Home | History | Annotate | Line # | Download | only in genfs
genfs_vnops.c revision 1.144
      1 /*	$NetBSD: genfs_vnops.c,v 1.144 2007/01/29 15:42:50 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.144 2007/01/29 15:42:50 hannken Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 
     51 #include <miscfs/genfs/genfs.h>
     52 #include <miscfs/genfs/genfs_node.h>
     53 #include <miscfs/specfs/specdev.h>
     54 
     55 #include <uvm/uvm.h>
     56 #include <uvm/uvm_pager.h>
     57 
     58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     59     off_t, enum uio_rw);
     60 static void genfs_dio_iodone(struct buf *);
     61 
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static inline void genfs_rel_pages(struct vm_page **, int);
     65 static void filt_genfsdetach(struct knote *);
     66 static int filt_genfsread(struct knote *, long);
     67 static int filt_genfsvnode(struct knote *, long);
     68 
     69 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
     70 
     71 int genfs_maxdio = MAXPHYS;
     72 
     73 int
     74 genfs_poll(void *v)
     75 {
     76 	struct vop_poll_args /* {
     77 		struct vnode *a_vp;
     78 		int a_events;
     79 		struct lwp *a_l;
     80 	} */ *ap = v;
     81 
     82 	return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
     83 }
     84 
     85 int
     86 genfs_seek(void *v)
     87 {
     88 	struct vop_seek_args /* {
     89 		struct vnode *a_vp;
     90 		off_t a_oldoff;
     91 		off_t a_newoff;
     92 		kauth_cred_t cred;
     93 	} */ *ap = v;
     94 
     95 	if (ap->a_newoff < 0)
     96 		return (EINVAL);
     97 
     98 	return (0);
     99 }
    100 
    101 int
    102 genfs_abortop(void *v)
    103 {
    104 	struct vop_abortop_args /* {
    105 		struct vnode *a_dvp;
    106 		struct componentname *a_cnp;
    107 	} */ *ap = v;
    108 
    109 	if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
    110 		PNBUF_PUT(ap->a_cnp->cn_pnbuf);
    111 	return (0);
    112 }
    113 
    114 int
    115 genfs_fcntl(void *v)
    116 {
    117 	struct vop_fcntl_args /* {
    118 		struct vnode *a_vp;
    119 		u_int a_command;
    120 		caddr_t a_data;
    121 		int a_fflag;
    122 		kauth_cred_t a_cred;
    123 		struct lwp *a_l;
    124 	} */ *ap = v;
    125 
    126 	if (ap->a_command == F_SETFL)
    127 		return (0);
    128 	else
    129 		return (EOPNOTSUPP);
    130 }
    131 
    132 /*ARGSUSED*/
    133 int
    134 genfs_badop(void *v)
    135 {
    136 
    137 	panic("genfs: bad op");
    138 }
    139 
    140 /*ARGSUSED*/
    141 int
    142 genfs_nullop(void *v)
    143 {
    144 
    145 	return (0);
    146 }
    147 
    148 /*ARGSUSED*/
    149 int
    150 genfs_einval(void *v)
    151 {
    152 
    153 	return (EINVAL);
    154 }
    155 
    156 /*
    157  * Called when an fs doesn't support a particular vop.
    158  * This takes care to vrele, vput, or vunlock passed in vnodes.
    159  */
    160 int
    161 genfs_eopnotsupp(void *v)
    162 {
    163 	struct vop_generic_args /*
    164 		struct vnodeop_desc *a_desc;
    165 		/ * other random data follows, presumably * /
    166 	} */ *ap = v;
    167 	struct vnodeop_desc *desc = ap->a_desc;
    168 	struct vnode *vp, *vp_last = NULL;
    169 	int flags, i, j, offset;
    170 
    171 	flags = desc->vdesc_flags;
    172 	for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
    173 		if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
    174 			break;	/* stop at end of list */
    175 		if ((j = flags & VDESC_VP0_WILLPUT)) {
    176 			vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
    177 
    178 			/* Skip if NULL */
    179 			if (!vp)
    180 				continue;
    181 
    182 			switch (j) {
    183 			case VDESC_VP0_WILLPUT:
    184 				/* Check for dvp == vp cases */
    185 				if (vp == vp_last)
    186 					vrele(vp);
    187 				else {
    188 					vput(vp);
    189 					vp_last = vp;
    190 				}
    191 				break;
    192 			case VDESC_VP0_WILLUNLOCK:
    193 				VOP_UNLOCK(vp, 0);
    194 				break;
    195 			case VDESC_VP0_WILLRELE:
    196 				vrele(vp);
    197 				break;
    198 			}
    199 		}
    200 	}
    201 
    202 	return (EOPNOTSUPP);
    203 }
    204 
    205 /*ARGSUSED*/
    206 int
    207 genfs_ebadf(void *v)
    208 {
    209 
    210 	return (EBADF);
    211 }
    212 
    213 /* ARGSUSED */
    214 int
    215 genfs_enoioctl(void *v)
    216 {
    217 
    218 	return (EPASSTHROUGH);
    219 }
    220 
    221 
    222 /*
    223  * Eliminate all activity associated with the requested vnode
    224  * and with all vnodes aliased to the requested vnode.
    225  */
    226 int
    227 genfs_revoke(void *v)
    228 {
    229 	struct vop_revoke_args /* {
    230 		struct vnode *a_vp;
    231 		int a_flags;
    232 	} */ *ap = v;
    233 	struct vnode *vp, *vq;
    234 	struct lwp *l = curlwp;		/* XXX */
    235 
    236 #ifdef DIAGNOSTIC
    237 	if ((ap->a_flags & REVOKEALL) == 0)
    238 		panic("genfs_revoke: not revokeall");
    239 #endif
    240 
    241 	vp = ap->a_vp;
    242 	simple_lock(&vp->v_interlock);
    243 
    244 	if (vp->v_flag & VALIASED) {
    245 		/*
    246 		 * If a vgone (or vclean) is already in progress,
    247 		 * wait until it is done and return.
    248 		 */
    249 		if (vp->v_flag & VXLOCK) {
    250 			vp->v_flag |= VXWANT;
    251 			ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
    252 				&vp->v_interlock);
    253 			return (0);
    254 		}
    255 		/*
    256 		 * Ensure that vp will not be vgone'd while we
    257 		 * are eliminating its aliases.
    258 		 */
    259 		vp->v_flag |= VXLOCK;
    260 		simple_unlock(&vp->v_interlock);
    261 		while (vp->v_flag & VALIASED) {
    262 			simple_lock(&spechash_slock);
    263 			for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
    264 				if (vq->v_rdev != vp->v_rdev ||
    265 				    vq->v_type != vp->v_type || vp == vq)
    266 					continue;
    267 				simple_unlock(&spechash_slock);
    268 				vgone(vq);
    269 				break;
    270 			}
    271 			if (vq == NULLVP)
    272 				simple_unlock(&spechash_slock);
    273 		}
    274 		/*
    275 		 * Remove the lock so that vgone below will
    276 		 * really eliminate the vnode after which time
    277 		 * vgone will awaken any sleepers.
    278 		 */
    279 		simple_lock(&vp->v_interlock);
    280 		vp->v_flag &= ~VXLOCK;
    281 	}
    282 	vgonel(vp, l);
    283 	return (0);
    284 }
    285 
    286 /*
    287  * Lock the node.
    288  */
    289 int
    290 genfs_lock(void *v)
    291 {
    292 	struct vop_lock_args /* {
    293 		struct vnode *a_vp;
    294 		int a_flags;
    295 	} */ *ap = v;
    296 	struct vnode *vp = ap->a_vp;
    297 
    298 	return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
    299 }
    300 
    301 /*
    302  * Unlock the node.
    303  */
    304 int
    305 genfs_unlock(void *v)
    306 {
    307 	struct vop_unlock_args /* {
    308 		struct vnode *a_vp;
    309 		int a_flags;
    310 	} */ *ap = v;
    311 	struct vnode *vp = ap->a_vp;
    312 
    313 	return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
    314 	    &vp->v_interlock));
    315 }
    316 
    317 /*
    318  * Return whether or not the node is locked.
