genfs_vnops.c revision 1.150.2.8 1 /* $NetBSD: genfs_vnops.c,v 1.150.2.8 2007/06/17 21:31:38 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_vnops.c,v 1.150.2.8 2007/06/17 21:31:38 ad Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59 off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65 static void filt_genfsdetach(struct knote *);
66 static int filt_genfsread(struct knote *, long);
67 static int filt_genfsvnode(struct knote *, long);
68
69 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
70
71 int genfs_maxdio = MAXPHYS;
72
73 int
74 genfs_poll(void *v)
75 {
76 struct vop_poll_args /* {
77 struct vnode *a_vp;
78 int a_events;
79 struct lwp *a_l;
80 } */ *ap = v;
81
82 return (ap->a_events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
83 }
84
85 int
86 genfs_seek(void *v)
87 {
88 struct vop_seek_args /* {
89 struct vnode *a_vp;
90 off_t a_oldoff;
91 off_t a_newoff;
92 kauth_cred_t cred;
93 } */ *ap = v;
94
95 if (ap->a_newoff < 0)
96 return (EINVAL);
97
98 return (0);
99 }
100
101 int
102 genfs_abortop(void *v)
103 {
104 struct vop_abortop_args /* {
105 struct vnode *a_dvp;
106 struct componentname *a_cnp;
107 } */ *ap = v;
108
109 if ((ap->a_cnp->cn_flags & (HASBUF | SAVESTART)) == HASBUF)
110 PNBUF_PUT(ap->a_cnp->cn_pnbuf);
111 return (0);
112 }
113
114 int
115 genfs_fcntl(void *v)
116 {
117 struct vop_fcntl_args /* {
118 struct vnode *a_vp;
119 u_int a_command;
120 void *a_data;
121 int a_fflag;
122 kauth_cred_t a_cred;
123 struct lwp *a_l;
124 } */ *ap = v;
125
126 if (ap->a_command == F_SETFL)
127 return (0);
128 else
129 return (EOPNOTSUPP);
130 }
131
132 /*ARGSUSED*/
133 int
134 genfs_badop(void *v)
135 {
136
137 panic("genfs: bad op");
138 }
139
140 /*ARGSUSED*/
141 int
142 genfs_nullop(void *v)
143 {
144
145 return (0);
146 }
147
148 /*ARGSUSED*/
149 int
150 genfs_einval(void *v)
151 {
152
153 return (EINVAL);
154 }
155
156 /*
157 * Called when an fs doesn't support a particular vop.
158 * This takes care to vrele, vput, or vunlock passed in vnodes.
159 */
160 int
161 genfs_eopnotsupp(void *v)
162 {
163 struct vop_generic_args /*
164 struct vnodeop_desc *a_desc;
165 / * other random data follows, presumably * /
166 } */ *ap = v;
167 struct vnodeop_desc *desc = ap->a_desc;
168 struct vnode *vp, *vp_last = NULL;
169 int flags, i, j, offset;
170
171 flags = desc->vdesc_flags;
172 for (i = 0; i < VDESC_MAX_VPS; flags >>=1, i++) {
173 if ((offset = desc->vdesc_vp_offsets[i]) == VDESC_NO_OFFSET)
174 break; /* stop at end of list */
175 if ((j = flags & VDESC_VP0_WILLPUT)) {
176 vp = *VOPARG_OFFSETTO(struct vnode **, offset, ap);
177
178 /* Skip if NULL */
179 if (!vp)
180 continue;
181
182 switch (j) {
183 case VDESC_VP0_WILLPUT:
184 /* Check for dvp == vp cases */
185 if (vp == vp_last)
186 vrele(vp);
187 else {
188 vput(vp);
189 vp_last = vp;
190 }
191 break;
192 case VDESC_VP0_WILLUNLOCK:
193 VOP_UNLOCK(vp, 0);
194 break;
195 case VDESC_VP0_WILLRELE:
196 vrele(vp);
197 break;
198 }
199 }
200 }
201
202 return (EOPNOTSUPP);
203 }
204
205 /*ARGSUSED*/
206 int
207 genfs_ebadf(void *v)
208 {
209
210 return (EBADF);
211 }
212
213 /* ARGSUSED */
214 int
215 genfs_enoioctl(void *v)
216 {
217
218 return (EPASSTHROUGH);
219 }
220
221
222 /*
223 * Eliminate all activity associated with the requested vnode
224 * and with all vnodes aliased to the requested vnode.
225 */
226 int
227 genfs_revoke(void *v)
228 {
229 struct vop_revoke_args /* {
230 struct vnode *a_vp;
231 int a_flags;
232 } */ *ap = v;
233 struct vnode *vp, *vq;
234 struct lwp *l = curlwp; /* XXX */
235
236 #ifdef DIAGNOSTIC
237 if ((ap->a_flags & REVOKEALL) == 0)
238 panic("genfs_revoke: not revokeall");
239 #endif
240
241 vp = ap->a_vp;
242 mutex_enter(&vp->v_interlock);
243
244 if (vp->v_iflag & VI_ALIASED) {
245 /*
246 * If a vgone (or vclean) is already in progress,
247 * wait until it is done and return.
248 */
249 if (vp->v_iflag & VI_XLOCK) {
250 vwait(vp, VI_XLOCK);
251 mutex_exit(&vp->v_interlock);
252 return (0);
253 }
254 /*
255 * Ensure that vp will not be vgone'd while we
256 * are eliminating its aliases.
257 */
258 vp->v_iflag |= VI_XLOCK;
259 mutex_exit(&vp->v_interlock);
260 while (vp->v_iflag & VI_ALIASED) {
261 mutex_enter(&spechash_lock);
262 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
263 if (vq->v_rdev != vp->v_rdev ||
264 vq->v_type != vp->v_type || vp == vq)
265 continue;
266 mutex_exit(&spechash_lock);
267 vgone(vq);
268 break;
269 }
270 if (vq == NULLVP)
271 mutex_exit(&spechash_lock);
272 }
273 /*
274 * Remove the lock so that vgone below will
275 * really eliminate the vnode after which time
276 * vgone will awaken any sleepers.
277 */
278 mutex_enter(&vp->v_interlock);
279 vp->v_iflag &= ~VI_XLOCK;
280 }
281 vgonel(vp, l);
282 return (0);
283 }
284
285 /*
286 * Lock the node.
287 */
288 int
289 genfs_lock(void *v)
290 {
291 struct vop_lock_args /* {
292 struct vnode *a_vp;
293 int a_flags;
294 } */ *ap = v;
295 struct vnode *vp = ap->a_vp;
296
297 return (lockmgr(vp->v_vnlock, ap->a_flags, &vp->v_interlock));
298 }
299
300 /*
301 * Unlock the node.
302 */
303 int
304 genfs_unlock(void *v)
305 {
306 struct vop_unlock_args /* {
307 struct vnode *a_vp;
308 int a_flags;
309 } */ *ap = v;
310 struct vnode *vp = ap->a_vp;
311
312 return (lockmgr(vp->v_vnlock, ap->a_flags | LK_RELEASE,
313 &vp->v_interlock));
314 }
315
316 /*
317 * Return whether or not the node is locked.
318 */
319 int
320 genfs_islocked(void *v)
321 {
322 struct vop_islocked_args /* {
323 struct vnode *a_vp;
324 } */ *ap = v;
325 struct vnode *vp = ap->a_vp;
326
327 return (lockstatus(vp->v_vnlock));
328 }
329
330 /*
331 * Stubs to use when there is no locking to be done on the underlying object.
