genfs_vnops.c revision 1.130 1 /* $NetBSD: genfs_vnops.c,v 1.130 2006/10/05 14:48:32 chs Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.130 2006/10/05 14:48:32 chs Exp $");
35
36 #if defined(_KERNEL_OPT)
37 #include "opt_nfsserver.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/mount.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/malloc.h>
49 #include <sys/poll.h>
50 #include <sys/mman.h>
51 #include <sys/file.h>
52 #include <sys/kauth.h>
53
54 #include <miscfs/genfs/genfs.h>
55 #include <miscfs/genfs/genfs_node.h>
56 #include <miscfs/specfs/specdev.h>
57
58 #include <uvm/uvm.h>
59 #include <uvm/uvm_pager.h>
60
61 #ifdef NFSSERVER
62 #include <nfs/rpcv2.h>
63 #include <nfs/nfsproto.h>
64 #include <nfs/nfs.h>
65 #include <nfs/nqnfs.h>
66 #include <nfs/nfs_var.h>
67 #endif
68
69 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
70 off_t, enum uio_rw);
71 static void genfs_dio_iodone(struct buf *);
72
73 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
74 void (*)(struct buf *));
75 static inline void genfs_rel_pages(struct vm_page **, int);
76 static void filt_genfsdetach(struct knote *);
77 static int filt_genfsread(struct knote *, long);
78 static int filt_genfsvnode(struct knote *, long);
79
80 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
81
82 int genfs_maxdio = MAXPHYS;
83
84 int
85 genfs_poll(void *v)
86 {
87 struct vop_poll_args /* {
88 struct vnode *a_vp;
89 int a_events;
90 struct lwp *a_l;
91 } */ *ap = v;
92
93 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
94 }
95
96 int
97 genfs_seek(void *v)
98 {
99 struct vop_seek_args /* {
100 struct vnode *a_vp;
101 off_t a_oldoff;
102 off_t a_newoff;
103 kauth_cred_t cred;
104 } */ *ap = v;
105
106 if (ap->a_newoff < 0)
107 return (EINVAL);
108
109 return (0);
110 }
111
112 int
113 genfs_abortop(void *v)
114 {
115 struct vop_abortop_args /* {
116 struct vnode *a_dvp;
117 struct componentname *a_cnp;
118 } */ *ap = v;
119
120 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
121 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
122 return (0);
123 }
124
125 int
126 genfs_fcntl(void *v)
127 {
128 struct vop_fcntl_args /* {
129 struct vnode *a_vp;
130 u_int a_command;
131 caddr_t a_data;
132 int a_fflag;
133 kauth_cred_t a_cred;
134 struct lwp *a_l;
135 } */ *ap = v;
136
137 if (ap->a_command == F_SETFL)
138 return (0);
139 else
140 return (EOPNOTSUPP);
141 }
142
143 /*ARGSUSED*/
144 int
145 genfs_badop(void *v)
146 {
147
148 panic("genfs: bad op");
149 }
150
151 /*ARGSUSED*/
152 int
153 genfs_nullop(void *v)
154 {
155
156 return (0);
157 }
158
159 /*ARGSUSED*/
160 int
161 genfs_einval(void *v)
162 {
163
164 return (EINVAL);
165 }
166
167 /*
168 * Called when an fs doesn't support a particular vop.
169 * This takes care to vrele, vput, or vunlock passed in vnodes.
170 */
171 int
172 genfs_eopnotsupp(void *v)
173 {
174 struct vop_generic_args /*
175 struct vnodeop_desc *a_desc;
176 / * other random data follows, presumably * /
177 } */ *ap = v;
178 struct vnodeop_desc *desc = ap->a_desc;
179 struct vnode *vp, *vp_last = NULL;
180 int flags, i, j, offset;
181
182 flags = desc->vdesc_flags;
183 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
184 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
185 break; /* stop at end of list */
186 if ((j = flags & VDESC_VP0_WILLPUT)) {
187 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
188
189 /* Skip if NULL */
190 if (!vp)
191 continue;
192
193 switch (j) {
194 case VDESC_VP0_WILLPUT:
195 /* Check for dvp == vp cases */
196 if (vp == vp_last)
197 vrele(vp);
198 else {
199 vput(vp);
200 vp_last = vp;
201 }
202 break;
203 case VDESC_VP0_WILLUNLOCK:
204 VOP_UNLOCK(vp, 0);
205 break;
206 case VDESC_VP0_WILLRELE:
207 vrele(vp);
208 break;
209 }
210 }
211 }
212
213 return (EOPNOTSUPP);
214 }
215
216 /*ARGSUSED*/
217 int
218 genfs_ebadf(void *v)
219 {
220
221 return (EBADF);
222 }
223
224 /* ARGSUSED */
225 int
226 genfs_enoioctl(void *v)
227 {
228
229 return (EPASSTHROUGH);
230 }
231
232
233 /*
234 * Eliminate all activity associated with the requested vnode
235 * and with all vnodes aliased to the requested vnode.
236 */
237 int
238 genfs_revoke(void *v)
239 {
240 struct vop_revoke_args /* {
241 struct vnode *a_vp;
242 int a_flags;
243 } */ *ap = v;
244 struct vnode *vp, *vq;
245 struct lwp *l = curlwp; /* XXX */
246
247 #ifdef DIAGNOSTIC
248 if ((ap->a_flags & REVOKEALL) == 0)
249 panic("genfs_revoke: not revokeall");
250 #endif
251
252 vp = ap->a_vp;
253 simple_lock(&vp->v_interlock);
254
255 if (vp->v_flag & VALIASED) {
256 /*
257 * If a vgone (or vclean) is already in progress,
258 * wait until it is done and return.
259 */
260 if (vp->v_flag & VXLOCK) {
261 vp->v_flag |= VXWANT;
262 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
263 &vp->v_interlock);
264 return (0);
265 }
266 /*
267 * Ensure that vp will not be vgone'd while we
268 * are eliminating its aliases.
269 */
270 vp->v_flag |= VXLOCK;
271 simple_unlock(&vp->v_interlock);
272 while (vp->v_flag & VALIASED) {
273 simple_lock(&spechash_slock);
274 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
275 if (vq->v_rdev != vp->v_rdev ||
276 vq->v_type != vp->v_type || vp == vq)
277 continue;
278 simple_unlock(&spechash_slock);
279 vgone(vq);
280 break;
281 }
282 if (vq == NULLVP)
283 simple_unlock(&spechash_slock);
284 }
285 /*
286 * Remove the lock so that vgone below will
287 * really eliminate the vnode after which time
288 * vgone will awaken any sleepers.
289 */
290 simple_lock(&vp->v_interlock);
291 vp->v_flag &= ~VXLOCK;
292 }
293 vgonel(vp, l);
294 return (0);
295 }
296
297 /*
298 * Lock the node.
299 */
300 int
301 genfs_lock(void *v)
302 {
303 struct vop_lock_args /* {
304 struct vnode *a_vp;
305 int a_flags;
306 } */ *ap = v;
307 struct vnode *vp = ap->a_vp;
308
309 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
310 }
311
312 /*
313 * Unlock the node.
314 */
315 int
316 genfs_unlock(void *v)
317 {
318 struct vop_unlock_args /* {
319 struct vnode *a_vp;
320 int a_flags;
321 } */ *ap = v;
322 struct vnode *vp = ap->a_vp;
323
324 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
325 &vp->v_interlock));
326 }
327
328 /*
329 * Return whether or not the node is locked.