    319  */
    320 int
    321 genfs_islocked(void *v)
    322 {
    323 	struct vop_islocked_args /* {
    324 		struct vnode *a_vp;
    325 	} */ *ap = v;
    326 	struct vnode *vp = ap->a_vp;
    327 
    328 	return (lockstatus(vp->v_vnlock));
    329 }
    330 
    331 /*
    332  * Stubs to use when there is no locking to be done on the underlying object.
    333  */
    334 int
    335 genfs_nolock(void *v)
    336 {
    337 	struct vop_lock_args /* {
    338 		struct vnode *a_vp;
    339 		int a_flags;
    340 		struct lwp *a_l;
    341 	} */ *ap = v;
    342 
    343 	/*
    344 	 * Since we are not using the lock manager, we must clear
    345 	 * the interlock here.
    346 	 */
    347 	if (ap->a_flags & LK_INTERLOCK)
    348 		simple_unlock(&ap->a_vp->v_interlock);
    349 	return (0);
    350 }
    351 
    352 int
    353 genfs_nounlock(void *v)
    354 {
    355 
    356 	return (0);
    357 }
    358 
    359 int
    360 genfs_noislocked(void *v)
    361 {
    362 
    363 	return (0);
    364 }
    365 
    366 /*
    367  * Local lease check.
    368  */
    369 int
    370 genfs_lease_check(void *v)
    371 {
    372 
    373 	return (0);
    374 }
    375 
    376 int
    377 genfs_mmap(void *v)
    378 {
    379 
    380 	return (0);
    381 }
    382 
    383 static inline void
    384 genfs_rel_pages(struct vm_page **pgs, int npages)
    385 {
    386 	int i;
    387 
    388 	for (i = 0; i < npages; i++) {
    389 		struct vm_page *pg = pgs[i];
    390 
    391 		if (pg == NULL || pg == PGO_DONTCARE)
    392 			continue;
    393 		if (pg->flags & PG_FAKE) {
    394 			pg->flags |= PG_RELEASED;
    395 		}
    396 	}
    397 	uvm_lock_pageq();
    398 	uvm_page_unbusy(pgs, npages);
    399 	uvm_unlock_pageq();
    400 }
    401 
    402 /*
    403  * generic VM getpages routine.
    404  * Return PG_BUSY pages for the given range,
    405  * reading from backing store if necessary.
    406  */
    407 
    408 int
    409 genfs_getpages(void *v)
    410 {
    411 	struct vop_getpages_args /* {
    412 		struct vnode *a_vp;
    413 		voff_t a_offset;
    414 		struct vm_page **a_m;
    415 		int *a_count;
    416 		int a_centeridx;
    417 		vm_prot_t a_access_type;
    418 		int a_advice;
    419 		int a_flags;
    420 	} */ *ap = v;
    421 
    422 	off_t newsize, diskeof, memeof;
    423 	off_t offset, origoffset, startoffset, endoffset;
    424 	daddr_t lbn, blkno;
    425 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    426 	int fs_bshift, fs_bsize, dev_bshift;
    427 	int flags = ap->a_flags;
    428 	size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
    429 	vaddr_t kva;
    430 	struct buf *bp, *mbp;
    431 	struct vnode *vp = ap->a_vp;
    432 	struct vnode *devvp;
    433 	struct genfs_node *gp = VTOG(vp);
    434 	struct uvm_object *uobj = &vp->v_uobj;
    435 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
    436 	int pgs_size;
    437 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    438 	boolean_t async = (flags & PGO_SYNCIO) == 0;
    439 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    440 	boolean_t sawhole = FALSE;
    441 	boolean_t has_trans = FALSE;
    442 	boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
    443 	boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    444 	voff_t origvsize;
    445 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    446 
    447 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    448 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    449 
    450 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    451 	    vp->v_type == VLNK || vp->v_type == VBLK);
    452 
    453 	/* XXXUBC temp limit */
    454 	if (*ap->a_count > MAX_READ_PAGES) {
    455 		panic("genfs_getpages: too many pages");
    456 	}
    457 
    458 	pgs = pgs_onstack;
    459 	pgs_size = sizeof(pgs_onstack);
    460 
    461 startover:
    462 	error = 0;
    463 	origvsize = vp->v_size;
    464 	origoffset = ap->a_offset;
    465 	orignpages = *ap->a_count;
    466 	GOP_SIZE(vp, vp->v_size, &diskeof, 0);
    467 	if (flags & PGO_PASTEOF) {
    468 		newsize = MAX(vp->v_size,
    469 		    origoffset + (orignpages << PAGE_SHIFT));
    470 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    471 	} else {
    472 		GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
    473 	}
    474 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    475 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    476 	KASSERT(orignpages > 0);
    477 
    478 	/*
    479 	 * Bounds-check the request.
    480 	 */
    481 
    482 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    483 		if ((flags & PGO_LOCKED) == 0) {
    484 			simple_unlock(&uobj->vmobjlock);
    485 		}
    486 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    487 		    origoffset, *ap->a_count, memeof,0);
    488 		error = EINVAL;
    489 		goto out_err;
    490 	}
    491 
    492 	/* uobj is locked */
    493 
    494 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    495 	    (vp->v_type != VBLK ||
    496 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    497 		int updflags = 0;
    498 
    499 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    500 			updflags = GOP_UPDATE_ACCESSED;
    501 		}
    502 		if (write) {
    503 			updflags |= GOP_UPDATE_MODIFIED;
    504 		}
    505 		if (updflags != 0) {
    506 			GOP_MARKUPDATE(vp, updflags);
    507 		}
    508 	}
    509 
    510 	if (write) {
    511 		gp->g_dirtygen++;
    512 		if ((vp->v_flag & VONWORKLST) == 0) {
    513 			vn_syncer_add_to_worklist(vp, filedelay);
    514 		}
    515 		if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
    516 			vp->v_flag |= VWRITEMAPDIRTY;
    517 		}
    518 	}
    519 
    520 	/*
    521 	 * For PGO_LOCKED requests, just return whatever's in memory.
    522 	 */
    523 
    524 	if (flags & PGO_LOCKED) {
    525 		int nfound;
    526 
    527 		npages = *ap->a_count;
    528 #if defined(DEBUG)
    529 		for (i = 0; i < npages; i++) {
    530 			pg = ap->a_m[i];
    531 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    532 		}
    533 #endif /* defined(DEBUG) */
    534 		nfound = uvn_findpages(uobj, origoffset, &npages,
    535 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    536 		KASSERT(npages == *ap->a_count);
    537 		if (nfound == 0) {
    538 			error = EBUSY;
    539 			goto out_err;
    540 		}
    541 		if (lockmgr(&gp->g_glock, LK_SHARED | LK_NOWAIT, NULL)) {
    542 			genfs_rel_pages(ap->a_m, npages);
    543 
    544 			/*
    545 			 * restore the array.
    546 			 */
    547 
    548 			for (i = 0; i < npages; i++) {
    549 				pg = ap->a_m[i];
    550 
    551 				if (pg != NULL || pg != PGO_DONTCARE) {
    552 					ap->a_m[i] = NULL;
    553 				}
    554 			}
    555 		} else {
    556 			lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    557 		}
    558 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    559 		goto out_err;
    560 	}
    561 	simple_unlock(&uobj->vmobjlock);
    562 
    563 	/*
    564 	 * find the requested pages and make some simple checks.
    565 	 * leave space in the page array for a whole block.
    566 	 */
    567 
    568 	if (vp->v_type != VBLK) {
    569 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    570 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    571 	} else {
    572 		fs_bshift = DEV_BSHIFT;
    573 		dev_bshift = DEV_BSHIFT;
    574 	}
    575 	fs_bsize = 1 << fs_bshift;
    576 
    577 	orignpages = MIN(orignpages,
    578 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    579 	npages = orignpages;
    580 	startoffset = origoffset & ~(fs_bsize - 1);
    581 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    582 	    fs_bsize - 1) & ~(fs_bsize - 1));
    583 	endoffset = MIN(endoffset, round_page(memeof));
    584 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    585 
    586 	pgs_size = sizeof(struct vm_page *) *
    587 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    588 	if (pgs_size > sizeof(pgs_onstack)) {
    589 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    590 		if (pgs == NULL) {
    591 			pgs = pgs_onstack;
    592 			error = ENOMEM;
    593 			goto out_err;
    594 		}
    595 	} else {
    596 		/* pgs == pgs_onstack */
    597 		memset(pgs, 0, pgs_size);
    598 	}
    599 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    600 	    ridx, npages, startoffset, endoffset);
    601 
    602 	if (!has_trans &&
    603 	    (error = fstrans_start(vp->v_mount, FSTRANS_SHARED)) != 0) {
    604 		goto out_err;
    605 	}
    606 	has_trans = TRUE;
    607 
    608 	/*
    609 	 * hold g_glock to prevent a race with truncate.
