genfs_vnops.c revision 1.146 1 /* $NetBSD: genfs_vnops.c,v 1.146 2007/02/15 15:40:53 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.146 2007/02/15 15:40:53 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59 off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65 static void filt_genfsdetach(struct knote *);
66 static int filt_genfsread(struct knote *, long);
67 static int filt_genfsvnode(struct knote *, long);
68
69 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
70
71 int genfs_maxdio = MAXPHYS;
72
73 int
74 genfs_poll(void *v)
75 {
76 struct vop_poll_args /* {
77 struct vnode *a_vp;
78 int a_events;
79 struct lwp *a_l;
80 } */ *ap = v;
81
82 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
83 }
84
85 int
86 genfs_seek(void *v)
87 {
88 struct vop_seek_args /* {
89 struct vnode *a_vp;
90 off_t a_oldoff;
91 off_t a_newoff;
92 kauth_cred_t cred;
93 } */ *ap = v;
94
95 if (ap->a_newoff < 0)
96 return (EINVAL);
97
98 return (0);
99 }
100
101 int
102 genfs_abortop(void *v)
103 {
104 struct vop_abortop_args /* {
105 struct vnode *a_dvp;
106 struct componentname *a_cnp;
107 } */ *ap = v;
108
109 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
110 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
111 return (0);
112 }
113
114 int
115 genfs_fcntl(void *v)
116 {
117 struct vop_fcntl_args /* {
118 struct vnode *a_vp;
119 u_int a_command;
120 caddr_t a_data;
121 int a_fflag;
122 kauth_cred_t a_cred;
123 struct lwp *a_l;
124 } */ *ap = v;
125
126 if (ap->a_command == F_SETFL)
127 return (0);
128 else
129 return (EOPNOTSUPP);
130 }
131
132 /*ARGSUSED*/
133 int
134 genfs_badop(void *v)
135 {
136
137 panic("genfs: bad op");
138 }
139
140 /*ARGSUSED*/
141 int
142 genfs_nullop(void *v)
143 {
144
145 return (0);
146 }
147
148 /*ARGSUSED*/
149 int
150 genfs_einval(void *v)
151 {
152
153 return (EINVAL);
154 }
155
156 /*
157 * Called when an fs doesn't support a particular vop.
158 * This takes care to vrele, vput, or vunlock passed in vnodes.
159 */
160 int
161 genfs_eopnotsupp(void *v)
162 {
163 struct vop_generic_args /*
164 struct vnodeop_desc *a_desc;
165 / * other random data follows, presumably * /
166 } */ *ap = v;
167 struct vnodeop_desc *desc = ap->a_desc;
168 struct vnode *vp, *vp_last = NULL;
169 int flags, i, j, offset;
170
171 flags = desc->vdesc_flags;
172 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
173 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
174 break; /* stop at end of list */
175 if ((j = flags & VDESC_VP0_WILLPUT)) {
176 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
177
178 /* Skip if NULL */
179 if (!vp)
180 continue;
181
182 switch (j) {
183 case VDESC_VP0_WILLPUT:
184 /* Check for dvp == vp cases */
185 if (vp == vp_last)
186 vrele(vp);
187 else {
188 vput(vp);
189 vp_last = vp;
190 }
191 break;
192 case VDESC_VP0_WILLUNLOCK:
193 VOP_UNLOCK(vp, 0);
194 break;
195 case VDESC_VP0_WILLRELE:
196 vrele(vp);
197 break;
198 }
199 }
200 }
201
202 return (EOPNOTSUPP);
203 }
204
205 /*ARGSUSED*/
206 int
207 genfs_ebadf(void *v)
208 {
209
210 return (EBADF);
211 }
212
213 /* ARGSUSED */
214 int
215 genfs_enoioctl(void *v)
216 {
217
218 return (EPASSTHROUGH);
219 }
220
221
222 /*
223 * Eliminate all activity associated with the requested vnode
224 * and with all vnodes aliased to the requested vnode.
225 */
226 int
227 genfs_revoke(void *v)
228 {
229 struct vop_revoke_args /* {
230 struct vnode *a_vp;
231 int a_flags;
232 } */ *ap = v;
233 struct vnode *vp, *vq;
234 struct lwp *l = curlwp; /* XXX */
235
236 #ifdef DIAGNOSTIC
237 if ((ap->a_flags & REVOKEALL) == 0)
238 panic("genfs_revoke: not revokeall");
239 #endif
240
241 vp = ap->a_vp;
242 simple_lock(&vp->v_interlock);
243
244 if (vp->v_flag & VALIASED) {
245 /*
246 * If a vgone (or vclean) is already in progress,
247 * wait until it is done and return.
248 */
249 if (vp->v_flag & VXLOCK) {
250 vp->v_flag |= VXWANT;
251 ltsleep(vp, PINOD|PNORELOCK, "vop_revokeall", 0,
252 &vp->v_interlock);
253 return (0);
254 }
255 /*
256 * Ensure that vp will not be vgone'd while we
257 * are eliminating its aliases.
258 */
259 vp->v_flag |= VXLOCK;
260 simple_unlock(&vp->v_interlock);
261 while (vp->v_flag & VALIASED) {
262 simple_lock(&spechash_slock);
263 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
264 if (vq->v_rdev != vp->v_rdev ||
265 vq->v_type != vp->v_type || vp == vq)
266 continue;
267 simple_unlock(&spechash_slock);
268 vgone(vq);
269 break;
270 }
271 if (vq == NULLVP)
272 simple_unlock(&spechash_slock);
273 }
274 /*
275 * Remove the lock so that vgone below will
276 * really eliminate the vnode after which time
277 * vgone will awaken any sleepers.
278 */
279 simple_lock(&vp->v_interlock);
280 vp->v_flag &= ~VXLOCK;
281 }
282 vgonel(vp, l);
283 return (0);
284 }
285
286 /*
287 * Lock the node.
288 */
289 int
290 genfs_lock(void *v)
291 {
292 struct vop_lock_args /* {
293 struct vnode *a_vp;
294 int a_flags;
295 } */ *ap = v;
296 struct vnode *vp = ap->a_vp;
297
298 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
299 }
300
301 /*
302 * Unlock the node.
303 */
304 int
305 genfs_unlock(void *v)
306 {
307 struct vop_unlock_args /* {
308 struct vnode *a_vp;
309 int a_flags;
310 } */ *ap = v;
311 struct vnode *vp = ap->a_vp;
312
313 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
314 &vp->v_interlock));
315 }
316
317 /*
318 * Return whether or not the node is locked.
319 */
320 int
321 genfs_islocked(void *v)
322 {
323 struct vop_islocked_args /* {
324 struct vnode *a_vp;
325 } */ *ap = v;
326 struct vnode *vp = ap->a_vp;
327
328 return (lockstatus(vp->v_vnlock));
329 }
330
331 /*
332 * Stubs to use when there is no locking to be done on the underlying object.
333 */
334 int
335 genfs_nolock(void *v)
336 {
337 struct vop_lock_args /* {
338 struct vnode *a_vp;
339 int a_flags;
340 struct lwp *a_l;
341 } */ *ap = v;
342
343 /*
344 * Since we are not using the lock manager, we must clear
345 * the interlock here.