330 */
331 int
332 genfs_islocked(void *v)
333 {
334 struct vop_islocked_args /* {
335 struct vnode *a_vp;
336 } */ *ap = v;
337 struct vnode *vp = ap->a_vp;
338
339 return (lockstatus(vp->v_vnlock));
340 }
341
342 /*
343 * Stubs to use when there is no locking to be done on the underlying object.
344 */
345 int
346 genfs_nolock(void *v)
347 {
348 struct vop_lock_args /* {
349 struct vnode *a_vp;
350 int a_flags;
351 struct lwp *a_l;
352 } */ *ap = v;
353
354 /*
355 * Since we are not using the lock manager, we must clear
356 * the interlock here.
357 */
358 if (ap->a_flags & LK_INTERLOCK)
359 simple_unlock(&ap->a_vp->v_interlock);
360 return (0);
361 }
362
363 int
364 genfs_nounlock(void *v)
365 {
366
367 return (0);
368 }
369
370 int
371 genfs_noislocked(void *v)
372 {
373
374 return (0);
375 }
376
377 /*
378 * Local lease check for NFS servers. Just set up args and let
379 * nqsrv_getlease() do the rest. If NFSSERVER is not in the kernel,
380 * this is a null operation.
381 */
382 int
383 genfs_lease_check(void *v)
384 {
385 #ifdef NFSSERVER
386 struct vop_lease_args /* {
387 struct vnode *a_vp;
388 struct lwp *a_l;
389 kauth_cred_t a_cred;
390 int a_flag;
391 } */ *ap = v;
392 u_int32_t duration = 0;
393 int cache;
394 u_quad_t frev;
395
396 (void) nqsrv_getlease(ap->a_vp, &duration, ND_CHECK | ap->a_flag,
397 NQLOCALSLP, ap->a_l, (struct mbuf *)0, &cache, &frev, ap->a_cred);
398 return (0);
399 #else
400 return (0);
401 #endif /* NFSSERVER */
402 }
403
404 int
405 genfs_mmap(void *v)
406 {
407
408 return (0);
409 }
410
411 static inline void
412 genfs_rel_pages(struct vm_page **pgs, int npages)
413 {
414 int i;
415
416 for (i = 0; i < npages; i++) {
417 struct vm_page *pg = pgs[i];
418
419 if (pg == NULL || pg == PGO_DONTCARE)
420 continue;
421 if (pg->flags & PG_FAKE) {
422 pg->flags |= PG_RELEASED;
423 }
424 }
425 uvm_lock_pageq();
426 uvm_page_unbusy(pgs, npages);
427 uvm_unlock_pageq();
428 }
429
430 /*
431 * generic VM getpages routine.
432 * Return PG_BUSY pages for the given range,
433 * reading from backing store if necessary.
434 */
435
436 int
437 genfs_getpages(void *v)
438 {
439 struct vop_getpages_args /* {
440 struct vnode *a_vp;
441 voff_t a_offset;
442 struct vm_page **a_m;
443 int *a_count;
444 int a_centeridx;
445 vm_prot_t a_access_type;
446 int a_advice;
447 int a_flags;
448 } */ *ap = v;
449
450 off_t newsize, diskeof, memeof;
451 off_t offset, origoffset, startoffset, endoffset;
452 daddr_t lbn, blkno;
453 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
454 int fs_bshift, fs_bsize, dev_bshift;
455 int flags = ap->a_flags;
456 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
457 vaddr_t kva;
458 struct buf *bp, *mbp;
459 struct vnode *vp = ap->a_vp;
460 struct vnode *devvp;
461 struct genfs_node *gp = VTOG(vp);
462 struct uvm_object *uobj = &vp->v_uobj;
463 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
464 int pgs_size;
465 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
466 boolean_t async = (flags & PGO_SYNCIO) == 0;
467 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
468 boolean_t sawhole = FALSE;
469 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
470 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
471 voff_t origvsize;
472 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
473
474 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
475 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
476
477 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
478 vp->v_type == VLNK || vp->v_type == VBLK);
479
480 /* XXXUBC temp limit */
481 if (*ap->a_count > MAX_READ_PAGES) {
482 panic("genfs_getpages: too many pages");
483 }
484
485 startover:
486 error = 0;
487 origvsize = vp->v_size;
488 origoffset = ap->a_offset;
489 orignpages = *ap->a_count;
490 GOP_SIZE(vp, vp->v_size, &diskeof, 0);
491 if (flags & PGO_PASTEOF) {
492 newsize = MAX(vp->v_size,
493 origoffset + (orignpages << PAGE_SHIFT));
494 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
495 } else {
496 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
497 }
498 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
499 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
500 KASSERT(orignpages > 0);
501
502 /*
503 * Bounds-check the request.
504 */
505
506 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
507 if ((flags & PGO_LOCKED) == 0) {
508 simple_unlock(&uobj->vmobjlock);
509 }
510 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
511 origoffset, *ap->a_count, memeof,0);
512 return (EINVAL);
513 }
514
515 /* uobj is locked */
516
517 if ((flags & PGO_NOTIMESTAMP) == 0 &&
518 (vp->v_type != VBLK ||
519 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
520 int updflags = 0;
521
522 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
523 updflags = GOP_UPDATE_ACCESSED;
524 }
525 if (write) {
526 updflags |= GOP_UPDATE_MODIFIED;
527 }
528 if (updflags != 0) {
529 GOP_MARKUPDATE(vp, updflags);
530 }
531 }
532
533 if (write) {
534 gp->g_dirtygen++;
535 if ((vp->v_flag & VONWORKLST) == 0) {
536 vn_syncer_add_to_worklist(vp, filedelay);
537 }
538 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
539 vp->v_flag |= VWRITEMAPDIRTY;
540 }
541 }
542
543 /*
544 * For PGO_LOCKED requests, just return whatever's in memory.
545 */
546
547 if (flags & PGO_LOCKED) {
548 int nfound;
549
550 npages = *ap->a_count;
551 #if defined(DEBUG)
552 for (i = 0; i < npages; i++) {
553 pg = ap->a_m[i];
554 KASSERT(pg == NULL || pg == PGO_DONTCARE);
555 }
556 #endif /* defined(DEBUG) */
557 nfound = uvn_findpages(uobj, origoffset, &npages,
558 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
559 KASSERT(npages == *ap->a_count);
560 if (nfound == 0) {
561 return EBUSY;
562 }
563 if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) {
564 genfs_rel_pages(ap->a_m, npages);
565
566 /*
567 * restore the array.
568 */
569
570 for (i = 0; i < npages; i++) {
571 pg = ap->a_m[i];
572
573 if (pg != NULL || pg != PGO_DONTCARE) {
574 ap->a_m[i] = NULL;
575 }
576 }
577 } else {
578 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
579 }
580 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
581 }
582 simple_unlock(&uobj->vmobjlock);
583
584 /*
585 * find the requested pages and make some simple checks.
586 * leave space in the page array for a whole block.