    610 	 *
    611 	 * check if our idea of v_size is still valid.
    612 	 */
    613 
    614 	if (blockalloc) {
    615 		lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
    616 	} else {
    617 		lockmgr(&gp->g_glock, LK_SHARED, NULL);
    618 	}
    619 	simple_lock(&uobj->vmobjlock);
    620 	if (vp->v_size < origvsize) {
    621 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    622 		if (pgs != pgs_onstack)
    623 			kmem_free(pgs, pgs_size);
    624 		goto startover;
    625 	}
    626 
    627 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    628 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    629 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    630 		KASSERT(async != 0);
    631 		genfs_rel_pages(&pgs[ridx], orignpages);
    632 		simple_unlock(&uobj->vmobjlock);
    633 		error = EBUSY;
    634 		goto out_err;
    635 	}
    636 
    637 	/*
    638 	 * if the pages are already resident, just return them.
    639 	 */
    640 
    641 	for (i = 0; i < npages; i++) {
    642 		struct vm_page *pg1 = pgs[ridx + i];
    643 
    644 		if ((pg1->flags & PG_FAKE) ||
    645 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    646 			break;
    647 		}
    648 	}
    649 	if (i == npages) {
    650 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    651 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    652 		npages += ridx;
    653 		goto out;
    654 	}
    655 
    656 	/*
    657 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    658 	 */
    659 
    660 	if (overwrite) {
    661 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    662 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    663 
    664 		for (i = 0; i < npages; i++) {
    665 			struct vm_page *pg1 = pgs[ridx + i];
    666 
    667 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    668 		}
    669 		npages += ridx;
    670 		goto out;
    671 	}
    672 
    673 	/*
    674 	 * the page wasn't resident and we're not overwriting,
    675 	 * so we're going to have to do some i/o.
    676 	 * find any additional pages needed to cover the expanded range.
    677 	 */
    678 
    679 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    680 	if (startoffset != origoffset || npages != orignpages) {
    681 
    682 		/*
    683 		 * we need to avoid deadlocks caused by locking
    684 		 * additional pages at lower offsets than pages we
    685 		 * already have locked.  unlock them all and start over.
    686 		 */
    687 
    688 		genfs_rel_pages(&pgs[ridx], orignpages);
    689 		memset(pgs, 0, pgs_size);
    690 
    691 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    692 		    startoffset, endoffset, 0,0);
    693 		npgs = npages;
    694 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    695 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    696 			lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    697 			KASSERT(async != 0);
    698 			genfs_rel_pages(pgs, npages);
    699 			simple_unlock(&uobj->vmobjlock);
    700 			error = EBUSY;
    701 			goto out_err;
    702 		}
    703 	}
    704 	simple_unlock(&uobj->vmobjlock);
    705 
    706 	/*
    707 	 * read the desired page(s).
    708 	 */
    709 
    710 	totalbytes = npages << PAGE_SHIFT;
    711 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    712 	tailbytes = totalbytes - bytes;
    713 	skipbytes = 0;
    714 
    715 	kva = uvm_pagermapin(pgs, npages,
    716 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    717 
    718 	mbp = getiobuf();
    719 	mbp->b_bufsize = totalbytes;
    720 	mbp->b_data = (void *)kva;
    721 	mbp->b_resid = mbp->b_bcount = bytes;
    722 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    723 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    724 	mbp->b_vp = vp;
    725 	if (async)
    726 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    727 	else
    728 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    729 
    730 	/*
    731 	 * if EOF is in the middle of the range, zero the part past EOF.
    732 	 * if the page including EOF is not PG_FAKE, skip over it since
    733 	 * in that case it has valid data that we need to preserve.
    734 	 */
    735 
    736 	if (tailbytes > 0) {
    737 		size_t tailstart = bytes;
    738 
    739 		if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
    740 			tailstart = round_page(tailstart);
    741 			tailbytes -= tailstart - bytes;
    742 		}
    743 		UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    744 		    kva, tailstart, tailbytes,0);
    745 		memset((void *)(kva + tailstart), 0, tailbytes);
    746 	}
    747 
    748 	/*
    749 	 * now loop over the pages, reading as needed.
    750 	 */
    751 
    752 	bp = NULL;
    753 	for (offset = startoffset;
    754 	    bytes > 0;
    755 	    offset += iobytes, bytes -= iobytes) {
    756 
    757 		/*
    758 		 * skip pages which don't need to be read.
    759 		 */
    760 
    761 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    762 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    763 			size_t b;
    764 
    765 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    766 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    767 				sawhole = TRUE;
    768 			}
    769 			b = MIN(PAGE_SIZE, bytes);
    770 			offset += b;
    771 			bytes -= b;
    772 			skipbytes += b;
    773 			pidx++;
    774 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    775 			    offset, 0,0,0);
    776 			if (bytes == 0) {
    777 				goto loopdone;
    778 			}
    779 		}
    780 
    781 		/*
    782 		 * bmap the file to find out the blkno to read from and
    783 		 * how much we can read in one i/o.  if bmap returns an error,
    784 		 * skip the rest of the top-level i/o.
    785 		 */
    786 
    787 		lbn = offset >> fs_bshift;
    788 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    789 		if (error) {
    790 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    791 			    lbn, error,0,0);
    792 			skipbytes += bytes;
    793 			goto loopdone;
    794 		}
    795 
    796 		/*
    797 		 * see how many pages can be read with this i/o.
    798 		 * reduce the i/o size if necessary to avoid
    799 		 * overwriting pages with valid data.
    800 		 */
    801 
    802 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    803 		    bytes);
    804 		if (offset + iobytes > round_page(offset)) {
    805 			pcount = 1;
    806 			while (pidx + pcount < npages &&
    807 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    808 				pcount++;
    809 			}
    810 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    811 			    (offset - trunc_page(offset)));
    812 		}
    813 
    814 		/*
    815 		 * if this block isn't allocated, zero it instead of
    816 		 * reading it.  unless we are going to allocate blocks,
    817 		 * mark the pages we zeroed PG_RDONLY.
    818 		 */
    819 
    820 		if (blkno < 0) {
    821 			int holepages = (round_page(offset + iobytes) -
    822 			    trunc_page(offset)) >> PAGE_SHIFT;
    823 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    824 
    825 			sawhole = TRUE;
    826 			memset((char *)kva + (offset - startoffset), 0,
    827 			    iobytes);
    828 			skipbytes += iobytes;
    829 
    830 			for (i = 0; i < holepages; i++) {
    831 				if (write) {
    832 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    833 				}
    834 				if (!blockalloc) {
    835 					pgs[pidx + i]->flags |= PG_RDONLY;
    836 				}
    837 			}
    838 			continue;
    839 		}
    840 
    841 		/*
    842 		 * allocate a sub-buf for this piece of the i/o
    843 		 * (or just use mbp if there's only 1 piece),
    844 		 * and start it going.
    845 		 */
    846 
    847 		if (offset == startoffset && iobytes == bytes) {
    848 			bp = mbp;
    849 		} else {
    850 			bp = getiobuf();
    851 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    852 		}
    853 		bp->b_lblkno = 0;
    854 
    855 		/* adjust physical blkno for partial blocks */
    856 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    857 		    dev_bshift);
    858 
    859 		UVMHIST_LOG(ubchist,
    860 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    861 		    bp, offset, iobytes, bp->b_blkno);
    862 
    863 		VOP_STRATEGY(devvp, bp);
    864 	}
    865 
    866 loopdone:
    867 	nestiobuf_done(mbp, skipbytes, error);
    868 	if (async) {
    869 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    870 		lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    871 		error = 0;
    872 		goto out_err;
    873 	}
    874 	if (bp != NULL) {
    875 		error = biowait(mbp);
    876 	}
    877 	putiobuf(mbp);
    878 	uvm_pagermapout(kva, npages);
    879 
    880 	/*
    881 	 * if this we encountered a hole then we have to do a little more work.