346 */
347 if (ap->a_flags & LK_INTERLOCK)
348 simple_unlock(&ap->a_vp->v_interlock);
349 return (0);
350 }
351
352 int
353 genfs_nounlock(void *v)
354 {
355
356 return (0);
357 }
358
359 int
360 genfs_noislocked(void *v)
361 {
362
363 return (0);
364 }
365
366 /*
367 * Local lease check.
368 */
369 int
370 genfs_lease_check(void *v)
371 {
372
373 return (0);
374 }
375
376 int
377 genfs_mmap(void *v)
378 {
379
380 return (0);
381 }
382
383 static inline void
384 genfs_rel_pages(struct vm_page **pgs, int npages)
385 {
386 int i;
387
388 for (i = 0; i < npages; i++) {
389 struct vm_page *pg = pgs[i];
390
391 if (pg == NULL || pg == PGO_DONTCARE)
392 continue;
393 if (pg->flags & PG_FAKE) {
394 pg->flags |= PG_RELEASED;
395 }
396 }
397 uvm_lock_pageq();
398 uvm_page_unbusy(pgs, npages);
399 uvm_unlock_pageq();
400 }
401
402 /*
403 * generic VM getpages routine.
404 * Return PG_BUSY pages for the given range,
405 * reading from backing store if necessary.
406 */
407
408 int
409 genfs_getpages(void *v)
410 {
411 struct vop_getpages_args /* {
412 struct vnode *a_vp;
413 voff_t a_offset;
414 struct vm_page **a_m;
415 int *a_count;
416 int a_centeridx;
417 vm_prot_t a_access_type;
418 int a_advice;
419 int a_flags;
420 } */ *ap = v;
421
422 off_t newsize, diskeof, memeof;
423 off_t offset, origoffset, startoffset, endoffset;
424 daddr_t lbn, blkno;
425 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
426 int fs_bshift, fs_bsize, dev_bshift;
427 int flags = ap->a_flags;
428 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
429 vaddr_t kva;
430 struct buf *bp, *mbp;
431 struct vnode *vp = ap->a_vp;
432 struct vnode *devvp;
433 struct genfs_node *gp = VTOG(vp);
434 struct uvm_object *uobj = &vp->v_uobj;
435 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
436 int pgs_size;
437 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
438 boolean_t async = (flags & PGO_SYNCIO) == 0;
439 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
440 boolean_t sawhole = FALSE;
441 boolean_t has_trans = FALSE;
442 boolean_t overwrite = (flags & PGO_OVERWRITE) != 0;
443 boolean_t blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
444 voff_t origvsize;
445 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
446
447 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
448 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
449
450 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
451 vp->v_type == VLNK || vp->v_type == VBLK);
452
453 /* XXXUBC temp limit */
454 if (*ap->a_count > MAX_READ_PAGES) {
455 panic("genfs_getpages: too many pages");
456 }
457
458 pgs = pgs_onstack;
459 pgs_size = sizeof(pgs_onstack);
460
461 startover:
462 error = 0;
463 origvsize = vp->v_size;
464 origoffset = ap->a_offset;
465 orignpages = *ap->a_count;
466 GOP_SIZE(vp, vp->v_size, &diskeof, 0);
467 if (flags & PGO_PASTEOF) {
468 newsize = MAX(vp->v_size,
469 origoffset + (orignpages << PAGE_SHIFT));
470 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
471 } else {
472 GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
473 }
474 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
475 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
476 KASSERT(orignpages > 0);
477
478 /*
479 * Bounds-check the request.
480 */
481
482 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
483 if ((flags & PGO_LOCKED) == 0) {
484 simple_unlock(&uobj->vmobjlock);
485 }
486 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
487 origoffset, *ap->a_count, memeof,0);
488 error = EINVAL;
489 goto out_err;
490 }
491
492 /* uobj is locked */
493
494 if ((flags & PGO_NOTIMESTAMP) == 0 &&
495 (vp->v_type != VBLK ||
496 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
497 int updflags = 0;
498
499 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
500 updflags = GOP_UPDATE_ACCESSED;
501 }
502 if (write) {
503 updflags |= GOP_UPDATE_MODIFIED;
504 }
505 if (updflags != 0) {
506 GOP_MARKUPDATE(vp, updflags);
507 }
508 }
509
510 if (write) {
511 gp->g_dirtygen++;
512 if ((vp->v_flag & VONWORKLST) == 0) {
513 vn_syncer_add_to_worklist(vp, filedelay);
514 }
515 if ((vp->v_flag & (VWRITEMAP|VWRITEMAPDIRTY)) == VWRITEMAP) {
516 vp->v_flag |= VWRITEMAPDIRTY;
517 }
518 }
519
520 /*
521 * For PGO_LOCKED requests, just return whatever's in memory.
522 */
523
524 if (flags & PGO_LOCKED) {
525 int nfound;
526
527 npages = *ap->a_count;
528 #if defined(DEBUG)
529 for (i = 0; i < npages; i++) {
530 pg = ap->a_m[i];
531 KASSERT(pg == NULL || pg == PGO_DONTCARE);
532 }
533 #endif /* defined(DEBUG) */
534 nfound = uvn_findpages(uobj, origoffset, &npages,
535 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
536 KASSERT(npages == *ap->a_count);
537 if (nfound == 0) {
538 error = EBUSY;
539 goto out_err;
540 }
541 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
542 genfs_rel_pages(ap->a_m, npages);
543
544 /*
545 * restore the array.
546 */
547
548 for (i = 0; i < npages; i++) {
549 pg = ap->a_m[i];
550
551 if (pg != NULL || pg != PGO_DONTCARE) {
552 ap->a_m[i] = NULL;
553 }
554 }
555 } else {
556 rw_exit(&gp->g_glock);
557 }
558 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
559 goto out_err;
560 }
561 simple_unlock(&uobj->vmobjlock);
562
563 /*
564 * find the requested pages and make some simple checks.
565 * leave space in the page array for a whole block.
566 */
567
568 if (vp->v_type != VBLK) {
569 fs_bshift = vp->v_mount->mnt_fs_bshift;
570 dev_bshift = vp->v_mount->mnt_dev_bshift;
571 } else {
572 fs_bshift = DEV_BSHIFT;
573 dev_bshift = DEV_BSHIFT;
574 }
575 fs_bsize = 1 << fs_bshift;
576
577 orignpages = MIN(orignpages,
578 round_page(memeof - origoffset) >> PAGE_SHIFT);
579 npages = orignpages;
580 startoffset = origoffset & ~(fs_bsize - 1);
581 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
582 fs_bsize - 1) & ~(fs_bsize - 1));
583 endoffset = MIN(endoffset, round_page(memeof));
584 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
585
586 pgs_size = sizeof(struct vm_page *) *
587 ((endoffset - startoffset) >> PAGE_SHIFT);
588 if (pgs_size > sizeof(pgs_onstack)) {
589 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
590 if (pgs == NULL) {
591 pgs = pgs_onstack;
592 error = ENOMEM;
593 goto out_err;
594 }
595 } else {
596 /* pgs == pgs_onstack */
597 memset(pgs, 0, pgs_size);
598 }
599 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
600 ridx, npages, startoffset, endoffset);
601
602 if (!has_trans &&
603 (error = fstrans_start(vp->v_mount, FSTRANS_SHARED)) != 0) {
604 goto out_err;
605 }
606 has_trans = TRUE;
607
608 /*
609 * hold g_glock to prevent a race with truncate.
610 *
611 * check if our idea of v_size is still valid.