332 */
333 int
334 genfs_nolock(void *v)
335 {
336 struct vop_lock_args /* {
337 struct vnode *a_vp;
338 int a_flags;
339 struct lwp *a_l;
340 } */ *ap = v;
341
342 /*
343 * Since we are not using the lock manager, we must clear
344 * the interlock here.
345 */
346 if (ap->a_flags & LK_INTERLOCK)
347 mutex_exit(&ap->a_vp->v_interlock);
348 return (0);
349 }
350
351 int
352 genfs_nounlock(void *v)
353 {
354
355 return (0);
356 }
357
358 int
359 genfs_noislocked(void *v)
360 {
361
362 return (0);
363 }
364
365 /*
366 * Local lease check.
367 */
368 int
369 genfs_lease_check(void *v)
370 {
371
372 return (0);
373 }
374
375 int
376 genfs_mmap(void *v)
377 {
378
379 return (0);
380 }
381
382 static inline void
383 genfs_rel_pages(struct vm_page **pgs, int npages)
384 {
385 int i;
386
387 for (i = 0; i < npages; i++) {
388 struct vm_page *pg = pgs[i];
389
390 if (pg == NULL || pg == PGO_DONTCARE)
391 continue;
392 if (pg->flags & PG_FAKE) {
393 pg->flags |= PG_RELEASED;
394 }
395 }
396 mutex_enter(&uvm_pageqlock);
397 uvm_page_unbusy(pgs, npages);
398 mutex_exit(&uvm_pageqlock);
399 }
400
401 /*
402 * generic VM getpages routine.
403 * Return PG_BUSY pages for the given range,
404 * reading from backing store if necessary.
405 */
406
407 int
408 genfs_getpages(void *v)
409 {
410 struct vop_getpages_args /* {
411 struct vnode *a_vp;
412 voff_t a_offset;
413 struct vm_page **a_m;
414 int *a_count;
415 int a_centeridx;
416 vm_prot_t a_access_type;
417 int a_advice;
418 int a_flags;
419 } */ *ap = v;
420
421 off_t newsize, diskeof, memeof;
422 off_t offset, origoffset, startoffset, endoffset;
423 daddr_t lbn, blkno;
424 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
425 int fs_bshift, fs_bsize, dev_bshift;
426 int flags = ap->a_flags;
427 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
428 vaddr_t kva;
429 struct buf *bp, *mbp;
430 struct vnode *vp = ap->a_vp;
431 struct vnode *devvp;
432 struct genfs_node *gp = VTOG(vp);
433 struct uvm_object *uobj = &vp->v_uobj;
434 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
435 int pgs_size;
436 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
437 bool async = (flags & PGO_SYNCIO) == 0;
438 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
439 bool sawhole = false;
440 bool has_trans = false;
441 bool overwrite = (flags & PGO_OVERWRITE) != 0;
442 bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
443 voff_t origvsize;
444 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
445
446 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
447 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
448
449 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
450 vp->v_type == VLNK || vp->v_type == VBLK);
451
452 /* XXXUBC temp limit */
453 if (*ap->a_count > MAX_READ_PAGES) {
454 panic("genfs_getpages: too many pages");
455 }
456
457 pgs = pgs_onstack;
458 pgs_size = sizeof(pgs_onstack);
459
460 startover:
461 error = 0;
462 origvsize = vp->v_size;
463 origoffset = ap->a_offset;
464 orignpages = *ap->a_count;
465 GOP_SIZE(vp, origvsize, &diskeof, 0);
466 if (flags & PGO_PASTEOF) {
467 #if defined(DIAGNOSTIC)
468 off_t writeeof;
469 #endif /* defined(DIAGNOSTIC) */
470
471 newsize = MAX(origvsize,
472 origoffset + (orignpages << PAGE_SHIFT));
473 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
474 #if defined(DIAGNOSTIC)
475 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
476 if (newsize > round_page(writeeof)) {
477 panic("%s: past eof", __func__);
478 }
479 #endif /* defined(DIAGNOSTIC) */
480 } else {
481 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
482 }
483 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
484 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
485 KASSERT(orignpages > 0);
486
487 /*
488 * Bounds-check the request.
489 */
490
491 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
492 if ((flags & PGO_LOCKED) == 0) {
493 mutex_exit(&uobj->vmobjlock);
494 }
495 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
496 origoffset, *ap->a_count, memeof,0);
497 error = EINVAL;
498 goto out_err;
499 }
500
501 /* uobj is locked */
502
503 if ((flags & PGO_NOTIMESTAMP) == 0 &&
504 (vp->v_type != VBLK ||
505 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
506 int updflags = 0;
507
508 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
509 updflags = GOP_UPDATE_ACCESSED;
510 }
511 if (write) {
512 updflags |= GOP_UPDATE_MODIFIED;
513 }
514 if (updflags != 0) {
515 GOP_MARKUPDATE(vp, updflags);
516 }
517 }
518
519 if (write) {
520 gp->g_dirtygen++;
521 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
522 vn_syncer_add_to_worklist(vp, filedelay);
523 }
524 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
525 vp->v_iflag |= VI_WRMAPDIRTY;
526 }
527 }
528
529 /*
530 * For PGO_LOCKED requests, just return whatever's in memory.
531 */
532
533 if (flags & PGO_LOCKED) {
534 int nfound;
535
536 npages = *ap->a_count;
537 #if defined(DEBUG)
538 for (i = 0; i < npages; i++) {
539 pg = ap->a_m[i];
540 KASSERT(pg == NULL || pg == PGO_DONTCARE);
541 }
542 #endif /* defined(DEBUG) */
543 nfound = uvn_findpages(uobj, origoffset, &npages,
544 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
545 KASSERT(npages == *ap->a_count);
546 if (nfound == 0) {
547 error = EBUSY;
548 goto out_err;
549 }
550 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
551 genfs_rel_pages(ap->a_m, npages);
552
553 /*
554 * restore the array.
555 */
556
557 for (i = 0; i < npages; i++) {
558 pg = ap->a_m[i];
559
560 if (pg != NULL || pg != PGO_DONTCARE) {
561 ap->a_m[i] = NULL;
562 }
563 }
564 } else {
565 rw_exit(&gp->g_glock);
566 }
567 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
568 goto out_err;
569 }
570 mutex_exit(&uobj->vmobjlock);
571
572 /*
573 * find the requested pages and make some simple checks.
574 * leave space in the page array for a whole block.
575 */
576
577 if (vp->v_type != VBLK) {
578 fs_bshift = vp->v_mount->mnt_fs_bshift;
579 dev_bshift = vp->v_mount->mnt_dev_bshift;
580 } else {
581 fs_bshift = DEV_BSHIFT;
582 dev_bshift = DEV_BSHIFT;
583 }
584 fs_bsize = 1 << fs_bshift;
585
586 orignpages = MIN(orignpages,
587 round_page(memeof - origoffset) >> PAGE_SHIFT);
588 npages = orignpages;
589 startoffset = origoffset & ~(fs_bsize - 1);
590 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
591 fs_bsize - 1) & ~(fs_bsize - 1));
592 endoffset = MIN(endoffset, round_page(memeof));
593 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
594
595 pgs_size = sizeof(struct vm_page *) *
596 ((endoffset - startoffset) >> PAGE_SHIFT);
597 if (pgs_size > sizeof(pgs_onstack)) {
598 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
599 if (pgs == NULL) {
600 pgs = pgs_onstack;
601 error = ENOMEM;
602 goto out_err;
603 }
604 } else {
605 /* pgs == pgs_onstack */
606 memset(pgs, 0, pgs_size);
607 }
608 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
609 ridx, npages, startoffset, endoffset);
610
611 if (!has_trans) {
612 fstrans_start(vp->v_mount, FSTRANS_SHARED);
613 has_trans = true;
614 }
615
616 /*
617 * hold g_glock to prevent a race with truncate.