    882 	 * for read faults, we marked the page PG_RDONLY so that future
    883 	 * write accesses to the page will fault again.
    884 	 * for write faults, we must make sure that the backing store for
    885 	 * the page is completely allocated while the pages are locked.
    886 	 */
    887 
    888 	if (!error && sawhole && blockalloc) {
    889 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    890 		    cred);
    891 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    892 		    startoffset, npages << PAGE_SHIFT, error,0);
    893 		if (!error) {
    894 			for (i = 0; i < npages; i++) {
    895 				if (pgs[i] == NULL) {
    896 					continue;
    897 				}
    898 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    899 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    900 				    pgs[i],0,0,0);
    901 			}
    902 		}
    903 	}
    904 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
    905 	simple_lock(&uobj->vmobjlock);
    906 
    907 	/*
    908 	 * we're almost done!  release the pages...
    909 	 * for errors, we free the pages.
    910 	 * otherwise we activate them and mark them as valid and clean.
    911 	 * also, unbusy pages that were not actually requested.
    912 	 */
    913 
    914 	if (error) {
    915 		for (i = 0; i < npages; i++) {
    916 			if (pgs[i] == NULL) {
    917 				continue;
    918 			}
    919 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    920 			    pgs[i], pgs[i]->flags, 0,0);
    921 			if (pgs[i]->flags & PG_FAKE) {
    922 				pgs[i]->flags |= PG_RELEASED;
    923 			}
    924 		}
    925 		uvm_lock_pageq();
    926 		uvm_page_unbusy(pgs, npages);
    927 		uvm_unlock_pageq();
    928 		simple_unlock(&uobj->vmobjlock);
    929 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    930 		goto out_err;
    931 	}
    932 
    933 out:
    934 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    935 	error = 0;
    936 	uvm_lock_pageq();
    937 	for (i = 0; i < npages; i++) {
    938 		pg = pgs[i];
    939 		if (pg == NULL) {
    940 			continue;
    941 		}
    942 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    943 		    pg, pg->flags, 0,0);
    944 		if (pg->flags & PG_FAKE && !overwrite) {
    945 			pg->flags &= ~(PG_FAKE);
    946 			pmap_clear_modify(pgs[i]);
    947 		}
    948 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    949 		if (i < ridx || i >= ridx + orignpages || async) {
    950 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    951 			    pg, pg->offset,0,0);
    952 			if (pg->flags & PG_WANTED) {
    953 				wakeup(pg);
    954 			}
    955 			if (pg->flags & PG_FAKE) {
    956 				KASSERT(overwrite);
    957 				uvm_pagezero(pg);
    958 			}
    959 			if (pg->flags & PG_RELEASED) {
    960 				uvm_pagefree(pg);
    961 				continue;
    962 			}
    963 			uvm_pageenqueue(pg);
    964 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    965 			UVM_PAGE_OWN(pg, NULL);
    966 		}
    967 	}
    968 	uvm_unlock_pageq();
    969 	simple_unlock(&uobj->vmobjlock);
    970 	if (ap->a_m != NULL) {
    971 		memcpy(ap->a_m, &pgs[ridx],
    972 		    orignpages * sizeof(struct vm_page *));
    973 	}
    974 
    975 out_err:
    976 	if (pgs != pgs_onstack)
    977 		kmem_free(pgs, pgs_size);
    978 	if (has_trans)
    979 		fstrans_done(vp->v_mount);
    980 	return (error);
    981 }
    982 
    983 /*
    984  * generic VM putpages routine.
    985  * Write the given range of pages to backing store.
    986  *
    987  * => "offhi == 0" means flush all pages at or after "offlo".
    988  * => object should be locked by caller.  we return with the
    989  *      object unlocked.
    990  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    991  *	thus, a caller might want to unlock higher level resources
    992  *	(e.g. vm_map) before calling flush.
    993  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    994  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    995  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    996  *	that new pages are inserted on the tail end of the list.   thus,
    997  *	we can make a complete pass through the object in one go by starting
    998  *	at the head and working towards the tail (new pages are put in
    999  *	front of us).
   1000  * => NOTE: we are allowed to lock the page queues, so the caller
   1001  *	must not be holding the page queue lock.
   1002  *
   1003  * note on "cleaning" object and PG_BUSY pages:
   1004  *	this routine is holding the lock on the object.   the only time
   1005  *	that it can run into a PG_BUSY page that it does not own is if
   1006  *	some other process has started I/O on the page (e.g. either
   1007  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1008  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1009  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1010  *	paged out then it means that someone else has already started
   1011  *	cleaning the page for us (how nice!).    in this case, if we
   1012  *	have syncio specified, then after we make our pass through the
   1013  *	object we need to wait for the other PG_BUSY pages to clear
   1014  *	off (i.e. we need to do an iosync).   also note that once a
   1015  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1016  *
   1017  * note on page traversal:
   1018  *	we can traverse the pages in an object either by going down the
   1019  *	linked list in "uobj->memq", or we can go over the address range
   1020  *	by page doing hash table lookups for each address.    depending
   1021  *	on how many pages are in the object it may be cheaper to do one
   1022  *	or the other.   we set "by_list" to true if we are using memq.
   1023  *	if the cost of a hash lookup was equal to the cost of the list
   1024  *	traversal we could compare the number of pages in the start->stop
   1025  *	range to the total number of pages in the object.   however, it
   1026  *	seems that a hash table lookup is more expensive than the linked
   1027  *	list traversal, so we multiply the number of pages in the
   1028  *	range by an estimate of the relatively higher cost of the hash lookup.
   1029  */
   1030 
   1031 int
   1032 genfs_putpages(void *v)
   1033 {
   1034 	struct vop_putpages_args /* {
   1035 		struct vnode *a_vp;
   1036 		voff_t a_offlo;
   1037 		voff_t a_offhi;
   1038 		int a_flags;
   1039 	} */ *ap = v;
   1040 	struct vnode *vp = ap->a_vp;
   1041 	struct uvm_object *uobj = &vp->v_uobj;
   1042 	struct simplelock *slock = &uobj->vmobjlock;
   1043 	off_t startoff = ap->a_offlo;
   1044 	off_t endoff = ap->a_offhi;
   1045 	off_t off;
   1046 	int flags = ap->a_flags;
   1047 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1048 #define maxpages (MAXPHYS >> PAGE_SHIFT)
   1049 	int i, s, error, npages, nback;
   1050 	int freeflag;
   1051 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1052 	boolean_t wasclean, by_list, needs_clean, yld;
   1053 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1054 	boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
   1055 	struct lwp *l = curlwp ? curlwp : &lwp0;
   1056 	struct genfs_node *gp = VTOG(vp);
   1057 	int dirtygen;
   1058 	boolean_t modified = FALSE;
   1059 	boolean_t has_trans = FALSE;
   1060 	boolean_t cleanall;
   1061 
   1062 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1063 
   1064 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1065 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1066 	KASSERT(startoff < endoff || endoff == 0);
   1067 
   1068 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1069 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1070 
   1071 	KASSERT((vp->v_flag & VONWORKLST) != 0 ||
   1072 	    (vp->v_flag & VWRITEMAPDIRTY) == 0);
   1073 	if (uobj->uo_npages == 0) {
   1074 		s = splbio();
   1075 		if (vp->v_flag & VONWORKLST) {
   1076 			vp->v_flag &= ~VWRITEMAPDIRTY;
   1077 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1078 				vn_syncer_remove_from_worklist(vp);
   1079 		}
   1080 		splx(s);
   1081 		simple_unlock(slock);
   1082 		return (0);
   1083 	}
   1084 
   1085 	/*
   1086 	 * the vnode has pages, set up to process the request.