587 */
588
589 if (vp->v_type != VBLK) {
590 fs_bshift = vp->v_mount->mnt_fs_bshift;
591 dev_bshift = vp->v_mount->mnt_dev_bshift;
592 } else {
593 fs_bshift = DEV_BSHIFT;
594 dev_bshift = DEV_BSHIFT;
595 }
596 fs_bsize = 1 << fs_bshift;
597
598 orignpages = MIN(orignpages,
599 round_page(memeof - origoffset) >> PAGE_SHIFT);
600 npages = orignpages;
601 startoffset = origoffset & ~(fs_bsize - 1);
602 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
603 fs_bsize - 1) & ~(fs_bsize - 1));
604 endoffset = MIN(endoffset, round_page(memeof));
605 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
606
607 pgs_size = sizeof(struct vm_page *) *
608 ((endoffset - startoffset) >> PAGE_SHIFT);
609 if (pgs_size > sizeof(pgs_onstack)) {
610 pgs = malloc(pgs_size, M_DEVBUF,
611 (async ? M_NOWAIT : M_WAITOK) | M_ZERO);
612 if (pgs == NULL) {
613 return (ENOMEM);
614 }
615 } else {
616 pgs = pgs_onstack;
617 memset(pgs, 0, pgs_size);
618 }
619 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
620 ridx, npages, startoffset, endoffset);
621
622 /*
623 * hold g_glock to prevent a race with truncate.
624 *
625 * check if our idea of v_size is still valid.
626 */
627
628 if (blockalloc) {
629 lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
630 } else {
631 lockmgr(&gp->g_glock, LK_SHARED, NULL);
632 }
633 simple_lock(&uobj->vmobjlock);
634 if (vp->v_size < origvsize) {
635 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
636 if (pgs != pgs_onstack)
637 free(pgs, M_DEVBUF);
638 goto startover;
639 }
640
641 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
642 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
643 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
644 KASSERT(async != 0);
645 genfs_rel_pages(&pgs[ridx], orignpages);
646 simple_unlock(&uobj->vmobjlock);
647 if (pgs != pgs_onstack)
648 free(pgs, M_DEVBUF);
649 return (EBUSY);
650 }
651
652 /*
653 * if the pages are already resident, just return them.
654 */
655
656 for (i = 0; i < npages; i++) {
657 struct vm_page *pg1 = pgs[ridx + i];
658
659 if ((pg1->flags & PG_FAKE) ||
660 (blockalloc && (pg1->flags & PG_RDONLY))) {
661 break;
662 }
663 }
664 if (i == npages) {
665 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
666 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
667 npages += ridx;
668 goto out;
669 }
670
671 /*
672 * if PGO_OVERWRITE is set, don't bother reading the pages.
673 */
674
675 if (overwrite) {
676 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
677 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
678
679 for (i = 0; i < npages; i++) {
680 struct vm_page *pg1 = pgs[ridx + i];
681
682 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
683 }
684 npages += ridx;
685 goto out;
686 }
687
688 /*
689 * the page wasn't resident and we're not overwriting,
690 * so we're going to have to do some i/o.
691 * find any additional pages needed to cover the expanded range.
692 */
693
694 npages = (endoffset - startoffset) >> PAGE_SHIFT;
695 if (startoffset != origoffset || npages != orignpages) {
696
697 /*
698 * we need to avoid deadlocks caused by locking
699 * additional pages at lower offsets than pages we
700 * already have locked. unlock them all and start over.
701 */
702
703 genfs_rel_pages(&pgs[ridx], orignpages);
704 memset(pgs, 0, pgs_size);
705
706 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
707 startoffset, endoffset, 0,0);
708 npgs = npages;
709 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
710 async ? UFP_NOWAIT : UFP_ALL) != npages) {
711 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
712 KASSERT(async != 0);
713 genfs_rel_pages(pgs, npages);
714 simple_unlock(&uobj->vmobjlock);
715 if (pgs != pgs_onstack)
716 free(pgs, M_DEVBUF);
717 return (EBUSY);
718 }
719 }
720 simple_unlock(&uobj->vmobjlock);
721
722 /*
723 * read the desired page(s).
724 */
725
726 totalbytes = npages << PAGE_SHIFT;
727 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
728 tailbytes = totalbytes - bytes;
729 skipbytes = 0;
730
731 kva = uvm_pagermapin(pgs, npages,
732 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
733
734 mbp = getiobuf();
735 mbp->b_bufsize = totalbytes;
736 mbp->b_data = (void *)kva;
737 mbp->b_resid = mbp->b_bcount = bytes;
738 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
739 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
740 mbp->b_vp = vp;
741 if (async)
742 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
743 else
744 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
745
746 /*
747 * if EOF is in the middle of the range, zero the part past EOF.
748 * if the page including EOF is not PG_FAKE, skip over it since
749 * in that case it has valid data that we need to preserve.
750 */
751
752 if (tailbytes > 0) {
753 size_t tailstart = bytes;
754
755 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
756 tailstart = round_page(tailstart);
757 tailbytes -= tailstart - bytes;
758 }
759 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
760 kva, tailstart, tailbytes,0);
761 memset((void *)(kva + tailstart), 0, tailbytes);
762 }
763
764 /*
765 * now loop over the pages, reading as needed.
766 */
767
768 bp = NULL;
769 for (offset = startoffset;
770 bytes > 0;
771 offset += iobytes, bytes -= iobytes) {
772
773 /*
774 * skip pages which don't need to be read.
775 */
776
777 pidx = (offset - startoffset) >> PAGE_SHIFT;
778 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
779 size_t b;
780
781 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
782 if ((pgs[pidx]->flags & PG_RDONLY)) {
783 sawhole = TRUE;
784 }
785 b = MIN(PAGE_SIZE, bytes);
786 offset += b;
787 bytes -= b;
788 skipbytes += b;
789 pidx++;
790 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
791 offset, 0,0,0);
792 if (bytes == 0) {
793 goto loopdone;
794 }
795 }
796
797 /*
798 * bmap the file to find out the blkno to read from and
799 * how much we can read in one i/o. if bmap returns an error,
800 * skip the rest of the top-level i/o.
801 */
802
803 lbn = offset >> fs_bshift;
804 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
805 if (error) {
806 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
807 lbn, error,0,0);
808 skipbytes += bytes;
809 goto loopdone;
810 }
811
812 /*
813 * see how many pages can be read with this i/o.
814 * reduce the i/o size if necessary to avoid
815 * overwriting pages with valid data.
816 */
817
818 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
819 bytes);
820 if (offset + iobytes > round_page(offset)) {
821 pcount = 1;
822 while (pidx + pcount < npages &&
823 pgs[pidx + pcount]->flags & PG_FAKE) {
824 pcount++;
825 }
826 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
827 (offset - trunc_page(offset)));
828 }
829
830 /*
831 * if this block isn't allocated, zero it instead of
832 * reading it. unless we are going to allocate blocks,
833 * mark the pages we zeroed PG_RDONLY.
834 */
835
836 if (blkno < 0) {
837 int holepages = (round_page(offset + iobytes) -
838 trunc_page(offset)) >> PAGE_SHIFT;
839 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
840
841 sawhole = TRUE;
842 memset((char *)kva + (offset - startoffset), 0,
843 iobytes);
844 skipbytes += iobytes;
845
846 for (i = 0; i < holepages; i++) {
847 if (write) {
848 pgs[pidx + i]->flags &= ~PG_CLEAN;
849 }
850 if (!blockalloc) {
851 pgs[pidx + i]->flags |= PG_RDONLY;
852 }
853 }
854 continue;
855 }
856
857 /*
858 * allocate a sub-buf for this piece of the i/o
859 * (or just use mbp if there's only 1 piece),
860 * and start it going.