618 *
619 * check if our idea of v_size is still valid.
620 */
621
622 if (blockalloc) {
623 rw_enter(&gp->g_glock, RW_WRITER);
624 } else {
625 rw_enter(&gp->g_glock, RW_READER);
626 }
627 mutex_enter(&uobj->vmobjlock);
628 if (vp->v_size < origvsize) {
629 rw_exit(&gp->g_glock);
630 if (pgs != pgs_onstack)
631 kmem_free(pgs, pgs_size);
632 goto startover;
633 }
634
635 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
636 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
637 rw_exit(&gp->g_glock);
638 KASSERT(async != 0);
639 genfs_rel_pages(&pgs[ridx], orignpages);
640 mutex_exit(&uobj->vmobjlock);
641 error = EBUSY;
642 goto out_err;
643 }
644
645 /*
646 * if the pages are already resident, just return them.
647 */
648
649 for (i = 0; i < npages; i++) {
650 struct vm_page *pg1 = pgs[ridx + i];
651
652 if ((pg1->flags & PG_FAKE) ||
653 (blockalloc && (pg1->flags & PG_RDONLY))) {
654 break;
655 }
656 }
657 if (i == npages) {
658 rw_exit(&gp->g_glock);
659 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
660 npages += ridx;
661 goto out;
662 }
663
664 /*
665 * if PGO_OVERWRITE is set, don't bother reading the pages.
666 */
667
668 if (overwrite) {
669 rw_exit(&gp->g_glock);
670 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
671
672 for (i = 0; i < npages; i++) {
673 struct vm_page *pg1 = pgs[ridx + i];
674
675 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
676 }
677 npages += ridx;
678 goto out;
679 }
680
681 /*
682 * the page wasn't resident and we're not overwriting,
683 * so we're going to have to do some i/o.
684 * find any additional pages needed to cover the expanded range.
685 */
686
687 npages = (endoffset - startoffset) >> PAGE_SHIFT;
688 if (startoffset != origoffset || npages != orignpages) {
689
690 /*
691 * we need to avoid deadlocks caused by locking
692 * additional pages at lower offsets than pages we
693 * already have locked. unlock them all and start over.
694 */
695
696 genfs_rel_pages(&pgs[ridx], orignpages);
697 memset(pgs, 0, pgs_size);
698
699 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
700 startoffset, endoffset, 0,0);
701 npgs = npages;
702 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
703 async ? UFP_NOWAIT : UFP_ALL) != npages) {
704 rw_exit(&gp->g_glock);
705 KASSERT(async != 0);
706 genfs_rel_pages(pgs, npages);
707 mutex_exit(&uobj->vmobjlock);
708 error = EBUSY;
709 goto out_err;
710 }
711 }
712 mutex_exit(&uobj->vmobjlock);
713
714 /*
715 * read the desired page(s).
716 */
717
718 totalbytes = npages << PAGE_SHIFT;
719 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
720 tailbytes = totalbytes - bytes;
721 skipbytes = 0;
722
723 kva = uvm_pagermapin(pgs, npages,
724 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
725
726 mbp = getiobuf();
727 mbp->b_bufsize = totalbytes;
728 mbp->b_data = (void *)kva;
729 mbp->b_resid = mbp->b_bcount = bytes;
730 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
731 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
732 mbp->b_vp = vp;
733 if (async)
734 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
735 else
736 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
737
738 /*
739 * if EOF is in the middle of the range, zero the part past EOF.
740 * skip over pages which are not PG_FAKE since in that case they have
741 * valid data that we need to preserve.
742 */
743
744 tailstart = bytes;
745 while (tailbytes > 0) {
746 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
747
748 KASSERT(len <= tailbytes);
749 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
750 memset((void *)(kva + tailstart), 0, len);
751 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
752 kva, tailstart, len, 0);
753 }
754 tailstart += len;
755 tailbytes -= len;
756 }
757
758 /*
759 * now loop over the pages, reading as needed.
760 */
761
762 bp = NULL;
763 for (offset = startoffset;
764 bytes > 0;
765 offset += iobytes, bytes -= iobytes) {
766
767 /*
768 * skip pages which don't need to be read.
769 */
770
771 pidx = (offset - startoffset) >> PAGE_SHIFT;
772 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
773 size_t b;
774
775 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
776 if ((pgs[pidx]->flags & PG_RDONLY)) {
777 sawhole = true;
778 }
779 b = MIN(PAGE_SIZE, bytes);
780 offset += b;
781 bytes -= b;
782 skipbytes += b;
783 pidx++;
784 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
785 offset, 0,0,0);
786 if (bytes == 0) {
787 goto loopdone;
788 }
789 }
790
791 /*
792 * bmap the file to find out the blkno to read from and
793 * how much we can read in one i/o. if bmap returns an error,
794 * skip the rest of the top-level i/o.
795 */
796
797 lbn = offset >> fs_bshift;
798 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
799 if (error) {
800 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
801 lbn, error,0,0);
802 skipbytes += bytes;
803 goto loopdone;
804 }
805
806 /*
807 * see how many pages can be read with this i/o.
808 * reduce the i/o size if necessary to avoid
809 * overwriting pages with valid data.
810 */
811
812 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
813 bytes);
814 if (offset + iobytes > round_page(offset)) {
815 pcount = 1;
816 while (pidx + pcount < npages &&
817 pgs[pidx + pcount]->flags & PG_FAKE) {
818 pcount++;
819 }
820 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
821 (offset - trunc_page(offset)));
822 }
823
824 /*
825 * if this block isn't allocated, zero it instead of
826 * reading it. unless we are going to allocate blocks,
827 * mark the pages we zeroed PG_RDONLY.
828 */
829
830 if (blkno < 0) {
831 int holepages = (round_page(offset + iobytes) -
832 trunc_page(offset)) >> PAGE_SHIFT;
833 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
834
835 sawhole = true;
836 memset((char *)kva + (offset - startoffset), 0,
837 iobytes);
838 skipbytes += iobytes;
839
840 for (i = 0; i < holepages; i++) {
841 if (write) {
842 pgs[pidx + i]->flags &= ~PG_CLEAN;
843 }
844 if (!blockalloc) {
845 pgs[pidx + i]->flags |= PG_RDONLY;
846 }
847 }
848 continue;
849 }
850
851 /*
852 * allocate a sub-buf for this piece of the i/o
853 * (or just use mbp if there's only 1 piece),
854 * and start it going.
855 */
856
857 if (offset == startoffset && iobytes == bytes) {
858 bp = mbp;
859 } else {
860 bp = getiobuf();
861 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
862 }
863 bp->b_lblkno = 0;
864
865 /* adjust physical blkno for partial blocks */
866 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
867 dev_bshift);
868
869 UVMHIST_LOG(ubchist,
870 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
871 bp, offset, iobytes, bp->b_blkno);
872
873 VOP_STRATEGY(devvp, bp);
874 }
875
876 loopdone:
877 nestiobuf_done(mbp, skipbytes, error);
878 if (async) {
879 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
880 rw_exit(&gp->g_glock);
881 error = 0;
882 goto out_err;
883 }
884 if (bp != NULL) {
885 error = biowait(mbp);
886 }
887 putiobuf(mbp);
888 uvm_pagermapout(kva, npages);
889
890 /*
891 * if this we encountered a hole then we have to do a little more work.