   1087 	 */
   1088 
   1089 	if ((flags & PGO_CLEANIT) != 0) {
   1090 		simple_unlock(slock);
   1091 		if (pagedaemon)
   1092 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1093 		else
   1094 			error = fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1095 		if (error)
   1096 			return error;
   1097 		has_trans = TRUE;
   1098 		simple_lock(slock);
   1099 	}
   1100 
   1101 	error = 0;
   1102 	s = splbio();
   1103 	simple_lock(&global_v_numoutput_slock);
   1104 	wasclean = (vp->v_numoutput == 0);
   1105 	simple_unlock(&global_v_numoutput_slock);
   1106 	splx(s);
   1107 	off = startoff;
   1108 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1109 		endoff = trunc_page(LLONG_MAX);
   1110 	}
   1111 	by_list = (uobj->uo_npages <=
   1112 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
   1113 
   1114 #if !defined(DEBUG)
   1115 	/*
   1116 	 * if this vnode is known not to have dirty pages,
   1117 	 * don't bother to clean it out.
   1118 	 */
   1119 
   1120 	if ((vp->v_flag & VONWORKLST) == 0) {
   1121 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1122 			goto skip_scan;
   1123 		}
   1124 		flags &= ~PGO_CLEANIT;
   1125 	}
   1126 #endif /* !defined(DEBUG) */
   1127 
   1128 	/*
   1129 	 * start the loop.  when scanning by list, hold the last page
   1130 	 * in the list before we start.  pages allocated after we start
   1131 	 * will be added to the end of the list, so we can stop at the
   1132 	 * current last page.
   1133 	 */
   1134 
   1135 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1136 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1137 	    (vp->v_flag & VONWORKLST) != 0;
   1138 	dirtygen = gp->g_dirtygen;
   1139 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1140 	if (by_list) {
   1141 		curmp.uobject = uobj;
   1142 		curmp.offset = (voff_t)-1;
   1143 		curmp.flags = PG_BUSY;
   1144 		endmp.uobject = uobj;
   1145 		endmp.offset = (voff_t)-1;
   1146 		endmp.flags = PG_BUSY;
   1147 		pg = TAILQ_FIRST(&uobj->memq);
   1148 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
   1149 		PHOLD(l);
   1150 	} else {
   1151 		pg = uvm_pagelookup(uobj, off);
   1152 	}
   1153 	nextpg = NULL;
   1154 	while (by_list || off < endoff) {
   1155 
   1156 		/*
   1157 		 * if the current page is not interesting, move on to the next.
   1158 		 */
   1159 
   1160 		KASSERT(pg == NULL || pg->uobject == uobj);
   1161 		KASSERT(pg == NULL ||
   1162 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1163 		    (pg->flags & PG_BUSY) != 0);
   1164 		if (by_list) {
   1165 			if (pg == &endmp) {
   1166 				break;
   1167 			}
   1168 			if (pg->offset < startoff || pg->offset >= endoff ||
   1169 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1170 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1171 					wasclean = FALSE;
   1172 				}
   1173 				pg = TAILQ_NEXT(pg, listq);
   1174 				continue;
   1175 			}
   1176 			off = pg->offset;
   1177 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1178 			if (pg != NULL) {
   1179 				wasclean = FALSE;
   1180 			}
   1181 			off += PAGE_SIZE;
   1182 			if (off < endoff) {
   1183 				pg = uvm_pagelookup(uobj, off);
   1184 			}
   1185 			continue;
   1186 		}
   1187 
   1188 		/*
   1189 		 * if the current page needs to be cleaned and it's busy,
   1190 		 * wait for it to become unbusy.
   1191 		 */
   1192 
   1193 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1194 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1195 		if (pg->flags & PG_BUSY || yld) {
   1196 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1197 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1198 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1199 				error = EDEADLK;
   1200 				break;
   1201 			}
   1202 			KASSERT(!pagedaemon);
   1203 			if (by_list) {
   1204 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
   1205 				UVMHIST_LOG(ubchist, "curmp next %p",
   1206 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1207 			}
   1208 			if (yld) {
   1209 				simple_unlock(slock);
   1210 				preempt(1);
   1211 				simple_lock(slock);
   1212 			} else {
   1213 				pg->flags |= PG_WANTED;
   1214 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1215 				simple_lock(slock);
   1216 			}
   1217 			if (by_list) {
   1218 				UVMHIST_LOG(ubchist, "after next %p",
   1219 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
   1220 				pg = TAILQ_NEXT(&curmp, listq);
   1221 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1222 			} else {
   1223 				pg = uvm_pagelookup(uobj, off);
   1224 			}
   1225 			continue;
   1226 		}
   1227 
   1228 		/*
   1229 		 * if we're freeing, remove all mappings of the page now.
   1230 		 * if we're cleaning, check if the page is needs to be cleaned.
   1231 		 */
   1232 
   1233 		if (flags & PGO_FREE) {
   1234 			pmap_page_protect(pg, VM_PROT_NONE);
   1235 		} else if (flags & PGO_CLEANIT) {
   1236 
   1237 			/*
   1238 			 * if we still have some hope to pull this vnode off
   1239 			 * from the syncer queue, write-protect the page.
   1240 			 */
   1241 
   1242 			if (cleanall && wasclean &&
   1243 			    gp->g_dirtygen == dirtygen) {
   1244 
   1245 				/*
   1246 				 * uobj pages get wired only by uvm_fault
   1247 				 * where uobj is locked.
   1248 				 */
   1249 
   1250 				if (pg->wire_count == 0) {
   1251 					pmap_page_protect(pg,
   1252 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1253 				} else {
   1254 					cleanall = FALSE;
   1255 				}
   1256 			}
   1257 		}
   1258 
   1259 		if (flags & PGO_CLEANIT) {
   1260 			needs_clean = pmap_clear_modify(pg) ||
   1261 			    (pg->flags & PG_CLEAN) == 0;
   1262 			pg->flags |= PG_CLEAN;
   1263 		} else {
   1264 			needs_clean = FALSE;
   1265 		}
   1266 
   1267 		/*
   1268 		 * if we're cleaning, build a cluster.
   1269 		 * the cluster will consist of pages which are currently dirty,
   1270 		 * but they will be returned to us marked clean.
   1271 		 * if not cleaning, just operate on the one page.
   1272 		 */
   1273 
   1274 		if (needs_clean) {
   1275 			KDASSERT((vp->v_flag & VONWORKLST));
   1276 			wasclean = FALSE;
   1277 			memset(pgs, 0, sizeof(pgs));
   1278 			pg->flags |= PG_BUSY;
   1279 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1280 
   1281 			/*
   1282 			 * first look backward.
   1283 			 */
   1284 
   1285 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1286 			nback = npages;
   1287 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1288 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1289 			if (nback) {
   1290 				memmove(&pgs[0], &pgs[npages - nback],
   1291 				    nback * sizeof(pgs[0]));
   1292 				if (npages - nback < nback)
   1293 					memset(&pgs[nback], 0,
   1294 					    (npages - nback) * sizeof(pgs[0]));
   1295 				else
   1296 					memset(&pgs[npages - nback], 0,
   1297 					    nback * sizeof(pgs[0]));
   1298 			}
   1299 
   1300 			/*
   1301 			 * then plug in our page of interest.
   1302 			 */
   1303 
   1304 			pgs[nback] = pg;
   1305 
   1306 			/*
   1307 			 * then look forward to fill in the remaining space in
   1308 			 * the array of pages.
   1309 			 */
   1310 
   1311 			npages = maxpages - nback - 1;
   1312 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1313 			    &pgs[nback + 1],
   1314 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1315 			npages += nback + 1;
   1316 		} else {
   1317 			pgs[0] = pg;
   1318 			npages = 1;
   1319 			nback = 0;
   1320 		}
   1321 
   1322 		/*
   1323 		 * apply FREE or DEACTIVATE options if requested.
   1324 		 */
   1325 
   1326 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1327 			uvm_lock_pageq();
   1328 		}
   1329 		for (i = 0; i < npages; i++) {
   1330 			tpg = pgs[i];
   1331 			KASSERT(tpg->uobject == uobj);
   1332 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1333 				pg = tpg;
   1334 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1335 				continue;
   1336 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1337 				(void) pmap_clear_reference(tpg);
   1338 				uvm_pagedeactivate(tpg);
   1339 			} else if (flags & PGO_FREE) {
   1340 				pmap_page_protect(tpg, VM_PROT_NONE);
   1341 				if (tpg->flags & PG_BUSY) {
   1342 					tpg->flags |= freeflag;
   1343 					if (pagedaemon) {
   1344 						uvmexp.paging++;
   1345 						uvm_pagedequeue(tpg);
   1346 					}
   1347 				} else {
   1348 
   1349 					/*
   1350 					 * ``page is not busy''
   1351 					 * implies that npages is 1
   1352 					 * and needs_clean is false.