861 */
862
863 if (offset == startoffset && iobytes == bytes) {
864 bp = mbp;
865 } else {
866 bp = getiobuf();
867 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
868 }
869 bp->b_lblkno = 0;
870
871 /* adjust physical blkno for partial blocks */
872 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
873 dev_bshift);
874
875 UVMHIST_LOG(ubchist,
876 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
877 bp, offset, iobytes, bp->b_blkno);
878
879 VOP_STRATEGY(devvp, bp);
880 }
881
882 loopdone:
883 nestiobuf_done(mbp, skipbytes, error);
884 if (async) {
885 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
886 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
887 if (pgs != pgs_onstack)
888 free(pgs, M_DEVBUF);
889 return (0);
890 }
891 if (bp != NULL) {
892 error = biowait(mbp);
893 }
894 putiobuf(mbp);
895 uvm_pagermapout(kva, npages);
896
897 /*
898 * if this we encountered a hole then we have to do a little more work.
899 * for read faults, we marked the page PG_RDONLY so that future
900 * write accesses to the page will fault again.
901 * for write faults, we must make sure that the backing store for
902 * the page is completely allocated while the pages are locked.
903 */
904
905 if (!error && sawhole && blockalloc) {
906 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
907 cred);
908 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
909 startoffset, npages << PAGE_SHIFT, error,0);
910 if (!error) {
911 for (i = 0; i < npages; i++) {
912 if (pgs[i] == NULL) {
913 continue;
914 }
915 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
916 UVMHIST_LOG(ubchist, "mark dirty pg %p",
917 pgs[i],0,0,0);
918 }
919 }
920 }
921 lockmgr(&gp->g_glock, LK_RELEASE, NULL);
922 simple_lock(&uobj->vmobjlock);
923
924 /*
925 * we're almost done! release the pages...
926 * for errors, we free the pages.
927 * otherwise we activate them and mark them as valid and clean.
928 * also, unbusy pages that were not actually requested.
929 */
930
931 if (error) {
932 for (i = 0; i < npages; i++) {
933 if (pgs[i] == NULL) {
934 continue;
935 }
936 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
937 pgs[i], pgs[i]->flags, 0,0);
938 if (pgs[i]->flags & PG_FAKE) {
939 pgs[i]->flags |= PG_RELEASED;
940 }
941 }
942 uvm_lock_pageq();
943 uvm_page_unbusy(pgs, npages);
944 uvm_unlock_pageq();
945 simple_unlock(&uobj->vmobjlock);
946 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
947 if (pgs != pgs_onstack)
948 free(pgs, M_DEVBUF);
949 return (error);
950 }
951
952 out:
953 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
954 uvm_lock_pageq();
955 for (i = 0; i < npages; i++) {
956 pg = pgs[i];
957 if (pg == NULL) {
958 continue;
959 }
960 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
961 pg, pg->flags, 0,0);
962 if (pg->flags & PG_FAKE && !overwrite) {
963 pg->flags &= ~(PG_FAKE);
964 pmap_clear_modify(pgs[i]);
965 }
966 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
967 if (i < ridx || i >= ridx + orignpages || async) {
968 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
969 pg, pg->offset,0,0);
970 if (pg->flags & PG_WANTED) {
971 wakeup(pg);
972 }
973 if (pg->flags & PG_FAKE) {
974 KASSERT(overwrite);
975 uvm_pagezero(pg);
976 }
977 if (pg->flags & PG_RELEASED) {
978 uvm_pagefree(pg);
979 continue;
980 }
981 uvm_pageenqueue(pg);
982 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
983 UVM_PAGE_OWN(pg, NULL);
984 }
985 }
986 uvm_unlock_pageq();
987 simple_unlock(&uobj->vmobjlock);
988 if (ap->a_m != NULL) {
989 memcpy(ap->a_m, &pgs[ridx],
990 orignpages * sizeof(struct vm_page *));
991 }
992 if (pgs != pgs_onstack)
993 free(pgs, M_DEVBUF);
994 return (0);
995 }
996
997 /*
998 * generic VM putpages routine.
999 * Write the given range of pages to backing store.
1000 *
1001 * => "offhi == 0" means flush all pages at or after "offlo".
1002 * => object should be locked by caller. we may _unlock_ the object
1003 * if (and only if) we need to clean a page (PGO_CLEANIT), or
1004 * if PGO_SYNCIO is set and there are pages busy.
1005 * we return with the object locked.
1006 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1007 * thus, a caller might want to unlock higher level resources
1008 * (e.g. vm_map) before calling flush.
1009 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, then we will neither
1010 * unlock the object nor block.
1011 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1012 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1013 * that new pages are inserted on the tail end of the list. thus,
1014 * we can make a complete pass through the object in one go by starting
1015 * at the head and working towards the tail (new pages are put in
1016 * front of us).
1017 * => NOTE: we are allowed to lock the page queues, so the caller
1018 * must not be holding the page queue lock.
1019 *
1020 * note on "cleaning" object and PG_BUSY pages:
1021 * this routine is holding the lock on the object. the only time
1022 * that it can run into a PG_BUSY page that it does not own is if
1023 * some other process has started I/O on the page (e.g. either
1024 * a pagein, or a pageout). if the PG_BUSY page is being paged
1025 * in, then it can not be dirty (!PG_CLEAN) because no one has
1026 * had a chance to modify it yet. if the PG_BUSY page is being
1027 * paged out then it means that someone else has already started
1028 * cleaning the page for us (how nice!). in this case, if we
1029 * have syncio specified, then after we make our pass through the
1030 * object we need to wait for the other PG_BUSY pages to clear
1031 * off (i.e. we need to do an iosync). also note that once a
1032 * page is PG_BUSY it must stay in its object until it is un-busyed.
1033 *
1034 * note on page traversal:
1035 * we can traverse the pages in an object either by going down the
1036 * linked list in "uobj->memq", or we can go over the address range
1037 * by page doing hash table lookups for each address. depending
1038 * on how many pages are in the object it may be cheaper to do one
1039 * or the other. we set "by_list" to true if we are using memq.
1040 * if the cost of a hash lookup was equal to the cost of the list
1041 * traversal we could compare the number of pages in the start->stop
1042 * range to the total number of pages in the object. however, it
1043 * seems that a hash table lookup is more expensive than the linked
1044 * list traversal, so we multiply the number of pages in the
1045 * range by an estimate of the relatively higher cost of the hash lookup.
1046 */
1047
1048 int
1049 genfs_putpages(void *v)
1050 {
1051 struct vop_putpages_args /* {
1052 struct vnode *a_vp;
1053 voff_t a_offlo;
1054 voff_t a_offhi;
1055 int a_flags;
1056 } */ *ap = v;
1057 struct vnode *vp = ap->a_vp;
1058 struct uvm_object *uobj = &vp->v_uobj;
1059 struct simplelock *slock = &uobj->vmobjlock;
1060 off_t startoff = ap->a_offlo;
1061 off_t endoff = ap->a_offhi;
1062 off_t off;
1063 int flags = ap->a_flags;
1064 /* Even for strange MAXPHYS, the shift rounds down to a page */
1065 const int maxpages = MAXPHYS >> PAGE_SHIFT;
1066 int i, s, error, npages, nback;
1067 int freeflag;
1068 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1069 boolean_t wasclean, by_list, needs_clean, yld;
1070 boolean_t async = (flags & PGO_SYNCIO) == 0;
1071 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1072 struct lwp *l = curlwp ? curlwp : &lwp0;
1073 struct genfs_node *gp = VTOG(vp);
1074 int dirtygen;
1075 boolean_t modified = FALSE;
1076 boolean_t cleanall;
1077
1078 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1079
1080 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1081 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1082 KASSERT(startoff < endoff || endoff == 0);
1083
1084 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1085 vp, uobj->uo_npages, startoff, endoff - startoff);
1086
1087 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1088 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1089 if (uobj->uo_npages == 0) {
1090 s = splbio();
1091 if (vp->v_flag & VONWORKLST) {
1092 vp->v_flag &= ~VWRITEMAPDIRTY;
1093 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1094 vp->v_flag &= ~VONWORKLST;
1095 LIST_REMOVE(vp, v_synclist);
1096 }
1097 }
1098 splx(s);
1099 simple_unlock(slock);
1100 return (0);
1101 }
1102
1103 /*
1104 * the vnode has pages, set up to process the request.