892 * for read faults, we marked the page PG_RDONLY so that future
893 * write accesses to the page will fault again.
894 * for write faults, we must make sure that the backing store for
895 * the page is completely allocated while the pages are locked.
896 */
897
898 if (!error && sawhole && blockalloc) {
899 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
900 cred);
901 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
902 startoffset, npages << PAGE_SHIFT, error,0);
903 if (!error) {
904 for (i = 0; i < npages; i++) {
905 if (pgs[i] == NULL) {
906 continue;
907 }
908 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
909 UVMHIST_LOG(ubchist, "mark dirty pg %p",
910 pgs[i],0,0,0);
911 }
912 }
913 }
914 rw_exit(&gp->g_glock);
915 mutex_enter(&uobj->vmobjlock);
916
917 /*
918 * we're almost done! release the pages...
919 * for errors, we free the pages.
920 * otherwise we activate them and mark them as valid and clean.
921 * also, unbusy pages that were not actually requested.
922 */
923
924 if (error) {
925 for (i = 0; i < npages; i++) {
926 if (pgs[i] == NULL) {
927 continue;
928 }
929 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
930 pgs[i], pgs[i]->flags, 0,0);
931 if (pgs[i]->flags & PG_FAKE) {
932 pgs[i]->flags |= PG_RELEASED;
933 }
934 }
935 mutex_enter(&uvm_pageqlock);
936 uvm_page_unbusy(pgs, npages);
937 mutex_exit(&uvm_pageqlock);
938 mutex_exit(&uobj->vmobjlock);
939 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
940 goto out_err;
941 }
942
943 out:
944 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
945 error = 0;
946 mutex_enter(&uvm_pageqlock);
947 for (i = 0; i < npages; i++) {
948 pg = pgs[i];
949 if (pg == NULL) {
950 continue;
951 }
952 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
953 pg, pg->flags, 0,0);
954 if (pg->flags & PG_FAKE && !overwrite) {
955 pg->flags &= ~(PG_FAKE);
956 pmap_clear_modify(pgs[i]);
957 }
958 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
959 if (i < ridx || i >= ridx + orignpages || async) {
960 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
961 pg, pg->offset,0,0);
962 if (pg->flags & PG_WANTED) {
963 wakeup(pg);
964 }
965 if (pg->flags & PG_FAKE) {
966 KASSERT(overwrite);
967 uvm_pagezero(pg);
968 }
969 if (pg->flags & PG_RELEASED) {
970 uvm_pagefree(pg);
971 continue;
972 }
973 uvm_pageenqueue(pg);
974 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
975 UVM_PAGE_OWN(pg, NULL);
976 }
977 }
978 mutex_exit(&uvm_pageqlock);
979 mutex_exit(&uobj->vmobjlock);
980 if (ap->a_m != NULL) {
981 memcpy(ap->a_m, &pgs[ridx],
982 orignpages * sizeof(struct vm_page *));
983 }
984
985 out_err:
986 if (pgs != pgs_onstack)
987 kmem_free(pgs, pgs_size);
988 if (has_trans)
989 fstrans_done(vp->v_mount);
990 return (error);
991 }
992
993 /*
994 * generic VM putpages routine.
995 * Write the given range of pages to backing store.
996 *
997 * => "offhi == 0" means flush all pages at or after "offlo".
998 * => object should be locked by caller. we return with the
999 * object unlocked.
1000 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
1001 * thus, a caller might want to unlock higher level resources
1002 * (e.g. vm_map) before calling flush.
1003 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
1004 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
1005 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
1006 * that new pages are inserted on the tail end of the list. thus,
1007 * we can make a complete pass through the object in one go by starting
1008 * at the head and working towards the tail (new pages are put in
1009 * front of us).
1010 * => NOTE: we are allowed to lock the page queues, so the caller
1011 * must not be holding the page queue lock.
1012 *
1013 * note on "cleaning" object and PG_BUSY pages:
1014 * this routine is holding the lock on the object. the only time
1015 * that it can run into a PG_BUSY page that it does not own is if
1016 * some other process has started I/O on the page (e.g. either
1017 * a pagein, or a pageout). if the PG_BUSY page is being paged
1018 * in, then it can not be dirty (!PG_CLEAN) because no one has
1019 * had a chance to modify it yet. if the PG_BUSY page is being
1020 * paged out then it means that someone else has already started
1021 * cleaning the page for us (how nice!). in this case, if we
1022 * have syncio specified, then after we make our pass through the
1023 * object we need to wait for the other PG_BUSY pages to clear
1024 * off (i.e. we need to do an iosync). also note that once a
1025 * page is PG_BUSY it must stay in its object until it is un-busyed.
1026 *
1027 * note on page traversal:
1028 * we can traverse the pages in an object either by going down the
1029 * linked list in "uobj->memq", or we can go over the address range
1030 * by page doing hash table lookups for each address. depending
1031 * on how many pages are in the object it may be cheaper to do one
1032 * or the other. we set "by_list" to true if we are using memq.
1033 * if the cost of a hash lookup was equal to the cost of the list
1034 * traversal we could compare the number of pages in the start->stop
1035 * range to the total number of pages in the object. however, it
1036 * seems that a hash table lookup is more expensive than the linked
1037 * list traversal, so we multiply the number of pages in the
1038 * range by an estimate of the relatively higher cost of the hash lookup.
1039 */
1040
1041 int
1042 genfs_putpages(void *v)
1043 {
1044 struct vop_putpages_args /* {
1045 struct vnode *a_vp;
1046 voff_t a_offlo;
1047 voff_t a_offhi;
1048 int a_flags;
1049 } */ *ap = v;
1050
1051 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1052 ap->a_flags, NULL);
1053 }
1054
1055 int
1056 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
1057 struct vm_page **busypg)
1058 {
1059 struct uvm_object *uobj = &vp->v_uobj;
1060 kmutex_t *slock = &uobj->vmobjlock;
1061 off_t off;
1062 /* Even for strange MAXPHYS, the shift rounds down to a page */
1063 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1064 int i, error, npages, nback;
1065 int freeflag;
1066 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1067 bool wasclean, by_list, needs_clean, yld;
1068 bool async = (flags & PGO_SYNCIO) == 0;
1069 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1070 struct lwp *l = curlwp ? curlwp : &lwp0;
1071 struct genfs_node *gp = VTOG(vp);
1072 int dirtygen;
1073 bool modified = false;
1074 bool has_trans = false;
1075 bool cleanall;
1076
1077 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1078
1079 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1080 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1081 KASSERT(startoff < endoff || endoff == 0);
1082
1083 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1084 vp, uobj->uo_npages, startoff, endoff - startoff);
1085
1086 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1087 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1088 if (uobj->uo_npages == 0) {
1089 if (vp->v_iflag & VI_ONWORKLST) {
1090 vp->v_iflag &= ~VI_WRMAPDIRTY;
1091 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1092 vn_syncer_remove_from_worklist(vp);
1093 }
1094 mutex_exit(slock);
1095 return (0);
1096 }
1097
1098 /*
1099 * the vnode has pages, set up to process the request.