   1353 					 */
   1354 
   1355 					nextpg = TAILQ_NEXT(tpg, listq);
   1356 					uvm_pagefree(tpg);
   1357 					if (pagedaemon)
   1358 						uvmexp.pdfreed++;
   1359 				}
   1360 			}
   1361 		}
   1362 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1363 			uvm_unlock_pageq();
   1364 		}
   1365 		if (needs_clean) {
   1366 			modified = TRUE;
   1367 
   1368 			/*
   1369 			 * start the i/o.  if we're traversing by list,
   1370 			 * keep our place in the list with a marker page.
   1371 			 */
   1372 
   1373 			if (by_list) {
   1374 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1375 				    listq);
   1376 			}
   1377 			simple_unlock(slock);
   1378 			error = GOP_WRITE(vp, pgs, npages, flags);
   1379 			simple_lock(slock);
   1380 			if (by_list) {
   1381 				pg = TAILQ_NEXT(&curmp, listq);
   1382 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1383 			}
   1384 			if (error) {
   1385 				break;
   1386 			}
   1387 			if (by_list) {
   1388 				continue;
   1389 			}
   1390 		}
   1391 
   1392 		/*
   1393 		 * find the next page and continue if there was no error.
   1394 		 */
   1395 
   1396 		if (by_list) {
   1397 			if (nextpg) {
   1398 				pg = nextpg;
   1399 				nextpg = NULL;
   1400 			} else {
   1401 				pg = TAILQ_NEXT(pg, listq);
   1402 			}
   1403 		} else {
   1404 			off += (npages - nback) << PAGE_SHIFT;
   1405 			if (off < endoff) {
   1406 				pg = uvm_pagelookup(uobj, off);
   1407 			}
   1408 		}
   1409 	}
   1410 	if (by_list) {
   1411 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1412 		PRELE(l);
   1413 	}
   1414 
   1415 	if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
   1416 	    (vp->v_type != VBLK ||
   1417 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1418 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1419 	}
   1420 
   1421 	/*
   1422 	 * if we're cleaning and there was nothing to clean,
   1423 	 * take us off the syncer list.  if we started any i/o
   1424 	 * and we're doing sync i/o, wait for all writes to finish.
   1425 	 */
   1426 
   1427 	s = splbio();
   1428 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1429 	    (vp->v_flag & VONWORKLST) != 0) {
   1430 		vp->v_flag &= ~VWRITEMAPDIRTY;
   1431 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1432 			vn_syncer_remove_from_worklist(vp);
   1433 	}
   1434 	splx(s);
   1435 
   1436 #if !defined(DEBUG)
   1437 skip_scan:
   1438 #endif /* !defined(DEBUG) */
   1439 	if (!wasclean && !async) {
   1440 		s = splbio();
   1441 		/*
   1442 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1443 		 *	 but the slot in ltsleep() is taken!
   1444 		 * XXX - try to recover from missed wakeups with a timeout..
   1445 		 *	 must think of something better.
   1446 		 */
   1447 		while (vp->v_numoutput != 0) {
   1448 			vp->v_flag |= VBWAIT;
   1449 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
   1450 			    "genput2", hz);
   1451 			simple_lock(slock);
   1452 		}
   1453 		splx(s);
   1454 	}
   1455 	simple_unlock(slock);
   1456 
   1457 	if (has_trans)
   1458 		fstrans_done(vp->v_mount);
   1459 
   1460 	return (error);
   1461 }
   1462 
   1463 int
   1464 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1465 {
   1466 	off_t off;
   1467 	vaddr_t kva;
   1468 	size_t len;
   1469 	int error;
   1470 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1471 
   1472 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1473 	    vp, pgs, npages, flags);
   1474 
   1475 	off = pgs[0]->offset;
   1476 	kva = uvm_pagermapin(pgs, npages,
   1477 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1478 	len = npages << PAGE_SHIFT;
   1479 
   1480 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1481 			    uvm_aio_biodone);
   1482 
   1483 	return error;
   1484 }
   1485 
   1486 /*
   1487  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1488  * and mapped into kernel memory.  Here we just look up the underlying
   1489  * device block addresses and call the strategy routine.
   1490  */
   1491 
   1492 static int
   1493 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1494     enum uio_rw rw, void (*iodone)(struct buf *))
   1495 {
   1496 	int s, error, run;
   1497 	int fs_bshift, dev_bshift;
   1498 	off_t eof, offset, startoffset;
   1499 	size_t bytes, iobytes, skipbytes;
   1500 	daddr_t lbn, blkno;
   1501 	struct buf *mbp, *bp;
   1502 	struct vnode *devvp;
   1503 	boolean_t async = (flags & PGO_SYNCIO) == 0;
   1504 	boolean_t write = rw == UIO_WRITE;
   1505 	int brw = write ? B_WRITE : B_READ;
   1506 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1507 
   1508 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1509 	    vp, kva, len, flags);
   1510 
   1511 	GOP_SIZE(vp, vp->v_size, &eof, 0);
   1512 	if (vp->v_type != VBLK) {
   1513 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1514 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1515 	} else {
   1516 		fs_bshift = DEV_BSHIFT;
   1517 		dev_bshift = DEV_BSHIFT;
   1518 	}
   1519 	error = 0;
   1520 	startoffset = off;
   1521 	bytes = MIN(len, eof - startoffset);
   1522 	skipbytes = 0;
   1523 	KASSERT(bytes != 0);
   1524 
   1525 	if (write) {
   1526 		s = splbio();
   1527 		simple_lock(&global_v_numoutput_slock);
   1528 		vp->v_numoutput += 2;
   1529 		simple_unlock(&global_v_numoutput_slock);
   1530 		splx(s);
   1531 	}
   1532 	mbp = getiobuf();
   1533 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1534 	    vp, mbp, vp->v_numoutput, bytes);
   1535 	mbp->b_bufsize = len;
   1536 	mbp->b_data = (void *)kva;
   1537 	mbp->b_resid = mbp->b_bcount = bytes;
   1538 	mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
   1539 	mbp->b_iodone = iodone;
   1540 	mbp->b_vp = vp;
   1541 	if (curproc == uvm.pagedaemon_proc)
   1542 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1543 	else if (async)
   1544 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1545 	else
   1546 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1547 
   1548 	bp = NULL;
   1549 	for (offset = startoffset;
   1550 	    bytes > 0;
   1551 	    offset += iobytes, bytes -= iobytes) {
   1552 		lbn = offset >> fs_bshift;
   1553 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1554 		if (error) {
   1555 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1556 			skipbytes += bytes;
   1557 			bytes = 0;
   1558 			break;
   1559 		}
   1560 
   1561 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1562 		    bytes);
   1563 		if (blkno == (daddr_t)-1) {
   1564 			if (!write) {
   1565 				memset((char *)kva + (offset - startoffset), 0,
   1566 				   iobytes);
   1567 			}
   1568 			skipbytes += iobytes;
   1569 			continue;
   1570 		}
   1571 
   1572 		/* if it's really one i/o, don't make a second buf */
   1573 		if (offset == startoffset && iobytes == bytes) {
   1574 			bp = mbp;
   1575 		} else {
   1576 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1577 			    vp, bp, vp->v_numoutput, 0);
   1578 			bp = getiobuf();
   1579 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1580 		}
   1581 		bp->b_lblkno = 0;
   1582 
   1583 		/* adjust physical blkno for partial blocks */
   1584 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1585 		    dev_bshift);
   1586 		UVMHIST_LOG(ubchist,
   1587 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1588 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1589 
   1590 		VOP_STRATEGY(devvp, bp);
   1591 	}
   1592 	if (skipbytes) {
   1593 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1594 	}
   1595 	nestiobuf_done(mbp, skipbytes, error);
   1596 	if (async) {
   1597 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1598 		return (0);
   1599 	}
   1600 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1601 	error = biowait(mbp);
   1602 	s = splbio();
   1603 	(*iodone)(mbp);
   1604 	splx(s);
   1605 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1606 	return (error);
   1607 }
   1608 
   1609 /*
   1610  * VOP_PUTPAGES() for vnodes which never have pages.