612 */
613
614 if (blockalloc) {
615 rw_enter(&gp->g_glock, RW_WRITER);
616 } else {
617 rw_enter(&gp->g_glock, RW_READER);
618 }
619 simple_lock(&uobj->vmobjlock);
620 if (vp->v_size < origvsize) {
621 rw_exit(&gp->g_glock);
622 if (pgs != pgs_onstack)
623 kmem_free(pgs, pgs_size);
624 goto startover;
625 }
626
627 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
628 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
629 rw_exit(&gp->g_glock);
630 KASSERT(async != 0);
631 genfs_rel_pages(&pgs[ridx], orignpages);
632 simple_unlock(&uobj->vmobjlock);
633 error = EBUSY;
634 goto out_err;
635 }
636
637 /*
638 * if the pages are already resident, just return them.
639 */
640
641 for (i = 0; i < npages; i++) {
642 struct vm_page *pg1 = pgs[ridx + i];
643
644 if ((pg1->flags & PG_FAKE) ||
645 (blockalloc && (pg1->flags & PG_RDONLY))) {
646 break;
647 }
648 }
649 if (i == npages) {
650 rw_exit(&gp->g_glock);
651 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
652 npages += ridx;
653 goto out;
654 }
655
656 /*
657 * if PGO_OVERWRITE is set, don't bother reading the pages.
658 */
659
660 if (overwrite) {
661 rw_exit(&gp->g_glock);
662 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
663
664 for (i = 0; i < npages; i++) {
665 struct vm_page *pg1 = pgs[ridx + i];
666
667 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
668 }
669 npages += ridx;
670 goto out;
671 }
672
673 /*
674 * the page wasn't resident and we're not overwriting,
675 * so we're going to have to do some i/o.
676 * find any additional pages needed to cover the expanded range.
677 */
678
679 npages = (endoffset - startoffset) >> PAGE_SHIFT;
680 if (startoffset != origoffset || npages != orignpages) {
681
682 /*
683 * we need to avoid deadlocks caused by locking
684 * additional pages at lower offsets than pages we
685 * already have locked. unlock them all and start over.
686 */
687
688 genfs_rel_pages(&pgs[ridx], orignpages);
689 memset(pgs, 0, pgs_size);
690
691 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
692 startoffset, endoffset, 0,0);
693 npgs = npages;
694 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
695 async ? UFP_NOWAIT : UFP_ALL) != npages) {
696 rw_exit(&gp->g_glock);
697 KASSERT(async != 0);
698 genfs_rel_pages(pgs, npages);
699 simple_unlock(&uobj->vmobjlock);
700 error = EBUSY;
701 goto out_err;
702 }
703 }
704 simple_unlock(&uobj->vmobjlock);
705
706 /*
707 * read the desired page(s).
708 */
709
710 totalbytes = npages << PAGE_SHIFT;
711 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
712 tailbytes = totalbytes - bytes;
713 skipbytes = 0;
714
715 kva = uvm_pagermapin(pgs, npages,
716 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
717
718 mbp = getiobuf();
719 mbp->b_bufsize = totalbytes;
720 mbp->b_data = (void *)kva;
721 mbp->b_resid = mbp->b_bcount = bytes;
722 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
723 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
724 mbp->b_vp = vp;
725 if (async)
726 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
727 else
728 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
729
730 /*
731 * if EOF is in the middle of the range, zero the part past EOF.
732 * if the page including EOF is not PG_FAKE, skip over it since
733 * in that case it has valid data that we need to preserve.
734 */
735
736 if (tailbytes > 0) {
737 size_t tailstart = bytes;
738
739 if ((pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE) == 0) {
740 tailstart = round_page(tailstart);
741 tailbytes -= tailstart - bytes;
742 }
743 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
744 kva, tailstart, tailbytes,0);
745 memset((void *)(kva + tailstart), 0, tailbytes);
746 }
747
748 /*
749 * now loop over the pages, reading as needed.
750 */
751
752 bp = NULL;
753 for (offset = startoffset;
754 bytes > 0;
755 offset += iobytes, bytes -= iobytes) {
756
757 /*
758 * skip pages which don't need to be read.
759 */
760
761 pidx = (offset - startoffset) >> PAGE_SHIFT;
762 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
763 size_t b;
764
765 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
766 if ((pgs[pidx]->flags & PG_RDONLY)) {
767 sawhole = TRUE;
768 }
769 b = MIN(PAGE_SIZE, bytes);
770 offset += b;
771 bytes -= b;
772 skipbytes += b;
773 pidx++;
774 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
775 offset, 0,0,0);
776 if (bytes == 0) {
777 goto loopdone;
778 }
779 }
780
781 /*
782 * bmap the file to find out the blkno to read from and
783 * how much we can read in one i/o. if bmap returns an error,
784 * skip the rest of the top-level i/o.
785 */
786
787 lbn = offset >> fs_bshift;
788 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
789 if (error) {
790 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
791 lbn, error,0,0);
792 skipbytes += bytes;
793 goto loopdone;
794 }
795
796 /*
797 * see how many pages can be read with this i/o.
798 * reduce the i/o size if necessary to avoid
799 * overwriting pages with valid data.
800 */
801
802 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
803 bytes);
804 if (offset + iobytes > round_page(offset)) {
805 pcount = 1;
806 while (pidx + pcount < npages &&
807 pgs[pidx + pcount]->flags & PG_FAKE) {
808 pcount++;
809 }
810 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
811 (offset - trunc_page(offset)));
812 }
813
814 /*
815 * if this block isn't allocated, zero it instead of
816 * reading it. unless we are going to allocate blocks,
817 * mark the pages we zeroed PG_RDONLY.
818 */
819
820 if (blkno < 0) {
821 int holepages = (round_page(offset + iobytes) -
822 trunc_page(offset)) >> PAGE_SHIFT;
823 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
824
825 sawhole = TRUE;
826 memset((char *)kva + (offset - startoffset), 0,
827 iobytes);
828 skipbytes += iobytes;
829
830 for (i = 0; i < holepages; i++) {
831 if (write) {
832 pgs[pidx + i]->flags &= ~PG_CLEAN;
833 }
834 if (!blockalloc) {
835 pgs[pidx + i]->flags |= PG_RDONLY;
836 }
837 }
838 continue;
839 }
840
841 /*
842 * allocate a sub-buf for this piece of the i/o
843 * (or just use mbp if there's only 1 piece),
844 * and start it going.
845 */
846
847 if (offset == startoffset && iobytes == bytes) {
848 bp = mbp;
849 } else {
850 bp = getiobuf();
851 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
852 }
853 bp->b_lblkno = 0;
854
855 /* adjust physical blkno for partial blocks */
856 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
857 dev_bshift);
858
859 UVMHIST_LOG(ubchist,
860 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
861 bp, offset, iobytes, bp->b_blkno);
862
863 VOP_STRATEGY(devvp, bp);
864 }
865
866 loopdone:
867 nestiobuf_done(mbp, skipbytes, error);
868 if (async) {
869 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
870 rw_exit(&gp->g_glock);
871 error = 0;
872 goto out_err;
873 }
874 if (bp != NULL) {
875 error = biowait(mbp);
876 }
877 putiobuf(mbp);
878 uvm_pagermapout(kva, npages);
879
880 /*
881 * if this we encountered a hole then we have to do a little more work.
882 * for read faults, we marked the page PG_RDONLY so that future
883 * write accesses to the page will fault again.