1100 */
1101
1102 if ((flags & PGO_CLEANIT) != 0) {
1103 mutex_exit(slock);
1104 if (pagedaemon) {
1105 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1106 if (error)
1107 return error;
1108 } else
1109 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1110 has_trans = true;
1111 mutex_enter(slock);
1112 }
1113
1114 error = 0;
1115 mutex_enter(&global_v_numoutput_lock);
1116 wasclean = (vp->v_numoutput == 0);
1117 mutex_exit(&global_v_numoutput_lock);
1118 off = startoff;
1119 if (endoff == 0 || flags & PGO_ALLPAGES) {
1120 endoff = trunc_page(LLONG_MAX);
1121 }
1122 by_list = (uobj->uo_npages <=
1123 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
1124
1125 #if !defined(DEBUG)
1126 /*
1127 * if this vnode is known not to have dirty pages,
1128 * don't bother to clean it out.
1129 */
1130
1131 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1132 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1133 goto skip_scan;
1134 }
1135 flags &= ~PGO_CLEANIT;
1136 }
1137 #endif /* !defined(DEBUG) */
1138
1139 /*
1140 * start the loop. when scanning by list, hold the last page
1141 * in the list before we start. pages allocated after we start
1142 * will be added to the end of the list, so we can stop at the
1143 * current last page.
1144 */
1145
1146 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1147 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1148 (vp->v_iflag & VI_ONWORKLST) != 0;
1149 dirtygen = gp->g_dirtygen;
1150 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1151 if (by_list) {
1152 curmp.uobject = uobj;
1153 curmp.offset = (voff_t)-1;
1154 curmp.flags = PG_BUSY;
1155 endmp.uobject = uobj;
1156 endmp.offset = (voff_t)-1;
1157 endmp.flags = PG_BUSY;
1158 pg = TAILQ_FIRST(&uobj->memq);
1159 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
1160 uvm_lwp_hold(l);
1161 } else {
1162 pg = uvm_pagelookup(uobj, off);
1163 }
1164 nextpg = NULL;
1165 while (by_list || off < endoff) {
1166
1167 /*
1168 * if the current page is not interesting, move on to the next.
1169 */
1170
1171 KASSERT(pg == NULL || pg->uobject == uobj);
1172 KASSERT(pg == NULL ||
1173 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1174 (pg->flags & PG_BUSY) != 0);
1175 if (by_list) {
1176 if (pg == &endmp) {
1177 break;
1178 }
1179 if (pg->offset < startoff || pg->offset >= endoff ||
1180 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1181 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1182 wasclean = false;
1183 }
1184 pg = TAILQ_NEXT(pg, listq);
1185 continue;
1186 }
1187 off = pg->offset;
1188 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1189 if (pg != NULL) {
1190 wasclean = false;
1191 }
1192 off += PAGE_SIZE;
1193 if (off < endoff) {
1194 pg = uvm_pagelookup(uobj, off);
1195 }
1196 continue;
1197 }
1198
1199 /*
1200 * if the current page needs to be cleaned and it's busy,
1201 * wait for it to become unbusy.
1202 */
1203
1204 yld = (l->l_cpu->ci_schedstate.spc_flags &
1205 SPCF_SHOULDYIELD) && !pagedaemon;
1206 if (pg->flags & PG_BUSY || yld) {
1207 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1208 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1209 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1210 error = EDEADLK;
1211 if (busypg != NULL)
1212 *busypg = pg;
1213 break;
1214 }
1215 KASSERT(!pagedaemon);
1216 if (by_list) {
1217 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
1218 UVMHIST_LOG(ubchist, "curmp next %p",
1219 TAILQ_NEXT(&curmp, listq), 0,0,0);
1220 }
1221 if (yld) {
1222 mutex_exit(slock);
1223 preempt();
1224 mutex_enter(slock);
1225 } else {
1226 pg->flags |= PG_WANTED;
1227 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1228 mutex_enter(slock);
1229 }
1230 if (by_list) {
1231 UVMHIST_LOG(ubchist, "after next %p",
1232 TAILQ_NEXT(&curmp, listq), 0,0,0);
1233 pg = TAILQ_NEXT(&curmp, listq);
1234 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1235 } else {
1236 pg = uvm_pagelookup(uobj, off);
1237 }
1238 continue;
1239 }
1240
1241 /*
1242 * if we're freeing, remove all mappings of the page now.
1243 * if we're cleaning, check if the page is needs to be cleaned.
1244 */
1245
1246 if (flags & PGO_FREE) {
1247 pmap_page_protect(pg, VM_PROT_NONE);
1248 } else if (flags & PGO_CLEANIT) {
1249
1250 /*
1251 * if we still have some hope to pull this vnode off
1252 * from the syncer queue, write-protect the page.
1253 */
1254
1255 if (cleanall && wasclean &&
1256 gp->g_dirtygen == dirtygen) {
1257
1258 /*
1259 * uobj pages get wired only by uvm_fault
1260 * where uobj is locked.
1261 */
1262
1263 if (pg->wire_count == 0) {
1264 pmap_page_protect(pg,
1265 VM_PROT_READ|VM_PROT_EXECUTE);
1266 } else {
1267 cleanall = false;
1268 }
1269 }
1270 }
1271
1272 if (flags & PGO_CLEANIT) {
1273 needs_clean = pmap_clear_modify(pg) ||
1274 (pg->flags & PG_CLEAN) == 0;
1275 pg->flags |= PG_CLEAN;
1276 } else {
1277 needs_clean = false;
1278 }
1279
1280 /*
1281 * if we're cleaning, build a cluster.
1282 * the cluster will consist of pages which are currently dirty,
1283 * but they will be returned to us marked clean.
1284 * if not cleaning, just operate on the one page.
1285 */
1286
1287 if (needs_clean) {
1288 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1289 wasclean = false;
1290 memset(pgs, 0, sizeof(pgs));
1291 pg->flags |= PG_BUSY;
1292 UVM_PAGE_OWN(pg, "genfs_putpages");
1293
1294 /*
1295 * first look backward.
1296 */
1297
1298 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1299 nback = npages;
1300 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1301 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1302 if (nback) {
1303 memmove(&pgs[0], &pgs[npages - nback],
1304 nback * sizeof(pgs[0]));
1305 if (npages - nback < nback)
1306 memset(&pgs[nback], 0,
1307 (npages - nback) * sizeof(pgs[0]));
1308 else
1309 memset(&pgs[npages - nback], 0,
1310 nback * sizeof(pgs[0]));
1311 }
1312
1313 /*
1314 * then plug in our page of interest.
1315 */
1316
1317 pgs[nback] = pg;
1318
1319 /*
1320 * then look forward to fill in the remaining space in
1321 * the array of pages.
1322 */
1323
1324 npages = maxpages - nback - 1;
1325 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1326 &pgs[nback + 1],
1327 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1328 npages += nback + 1;
1329 } else {
1330 pgs[0] = pg;
1331 npages = 1;
1332 nback = 0;
1333 }
1334
1335 /*
1336 * apply FREE or DEACTIVATE options if requested.
1337 */
1338
1339 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1340 mutex_enter(&uvm_pageqlock);
1341 }
1342 for (i = 0; i < npages; i++) {
1343 tpg = pgs[i];
1344 KASSERT(tpg->uobject == uobj);
1345 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1346 pg = tpg;
1347 if (tpg->offset < startoff || tpg->offset >= endoff)
1348 continue;
1349 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1350 (void) pmap_clear_reference(tpg);
1351 uvm_pagedeactivate(tpg);
1352 } else if (flags & PGO_FREE) {
1353 pmap_page_protect(tpg, VM_PROT_NONE);
1354 if (tpg->flags & PG_BUSY) {
1355 tpg->flags |= freeflag;
1356 if (pagedaemon) {
1357 uvmexp.paging++;
1358 uvm_pagedequeue(tpg);
1359 }
1360 } else {
1361
1362 /*
1363 * ``page is not busy''
1364 * implies that npages is 1
1365 * and needs_clean is false.
