset;
1615 struct vm_page **a_m;
1616 int *a_count;
1617 int a_centeridx;
1618 vm_prot_t a_access_type;
1619 int a_advice;
1620 int a_flags;
1621 } */ *ap = v;
1622
1623 off_t origoffset;
1624 struct vnode *vp = ap->a_vp;
1625 struct uvm_object *uobj = &vp->v_uobj;
1626 struct vm_page *pg, **pgs;
1627 vaddr_t kva;
1628 int i, error, orignpages, npages;
1629 struct iovec iov;
1630 struct uio uio;
1631 kauth_cred_t cred = curlwp->l_cred;
1632 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1633
1634 error = 0;
1635 origoffset = ap->a_offset;
1636 orignpages = *ap->a_count;
1637 pgs = ap->a_m;
1638
1639 if (write && (vp->v_flag & VONWORKLST) == 0) {
1640 vn_syncer_add_to_worklist(vp, filedelay);
1641 }
1642 if (ap->a_flags & PGO_LOCKED) {
1643 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1644 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1645
1646 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1647 }
1648 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1649 simple_unlock(&uobj->vmobjlock);
1650 return (EINVAL);
1651 }
1652 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1653 simple_unlock(&uobj->vmobjlock);
1654 return 0;
1655 }
1656 npages = orignpages;
1657 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1658 simple_unlock(&uobj->vmobjlock);
1659 kva = uvm_pagermapin(pgs, npages,
1660 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1661 for (i = 0; i < npages; i++) {
1662 pg = pgs[i];
1663 if ((pg->flags & PG_FAKE) == 0) {
1664 continue;
1665 }
1666 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1667 iov.iov_len = PAGE_SIZE;
1668 uio.uio_iov = &iov;
1669 uio.uio_iovcnt = 1;
1670 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1671 uio.uio_rw = UIO_READ;
1672 uio.uio_resid = PAGE_SIZE;
1673 UIO_SETUP_SYSSPACE(&uio);
1674 /* XXX vn_lock */
1675 error = VOP_READ(vp, &uio, 0, cred);
1676 if (error) {
1677 break;
1678 }
1679 if (uio.uio_resid) {
1680 memset(iov.iov_base, 0, uio.uio_resid);
1681 }
1682 }
1683 uvm_pagermapout(kva, npages);
1684 simple_lock(&uobj->vmobjlock);
1685 uvm_lock_pageq();
1686 for (i = 0; i < npages; i++) {
1687 pg = pgs[i];
1688 if (error && (pg->flags & PG_FAKE) != 0) {
1689 pg->flags |= PG_RELEASED;
1690 } else {
1691 pmap_clear_modify(pg);
1692 uvm_pageactivate(pg);
1693 }
1694 }
1695 if (error) {
1696 uvm_page_unbusy(pgs, npages);
1697 }
1698 uvm_unlock_pageq();
1699 simple_unlock(&uobj->vmobjlock);
1700 return (error);
1701 }
1702
1703 int
1704 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1705 int flags)
1706 {
1707 off_t offset;
1708 struct iovec iov;
1709 struct uio uio;
1710 kauth_cred_t cred = curlwp->l_cred;
1711 struct buf *bp;
1712 vaddr_t kva;
1713 int s, error;
1714
1715 offset = pgs[0]->offset;
1716 kva = uvm_pagermapin(pgs, npages,
1717 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1718
1719 iov.iov_base = (void *)kva;
1720 iov.iov_len = npages << PAGE_SHIFT;
1721 uio.uio_iov = &iov;
1722 uio.uio_iovcnt = 1;
1723 uio.uio_offset = offset;
1724 uio.uio_rw = UIO_WRITE;
1725 uio.uio_resid = npages << PAGE_SHIFT;
1726 UIO_SETUP_SYSSPACE(&uio);
1727 /* XXX vn_lock */
1728 error = VOP_WRITE(vp, &uio, 0, cred);
1729
1730 s = splbio();
1731 V_INCR_NUMOUTPUT(vp);
1732 splx(s);
1733
1734 bp = getiobuf();
1735 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1736 bp->b_vp = vp;
1737 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1738 bp->b_data = (char *)kva;
1739 bp->b_bcount = npages << PAGE_SHIFT;
1740 bp->b_bufsize = npages << PAGE_SHIFT;
1741 bp->b_resid = 0;
1742 if (error) {
1743 bp->b_flags |= B_ERROR;
1744 bp->b_error = error;
1745 }
1746 uvm_aio_aiodone(bp);
1747 return (error);
1748 }
1749
1750 static void
1751 filt_genfsdetach(struct knote *kn)
1752 {
1753 struct vnode *vp = (struct vnode *)kn->kn_hook;
1754
1755 /* XXXLUKEM lock the struct? */
1756 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
1757 }
1758
1759 static int
1760 filt_genfsread(struct knote *kn, long hint)
1761 {
1762 struct vnode *vp = (struct vnode *)kn->kn_hook;
1763
1764 /*
1765 * filesystem is gone, so set the EOF flag and schedule
1766 * the knote for deletion.
1767 */
1768 if (hint == NOTE_REVOKE) {
1769 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1770 return (1);
1771 }
1772
1773 /* XXXLUKEM lock the struct? */
1774 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
1775 return (kn->kn_data != 0);
1776 }
1777
1778 static int
1779 filt_genfsvnode(struct knote *kn, long hint)
1780 {
1781
1782 if (kn->kn_sfflags & hint)
1783 kn->kn_fflags |= hint;
1784 if (hint == NOTE_REVOKE) {
1785 kn->kn_flags |= EV_EOF;
1786 return (1);
1787 }
1788 return (kn->kn_fflags != 0);
1789 }
1790
1791 static const struct filterops genfsread_filtops =
1792 { 1, NULL, filt_genfsdetach, filt_genfsread };
1793 static const struct filterops genfsvnode_filtops =
1794 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
1795
1796 int
1797 genfs_kqfilter(void *v)
1798 {
1799 struct vop_kqfilter_args /* {
1800 struct vnode *a_vp;
1801 struct knote *a_kn;
1802 } */ *ap = v;
1803 struct vnode *vp;
1804 struct knote *kn;
1805
1806 vp = ap->a_vp;
1807 kn = ap->a_kn;
1808 switch (kn->kn_filter) {
1809 case EVFILT_READ:
1810 kn->kn_fop = &genfsread_filtops;
1811 break;
1812 case EVFILT_VNODE:
1813 kn->kn_fop = &genfsvnode_filtops;
1814 break;
1815 default:
1816 return (1);
1817 }
1818
1819 kn->kn_hook = vp;
1820
1821 /* XXXLUKEM lock the struct? */
1822 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
1823
1824 return (0);
1825 }
1826