884 * for write faults, we must make sure that the backing store for
885 * the page is completely allocated while the pages are locked.
886 */
887
888 if (!error && sawhole && blockalloc) {
889 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
890 cred);
891 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
892 startoffset, npages << PAGE_SHIFT, error,0);
893 if (!error) {
894 for (i = 0; i < npages; i++) {
895 if (pgs[i] == NULL) {
896 continue;
897 }
898 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
899 UVMHIST_LOG(ubchist, "mark dirty pg %p",
900 pgs[i],0,0,0);
901 }
902 }
903 }
904 rw_exit(&gp->g_glock);
905 simple_lock(&uobj->vmobjlock);
906
907 /*
908 * we're almost done! release the pages...
909 * for errors, we free the pages.
910 * otherwise we activate them and mark them as valid and clean.
911 * also, unbusy pages that were not actually requested.
912 */
913
914 if (error) {
915 for (i = 0; i < npages; i++) {
916 if (pgs[i] == NULL) {
917 continue;
918 }
919 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
920 pgs[i], pgs[i]->flags, 0,0);
921 if (pgs[i]->flags & PG_FAKE) {
922 pgs[i]->flags |= PG_RELEASED;
923 }
924 }
925 uvm_lock_pageq();
926 uvm_page_unbusy(pgs, npages);
927 uvm_unlock_pageq();
928 simple_unlock(&uobj->vmobjlock);
929 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
930 goto out_err;
931 }
932
933 out:
934 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
935 error = 0;
936 uvm_lock_pageq();
937 for (i = 0; i < npages; i++) {
938 pg = pgs[i];
939 if (pg == NULL) {
940 continue;
941 }
942 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
943 pg, pg->flags, 0,0);
944 if (pg->flags & PG_FAKE && !overwrite) {
945 pg->flags &= ~(PG_FAKE);
946 pmap_clear_modify(pgs[i]);
947 }
948 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
949 if (i < ridx || i >= ridx + orignpages || async) {
950 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
951 pg, pg->offset,0,0);
952 if (pg->flags & PG_WANTED) {
953 wakeup(pg);
954 }
955 if (pg->flags & PG_FAKE) {
956 KASSERT(overwrite);
957 uvm_pagezero(pg);
958 }
959 if (pg->flags & PG_RELEASED) {
960 uvm_pagefree(pg);
961 continue;
962 }
963 uvm_pageenqueue(pg);
964 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
965 UVM_PAGE_OWN(pg, NULL);
966 }
967 }
968 uvm_unlock_pageq();
969 simple_unlock(&uobj->vmobjlock);
970 if (ap->a_m != NULL) {
971 memcpy(ap->a_m, &pgs[ridx],
972 orignpages * sizeof(struct vm_page *));
973 }
974
975 out_err:
976 if (pgs != pgs_onstack)
977 kmem_free(pgs, pgs_size);
978 if (has_trans)
979 fstrans_done(vp->v_mount);
980 return (error);
981 }
982
983 /*
984 * generic VM putpages routine.
985 * Write the given range of pages to backing store.
986 *
987 * => "offhi == 0" means flush all pages at or after "offlo".
988 * => object should be locked by caller. we return with the
989 * object unlocked.
990 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
991 * thus, a caller might want to unlock higher level resources
992 * (e.g. vm_map) before calling flush.
993 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
994 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
995 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
996 * that new pages are inserted on the tail end of the list. thus,
997 * we can make a complete pass through the object in one go by starting
998 * at the head and working towards the tail (new pages are put in
999 * front of us).
1000 * => NOTE: we are allowed to lock the page queues, so the caller
1001 * must not be holding the page queue lock.
1002 *
1003 * note on "cleaning" object and PG_BUSY pages:
1004 * this routine is holding the lock on the object. the only time
1005 * that it can run into a PG_BUSY page that it does not own is if
1006 * some other process has started I/O on the page (e.g. either
1007 * a pagein, or a pageout). if the PG_BUSY page is being paged
1008 * in, then it can not be dirty (!PG_CLEAN) because no one has
1009 * had a chance to modify it yet. if the PG_BUSY page is being
1010 * paged out then it means that someone else has already started
1011 * cleaning the page for us (how nice!). in this case, if we
1012 * have syncio specified, then after we make our pass through the
1013 * object we need to wait for the other PG_BUSY pages to clear
1014 * off (i.e. we need to do an iosync). also note that once a
1015 * page is PG_BUSY it must stay in its object until it is un-busyed.
1016 *
1017 * note on page traversal:
1018 * we can traverse the pages in an object either by going down the
1019 * linked list in "uobj->memq", or we can go over the address range
1020 * by page doing hash table lookups for each address. depending
1021 * on how many pages are in the object it may be cheaper to do one
1022 * or the other. we set "by_list" to true if we are using memq.
1023 * if the cost of a hash lookup was equal to the cost of the list
1024 * traversal we could compare the number of pages in the start->stop
1025 * range to the total number of pages in the object. however, it
1026 * seems that a hash table lookup is more expensive than the linked
1027 * list traversal, so we multiply the number of pages in the
1028 * range by an estimate of the relatively higher cost of the hash lookup.
1029 */
1030
1031 int
1032 genfs_putpages(void *v)
1033 {
1034 struct vop_putpages_args /* {
1035 struct vnode *a_vp;
1036 voff_t a_offlo;
1037 voff_t a_offhi;
1038 int a_flags;
1039 } */ *ap = v;
1040 struct vnode *vp = ap->a_vp;
1041 struct uvm_object *uobj = &vp->v_uobj;
1042 struct simplelock *slock = &uobj->vmobjlock;
1043 off_t startoff = ap->a_offlo;
1044 off_t endoff = ap->a_offhi;
1045 off_t off;
1046 int flags = ap->a_flags;
1047 /* Even for strange MAXPHYS, the shift rounds down to a page */
1048 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1049 int i, s, error, npages, nback;
1050 int freeflag;
1051 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1052 boolean_t wasclean, by_list, needs_clean, yld;
1053 boolean_t async = (flags & PGO_SYNCIO) == 0;
1054 boolean_t pagedaemon = curproc == uvm.pagedaemon_proc;
1055 struct lwp *l = curlwp ? curlwp : &lwp0;
1056 struct genfs_node *gp = VTOG(vp);
1057 int dirtygen;
1058 boolean_t modified = FALSE;
1059 boolean_t has_trans = FALSE;
1060 boolean_t cleanall;
1061
1062 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1063
1064 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1065 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1066 KASSERT(startoff < endoff || endoff == 0);
1067
1068 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1069 vp, uobj->uo_npages, startoff, endoff - startoff);
1070
1071 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
1072 (vp->v_flag & VWRITEMAPDIRTY) == 0);
1073 if (uobj->uo_npages == 0) {
1074 s = splbio();
1075 if (vp->v_flag & VONWORKLST) {
1076 vp->v_flag &= ~VWRITEMAPDIRTY;
1077 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1078 vn_syncer_remove_from_worklist(vp);
1079 }
1080 splx(s);
1081 simple_unlock(slock);
1082 return (0);
1083 }
1084
1085 /*
1086 * the vnode has pages, set up to process the request.