1366 */
1367
1368 nextpg = TAILQ_NEXT(tpg, listq);
1369 uvm_pagefree(tpg);
1370 if (pagedaemon)
1371 uvmexp.pdfreed++;
1372 }
1373 }
1374 }
1375 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1376 mutex_exit(&uvm_pageqlock);
1377 }
1378 if (needs_clean) {
1379 modified = true;
1380
1381 /*
1382 * start the i/o. if we're traversing by list,
1383 * keep our place in the list with a marker page.
1384 */
1385
1386 if (by_list) {
1387 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1388 listq);
1389 }
1390 mutex_exit(slock);
1391 error = GOP_WRITE(vp, pgs, npages, flags);
1392 mutex_enter(slock);
1393 if (by_list) {
1394 pg = TAILQ_NEXT(&curmp, listq);
1395 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1396 }
1397 if (error) {
1398 break;
1399 }
1400 if (by_list) {
1401 continue;
1402 }
1403 }
1404
1405 /*
1406 * find the next page and continue if there was no error.
1407 */
1408
1409 if (by_list) {
1410 if (nextpg) {
1411 pg = nextpg;
1412 nextpg = NULL;
1413 } else {
1414 pg = TAILQ_NEXT(pg, listq);
1415 }
1416 } else {
1417 off += (npages - nback) << PAGE_SHIFT;
1418 if (off < endoff) {
1419 pg = uvm_pagelookup(uobj, off);
1420 }
1421 }
1422 }
1423 if (by_list) {
1424 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1425 uvm_lwp_rele(l);
1426 }
1427
1428 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1429 (vp->v_type != VBLK ||
1430 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1431 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1432 }
1433
1434 /*
1435 * if we're cleaning and there was nothing to clean,
1436 * take us off the syncer list. if we started any i/o
1437 * and we're doing sync i/o, wait for all writes to finish.
1438 */
1439
1440 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1441 (vp->v_iflag & VI_ONWORKLST) != 0) {
1442 vp->v_iflag &= ~VI_WRMAPDIRTY;
1443 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1444 vn_syncer_remove_from_worklist(vp);
1445 }
1446
1447 #if !defined(DEBUG)
1448 skip_scan:
1449 #endif /* !defined(DEBUG) */
1450 mutex_exit(slock);
1451
1452 /*
1453 * Safe to test v_numoutput unlocked as any increase in
1454 * its value will be visible here (although may be stale).
1455 */
1456 if (!wasclean && !async && vp->v_numoutput != 0) {
1457 mutex_enter(&global_v_numoutput_lock);
1458 while (vp->v_numoutput != 0)
1459 cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
1460 mutex_exit(&global_v_numoutput_lock);
1461 }
1462
1463 if (has_trans)
1464 fstrans_done(vp->v_mount);
1465
1466 return (error);
1467 }
1468
1469 int
1470 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1471 {
1472 off_t off;
1473 vaddr_t kva;
1474 size_t len;
1475 int error;
1476 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1477
1478 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1479 vp, pgs, npages, flags);
1480
1481 off = pgs[0]->offset;
1482 kva = uvm_pagermapin(pgs, npages,
1483 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1484 len = npages << PAGE_SHIFT;
1485
1486 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1487 uvm_aio_biodone);
1488
1489 return error;
1490 }
1491
1492 /*
1493 * Backend routine for doing I/O to vnode pages. Pages are already locked
1494 * and mapped into kernel memory. Here we just look up the underlying
1495 * device block addresses and call the strategy routine.
1496 */
1497
1498 static int
1499 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1500 enum uio_rw rw, void (*iodone)(struct buf *))
1501 {
1502 int s, error, run;
1503 int fs_bshift, dev_bshift;
1504 off_t eof, offset, startoffset;
1505 size_t bytes, iobytes, skipbytes;
1506 daddr_t lbn, blkno;
1507 struct buf *mbp, *bp;
1508 struct vnode *devvp;
1509 bool async = (flags & PGO_SYNCIO) == 0;
1510 bool write = rw == UIO_WRITE;
1511 int brw = write ? B_WRITE : B_READ;
1512 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1513
1514 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1515 vp, kva, len, flags);
1516
1517 KASSERT(vp->v_size <= vp->v_writesize);
1518 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1519 if (vp->v_type != VBLK) {
1520 fs_bshift = vp->v_mount->mnt_fs_bshift;
1521 dev_bshift = vp->v_mount->mnt_dev_bshift;
1522 } else {
1523 fs_bshift = DEV_BSHIFT;
1524 dev_bshift = DEV_BSHIFT;
1525 }
1526 error = 0;
1527 startoffset = off;
1528 bytes = MIN(len, eof - startoffset);
1529 skipbytes = 0;
1530 KASSERT(bytes != 0);
1531
1532 if (write) {
1533 mutex_enter(&global_v_numoutput_lock);
1534 vp->v_numoutput += 2;
1535 mutex_exit(&global_v_numoutput_lock);
1536 }
1537 mbp = getiobuf();
1538 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1539 vp, mbp, vp->v_numoutput, bytes);
1540 mbp->b_bufsize = len;
1541 mbp->b_data = (void *)kva;
1542 mbp->b_resid = mbp->b_bcount = bytes;
1543 mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1544 mbp->b_iodone = iodone;
1545 mbp->b_vp = vp;
1546 if (curlwp == uvm.pagedaemon_lwp)
1547 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1548 else if (async)
1549 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1550 else
1551 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1552
1553 bp = NULL;
1554 for (offset = startoffset;
1555 bytes > 0;
1556 offset += iobytes, bytes -= iobytes) {
1557 lbn = offset >> fs_bshift;
1558 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1559 if (error) {
1560 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1561 skipbytes += bytes;
1562 bytes = 0;
1563 break;
1564 }
1565
1566 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1567 bytes);
1568 if (blkno == (daddr_t)-1) {
1569 if (!write) {
1570 memset((char *)kva + (offset - startoffset), 0,
1571 iobytes);
1572 }
1573 skipbytes += iobytes;
1574 continue;
1575 }
1576
1577 /* if it's really one i/o, don't make a second buf */
1578 if (offset == startoffset && iobytes == bytes) {
1579 bp = mbp;
1580 } else {
1581 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1582 vp, bp, vp->v_numoutput, 0);
1583 bp = getiobuf();
1584 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1585 }
1586 bp->b_lblkno = 0;
1587
1588 /* adjust physical blkno for partial blocks */
1589 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1590 dev_bshift);
1591 UVMHIST_LOG(ubchist,
1592 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1593 vp, offset, bp->b_bcount, bp->b_blkno);
1594
1595 VOP_STRATEGY(devvp, bp);
1596 }
1597 if (skipbytes) {
1598 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1599 }
1600 nestiobuf_done(mbp, skipbytes, error);
1601 if (async) {
1602 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1603 return (0);
1604 }
1605 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1606 error = biowait(mbp);
1607 s = splbio();
1608 (*iodone)(mbp);
1609 splx(s);
1610 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1611 return (error);
1612 }
1613
1614 /*
1615 * VOP_PUTPAGES() for vnodes which never have pages.