   1611  */
   1612 
   1613 int
   1614 genfs_null_putpages(void *v)
   1615 {
   1616 	struct vop_putpages_args /* {
   1617 		struct vnode *a_vp;
   1618 		voff_t a_offlo;
   1619 		voff_t a_offhi;
   1620 		int a_flags;
   1621 	} */ *ap = v;
   1622 	struct vnode *vp = ap->a_vp;
   1623 
   1624 	KASSERT(vp->v_uobj.uo_npages == 0);
   1625 	simple_unlock(&vp->v_interlock);
   1626 	return (0);
   1627 }
   1628 
   1629 void
   1630 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
   1631 {
   1632 	struct genfs_node *gp = VTOG(vp);
   1633 
   1634 	lockinit(&gp->g_glock, PINOD, "glock", 0, 0);
   1635 	gp->g_op = ops;
   1636 }
   1637 
   1638 void
   1639 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   1640 {
   1641 	int bsize;
   1642 
   1643 	bsize = 1 << vp->v_mount->mnt_fs_bshift;
   1644 	*eobp = (size + bsize - 1) & ~(bsize - 1);
   1645 }
   1646 
   1647 int
   1648 genfs_compat_getpages(void *v)
   1649 {
   1650 	struct vop_getpages_args /* {
   1651 		struct vnode *a_vp;
   1652 		voff_t a_offset;
   1653 		struct vm_page **a_m;
   1654 		int *a_count;
   1655 		int a_centeridx;
   1656 		vm_prot_t a_access_type;
   1657 		int a_advice;
   1658 		int a_flags;
   1659 	} */ *ap = v;
   1660 
   1661 	off_t origoffset;
   1662 	struct vnode *vp = ap->a_vp;
   1663 	struct uvm_object *uobj = &vp->v_uobj;
   1664 	struct vm_page *pg, **pgs;
   1665 	vaddr_t kva;
   1666 	int i, error, orignpages, npages;
   1667 	struct iovec iov;
   1668 	struct uio uio;
   1669 	kauth_cred_t cred = curlwp->l_cred;
   1670 	boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1671 
   1672 	error = 0;
   1673 	origoffset = ap->a_offset;
   1674 	orignpages = *ap->a_count;
   1675 	pgs = ap->a_m;
   1676 
   1677 	if (write && (vp->v_flag & VONWORKLST) == 0) {
   1678 		vn_syncer_add_to_worklist(vp, filedelay);
   1679 	}
   1680 	if (ap->a_flags & PGO_LOCKED) {
   1681 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1682 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1683 
   1684 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1685 	}
   1686 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1687 		simple_unlock(&uobj->vmobjlock);
   1688 		return (EINVAL);
   1689 	}
   1690 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1691 		simple_unlock(&uobj->vmobjlock);
   1692 		return 0;
   1693 	}
   1694 	npages = orignpages;
   1695 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1696 	simple_unlock(&uobj->vmobjlock);
   1697 	kva = uvm_pagermapin(pgs, npages,
   1698 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1699 	for (i = 0; i < npages; i++) {
   1700 		pg = pgs[i];
   1701 		if ((pg->flags & PG_FAKE) == 0) {
   1702 			continue;
   1703 		}
   1704 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1705 		iov.iov_len = PAGE_SIZE;
   1706 		uio.uio_iov = &iov;
   1707 		uio.uio_iovcnt = 1;
   1708 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1709 		uio.uio_rw = UIO_READ;
   1710 		uio.uio_resid = PAGE_SIZE;
   1711 		UIO_SETUP_SYSSPACE(&uio);
   1712 		/* XXX vn_lock */
   1713 		error = VOP_READ(vp, &uio, 0, cred);
   1714 		if (error) {
   1715 			break;
   1716 		}
   1717 		if (uio.uio_resid) {
   1718 			memset(iov.iov_base, 0, uio.uio_resid);
   1719 		}
   1720 	}
   1721 	uvm_pagermapout(kva, npages);
   1722 	simple_lock(&uobj->vmobjlock);
   1723 	uvm_lock_pageq();
   1724 	for (i = 0; i < npages; i++) {
   1725 		pg = pgs[i];
   1726 		if (error && (pg->flags & PG_FAKE) != 0) {
   1727 			pg->flags |= PG_RELEASED;
   1728 		} else {
   1729 			pmap_clear_modify(pg);
   1730 			uvm_pageactivate(pg);
   1731 		}
   1732 	}
   1733 	if (error) {
   1734 		uvm_page_unbusy(pgs, npages);
   1735 	}
   1736 	uvm_unlock_pageq();
   1737 	simple_unlock(&uobj->vmobjlock);
   1738 	return (error);
   1739 }
   1740 
   1741 int
   1742 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1743     int flags)
   1744 {
   1745 	off_t offset;
   1746 	struct iovec iov;
   1747 	struct uio uio;
   1748 	kauth_cred_t cred = curlwp->l_cred;
   1749 	struct buf *bp;
   1750 	vaddr_t kva;
   1751 	int s, error;
   1752 
   1753 	offset = pgs[0]->offset;
   1754 	kva = uvm_pagermapin(pgs, npages,
   1755 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1756 
   1757 	iov.iov_base = (void *)kva;
   1758 	iov.iov_len = npages << PAGE_SHIFT;
   1759 	uio.uio_iov = &iov;
   1760 	uio.uio_iovcnt = 1;
   1761 	uio.uio_offset = offset;
   1762 	uio.uio_rw = UIO_WRITE;
   1763 	uio.uio_resid = npages << PAGE_SHIFT;
   1764 	UIO_SETUP_SYSSPACE(&uio);
   1765 	/* XXX vn_lock */
   1766 	error = VOP_WRITE(vp, &uio, 0, cred);
   1767 
   1768 	s = splbio();
   1769 	V_INCR_NUMOUTPUT(vp);
   1770 	splx(s);
   1771 
   1772 	bp = getiobuf();
   1773 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1774 	bp->b_vp = vp;
   1775 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1776 	bp->b_data = (char *)kva;
   1777 	bp->b_bcount = npages << PAGE_SHIFT;
   1778 	bp->b_bufsize = npages << PAGE_SHIFT;
   1779 	bp->b_resid = 0;
   1780 	if (error) {
   1781 		bp->b_flags |= B_ERROR;
   1782 		bp->b_error = error;
   1783 	}
   1784 	uvm_aio_aiodone(bp);
   1785 	return (error);
   1786 }
   1787 
   1788 /*
   1789  * Process a uio using direct I/O.  If we reach a part of the request
   1790  * which cannot be processed in this fashion for some reason, just return.
   1791  * The caller must handle some additional part of the request using
   1792  * buffered I/O before trying direct I/O again.
   1793  */
   1794 
   1795 void
   1796 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1797 {
   1798 	struct vmspace *vs;
   1799 	struct iovec *iov;
   1800 	vaddr_t va;
   1801 	size_t len;
   1802 	const int mask = DEV_BSIZE - 1;
   1803 	int error;
   1804 
   1805 	/*
   1806 	 * We only support direct I/O to user space for now.
   1807 	 */
   1808 
   1809 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1810 		return;
   1811 	}
   1812 
   1813 	/*
   1814 	 * If the vnode is mapped, we would need to get the getpages lock
   1815 	 * to stabilize the bmap, but then we would get into trouble whil e
   1816 	 * locking the pages if the pages belong to this same vnode (or a
   1817 	 * multi-vnode cascade to the same effect).  Just fall back to
   1818 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1819 	 */
   1820 
   1821 	if (vp->v_flag & VMAPPED) {
   1822 		return;
   1823 	}
   1824 
   1825 	/*
   1826 	 * Do as much of the uio as possible with direct I/O.
   1827 	 */
   1828 
   1829 	vs = uio->uio_vmspace;
   1830 	while (uio->uio_resid) {
   1831 		iov = uio->uio_iov;
   1832 		if (iov->iov_len == 0) {
   1833 			uio->uio_iov++;
   1834 			uio->uio_iovcnt--;
   1835 			continue;
   1836 		}
   1837 		va = (vaddr_t)iov->iov_base;
   1838 		len = MIN(iov->iov_len, genfs_maxdio);
   1839 		len &= ~mask;
   1840 
   1841 		/*
   1842 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1843 		 * the current EOF, then fall back to buffered I/O.