1105 */
1106
1107 error = 0;
1108 s = splbio();
1109 simple_lock(&global_v_numoutput_slock);
1110 wasclean = (vp->v_numoutput == 0);
1111 simple_unlock(&global_v_numoutput_slock);
1112 splx(s);
1113 off = startoff;
1114 if (endoff == 0 || flags & PGO_ALLPAGES) {
1115 endoff = trunc_page(LLONG_MAX);
1116 }
1117 by_list = (uobj->uo_npages <=
1118 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1119
1120 #if !defined(DEBUG)
1121 /*
1122 * if this vnode is known not to have dirty pages,
1123 * don't bother to clean it out.
1124 */
1125
1126 if ((vp->v_flag & VONWORKLST) == 0) {
1127 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1128 goto skip_scan;
1129 }
1130 flags &= ~PGO_CLEANIT;
1131 }
1132 #endif /* !defined(DEBUG) */
1133
1134 /*
1135 * start the loop. when scanning by list, hold the last page
1136 * in the list before we start. pages allocated after we start
1137 * will be added to the end of the list, so we can stop at the
1138 * current last page.
1139 */
1140
1141 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1142 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1143 (vp->v_flag & VONWORKLST) != 0;
1144 dirtygen = gp->g_dirtygen;
1145 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1146 if (by_list) {
1147 curmp.uobject = uobj;
1148 curmp.offset = (voff_t)-1;
1149 curmp.flags = PG_BUSY;
1150 endmp.uobject = uobj;
1151 endmp.offset = (voff_t)-1;
1152 endmp.flags = PG_BUSY;
1153 pg = TAILQ_FIRST(&uobj->memq);
1154 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1155 PHOLD(l);
1156 } else {
1157 pg = uvm_pagelookup(uobj, off);
1158 }
1159 nextpg = NULL;
1160 while (by_list || off < endoff) {
1161
1162 /*
1163 * if the current page is not interesting, move on to the next.
1164 */
1165
1166 KASSERT(pg == NULL || pg->uobject == uobj);
1167 KASSERT(pg == NULL ||
1168 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1169 (pg->flags & PG_BUSY) != 0);
1170 if (by_list) {
1171 if (pg == &endmp) {
1172 break;
1173 }
1174 if (pg->offset < startoff || pg->offset >= endoff ||
1175 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1176 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1177 wasclean = FALSE;
1178 }
1179 pg = TAILQ_NEXT(pg, listq);
1180 continue;
1181 }
1182 off = pg->offset;
1183 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1184 if (pg != NULL) {
1185 wasclean = FALSE;
1186 }
1187 off += PAGE_SIZE;
1188 if (off < endoff) {
1189 pg = uvm_pagelookup(uobj, off);
1190 }
1191 continue;
1192 }
1193
1194 /*
1195 * if the current page needs to be cleaned and it's busy,
1196 * wait for it to become unbusy.
1197 */
1198
1199 yld = (l->l_cpu->ci_schedstate.spc_flags &
1200 SPCF_SHOULDYIELD) && !pagedaemon;
1201 if (pg->flags & PG_BUSY || yld) {
1202 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1203 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1204 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1205 error = EDEADLK;
1206 break;
1207 }
1208 KASSERT(!pagedaemon);
1209 if (by_list) {
1210 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1211 UVMHIST_LOG(ubchist, "curmp next %p",
1212 TAILQ_NEXT(&curmp, listq), 0,0,0);
1213 }
1214 if (yld) {
1215 simple_unlock(slock);
1216 preempt(1);
1217 simple_lock(slock);
1218 } else {
1219 pg->flags |= PG_WANTED;
1220 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1221 simple_lock(slock);
1222 }
1223 if (by_list) {
1224 UVMHIST_LOG(ubchist, "after next %p",
1225 TAILQ_NEXT(&curmp, listq), 0,0,0);
1226 pg = TAILQ_NEXT(&curmp, listq);
1227 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1228 } else {
1229 pg = uvm_pagelookup(uobj, off);
1230 }
1231 continue;
1232 }
1233
1234 /*
1235 * if we're freeing, remove all mappings of the page now.
1236 * if we're cleaning, check if the page is needs to be cleaned.
1237 */
1238
1239 if (flags & PGO_FREE) {
1240 pmap_page_protect(pg, VM_PROT_NONE);
1241 } else if (flags & PGO_CLEANIT) {
1242
1243 /*
1244 * if we still have some hope to pull this vnode off
1245 * from the syncer queue, write-protect the page.
1246 */
1247
1248 if (cleanall && wasclean &&
1249 gp->g_dirtygen == dirtygen) {
1250
1251 /*
1252 * uobj pages get wired only by uvm_fault
1253 * where uobj is locked.
1254 */
1255
1256 if (pg->wire_count == 0) {
1257 pmap_page_protect(pg,
1258 VM_PROT_READ|VM_PROT_EXECUTE);
1259 } else {
1260 cleanall = FALSE;
1261 }
1262 }
1263 }
1264
1265 if (flags & PGO_CLEANIT) {
1266 needs_clean = pmap_clear_modify(pg) ||
1267 (pg->flags & PG_CLEAN) == 0;
1268 pg->flags |= PG_CLEAN;
1269 } else {
1270 needs_clean = FALSE;
1271 }
1272
1273 /*
1274 * if we're cleaning, build a cluster.
1275 * the cluster will consist of pages which are currently dirty,
1276 * but they will be returned to us marked clean.
1277 * if not cleaning, just operate on the one page.
1278 */
1279
1280 if (needs_clean) {
1281 KDASSERT((vp->v_flag & VONWORKLST));
1282 wasclean = FALSE;
1283 memset(pgs, 0, sizeof(pgs));
1284 pg->flags |= PG_BUSY;
1285 UVM_PAGE_OWN(pg, "genfs_putpages");
1286
1287 /*
1288 * first look backward.
1289 */
1290
1291 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1292 nback = npages;
1293 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1294 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1295 if (nback) {
1296 memmove(&pgs[0], &pgs[npages - nback],
1297 nback * sizeof(pgs[0]));
1298 if (npages - nback < nback)
1299 memset(&pgs[nback], 0,
1300 (npages - nback) * sizeof(pgs[0]));
1301 else
1302 memset(&pgs[npages - nback], 0,
1303 nback * sizeof(pgs[0]));
1304 }
1305
1306 /*
1307 * then plug in our page of interest.