1616 */
1617
1618 int
1619 genfs_null_putpages(void *v)
1620 {
1621 struct vop_putpages_args /* {
1622 struct vnode *a_vp;
1623 voff_t a_offlo;
1624 voff_t a_offhi;
1625 int a_flags;
1626 } */ *ap = v;
1627 struct vnode *vp = ap->a_vp;
1628
1629 KASSERT(vp->v_uobj.uo_npages == 0);
1630 mutex_exit(&vp->v_interlock);
1631 return (0);
1632 }
1633
1634 void
1635 genfs_node_init(struct vnode *vp, const struct genfs_ops *ops)
1636 {
1637 struct genfs_node *gp = VTOG(vp);
1638
1639 rw_init(&gp->g_glock);
1640 gp->g_op = ops;
1641 }
1642
1643 void
1644 genfs_node_destroy(struct vnode *vp)
1645 {
1646 struct genfs_node *gp = VTOG(vp);
1647
1648 rw_destroy(&gp->g_glock);
1649 }
1650
1651 void
1652 genfs_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1653 {
1654 int bsize;
1655
1656 bsize = 1 << vp->v_mount->mnt_fs_bshift;
1657 *eobp = (size + bsize - 1) & ~(bsize - 1);
1658 }
1659
1660 int
1661 genfs_compat_getpages(void *v)
1662 {
1663 struct vop_getpages_args /* {
1664 struct vnode *a_vp;
1665 voff_t a_offset;
1666 struct vm_page **a_m;
1667 int *a_count;
1668 int a_centeridx;
1669 vm_prot_t a_access_type;
1670 int a_advice;
1671 int a_flags;
1672 } */ *ap = v;
1673
1674 off_t origoffset;
1675 struct vnode *vp = ap->a_vp;
1676 struct uvm_object *uobj = &vp->v_uobj;
1677 struct vm_page *pg, **pgs;
1678 vaddr_t kva;
1679 int i, error, orignpages, npages;
1680 struct iovec iov;
1681 struct uio uio;
1682 kauth_cred_t cred = curlwp->l_cred;
1683 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1684
1685 error = 0;
1686 origoffset = ap->a_offset;
1687 orignpages = *ap->a_count;
1688 pgs = ap->a_m;
1689
1690 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1691 vn_syncer_add_to_worklist(vp, filedelay);
1692 }
1693 if (ap->a_flags & PGO_LOCKED) {
1694 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1695 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1696
1697 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1698 }
1699 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1700 mutex_exit(&uobj->vmobjlock);
1701 return (EINVAL);
1702 }
1703 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1704 mutex_exit(&uobj->vmobjlock);
1705 return 0;
1706 }
1707 npages = orignpages;
1708 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1709 mutex_exit(&uobj->vmobjlock);
1710 kva = uvm_pagermapin(pgs, npages,
1711 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1712 for (i = 0; i < npages; i++) {
1713 pg = pgs[i];
1714 if ((pg->flags & PG_FAKE) == 0) {
1715 continue;
1716 }
1717 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1718 iov.iov_len = PAGE_SIZE;
1719 uio.uio_iov = &iov;
1720 uio.uio_iovcnt = 1;
1721 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1722 uio.uio_rw = UIO_READ;
1723 uio.uio_resid = PAGE_SIZE;
1724 UIO_SETUP_SYSSPACE(&uio);
1725 /* XXX vn_lock */
1726 error = VOP_READ(vp, &uio, 0, cred);
1727 if (error) {
1728 break;
1729 }
1730 if (uio.uio_resid) {
1731 memset(iov.iov_base, 0, uio.uio_resid);
1732 }
1733 }
1734 uvm_pagermapout(kva, npages);
1735 mutex_enter(&uobj->vmobjlock);
1736 mutex_enter(&uvm_pageqlock);
1737 for (i = 0; i < npages; i++) {
1738 pg = pgs[i];
1739 if (error && (pg->flags & PG_FAKE) != 0) {
1740 pg->flags |= PG_RELEASED;
1741 } else {
1742 pmap_clear_modify(pg);
1743 uvm_pageactivate(pg);
1744 }
1745 }
1746 if (error) {
1747 uvm_page_unbusy(pgs, npages);
1748 }
1749 mutex_exit(&uvm_pageqlock);
1750 mutex_exit(&uobj->vmobjlock);
1751 return (error);
1752 }
1753
1754 int
1755 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1756 int flags)
1757 {
1758 off_t offset;
1759 struct iovec iov;
1760 struct uio uio;
1761 kauth_cred_t cred = curlwp->l_cred;
1762 struct buf *bp;
1763 vaddr_t kva;
1764 int s, error;
1765
1766 offset = pgs[0]->offset;
1767 kva = uvm_pagermapin(pgs, npages,
1768 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1769
1770 iov.iov_base = (void *)kva;
1771 iov.iov_len = npages << PAGE_SHIFT;
1772 uio.uio_iov = &iov;
1773 uio.uio_iovcnt = 1;
1774 uio.uio_offset = offset;
1775 uio.uio_rw = UIO_WRITE;
1776 uio.uio_resid = npages << PAGE_SHIFT;
1777 UIO_SETUP_SYSSPACE(&uio);
1778 /* XXX vn_lock */
1779 error = VOP_WRITE(vp, &uio, 0, cred);
1780
1781 s = splbio();
1782 V_INCR_NUMOUTPUT(vp);
1783 splx(s);
1784
1785 bp = getiobuf();
1786 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1787 bp->b_vp = vp;
1788 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1789 bp->b_data = (char *)kva;
1790 bp->b_bcount = npages << PAGE_SHIFT;
1791 bp->b_bufsize = npages << PAGE_SHIFT;
1792 bp->b_resid = 0;
1793 if (error) {
1794 bp->b_flags |= B_ERROR;
1795 bp->b_error = error;
1796 }
1797 uvm_aio_aiodone(bp);
1798 return (error);
1799 }
1800
1801 /*
1802 * Process a uio using direct I/O. If we reach a part of the request
1803 * which cannot be processed in this fashion for some reason, just return.
1804 * The caller must handle some additional part of the request using
1805 * buffered I/O before trying direct I/O again.
1806 */
1807
1808 void
1809 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1810 {
1811 struct vmspace *vs;
1812 struct iovec *iov;
1813 vaddr_t va;
1814 size_t len;
1815 const int mask = DEV_BSIZE - 1;
1816 int error;
1817
1818 /*
1819 * We only support direct I/O to user space for now.
1820 */
1821
1822 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1823 return;
1824 }
1825
1826 /*
1827 * If the vnode is mapped, we would need to get the getpages lock
1828 * to stabilize the bmap, but then we would get into trouble whil e
1829 * locking the pages if the pages belong to this same vnode (or a
1830 * multi-vnode cascade to the same effect). Just fall back to
1831 * buffered I/O if the vnode is mapped to avoid this mess.
1832 */
1833
1834 if (vp->v_vflag & VV_MAPPED) {
1835 return;
1836 }
1837
1838 /*
1839 * Do as much of the uio as possible with direct I/O.
1840 */
1841
1842 vs = uio->uio_vmspace;
1843 while (uio->uio_resid) {
1844 iov = uio->uio_iov;
1845 if (iov->iov_len == 0) {
1846 uio->uio_iov++;
1847 uio->uio_iovcnt--;
1848 continue;
1849 }
1850 va = (vaddr_t)iov->iov_base;
1851 len = MIN(iov->iov_len, genfs_maxdio);
1852 len &= ~mask;
1853
1854 /*
1855 * If the next chunk is smaller than DEV_BSIZE or extends past
1856 * the current EOF, then fall back to buffered I/O.