1087 */
1088
1089 if ((flags & PGO_CLEANIT) != 0) {
1090 simple_unlock(slock);
1091 if (pagedaemon)
1092 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1093 else
1094 error = fstrans_start(vp->v_mount, FSTRANS_LAZY);
1095 if (error)
1096 return error;
1097 has_trans = TRUE;
1098 simple_lock(slock);
1099 }
1100
1101 error = 0;
1102 s = splbio();
1103 simple_lock(&global_v_numoutput_slock);
1104 wasclean = (vp->v_numoutput == 0);
1105 simple_unlock(&global_v_numoutput_slock);
1106 splx(s);
1107 off = startoff;
1108 if (endoff == 0 || flags & PGO_ALLPAGES) {
1109 endoff = trunc_page(LLONG_MAX);
1110 }
1111 by_list = (uobj->uo_npages <=
1112 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1113
1114 #if !defined(DEBUG)
1115 /*
1116 * if this vnode is known not to have dirty pages,
1117 * don't bother to clean it out.
1118 */
1119
1120 if ((vp->v_flag & VONWORKLST) == 0) {
1121 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1122 goto skip_scan;
1123 }
1124 flags &= ~PGO_CLEANIT;
1125 }
1126 #endif /* !defined(DEBUG) */
1127
1128 /*
1129 * start the loop. when scanning by list, hold the last page
1130 * in the list before we start. pages allocated after we start
1131 * will be added to the end of the list, so we can stop at the
1132 * current last page.
1133 */
1134
1135 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1136 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1137 (vp->v_flag & VONWORKLST) != 0;
1138 dirtygen = gp->g_dirtygen;
1139 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1140 if (by_list) {
1141 curmp.uobject = uobj;
1142 curmp.offset = (voff_t)-1;
1143 curmp.flags = PG_BUSY;
1144 endmp.uobject = uobj;
1145 endmp.offset = (voff_t)-1;
1146 endmp.flags = PG_BUSY;
1147 pg = TAILQ_FIRST(&uobj->memq);
1148 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1149 PHOLD(l);
1150 } else {
1151 pg = uvm_pagelookup(uobj, off);
1152 }
1153 nextpg = NULL;
1154 while (by_list || off < endoff) {
1155
1156 /*
1157 * if the current page is not interesting, move on to the next.
1158 */
1159
1160 KASSERT(pg == NULL || pg->uobject == uobj);
1161 KASSERT(pg == NULL ||
1162 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1163 (pg->flags & PG_BUSY) != 0);
1164 if (by_list) {
1165 if (pg == &endmp) {
1166 break;
1167 }
1168 if (pg->offset < startoff || pg->offset >= endoff ||
1169 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1170 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1171 wasclean = FALSE;
1172 }
1173 pg = TAILQ_NEXT(pg, listq);
1174 continue;
1175 }
1176 off = pg->offset;
1177 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1178 if (pg != NULL) {
1179 wasclean = FALSE;
1180 }
1181 off += PAGE_SIZE;
1182 if (off < endoff) {
1183 pg = uvm_pagelookup(uobj, off);
1184 }
1185 continue;
1186 }
1187
1188 /*
1189 * if the current page needs to be cleaned and it's busy,
1190 * wait for it to become unbusy.
1191 */
1192
1193 yld = (l->l_cpu->ci_schedstate.spc_flags &
1194 SPCF_SHOULDYIELD) && !pagedaemon;
1195 if (pg->flags & PG_BUSY || yld) {
1196 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1197 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1198 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1199 error = EDEADLK;
1200 break;
1201 }
1202 KASSERT(!pagedaemon);
1203 if (by_list) {
1204 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1205 UVMHIST_LOG(ubchist, "curmp next %p",
1206 TAILQ_NEXT(&curmp, listq), 0,0,0);
1207 }
1208 if (yld) {
1209 simple_unlock(slock);
1210 preempt();
1211 simple_lock(slock);
1212 } else {
1213 pg->flags |= PG_WANTED;
1214 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1215 simple_lock(slock);
1216 }
1217 if (by_list) {
1218 UVMHIST_LOG(ubchist, "after next %p",
1219 TAILQ_NEXT(&curmp, listq), 0,0,0);
1220 pg = TAILQ_NEXT(&curmp, listq);
1221 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1222 } else {
1223 pg = uvm_pagelookup(uobj, off);
1224 }
1225 continue;
1226 }
1227
1228 /*
1229 * if we're freeing, remove all mappings of the page now.
1230 * if we're cleaning, check if the page is needs to be cleaned.
1231 */
1232
1233 if (flags & PGO_FREE) {
1234 pmap_page_protect(pg, VM_PROT_NONE);
1235 } else if (flags & PGO_CLEANIT) {
1236
1237 /*
1238 * if we still have some hope to pull this vnode off
1239 * from the syncer queue, write-protect the page.
1240 */
1241
1242 if (cleanall && wasclean &&
1243 gp->g_dirtygen == dirtygen) {
1244
1245 /*
1246 * uobj pages get wired only by uvm_fault
1247 * where uobj is locked.
1248 */
1249
1250 if (pg->wire_count == 0) {
1251 pmap_page_protect(pg,
1252 VM_PROT_READ|VM_PROT_EXECUTE);
1253 } else {
1254 cleanall = FALSE;
1255 }
1256 }
1257 }
1258
1259 if (flags & PGO_CLEANIT) {
1260 needs_clean = pmap_clear_modify(pg) ||
1261 (pg->flags & PG_CLEAN) == 0;
1262 pg->flags |= PG_CLEAN;
1263 } else {
1264 needs_clean = FALSE;
1265 }
1266
1267 /*
1268 * if we're cleaning, build a cluster.
1269 * the cluster will consist of pages which are currently dirty,
1270 * but they will be returned to us marked clean.
1271 * if not cleaning, just operate on the one page.
1272 */
1273
1274 if (needs_clean) {
1275 KDASSERT((vp->v_flag & VONWORKLST));
1276 wasclean = FALSE;
1277 memset(pgs, 0, sizeof(pgs));
1278 pg->flags |= PG_BUSY;
1279 UVM_PAGE_OWN(pg, "genfs_putpages");
1280
1281 /*
1282 * first look backward.
1283 */
1284
1285 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1286 nback = npages;
1287 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1288 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1289 if (nback) {
1290 memmove(&pgs[0], &pgs[npages - nback],
1291 nback * sizeof(pgs[0]));
1292 if (npages - nback < nback)
1293 memset(&pgs[nback], 0,
1294 (npages - nback) * sizeof(pgs[0]));
1295 else
1296 memset(&pgs[npages - nback], 0,
1297 nback * sizeof(pgs[0]));
1298 }
1299
1300 /*
1301 * then plug in our page of interest.
1302 */
1303
1304 pgs[nback] = pg;
1305
1306 /*
1307 * then look forward to fill in the remaining space in
1308 * the array of pages.
1309 */
1310
1311 npages = maxpages - nback - 1;
1312 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1313 &pgs[nback + 1],
1314 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1315 npages += nback + 1;
1316 } else {
1317 pgs[0] = pg;
1318 npages = 1;
1319 nback = 0;
1320 }
1321
1322 /*
1323 * apply FREE or DEACTIVATE options if requested.