1308 */
1309
1310 pgs[nback] = pg;
1311
1312 /*
1313 * then look forward to fill in the remaining space in
1314 * the array of pages.
1315 */
1316
1317 npages = maxpages - nback - 1;
1318 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1319 &pgs[nback + 1],
1320 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1321 npages += nback + 1;
1322 } else {
1323 pgs[0] = pg;
1324 npages = 1;
1325 nback = 0;
1326 }
1327
1328 /*
1329 * apply FREE or DEACTIVATE options if requested.
1330 */
1331
1332 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1333 uvm_lock_pageq();
1334 }
1335 for (i = 0; i < npages; i++) {
1336 tpg = pgs[i];
1337 KASSERT(tpg->uobject == uobj);
1338 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1339 pg = tpg;
1340 if (tpg->offset < startoff || tpg->offset >= endoff)
1341 continue;
1342 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1343 (void) pmap_clear_reference(tpg);
1344 uvm_pagedeactivate(tpg);
1345 } else if (flags & PGO_FREE) {
1346 pmap_page_protect(tpg, VM_PROT_NONE);
1347 if (tpg->flags & PG_BUSY) {
1348 tpg->flags |= freeflag;
1349 if (pagedaemon) {
1350 uvmexp.paging++;
1351 uvm_pagedequeue(tpg);
1352 }
1353 } else {
1354
1355 /*
1356 * ``page is not busy''
1357 * implies that npages is 1
1358 * and needs_clean is false.
1359 */
1360
1361 nextpg = TAILQ_NEXT(tpg, listq);
1362 uvm_pagefree(tpg);
1363 if (pagedaemon)
1364 uvmexp.pdfreed++;
1365 }
1366 }
1367 }
1368 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1369 uvm_unlock_pageq();
1370 }
1371 if (needs_clean) {
1372 modified = TRUE;
1373
1374 /*
1375 * start the i/o. if we're traversing by list,
1376 * keep our place in the list with a marker page.
1377 */
1378
1379 if (by_list) {
1380 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1381 listq);
1382 }
1383 simple_unlock(slock);
1384 error = GOP_WRITE(vp, pgs, npages, flags);
1385 simple_lock(slock);
1386 if (by_list) {
1387 pg = TAILQ_NEXT(&curmp, listq);
1388 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1389 }
1390 if (error) {
1391 break;
1392 }
1393 if (by_list) {
1394 continue;
1395 }
1396 }
1397
1398 /*
1399 * find the next page and continue if there was no error.
1400 */
1401
1402 if (by_list) {
1403 if (nextpg) {
1404 pg = nextpg;
1405 nextpg = NULL;
1406 } else {
1407 pg = TAILQ_NEXT(pg, listq);
1408 }
1409 } else {
1410 off += (npages - nback) << PAGE_SHIFT;
1411 if (off < endoff) {
1412 pg = uvm_pagelookup(uobj, off);
1413 }
1414 }
1415 }
1416 if (by_list) {
1417 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1418 PRELE(l);
1419 }
1420
1421 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1422 (vp->v_type != VBLK ||
1423 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1424 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1425 }
1426
1427 /*
1428 * if we're cleaning and there was nothing to clean,
1429 * take us off the syncer list. if we started any i/o
1430 * and we're doing sync i/o, wait for all writes to finish.
1431 */
1432
1433 s = splbio();
1434 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1435 (vp->v_flag & VONWORKLST) != 0) {
1436 vp->v_flag &= ~VWRITEMAPDIRTY;
1437 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1438 vp->v_flag &= ~VONWORKLST;
1439 LIST_REMOVE(vp, v_synclist);
1440 }
1441 }
1442 splx(s);
1443
1444 #if !defined(DEBUG)
1445 skip_scan:
1446 #endif /* !defined(DEBUG) */
1447 if (!wasclean && !async) {
1448 s = splbio();
1449 /*
1450 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1451 * but the slot in ltsleep() is taken!
1452 * XXX - try to recover from missed wakeups with a timeout..
1453 * must think of something better.
1454 */
1455 while (vp->v_numoutput != 0) {
1456 vp->v_flag |= VBWAIT;
1457 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1458 "genput2", hz);
1459 simple_lock(slock);
1460 }
1461 splx(s);
1462 }
1463 simple_unlock(&uobj->vmobjlock);
1464 return (error);
1465 }
1466
1467 int
1468 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1469 {
1470 off_t off;
1471 vaddr_t kva;
1472 size_t len;
1473 int error;
1474 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1475
1476 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1477 vp, pgs, npages, flags);
1478
1479 off = pgs[0]->offset;
1480 kva = uvm_pagermapin(pgs, npages,
1481 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1482 len = npages << PAGE_SHIFT;
1483
1484 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1485 uvm_aio_biodone);
1486
1487 return error;
1488 }
1489
1490 /*
1491 * Backend routine for doing I/O to vnode pages. Pages are already locked
1492 * and mapped into kernel memory. Here we just look up the underlying
1493 * device block addresses and call the strategy routine.
1494 */
1495
1496 static int
1497 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1498 enum uio_rw rw, void (*iodone)(struct buf *))
1499 {
1500 int s, error, run;
1501 int fs_bshift, dev_bshift;
1502 off_t eof, offset, startoffset;
1503 size_t bytes, iobytes, skipbytes;
1504 daddr_t lbn, blkno;
1505 struct buf *mbp, *bp;
1506 struct vnode *devvp;
1507 boolean_t async = (flags & PGO_SYNCIO) == 0;
1508 boolean_t write = rw == UIO_WRITE;
1509 int brw = write ? B_WRITE : B_READ;
1510 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1511
1512 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1513 vp, kva, len, flags);
1514
1515 GOP_SIZE(vp, vp->v_size, &eof, 0);
1516 if (vp->v_type != VBLK) {
1517 fs_bshift = vp->v_mount->mnt_fs_bshift;
1518 dev_bshift = vp->v_mount->mnt_dev_bshift;
1519 } else {
1520 fs_bshift = DEV_BSHIFT;
1521 dev_bshift = DEV_BSHIFT;
1522 }
1523 error = 0;
1524 startoffset = off;
1525 bytes = MIN(len, eof - startoffset);
1526 skipbytes = 0;
1527 KASSERT(bytes != 0);
1528
1529 if (write) {
1530 s = splbio();
1531 simple_lock(&global_v_numoutput_slock);
1532 vp->v_numoutput += 2;
1533 simple_unlock(&global_v_numoutput_slock);
1534 splx(s);
1535 }
1536 mbp = getiobuf();
1537 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1538 vp, mbp, vp->v_numoutput, bytes);
1539 mbp->b_bufsize = len;
1540 mbp->b_data = (void *)kva;
1541 mbp->b_resid = mbp->b_bcount = bytes;
1542 mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1543 mbp->b_iodone = iodone;
1544 mbp->b_vp = vp;
1545 if (curproc == uvm.pagedaemon_proc)
1546 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1547 else if (async)
1548 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1549 else
1550 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1551
1552 bp = NULL;
1553 for (offset = startoffset;
1554 bytes > 0;
1555 offset += iobytes, bytes -= iobytes) {
1556 lbn = offset >> fs_bshift;
1557 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1558 if (error) {
1559 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1560 skipbytes += bytes;
1561 bytes = 0;
1562 break;
1563 }
1564
1565 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1566 bytes);
1567 if (blkno == (daddr_t)-1) {
1568 if (!write) {
1569 memset((char *)kva + (offset - startoffset), 0,
1570 iobytes);
1571 }
1572 skipbytes += iobytes;
1573 continue;
1574 }
1575
1576 /* if it's really one i/o, don't make a second buf */
1577 if (offset == startoffset && iobytes == bytes) {
1578 bp = mbp;
1579 } else {
1580 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1581 vp, bp, vp->v_numoutput, 0);
1582 bp = getiobuf();
1583 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1584 }
1585 bp->b_lblkno = 0;
1586
1587 /* adjust physical blkno for partial blocks */
1588 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1589 dev_bshift);
1590 UVMHIST_LOG(ubchist,
1591 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1592 vp, offset, bp->b_bcount, bp->b_blkno);
1593
1594 VOP_STRATEGY(devvp, bp);
1595 }
1596 if (skipbytes) {
1597 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1598 }
1599 nestiobuf_done(mbp, skipbytes, error);
1600 if (async) {
1601 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1602 return (0);
1603 }
1604 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1605 error = biowait(mbp);
1606 (*iodone)(mbp);
1607 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1608 return (error);
1609 }
1610
1611 /*
1612 * VOP_PUTPAGES() for vnodes which never have pages.