1857 */
1858
1859 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1860 return;
1861 }
1862
1863 /*
1864 * Check alignment. The file offset must be at least
1865 * sector-aligned. The exact constraint on memory alignment
1866 * is very hardware-dependent, but requiring sector-aligned
1867 * addresses there too is safe.
1868 */
1869
1870 if (uio->uio_offset & mask || va & mask) {
1871 return;
1872 }
1873 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1874 uio->uio_rw);
1875 if (error) {
1876 break;
1877 }
1878 iov->iov_base = (char *)iov->iov_base + len;
1879 iov->iov_len -= len;
1880 uio->uio_offset += len;
1881 uio->uio_resid -= len;
1882 }
1883 }
1884
1885 /*
1886 * Iodone routine for direct I/O. We don't do much here since the request is
1887 * always synchronous, so the caller will do most of the work after biowait().
1888 */
1889
1890 static void
1891 genfs_dio_iodone(struct buf *bp)
1892 {
1893 int s;
1894
1895 KASSERT((bp->b_flags & B_ASYNC) == 0);
1896 s = splbio();
1897 if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1898 vwakeup(bp);
1899 }
1900 putiobuf(bp);
1901 splx(s);
1902 }
1903
1904 /*
1905 * Process one chunk of a direct I/O request.
1906 */
1907
1908 static int
1909 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1910 off_t off, enum uio_rw rw)
1911 {
1912 struct vm_map *map;
1913 struct pmap *upm, *kpm;
1914 size_t klen = round_page(uva + len) - trunc_page(uva);
1915 off_t spoff, epoff;
1916 vaddr_t kva, puva;
1917 paddr_t pa;
1918 vm_prot_t prot;
1919 int error, rv, poff, koff;
1920 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1921 (rw == UIO_WRITE ? PGO_FREE : 0);
1922
1923 /*
1924 * For writes, verify that this range of the file already has fully
1925 * allocated backing store. If there are any holes, just punt and
1926 * make the caller take the buffered write path.
1927 */
1928
1929 if (rw == UIO_WRITE) {
1930 daddr_t lbn, elbn, blkno;
1931 int bsize, bshift, run;
1932
1933 bshift = vp->v_mount->mnt_fs_bshift;
1934 bsize = 1 << bshift;
1935 lbn = off >> bshift;
1936 elbn = (off + len + bsize - 1) >> bshift;
1937 while (lbn < elbn) {
1938 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1939 if (error) {
1940 return error;
1941 }
1942 if (blkno == (daddr_t)-1) {
1943 return ENOSPC;
1944 }
1945 lbn += 1 + run;
1946 }
1947 }
1948
1949 /*
1950 * Flush any cached pages for parts of the file that we're about to
1951 * access. If we're writing, invalidate pages as well.
1952 */
1953
1954 spoff = trunc_page(off);
1955 epoff = round_page(off + len);
1956 mutex_enter(&vp->v_interlock);
1957 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1958 if (error) {
1959 return error;
1960 }
1961
1962 /*
1963 * Wire the user pages and remap them into kernel memory.
1964 */
1965
1966 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1967 error = uvm_vslock(vs, (void *)uva, len, prot);
1968 if (error) {
1969 return error;
1970 }
1971
1972 map = &vs->vm_map;
1973 upm = vm_map_pmap(map);
1974 kpm = vm_map_pmap(kernel_map);
1975 kva = uvm_km_alloc(kernel_map, klen, 0,
1976 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1977 puva = trunc_page(uva);
1978 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1979 rv = pmap_extract(upm, puva + poff, &pa);
1980 KASSERT(rv);
1981 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1982 }
1983 pmap_update(kpm);
1984
1985 /*
1986 * Do the I/O.
1987 */
1988
1989 koff = uva - trunc_page(uva);
1990 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1991 genfs_dio_iodone);
1992
1993 /*
1994 * Tear down the kernel mapping.
1995 */
1996
1997 pmap_remove(kpm, kva, kva + klen);
1998 pmap_update(kpm);
1999 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2000
2001 /*
2002 * Unwire the user pages.
2003 */
2004
2005 uvm_vsunlock(vs, (void *)uva, len);
2006 return error;
2007 }
2008
2009
2010 static void
2011 filt_genfsdetach(struct knote *kn)
2012 {
2013 struct vnode *vp = (struct vnode *)kn->kn_hook;
2014
2015 /* XXXLUKEM lock the struct? */
2016 SLIST_REMOVE(&vp->v_klist, kn, knote, kn_selnext);
2017 }
2018
2019 static int
2020 filt_genfsread(struct knote *kn, long hint)
2021 {
2022 struct vnode *vp = (struct vnode *)kn->kn_hook;
2023
2024 /*
2025 * filesystem is gone, so set the EOF flag and schedule
2026 * the knote for deletion.
2027 */
2028 if (hint == NOTE_REVOKE) {
2029 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
2030 return (1);
2031 }
2032
2033 /* XXXLUKEM lock the struct? */
2034 kn->kn_data = vp->v_size - kn->kn_fp->f_offset;
2035 return (kn->kn_data != 0);
2036 }
2037
2038 static int
2039 filt_genfsvnode(struct knote *kn, long hint)
2040 {
2041
2042 if (kn->kn_sfflags & hint)
2043 kn->kn_fflags |= hint;
2044 if (hint == NOTE_REVOKE) {
2045 kn->kn_flags |= EV_EOF;
2046 return (1);
2047 }
2048 return (kn->kn_fflags != 0);
2049 }
2050
2051 static const struct filterops genfsread_filtops =
2052 { 1, NULL, filt_genfsdetach, filt_genfsread };
2053 static const struct filterops genfsvnode_filtops =
2054 { 1, NULL, filt_genfsdetach, filt_genfsvnode };
2055
2056 int
2057 genfs_kqfilter(void *v)
2058 {
2059 struct vop_kqfilter_args /* {
2060 struct vnode *a_vp;
2061 struct knote *a_kn;
2062 } */ *ap = v;
2063 struct vnode *vp;
2064 struct knote *kn;
2065
2066 vp = ap->a_vp;
2067 kn = ap->a_kn;
2068 switch (kn->kn_filter) {
2069 case EVFILT_READ:
2070 kn->kn_fop = &genfsread_filtops;
2071 break;
2072 case EVFILT_VNODE:
2073 kn->kn_fop = &genfsvnode_filtops;
2074 break;
2075 default:
2076 return (1);
2077 }
2078
2079 kn->kn_hook = vp;
2080
2081 /* XXXLUKEM lock the struct? */
2082 SLIST_INSERT_HEAD(&vp->v_klist, kn, kn_selnext);
2083
2084 return (0);
2085 }
2086
2087 void
2088 genfs_node_wrlock(struct vnode *vp)
2089 {
2090 struct genfs_node *gp = VTOG(vp);
2091
2092 rw_enter(&gp->g_glock, RW_WRITER);
2093 }
2094
2095 void
2096 genfs_node_rdlock(struct vnode *vp)
2097 {
2098 struct genfs_node *gp = VTOG(vp);
2099
2100 rw_enter(&gp->g_glock, RW_READER);
2101 }
2102
2103 void
2104 genfs_node_unlock(struct vnode *vp)
2105 {
2106 struct genfs_node *gp = VTOG(vp);
2107
2108 rw_exit(&gp->g_glock);
2109 }
2110