1324 */
1325
1326 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1327 uvm_lock_pageq();
1328 }
1329 for (i = 0; i < npages; i++) {
1330 tpg = pgs[i];
1331 KASSERT(tpg->uobject == uobj);
1332 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1333 pg = tpg;
1334 if (tpg->offset < startoff || tpg->offset >= endoff)
1335 continue;
1336 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1337 (void) pmap_clear_reference(tpg);
1338 uvm_pagedeactivate(tpg);
1339 } else if (flags & PGO_FREE) {
1340 pmap_page_protect(tpg, VM_PROT_NONE);
1341 if (tpg->flags & PG_BUSY) {
1342 tpg->flags |= freeflag;
1343 if (pagedaemon) {
1344 uvmexp.paging++;
1345 uvm_pagedequeue(tpg);
1346 }
1347 } else {
1348
1349 /*
1350 * ``page is not busy''
1351 * implies that npages is 1
1352 * and needs_clean is false.
1353 */
1354
1355 nextpg = TAILQ_NEXT(tpg, listq);
1356 uvm_pagefree(tpg);
1357 if (pagedaemon)
1358 uvmexp.pdfreed++;
1359 }
1360 }
1361 }
1362 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1363 uvm_unlock_pageq();
1364 }
1365 if (needs_clean) {
1366 modified = TRUE;
1367
1368 /*
1369 * start the i/o. if we're traversing by list,
1370 * keep our place in the list with a marker page.
1371 */
1372
1373 if (by_list) {
1374 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1375 listq);
1376 }
1377 simple_unlock(slock);
1378 error = GOP_WRITE(vp, pgs, npages, flags);
1379 simple_lock(slock);
1380 if (by_list) {
1381 pg = TAILQ_NEXT(&curmp, listq);
1382 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1383 }
1384 if (error) {
1385 break;
1386 }
1387 if (by_list) {
1388 continue;
1389 }
1390 }
1391
1392 /*
1393 * find the next page and continue if there was no error.
1394 */
1395
1396 if (by_list) {
1397 if (nextpg) {
1398 pg = nextpg;
1399 nextpg = NULL;
1400 } else {
1401 pg = TAILQ_NEXT(pg, listq);
1402 }
1403 } else {
1404 off += (npages - nback) << PAGE_SHIFT;
1405 if (off < endoff) {
1406 pg = uvm_pagelookup(uobj, off);
1407 }
1408 }
1409 }
1410 if (by_list) {
1411 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1412 PRELE(l);
1413 }
1414
1415 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
1416 (vp->v_type != VBLK ||
1417 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1418 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1419 }
1420
1421 /*
1422 * if we're cleaning and there was nothing to clean,
1423 * take us off the syncer list. if we started any i/o
1424 * and we're doing sync i/o, wait for all writes to finish.
1425 */
1426
1427 s = splbio();
1428 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1429 (vp->v_flag & VONWORKLST) != 0) {
1430 vp->v_flag &= ~VWRITEMAPDIRTY;
1431 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1432 vn_syncer_remove_from_worklist(vp);
1433 }
1434 splx(s);
1435
1436 #if !defined(DEBUG)
1437 skip_scan:
1438 #endif /* !defined(DEBUG) */
1439 if (!wasclean && !async) {
1440 s = splbio();
1441 /*
1442 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1443 * but the slot in ltsleep() is taken!
1444 * XXX - try to recover from missed wakeups with a timeout..
1445 * must think of something better.
1446 */
1447 while (vp->v_numoutput != 0) {
1448 vp->v_flag |= VBWAIT;
1449 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, FALSE,
1450 "genput2", hz);
1451 simple_lock(slock);
1452 }
1453 splx(s);
1454 }
1455 simple_unlock(slock);
1456
1457 if (has_trans)
1458 fstrans_done(vp->v_mount);
1459
1460 return (error);
1461 }
1462
1463 int
1464 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1465 {
1466 off_t off;
1467 vaddr_t kva;
1468 size_t len;
1469 int error;
1470 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1471
1472 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1473 vp, pgs, npages, flags);
1474
1475 off = pgs[0]->offset;
1476 kva = uvm_pagermapin(pgs, npages,
1477 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1478 len = npages << PAGE_SHIFT;
1479
1480 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1481 uvm_aio_biodone);
1482
1483 return error;
1484 }
1485
1486 /*
1487 * Backend routine for doing I/O to vnode pages. Pages are already locked
1488 * and mapped into kernel memory. Here we just look up the underlying
1489 * device block addresses and call the strategy routine.
1490 */
1491
1492 static int
1493 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1494 enum uio_rw rw, void (*iodone)(struct buf *))
1495 {
1496 int s, error, run;
1497 int fs_bshift, dev_bshift;
1498 off_t eof, offset, startoffset;
1499 size_t bytes, iobytes, skipbytes;
1500 daddr_t lbn, blkno;
1501 struct buf *mbp, *bp;
1502 struct vnode *devvp;
1503 boolean_t async = (flags & PGO_SYNCIO) == 0;
1504 boolean_t write = rw == UIO_WRITE;
1505 int brw = write ? B_WRITE : B_READ;
1506 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1507
1508 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1509 vp, kva, len, flags);
1510
1511 GOP_SIZE(vp, vp->v_size, &eof, 0);
1512 if (vp->v_type != VBLK) {
1513 fs_bshift = vp->v_mount->mnt_fs_bshift;
1514 dev_bshift = vp->v_mount->mnt_dev_bshift;
1515 } else {
1516 fs_bshift = DEV_BSHIFT;
1517 dev_bshift = DEV_BSHIFT;
1518 }
1519 error = 0;
1520 startoffset = off;
1521 bytes = MIN(len, eof - startoffset);
1522 skipbytes = 0;
1523 KASSERT(bytes != 0);
1524
1525 if (write) {
1526 s = splbio();
1527 simple_lock(&global_v_numoutput_slock);
1528 vp->v_numoutput += 2;
1529 simple_unlock(&global_v_numoutput_slock);
1530 splx(s);
1531 }
1532 mbp = getiobuf();
1533 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1534 vp, mbp, vp->v_numoutput, bytes);
1535 mbp->b_bufsize = len;
1536 mbp->b_data = (void *)kva;
1537 mbp->b_resid = mbp->b_bcount = bytes;
1538 mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1539 mbp->b_iodone = iodone;
1540 mbp->b_vp = vp;
1541 if (curproc == uvm.pagedaemon_proc)
1542 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1543 else if (async)
1544 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1545 else
1546 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1547
1548 bp = NULL;
1549 for (offset = startoffset;
1550 bytes > 0;
1551 offset += iobytes, bytes -= iobytes) {
1552 lbn = offset >> fs_bshift;
1553 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1554 if (error) {
1555 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1556 skipbytes += bytes;
1557 bytes = 0;
1558 break;
1559 }
1560
1561 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1562 bytes);
1563 if (blkno == (daddr_t)-1) {
1564 if (!write) {
1565 memset((char *)kva + (offset - startoffset), 0,
1566 iobytes);
1567 }
1568 skipbytes += iobytes;
1569 continue;
1570 }
1571
1572 /* if it's really one i/o, don't make a second buf */
1573 if (offset == startoffset && iobytes == bytes) {
1574 bp = mbp;
1575 } else {
1576 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1577 vp, bp, vp->v_numoutput, 0);
1578 bp = getiobuf();
1579 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1580 }
1581 bp->b_lblkno = 0;
1582
1583 /* adjust physical blkno for partial blocks */
1584 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1585 dev_bshift);
1586 UVMHIST_LOG(ubchist,
1587 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1588 vp, offset, bp->b_bcount, bp->b_blkno);
1589
1590 VOP_STRATEGY(devvp, bp);
1591 }
1592 if (skipbytes) {
1593 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1594 }
1595 nestiobuf_done(mbp, skipbytes, error);
1596 if (async) {
1597 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1598 return (0);
1599 }
1600 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1601 error = biowait(mbp);
1602 s = splbio();
1603 (*iodone)(mbp);
1604 splx(s);
1605 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1606 return (error);
1607 }
1608
1609 /*
1610 * VOP_PUTPAGES() for vnodes which never have pages.