1613 */
1614
1615 int
1616 genfs_null_putpages(void *v)
1617 {
1618 struct vop_putpages_args /* {
1619 struct vnode *a_vp;
1620 voff_t a_offlo;
1621 voff_t a_offhi;
1622 int a_flags;
1623 } */ *ap = v;
1624 struct vnode *vp = ap->a_vp;
1625
1626 KASSERT(vp->v_uobj.uo_npages == 0);
1627 simple_unlock(&vp->v_interlock);
1628 return (0);
1629 }
1630
1631 void
1632 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1633 {
1634 struct genfs_node *gp = VTOG(vp);
1635
1636 lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
1637 gp->g_op = ops;
1638 }
1639
1640 void
1641 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1642 {
1643 int bsize;
1644
1645 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1646 *eobp = (size + bsize - 1) & ~(bsize - 1);
1647 }
1648
1649 int
1650 genfs_compat_getpages(void *v)
1651 {
1652 struct vop_getpages_args /* {
1653 struct vnode *a_vp;
1654 voff_t a_offset;
1655 struct vm_page **a_m;
1656 int *a_count;
1657 int a_centeridx;
1658 vm_prot_t a_access_type;
1659 int a_advice;
1660 int a_flags;
1661 } */ *ap = v;
1662
1663 off_t origoffset;
1664 struct vnode *vp = ap->a_vp;
1665 struct uvm_object *uobj = &vp->v_uobj;
1666 struct vm_page *pg, **pgs;
1667 vaddr_t kva;
1668 int i, error, orignpages, npages;
1669 struct iovec iov;
1670 struct uio uio;
1671 kauth_cred_t cred = curlwp->l_cred;
1672 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1673
1674 error = 0;
1675 origoffset = ap->a_offset;
1676 orignpages = *ap->a_count;
1677 pgs = ap->a_m;
1678
1679 if (write && (vp->v_flag & VONWORKLST) == 0) {
1680 vn_syncer_add_to_worklist(vp, filedelay);
1681 }
1682 if (ap->a_flags & PGO_LOCKED) {
1683 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1684 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1685
1686 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1687 }
1688 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1689 simple_unlock(&uobj->vmobjlock);
1690 return (EINVAL);
1691 }
1692 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1693 simple_unlock(&uobj->vmobjlock);
1694 return 0;
1695 }
1696 npages = orignpages;
1697 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1698 simple_unlock(&uobj->vmobjlock);
1699 kva = uvm_pagermapin(pgs, npages,
1700 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1701 for (i = 0; i < npages; i++) {
1702 pg = pgs[i];
1703 if ((pg->flags & PG_FAKE) == 0) {
1704 continue;
1705 }
1706 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1707 iov.iov_len = PAGE_SIZE;
1708 uio.uio_iov = &iov;
1709 uio.uio_iovcnt = 1;
1710 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1711 uio.uio_rw = UIO_READ;
1712 uio.uio_resid = PAGE_SIZE;
1713 UIO_SETUP_SYSSPACE(&uio);
1714 /* XXX vn_lock */
1715 error = VOP_READ(vp, &uio, 0, cred);
1716 if (error) {
1717 break;
1718 }
1719 if (uio.uio_resid) {
1720 memset(iov.iov_base, 0, uio.uio_resid);
1721 }
1722 }
1723 uvm_pagermapout(kva, npages);
1724 simple_lock(&uobj->vmobjlock);
1725 uvm_lock_pageq();
1726 for (i = 0; i < npages; i++) {
1727 pg = pgs[i];
1728 if (error && (pg->flags & PG_FAKE) != 0) {
1729 pg->flags |= PG_RELEASED;
1730 } else {
1731 pmap_clear_modify(pg);
1732 uvm_pageactivate(pg);
1733 }
1734 }
1735 if (error) {
1736 uvm_page_unbusy(pgs, npages);
1737 }
1738 uvm_unlock_pageq();
1739 simple_unlock(&uobj->vmobjlock);
1740 return (error);
1741 }
1742
1743 int
1744 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1745 int flags)
1746 {
1747 off_t offset;
1748 struct iovec iov;
1749 struct uio uio;
1750 kauth_cred_t cred = curlwp->l_cred;
1751 struct buf *bp;
1752 vaddr_t kva;
1753 int s, error;
1754
1755 offset = pgs[0]->offset;
1756 kva = uvm_pagermapin(pgs, npages,
1757 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1758
1759 iov.iov_base = (void *)kva;
1760 iov.iov_len = npages << PAGE_SHIFT;
1761 uio.uio_iov = &iov;
1762 uio.uio_iovcnt = 1;
1763 uio.uio_offset = offset;
1764 uio.uio_rw = UIO_WRITE;
1765 uio.uio_resid = npages << PAGE_SHIFT;
1766 UIO_SETUP_SYSSPACE(&uio);
1767 /* XXX vn_lock */
1768 error = VOP_WRITE(vp, &uio, 0, cred);
1769
1770 s = splbio();
1771 V_INCR_NUMOUTPUT(vp);
1772 splx(s);
1773
1774 bp = getiobuf();
1775 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1776 bp->b_vp = vp;
1777 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1778 bp->b_data = (char *)kva;
1779 bp->b_bcount = npages << PAGE_SHIFT;
1780 bp->b_bufsize = npages << PAGE_SHIFT;
1781 bp->b_resid = 0;
1782 if (error) {
1783 bp->b_flags |= B_ERROR;
1784 bp->b_error = error;
1785 }
1786 uvm_aio_aiodone(bp);
1787 return (error);
1788 }
1789
1790 /*
1791 * Process a uio using direct I/O. If we reach a part of the request
1792 * which cannot be processed in this fashion for some reason, just return.
1793 * The caller must handle some additional part of the request using
1794 * buffered I/O before trying direct I/O again.
1795 */
1796
1797 void
1798 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1799 {
1800 struct vmspace *vs;
1801 struct iovec *iov;
1802 vaddr_t va;
1803 size_t len;
1804 const int mask = DEV_BSIZE - 1;
1805 int error;
1806
1807 /*
1808 * We only support direct I/O to user space for now.