   1844 		 */
   1845 
   1846 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1847 			return;
   1848 		}
   1849 
   1850 		/*
   1851 		 * Check alignment.  The file offset must be at least
   1852 		 * sector-aligned.  The exact constraint on memory alignment
   1853 		 * is very hardware-dependent, but requiring sector-aligned
   1854 		 * addresses there too is safe.
   1855 		 */
   1856 
   1857 		if (uio->uio_offset & mask || va & mask) {
   1858 			return;
   1859 		}
   1860 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1861 					  uio->uio_rw);
   1862 		if (error) {
   1863 			break;
   1864 		}
   1865 		iov->iov_base = (caddr_t)iov->iov_base + len;
   1866 		iov->iov_len -= len;
   1867 		uio->uio_offset += len;
   1868 		uio->uio_resid -= len;
   1869 	}
   1870 }
   1871 
   1872 /*
   1873  * Iodone routine for direct I/O.  We don't do much here since the request is
   1874  * always synchronous, so the caller will do most of the work after biowait().
   1875  */
   1876 
   1877 static void
   1878 genfs_dio_iodone(struct buf *bp)
   1879 {
   1880 	int s;
   1881 
   1882 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1883 	s = splbio();
   1884 	if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
   1885 		vwakeup(bp);
   1886 	}
   1887 	putiobuf(bp);
   1888 	splx(s);
   1889 }
   1890 
   1891 /*
   1892  * Process one chunk of a direct I/O request.
   1893  */
   1894 
   1895 static int
   1896 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1897     off_t off, enum uio_rw rw)
   1898 {
   1899 	struct vm_map *map;
   1900 	struct pmap *upm, *kpm;
   1901 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1902 	off_t spoff, epoff;
   1903 	vaddr_t kva, puva;
   1904 	paddr_t pa;
   1905 	vm_prot_t prot;
   1906 	int error, rv, poff, koff;
   1907 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
   1908 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1909 
   1910 	/*
   1911 	 * For writes, verify that this range of the file already has fully
   1912 	 * allocated backing store.  If there are any holes, just punt and
   1913 	 * make the caller take the buffered write path.
   1914 	 */
   1915 
   1916 	if (rw == UIO_WRITE) {
   1917 		daddr_t lbn, elbn, blkno;
   1918 		int bsize, bshift, run;
   1919 
   1920 		bshift = vp->v_mount->mnt_fs_bshift;
   1921 		bsize = 1 << bshift;
   1922 		lbn = off >> bshift;
   1923 		elbn = (off + len + bsize - 1) >> bshift;
   1924 		while (lbn < elbn) {
   1925 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1926 			if (error) {
   1927 				return error;
   1928 			}
   1929 			if (blkno == (daddr_t)-1) {
   1930 				return ENOSPC;
   1931 			}
   1932 			lbn += 1 + run;
   1933 		}
   1934 	}
   1935 
   1936 	/*
   1937 	 * Flush any cached pages for parts of the file that we're about to
   1938 	 * access.  If we're writing, invalidate pages as well.
   1939 	 */
   1940 
   1941 	spoff = trunc_page(off);
   1942 	epoff = round_page(off + len);
   1943 	simple_lock(&vp->v_interlock);
   1944 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1945 	if (error) {
   1946 		return error;
   1947 	}
   1948 
   1949 	/*
   1950 	 * Wire the user pages and remap them into kernel memory.
   1951 	 */
   1952 
   1953 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1954 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1955 	if (error) {
   1956 		return error;
   1957 	}
   1958 
   1959 	map = &vs->vm_map;
   1960 	upm = vm_map_pmap(map);
   1961 	kpm = vm_map_pmap(kernel_map);
   1962 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1963 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1964 	puva = trunc_page(uva);
   1965 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1966 		rv = pmap_extract(upm, puva + poff, &pa);
   1967 		KASSERT(rv);
   1968 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1969 	}
   1970 	pmap_update(kpm);
   1971 
   1972 	/*
   1973 	 * Do the I/O.
   1974 	 */
   1975 
   1976 	koff = uva - trunc_page(uva);
   1977 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1978 			    genfs_dio_iodone);
   1979 
   1980 	/*
   1981 	 * Tear down the kernel mapping.
   1982 	 */
   1983 
   1984 	pmap_remove(kpm, kva, kva + klen);
   1985 	pmap_update(kpm);
   1986 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1987 
   1988 	/*
   1989 	 * Unwire the user pages.
   1990 	 */
   1991 
   1992 	uvm_vsunlock(vs, (void *)uva, len);
   1993 	return error;
   1994 }
   1995 
   1996 
   1997 static void
   1998 filt_genfsdetach(struct knote *kn)
   1999 {
   2000 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   2001 
   2002 	/* XXXLUKEM lock the struct? */
   2003 	SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
   2004 }
   2005 
   2006 static int
   2007 filt_genfsread(struct knote *kn, long hint)
   2008 {
   2009 	struct vnode *vp = (struct vnode *)kn->kn_hook;
   2010 
   2011 	/*
   2012 	 * filesystem is gone, so set the EOF flag and schedule
   2013 	 * the knote for deletion.
   2014 	 */
   2015 	if (hint == NOTE_REVOKE) {
   2016 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
   2017 		return (1);
   2018 	}
   2019 
   2020 	/* XXXLUKEM lock the struct? */
   2021 	kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
   2022         return (kn->kn_data != 0);
   2023 }
   2024 
   2025 static int
   2026 filt_genfsvnode(struct knote *kn, long hint)
   2027 {
   2028 
   2029 	if (kn->kn_sfflags & hint)
   2030 		kn->kn_fflags |= hint;
   2031 	if (hint == NOTE_REVOKE) {
   2032 		kn->kn_flags |= EV_EOF;
   2033 		return (1);
   2034 	}
   2035 	return (kn->kn_fflags != 0);
   2036 }
   2037 
   2038 static const struct filterops genfsread_filtops =
   2039 	{ 1, NULL, filt_genfsdetach, filt_genfsread };
   2040 static const struct filterops genfsvnode_filtops =
   2041 	{ 1, NULL, filt_genfsdetach, filt_genfsvnode };
   2042 
   2043 int
   2044 genfs_kqfilter(void *v)
   2045 {
   2046 	struct vop_kqfilter_args /* {
   2047 		struct vnode	*a_vp;
   2048 		struct knote	*a_kn;
   2049 	} */ *ap = v;
   2050 	struct vnode *vp;
   2051 	struct knote *kn;
   2052 
   2053 	vp = ap->a_vp;
   2054 	kn = ap->a_kn;
   2055 	switch (kn->kn_filter) {
   2056 	case EVFILT_READ:
   2057 		kn->kn_fop = &genfsread_filtops;
   2058 		break;
   2059 	case EVFILT_VNODE:
   2060 		kn->kn_fop = &genfsvnode_filtops;
   2061 		break;
   2062 	default:
   2063 		return (1);
   2064 	}
   2065 
   2066 	kn->kn_hook = vp;
   2067 
   2068 	/* XXXLUKEM lock the struct? */
   2069 	SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
   2070 
   2071 	return (0);
   2072 }
   2073 
   2074 void
   2075 genfs_node_wrlock(struct vnode *vp)
   2076 {
   2077 	struct genfs_node *gp = VTOG(vp);
   2078 
   2079 	lockmgr(&gp->g_glock, LK_EXCLUSIVE, NULL);
   2080 }
   2081 
   2082 void
   2083 genfs_node_rdlock(struct vnode *vp)
   2084 {
   2085 	struct genfs_node *gp = VTOG(vp);
   2086 
   2087 	lockmgr(&gp->g_glock, LK_SHARED, NULL);
   2088 }
   2089 
   2090 void
   2091 genfs_node_unlock(struct vnode *vp)
   2092 {
   2093 	struct genfs_node *gp = VTOG(vp);
   2094 
   2095 	lockmgr(&gp->g_glock, LK_RELEASE, NULL);
   2096 }
   2097