1611 */
1612
1613 int
1614 genfs_null_putpages(void *v)
1615 {
1616 struct vop_putpages_args /* {
1617 struct vnode *a_vp;
1618 voff_t a_offlo;
1619 voff_t a_offhi;
1620 int a_flags;
1621 } */ *ap = v;
1622 struct vnode *vp = ap->a_vp;
1623
1624 KASSERT(vp->v_uobj.uo_npages == 0);
1625 simple_unlock(&vp->v_interlock);
1626 return (0);
1627 }
1628
1629 void
1630 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1631 {
1632 struct genfs_node *gp = VTOG(vp);
1633
1634 rw_init(&gp->g_glock);
1635 gp->g_op = ops;
1636 }
1637
1638 void
1639 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1640 {
1641 int bsize;
1642
1643 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1644 *eobp = (size + bsize - 1) & ~(bsize - 1);
1645 }
1646
1647 int
1648 genfs_compat_getpages(void *v)
1649 {
1650 struct vop_getpages_args /* {
1651 struct vnode *a_vp;
1652 voff_t a_offset;
1653 struct vm_page **a_m;
1654 int *a_count;
1655 int a_centeridx;
1656 vm_prot_t a_access_type;
1657 int a_advice;
1658 int a_flags;
1659 } */ *ap = v;
1660
1661 off_t origoffset;
1662 struct vnode *vp = ap->a_vp;
1663 struct uvm_object *uobj = &vp->v_uobj;
1664 struct vm_page *pg, **pgs;
1665 vaddr_t kva;
1666 int i, error, orignpages, npages;
1667 struct iovec iov;
1668 struct uio uio;
1669 kauth_cred_t cred = curlwp->l_cred;
1670 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1671
1672 error = 0;
1673 origoffset = ap->a_offset;
1674 orignpages = *ap->a_count;
1675 pgs = ap->a_m;
1676
1677 if (write && (vp->v_flag & VONWORKLST) == 0) {
1678 vn_syncer_add_to_worklist(vp, filedelay);
1679 }
1680 if (ap->a_flags & PGO_LOCKED) {
1681 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1682 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1683
1684 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1685 }
1686 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1687 simple_unlock(&uobj->vmobjlock);
1688 return (EINVAL);
1689 }
1690 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1691 simple_unlock(&uobj->vmobjlock);
1692 return 0;
1693 }
1694 npages = orignpages;
1695 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1696 simple_unlock(&uobj->vmobjlock);
1697 kva = uvm_pagermapin(pgs, npages,
1698 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1699 for (i = 0; i < npages; i++) {
1700 pg = pgs[i];
1701 if ((pg->flags & PG_FAKE) == 0) {
1702 continue;
1703 }
1704 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1705 iov.iov_len = PAGE_SIZE;
1706 uio.uio_iov = &iov;
1707 uio.uio_iovcnt = 1;
1708 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1709 uio.uio_rw = UIO_READ;
1710 uio.uio_resid = PAGE_SIZE;
1711 UIO_SETUP_SYSSPACE(&uio);
1712 /* XXX vn_lock */
1713 error = VOP_READ(vp, &uio, 0, cred);
1714 if (error) {
1715 break;
1716 }
1717 if (uio.uio_resid) {
1718 memset(iov.iov_base, 0, uio.uio_resid);
1719 }
1720 }
1721 uvm_pagermapout(kva, npages);
1722 simple_lock(&uobj->vmobjlock);
1723 uvm_lock_pageq();
1724 for (i = 0; i < npages; i++) {
1725 pg = pgs[i];
1726 if (error && (pg->flags & PG_FAKE) != 0) {
1727 pg->flags |= PG_RELEASED;
1728 } else {
1729 pmap_clear_modify(pg);
1730 uvm_pageactivate(pg);
1731 }
1732 }
1733 if (error) {
1734 uvm_page_unbusy(pgs, npages);
1735 }
1736 uvm_unlock_pageq();
1737 simple_unlock(&uobj->vmobjlock);
1738 return (error);
1739 }
1740
1741 int
1742 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1743 int flags)
1744 {
1745 off_t offset;
1746 struct iovec iov;
1747 struct uio uio;
1748 kauth_cred_t cred = curlwp->l_cred;
1749 struct buf *bp;
1750 vaddr_t kva;
1751 int s, error;
1752
1753 offset = pgs[0]->offset;
1754 kva = uvm_pagermapin(pgs, npages,
1755 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1756
1757 iov.iov_base = (void *)kva;
1758 iov.iov_len = npages << PAGE_SHIFT;
1759 uio.uio_iov = &iov;
1760 uio.uio_iovcnt = 1;
1761 uio.uio_offset = offset;
1762 uio.uio_rw = UIO_WRITE;
1763 uio.uio_resid = npages << PAGE_SHIFT;
1764 UIO_SETUP_SYSSPACE(&uio);
1765 /* XXX vn_lock */
1766 error = VOP_WRITE(vp, &uio, 0, cred);
1767
1768 s = splbio();
1769 V_INCR_NUMOUTPUT(vp);
1770 splx(s);
1771
1772 bp = getiobuf();
1773 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1774 bp->b_vp = vp;
1775 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1776 bp->b_data = (char *)kva;
1777 bp->b_bcount = npages << PAGE_SHIFT;
1778 bp->b_bufsize = npages << PAGE_SHIFT;
1779 bp->b_resid = 0;
1780 if (error) {
1781 bp->b_flags |= B_ERROR;
1782 bp->b_error = error;
1783 }
1784 uvm_aio_aiodone(bp);
1785 return (error);
1786 }
1787
1788 /*
1789 * Process a uio using direct I/O. If we reach a part of the request
1790 * which cannot be processed in this fashion for some reason, just return.
1791 * The caller must handle some additional part of the request using
1792 * buffered I/O before trying direct I/O again.
1793 */
1794
1795 void
1796 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1797 {
1798 struct vmspace *vs;
1799 struct iovec *iov;
1800 vaddr_t va;
1801 size_t len;
1802 const int mask = DEV_BSIZE - 1;
1803 int error;
1804
1805 /*
1806 * We only support direct I/O to user space for now.
1807 */
1808
1809 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1810 return;
1811 }
1812
1813 /*
1814 * If the vnode is mapped, we would need to get the getpages lock
1815 * to stabilize the bmap, but then we would get into trouble whil e
1816 * locking the pages if the pages belong to this same vnode (or a
1817 * multi-vnode cascade to the same effect). Just fall back to
1818 * buffered I/O if the vnode is mapped to avoid this mess.
1819 */
1820
1821 if (vp->v_flag & VMAPPED) {
1822 return;
1823 }
1824
1825 /*
1826 * Do as much of the uio as possible with direct I/O.