1809 */
1810
1811 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1812 return;
1813 }
1814
1815 /*
1816 * If the vnode is mapped, we would need to get the getpages lock
1817 * to stabilize the bmap, but then we would get into trouble whil e
1818 * locking the pages if the pages belong to this same vnode (or a
1819 * multi-vnode cascade to the same effect). Just fall back to
1820 * buffered I/O if the vnode is mapped to avoid this mess.
1821 */
1822
1823 if (vp->v_flag & VMAPPED) {
1824 return;
1825 }
1826
1827 /*
1828 * Do as much of the uio as possible with direct I/O.
1829 */
1830
1831 vs = uio->uio_vmspace;
1832 while (uio->uio_resid) {
1833 iov = uio->uio_iov;
1834 if (iov->iov_len == 0) {
1835 uio->uio_iov++;
1836 uio->uio_iovcnt--;
1837 continue;
1838 }
1839 va = (vaddr_t)iov->iov_base;
1840 len = MIN(iov->iov_len, genfs_maxdio);
1841 len &= ~mask;
1842
1843 /*
1844 * If the next chunk is smaller than DEV_BSIZE or extends past
1845 * the current EOF, then fall back to buffered I/O.
1846 */
1847
1848 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1849 return;
1850 }
1851
1852 /*
1853 * Check alignment. The file offset must be at least
1854 * sector-aligned. The exact constraint on memory alignment
1855 * is very hardware-dependent, but requiring sector-aligned
1856 * addresses there too is safe.
1857 */
1858
1859 if (uio->uio_offset & mask || va & mask) {
1860 return;
1861 }
1862 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1863 uio->uio_rw);
1864 if (error) {
1865 break;
1866 }
1867 iov->iov_base = (caddr_t)iov->iov_base + len;
1868 iov->iov_len -= len;
1869 uio->uio_offset += len;
1870 uio->uio_resid -= len;
1871 }
1872 }
1873
1874 /*
1875 * Iodone routine for direct I/O. We don't do much here since the request is
1876 * always synchronous, so the caller will do most of the work after biowait().
1877 */
1878
1879 static void
1880 genfs_dio_iodone(struct buf *bp)
1881 {
1882 int s;
1883
1884 KASSERT((bp->b_flags & B_ASYNC) == 0);
1885 s = splbio();
1886 if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1887 vwakeup(bp);
1888 }
1889 putiobuf(bp);
1890 splx(s);
1891 }
1892
1893 /*
1894 * Process one chunk of a direct I/O request.
1895 */
1896
1897 static int
1898 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1899 off_t off, enum uio_rw rw)
1900 {
1901 struct vm_map *map;
1902 struct pmap *upm, *kpm;
1903 size_t klen = round_page(uva + len) - trunc_page(uva);
1904 off_t spoff, epoff;
1905 vaddr_t kva, puva;
1906 paddr_t pa;
1907 vm_prot_t prot;
1908 int error, rv, poff, koff;
1909 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1910 (rw == UIO_WRITE ? PGO_FREE : 0);
1911
1912 /*
1913 * For writes, verify that this range of the file already has fully
1914 * allocated backing store. If there are any holes, just punt and
1915 * make the caller take the buffered write path.
1916 */
1917
1918 if (rw == UIO_WRITE) {
1919 daddr_t lbn, elbn, blkno;
1920 int bsize, bshift, run;
1921
1922 bshift = vp->v_mount->mnt_fs_bshift;
1923 bsize = 1 << bshift;
1924 lbn = off >> bshift;
1925 elbn = (off + len + bsize - 1) >> bshift;
1926 while (lbn < elbn) {
1927 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1928 if (error) {
1929 return error;
1930 }
1931 if (blkno == (daddr_t)-1) {
1932 return ENOSPC;
1933 }
1934 lbn += 1 + run;
1935 }
1936 }
1937
1938 /*
1939 * Flush any cached pages for parts of the file that we're about to
1940 * access. If we're writing, invalidate pages as well.
1941 */
1942
1943 spoff = trunc_page(off);
1944 epoff = round_page(off + len);
1945 simple_lock(&vp->v_interlock);
1946 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1947 if (error) {
1948 return error;
1949 }
1950
1951 /*
1952 * Wire the user pages and remap them into kernel memory.
1953 */
1954
1955 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1956 error = uvm_vslock(vs, (void *)uva, len, prot);
1957 if (error) {
1958 return error;
1959 }
1960
1961 map = &vs->vm_map;
1962 upm = vm_map_pmap(map);
1963 kpm = vm_map_pmap(kernel_map);
1964 kva = uvm_km_alloc(kernel_map, klen, 0,
1965 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1966 puva = trunc_page(uva);
1967 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1968 rv = pmap_extract(upm, puva + poff, &pa);
1969 KASSERT(rv);
1970 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1971 }
1972 pmap_update(kpm);
1973
1974 /*
1975 * Do the I/O.
1976 */
1977
1978 koff = uva - trunc_page(uva);
1979 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1980 genfs_dio_iodone);
1981
1982 /*
1983 * Tear down the kernel mapping.
1984 */
1985
1986 pmap_remove(kpm, kva, kva + klen);
1987 pmap_update(kpm);
1988 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1989
1990 /*
1991 * Unwire the user pages.
1992 */
1993
1994 uvm_vsunlock(vs, (void *)uva, len);
1995 return error;
1996 }
1997
1998
1999 static void
2000 filt_genfsdetach(struct knote *kn)
2001 {
2002 struct vnode *vp = (struct vnode *)kn->kn_hook;
2003
2004 /* XXXLUKEM lock the struct? */
2005 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
2006 }
2007
2008 static int
2009 filt_genfsread(struct knote *kn, long hint)
2010 {
2011 struct vnode *vp = (struct vnode *)kn->kn_hook;
2012
2013 /*
2014 * filesystem is gone, so set the EOF flag and schedule
2015 * the knote for deletion.
2016 */
2017 if (hint == NOTE_REVOKE) {
2018 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2019 return (1);
2020 }
2021
2022 /* XXXLUKEM lock the struct? */
2023 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
2024 return (kn->kn_data != 0);
2025 }
2026
2027 static int
2028 filt_genfsvnode(struct knote *kn, long hint)
2029 {
2030
2031 if (kn->kn_sfflags & hint)
2032 kn->kn_fflags |= hint;
2033 if (hint == NOTE_REVOKE) {
2034 kn->kn_flags |= EV_EOF;
2035 return (1);
2036 }
2037 return (kn->kn_fflags != 0);
2038 }
2039
2040 static const struct filterops genfsread_filtops =
2041 { 1, NULL, filt_genfsdetach, filt_genfsread };
2042 static const struct filterops genfsvnode_filtops =
2043 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
2044
2045 int
2046 genfs_kqfilter(void *v)
2047 {
2048 struct vop_kqfilter_args /* {
2049 struct vnode *a_vp;
2050 struct knote *a_kn;
2051 } */ *ap = v;
2052 struct vnode *vp;
2053 struct knote *kn;
2054
2055 vp = ap->a_vp;
2056 kn = ap->a_kn;
2057 switch (kn->kn_filter) {
2058 case EVFILT_READ:
2059 kn->kn_fop = &genfsread_filtops;
2060 break;
2061 case EVFILT_VNODE:
2062 kn->kn_fop = &genfsvnode_filtops;
2063 break;
2064 default:
2065 return (1);
2066 }
2067
2068 kn->kn_hook = vp;
2069
2070 /* XXXLUKEM lock the struct? */
2071 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2072
2073 return (0);
2074 }
2075