1827 */
1828
1829 vs = uio->uio_vmspace;
1830 while (uio->uio_resid) {
1831 iov = uio->uio_iov;
1832 if (iov->iov_len == 0) {
1833 uio->uio_iov++;
1834 uio->uio_iovcnt--;
1835 continue;
1836 }
1837 va = (vaddr_t)iov->iov_base;
1838 len = MIN(iov->iov_len, genfs_maxdio);
1839 len &= ~mask;
1840
1841 /*
1842 * If the next chunk is smaller than DEV_BSIZE or extends past
1843 * the current EOF, then fall back to buffered I/O.
1844 */
1845
1846 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1847 return;
1848 }
1849
1850 /*
1851 * Check alignment. The file offset must be at least
1852 * sector-aligned. The exact constraint on memory alignment
1853 * is very hardware-dependent, but requiring sector-aligned
1854 * addresses there too is safe.
1855 */
1856
1857 if (uio->uio_offset & mask || va & mask) {
1858 return;
1859 }
1860 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1861 uio->uio_rw);
1862 if (error) {
1863 break;
1864 }
1865 iov->iov_base = (caddr_t)iov->iov_base + len;
1866 iov->iov_len -= len;
1867 uio->uio_offset += len;
1868 uio->uio_resid -= len;
1869 }
1870 }
1871
1872 /*
1873 * Iodone routine for direct I/O. We don't do much here since the request is
1874 * always synchronous, so the caller will do most of the work after biowait().
1875 */
1876
1877 static void
1878 genfs_dio_iodone(struct buf *bp)
1879 {
1880 int s;
1881
1882 KASSERT((bp->b_flags & B_ASYNC) == 0);
1883 s = splbio();
1884 if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1885 vwakeup(bp);
1886 }
1887 putiobuf(bp);
1888 splx(s);
1889 }
1890
1891 /*
1892 * Process one chunk of a direct I/O request.
1893 */
1894
1895 static int
1896 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1897 off_t off, enum uio_rw rw)
1898 {
1899 struct vm_map *map;
1900 struct pmap *upm, *kpm;
1901 size_t klen = round_page(uva + len) - trunc_page(uva);
1902 off_t spoff, epoff;
1903 vaddr_t kva, puva;
1904 paddr_t pa;
1905 vm_prot_t prot;
1906 int error, rv, poff, koff;
1907 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1908 (rw == UIO_WRITE ? PGO_FREE : 0);
1909
1910 /*
1911 * For writes, verify that this range of the file already has fully
1912 * allocated backing store. If there are any holes, just punt and
1913 * make the caller take the buffered write path.
1914 */
1915
1916 if (rw == UIO_WRITE) {
1917 daddr_t lbn, elbn, blkno;
1918 int bsize, bshift, run;
1919
1920 bshift = vp->v_mount->mnt_fs_bshift;
1921 bsize = 1 << bshift;
1922 lbn = off >> bshift;
1923 elbn = (off + len + bsize - 1) >> bshift;
1924 while (lbn < elbn) {
1925 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1926 if (error) {
1927 return error;
1928 }
1929 if (blkno == (daddr_t)-1) {
1930 return ENOSPC;
1931 }
1932 lbn += 1 + run;
1933 }
1934 }
1935
1936 /*
1937 * Flush any cached pages for parts of the file that we're about to
1938 * access. If we're writing, invalidate pages as well.
1939 */
1940
1941 spoff = trunc_page(off);
1942 epoff = round_page(off + len);
1943 simple_lock(&vp->v_interlock);
1944 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1945 if (error) {
1946 return error;
1947 }
1948
1949 /*
1950 * Wire the user pages and remap them into kernel memory.
1951 */
1952
1953 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1954 error = uvm_vslock(vs, (void *)uva, len, prot);
1955 if (error) {
1956 return error;
1957 }
1958
1959 map = &vs->vm_map;
1960 upm = vm_map_pmap(map);
1961 kpm = vm_map_pmap(kernel_map);
1962 kva = uvm_km_alloc(kernel_map, klen, 0,
1963 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1964 puva = trunc_page(uva);
1965 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1966 rv = pmap_extract(upm, puva + poff, &pa);
1967 KASSERT(rv);
1968 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1969 }
1970 pmap_update(kpm);
1971
1972 /*
1973 * Do the I/O.
1974 */
1975
1976 koff = uva - trunc_page(uva);
1977 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1978 genfs_dio_iodone);
1979
1980 /*
1981 * Tear down the kernel mapping.
1982 */
1983
1984 pmap_remove(kpm, kva, kva + klen);
1985 pmap_update(kpm);
1986 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1987
1988 /*
1989 * Unwire the user pages.
1990 */
1991
1992 uvm_vsunlock(vs, (void *)uva, len);
1993 return error;
1994 }
1995
1996
1997 static void
1998 filt_genfsdetach(struct knote *kn)
1999 {
2000 struct vnode *vp = (struct vnode *)kn->kn_hook;
2001
2002 /* XXXLUKEM lock the struct? */
2003 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
2004 }
2005
2006 static int
2007 filt_genfsread(struct knote *kn, long hint)
2008 {
2009 struct vnode *vp = (struct vnode *)kn->kn_hook;
2010
2011 /*
2012 * filesystem is gone, so set the EOF flag and schedule
2013 * the knote for deletion.
2014 */
2015 if (hint == NOTE_REVOKE) {
2016 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2017 return (1);
2018 }
2019
2020 /* XXXLUKEM lock the struct? */
2021 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
2022 return (kn->kn_data != 0);
2023 }
2024
2025 static int
2026 filt_genfsvnode(struct knote *kn, long hint)
2027 {
2028
2029 if (kn->kn_sfflags & hint)
2030 kn->kn_fflags |= hint;
2031 if (hint == NOTE_REVOKE) {
2032 kn->kn_flags |= EV_EOF;
2033 return (1);
2034 }
2035 return (kn->kn_fflags != 0);
2036 }
2037
2038 static const struct filterops genfsread_filtops =
2039 { 1, NULL, filt_genfsdetach, filt_genfsread };
2040 static const struct filterops genfsvnode_filtops =
2041 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
2042
2043 int
2044 genfs_kqfilter(void *v)
2045 {
2046 struct vop_kqfilter_args /* {
2047 struct vnode *a_vp;
2048 struct knote *a_kn;
2049 } */ *ap = v;
2050 struct vnode *vp;
2051 struct knote *kn;
2052
2053 vp = ap->a_vp;
2054 kn = ap->a_kn;
2055 switch (kn->kn_filter) {
2056 case EVFILT_READ:
2057 kn->kn_fop = &genfsread_filtops;
2058 break;
2059 case EVFILT_VNODE:
2060 kn->kn_fop = &genfsvnode_filtops;
2061 break;
2062 default:
2063 return (1);
2064 }
2065
2066 kn->kn_hook = vp;
2067
2068 /* XXXLUKEM lock the struct? */
2069 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2070
2071 return (0);
2072 }
2073
2074 void
2075 genfs_node_wrlock(struct vnode *vp)
2076 {
2077 struct genfs_node *gp = VTOG(vp);
2078
2079 rw_enter(&gp->g_glock, RW_WRITER);
2080 }
2081
2082 void
2083 genfs_node_rdlock(struct vnode *vp)
2084 {
2085 struct genfs_node *gp = VTOG(vp);
2086
2087 rw_enter(&gp->g_glock, RW_READER);
2088 }
2089
2090 void
2091 genfs_node_unlock(struct vnode *vp)
2092 {
2093 struct genfs_node *gp = VTOG(vp);
2094
2095 rw_exit(&gp->g_glock);
2096 }
2097